1
|
Szablewski L. Associations Between Diabetes Mellitus and Neurodegenerative Diseases. Int J Mol Sci 2025; 26:542. [PMID: 39859258 PMCID: PMC11765393 DOI: 10.3390/ijms26020542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Diabetes mellitus (DM) and neurodegenerative diseases/disturbances are worldwide health problems. The most common chronic conditions diagnosed in persons 60 years and older are type 2 diabetes mellitus (T2DM) and cognitive impairment. It was found that diabetes mellitus is a major risk for cognitive decline, dementia, Parkinson's disease (PD), Alzheimer's disease (AD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. Different mechanisms of associations between these diseases and diabetes mellitus have been suggested. For example, it is postulated that an impaired intracellular insulin signaling pathway, together with hyperglycemia and hyperinsulinemia, may cause pathological changes, such as dysfunction of the mitochondria, oxidative stress inflammatory responses, etc. The association between diabetes mellitus and neurodegenerative diseases, as well as the mechanisms of these associations, needs further investigation. The aim of this review is to describe the associations between diabetes mellitus, especially type 1 (T1DM) and type 2 diabetes mellitus, and selected neurodegenerative diseases, i.e., Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. Suggested mechanisms of these associations are also described.
Collapse
Affiliation(s)
- Leszek Szablewski
- Chair and Department of General Biology and Parasitology, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
2
|
Zhang Y, Liao X, Xu J, Yin J, Li S, Li M, Shi X, Zhang S, Li C, Xu W, Yu X, Yang Y. The Promising Potency of Sodium-Glucose Cotransporter 2 Inhibitors in the Prevention of and as Treatment for Cognitive Impairment Among Type 2 Diabetes Patients. Biomedicines 2024; 12:2783. [PMID: 39767690 PMCID: PMC11673520 DOI: 10.3390/biomedicines12122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for the majority of diabetes mellitus prevalence, is associated with an increased risk of cognition decline and deterioration of cognition function in diabetic patients. The sodium-glucose cotransporter 2 (SGLT2), located in the renal proximal tubule, plays a role in urine glucose reabsorption. SGLT2 inhibitors (SGLT2i), have shown potential benefits beyond cardiac and renal improvement in preventing and treating cognitive impairment (CI), including mild cognitive impairment, Alzheimer's disease and vascular dementia in T2DM patients. Studies suggest that SGLT2i may ameliorate diabetic CI through metabolism pathways, inflammation, oxidative stress, neurotrophic factors and AChE inhibition. Clinical trials and meta-analyses have reported significant and insignificant results. Given their vascular effects, SGLT2i may offer unique protection against vascular CI. This review compiles mechanisms and clinical evidence, emphasizing the need for future analysis, evaluation, trials and meta-analyses to verify and recommend optimal SGLT2i selection and dosage for specific patients.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaobin Liao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialu Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Jiaxin Yin
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shan Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Mengni Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Shujun Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Chunyu Li
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Weijie Xu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Xuefeng Yu
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| | - Yan Yang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.Z.); (X.L.); (J.X.); (J.Y.); (S.L.); (M.L.); (X.S.); (S.Z.); (C.L.); (W.X.); (X.Y.)
- Branch of National Clinical Research Center for Metabolic Diseases, Wuhan 430030, China
| |
Collapse
|
3
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
4
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
5
|
Mohamed DA, Fouda K, Mabrok HB, El-Shamarka ME, Hamed IM. Sourdough bread as nutritional intervention tool for improvement of cognitive dysfunction in diabetic rats. BMC Nutr 2024; 10:53. [PMID: 38528644 DOI: 10.1186/s40795-024-00861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The current research targeted to study the impact of nutritional intervention by two sourdough breads in improvement of cognitive dysfunction in diabetic rats. METHODS Type-2 diabetes was induced in rats by Streptozotocin-Nicotinamide (STZ-NC). Diabetic rats were fed on balanced diet or balanced diet containing 20% of sourdough bread I or II for a month. Lipid profile, oxidative stress, inflammatory markers and cognitive functions were assessed in all rats. Gene expression of brain-derived neurotrophic factor (BDNF) and nuclear respiratory factor 2 (NRF-2) were assessed in hippocampal tissue, while expression of phosphoenol pyruvate carboxy kinase (PEPCK), and glucose transporter 2 (GLUT2) genes were evaluated in hepatic tissue. Chemical composition and fatty acids profile were evaluated in the prepared sourdough bread. RESULTS Sourdough bread II showed higher content of phenolic compounds, fat, fiber and carbohydrates. Fatty acids profile revealed that sourdough bread I was higher in saturated fatty acids (16.08%), while sourdough bread sample II was higher in unsaturated fatty acids (79.33%). Sourdough bread I or II feeding rats' showed significant improvement in hyperglycemia, oxidative stress markers, inflammatory markers, lipid profile, liver and kidney functions in association with improvement in cognitive function. Gene expression of BDNF and NRF2 in hippocampal tissue were increased significantly, while hepatic GLUT2 and PEPCK gene expression were down-regulated in diabetic given sourdough bread I or II. CONCLUSION Sourdough bread II was superior in all the studied parameters. The anti-diabetic effect and protection from cognitive dysfunction of sourdough bread samples may be ascribed to the occurrence of dietary fibers, phenolic compounds, and polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Doha A Mohamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Karem Fouda
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Hoda B Mabrok
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Marwa E El-Shamarka
- Toxicology and Narcotics Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Ibrahim M Hamed
- Nutrition and Food Science Department, Food Industries and Nutrition Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
6
|
Zhao R. Exercise mimetics: a novel strategy to combat neuroinflammation and Alzheimer's disease. J Neuroinflammation 2024; 21:40. [PMID: 38308368 PMCID: PMC10837901 DOI: 10.1186/s12974-024-03031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
Neuroinflammation is a pathological hallmark of Alzheimer's disease (AD), characterized by the stimulation of resident immune cells of the brain and the penetration of peripheral immune cells. These inflammatory processes facilitate the deposition of amyloid-beta (Aβ) plaques and the abnormal hyperphosphorylation of tau protein. Managing neuroinflammation to restore immune homeostasis and decrease neuronal damage is a therapeutic approach for AD. One way to achieve this is through exercise, which can improve brain function and protect against neuroinflammation, oxidative stress, and synaptic dysfunction in AD models. The neuroprotective impact of exercise is regulated by various molecular factors that can be activated in the same way as exercise by the administration of their mimetics. Recent evidence has proven some exercise mimetics effective in alleviating neuroinflammation and AD, and, additionally, they are a helpful alternative option for patients who are unable to perform regular physical exercise to manage neurodegenerative disorders. This review focuses on the current state of knowledge on exercise mimetics, including their efficacy, regulatory mechanisms, progress, challenges, limitations, and future guidance for their application in AD therapy.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, China.
| |
Collapse
|
7
|
Kumar S, Mahajan A, Ambatwar R, Khatik GL. Recent Advancements in the Treatment of Alzheimer's Disease: A Multitarget-directed Ligand Approach. Curr Med Chem 2024; 31:6032-6062. [PMID: 37861025 DOI: 10.2174/0109298673264076230921065945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and one of the leading causes of progressive dementia, affecting 50 million people worldwide. Many pathogenic processes, including amyloid β aggregation, tau hyperphosphorylation, oxidative stress, neuronal death, and deterioration of the function of cholinergic neurons, are associated with its progression. The one-compound-one-target treatment paradigm was unsuccessful in treating AD due to the multifaceted nature of Alzheimer's disease. The recent development of multitarget-directed ligand research has been explored to target the complementary pathways associated with the disease. We aimed to find the key role and progress of MTDLs in treating AD; thus, we searched for the past ten years of literature on "Pub- Med", "ScienceDirect", "ACS" and "Bentham Science" using the keywords neurodegenerative diseases, Alzheimer's disease, and multitarget-directed ligands. The literature was further filtered based on the quality of work and relevance to AD. Thus, this review highlights the current advancement and advantages of multitarget-directed ligands over traditional single-targeted drugs and recent progress in their development to treat AD.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Amol Mahajan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli, Uttar Pradesh, 226002, India
| |
Collapse
|
8
|
Li W, Chen H, Cai J, Wang M, Zhou X, Ren L. Poly(pentahydropyrimidine)‐Based Hybrid Hydrogel with Synergistic Antibacterial and Pro‐Angiogenic Ability for the Therapy of Diabetic Foot Ulcers. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202303147] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 08/16/2024]
Abstract
AbstractBacterial infection and impaired angiogenesis make the treatment of diabetic foot ulcers (DFU) extremely challenging. Cationic polymers are expected to treat infected wounds due to their excellent antibacterial properties, but still, it is difficult to meet the therapeutic needs of pro‐angiogenesis and anti‐infections due to their simple construction units and outmoded synthesis methods. Herein, a cationic poly(pentahydropyrimidine) (PPHP) library with strong modifiability is synthesized to construct a hybrid hydrogel with synergistic therapeutic effects for the treatment of infected DFUs. It is found that the as‐synthesized hybrid hydrogel can up‐regulate angiogenesis‐related gene (HIF‐1, VEGF, and bFGFR/bFGF) expression and targeted disruption of bacterial cell membranes, which finally promotes the healing of infected DFU (wound healing rate: 92%) within 10 days. This hydrogel, thus, holds great promise in developing new strategies to significantly enhance the treatment of DFU and other bacterial‐infected pathological diagnoses.
Collapse
Affiliation(s)
- Wenlong Li
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Haoxiang Chen
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Jingfeng Cai
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Miao Wang
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Xi Zhou
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
| | - Lei Ren
- Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province Research Center of Biomedical Engineering of Xiamen Department of Biomaterials College of Materials Xiamen University 422 Siming Nan Road Xiamen 361005 China
- State Key Laboratory of Physical Chemistry of Solid Surfaces College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
9
|
Veselov IM, Vinogradova DV, Maltsev AV, Shevtsov PN, Spirkova EA, Bachurin SO, Shevtsova EF. Mitochondria and Oxidative Stress as a Link between Alzheimer's Disease and Diabetes Mellitus. Int J Mol Sci 2023; 24:14450. [PMID: 37833898 PMCID: PMC10572926 DOI: 10.3390/ijms241914450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
This review is devoted to the problems of the common features linking metabolic disorders and type 2 diabetes with the development of Alzheimer's disease. The pathogenesis of Alzheimer's disease closely intersects with the mechanisms of type 2 diabetes development, and an important risk factor for both pathologies is aging. Common pathological mechanisms include both factors in the development of oxidative stress, neuroinflammation, insulin resistance, and amyloidosis, as well as impaired mitochondrial dysfunctions and increasing cell death. The currently available drugs for the treatment of type 2 diabetes and Alzheimer's disease have limited therapeutic efficacy. It is important to note that drugs used to treat Alzheimer's disease, in particular acetylcholinesterase inhibitors, show a positive therapeutic potential in the treatment of type 2 diabetes, while drugs used in the treatment of type 2 diabetes can also prevent a number of pathologies characteristic for Alzheimer's disease. A promising direction in the search for a strategy for the treatment of type 2 diabetes and Alzheimer's disease may be the creation of complex multi-target drugs that have neuroprotective potential and affect specific common targets for type 2 diabetes and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena F. Shevtsova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences (IPAC RAS), Chernogolovka 142432, Russia; (I.M.V.); (A.V.M.); (P.N.S.); (E.A.S.); (S.O.B.)
| |
Collapse
|
10
|
Nelson ML, Pfeifer JA, Hickey JP, Collins AE, Kalisch BE. Exploring Rosiglitazone's Potential to Treat Alzheimer's Disease through the Modulation of Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1042. [PMID: 37508471 PMCID: PMC10376118 DOI: 10.3390/biology12071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/24/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that debilitates over 55 million individuals worldwide. Currently, treatments manage and alleviate its symptoms; however, there is still a need to find a therapy that prevents or halts disease progression. Since AD has been labeled as "type 3 diabetes" due to its similarity in pathological hallmarks, molecular pathways, and comorbidity with type 2 diabetes mellitus (T2DM), there is growing interest in using anti-diabetic drugs for its treatment. Rosiglitazone (RSG) is a peroxisome proliferator-activated receptor-gamma agonist that reduces hyperglycemia and hyperinsulinemia and improves insulin signaling. In cellular and rodent models of T2DM-associated cognitive decline and AD, RSG has been reported to improve cognitive impairment and reverse AD-like pathology; however, results from human clinical trials remain consistently unsuccessful. RSG has also been reported to modulate the expression of brain-derived neurotrophic factor (BDNF), a protein that regulates neuroplasticity and energy homeostasis and is implicated in both AD and T2DM. The present review investigates RSG's limitations and potential therapeutic benefits in pre-clinical models of AD through its modulation of BDNF expression.
Collapse
Affiliation(s)
- Mackayla L Nelson
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Julia A Pfeifer
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jordan P Hickey
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andrila E Collins
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bettina E Kalisch
- Department of Biomedical Sciences and Collaborative Specialization in Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
11
|
Xu L, Liu R, Qin Y, Wang T. Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Transl Neurodegener 2023; 12:33. [PMID: 37365651 DOI: 10.1186/s40035-023-00364-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major subtype of neurodegenerative dementia caused by long-term interactions and accumulation of multiple adverse factors, accompanied by dysregulation of numerous intracellular signaling and molecular pathways in the brain. At the cellular and molecular levels, the neuronal cellular milieu of the AD brain exhibits metabolic abnormalities, compromised bioenergetics, impaired lipid metabolism, and reduced overall metabolic capacity, which lead to abnormal neural network activity and impaired neuroplasticity, thus accelerating the formation of extracellular senile plaques and intracellular neurofibrillary tangles. The current absence of effective pharmacological therapies for AD points to the urgent need to investigate the benefits of non-pharmacological approaches such as physical exercise. Despite the evidence that regular physical activity can improve metabolic dysfunction in the AD state, inhibit different pathophysiological molecular pathways associated with AD, influence the pathological process of AD, and exert a protective effect, there is no clear consensus on the specific biological and molecular mechanisms underlying the advantages of physical exercise. Here, we review how physical exercise improves crucial molecular pathways and biological processes associated with metabolic disorders in AD, including glucose metabolism, lipid metabolism, Aβ metabolism and transport, iron metabolism and tau pathology. How metabolic states influence brain health is also presented. A better knowledge on the neurophysiological mechanisms by which exercise improves AD metabolism can contribute to the development of novel drugs and improvement of non-pharmacological interventions.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Yingkai Qin
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
12
|
Effects of Peroxisome Proliferator-Activated Receptor-Gamma Agonists on Cognitive Function: A Systematic Review and Meta-Analysis. Biomedicines 2023; 11:biomedicines11020246. [PMID: 36830783 PMCID: PMC9953157 DOI: 10.3390/biomedicines11020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Diabetes mellitus (DM) is known to be a risk factor for dementia, especially in the elderly population, and close associations between diabetes and Alzheimer disease (AD) have been determined. Peroxisome proliferator-activated receptor-gamma (PPAR-γ) agonists are insulin-sensitising drugs. In addition to their anti-diabetic properties, their effectiveness in preventing and decreasing cognitive impairment are the most recent characteristics that have been studied. For this study, we conducted a systematic review and meta-analysis to critically analyse and evaluate the existing data on the effects of PPAR-γ agonist therapy on the cognitive status of patients. For this purpose, we first analysed both early intervention and later treatment with PPAR-γ agonists, according to the disease status. The involved studies indicated that early PPAR-γ agonist intervention is beneficial for patients and that high-dose PPAR-γ therapy may have a better clinical effect, especially in reversing the effects of cognitive impairment. Furthermore, the efficacy of pioglitazone (PIO) seems to be promising, particularly for patients with comorbid diabetes. PIO presented a better clinical curative effect and safety, compared with rosiglitazone (RSG). Thus, PPAR-γ agonists play an important role in the inflammatory response of AD or DM patients, and clinical therapeutics should focus more on relevant metabolic indices.
Collapse
|
13
|
Sleeve Gastrectomy-Induced Weight Loss Increases Insulin Clearance in Obese Mice. Int J Mol Sci 2023; 24:ijms24021729. [PMID: 36675244 PMCID: PMC9861800 DOI: 10.3390/ijms24021729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Sleeve gastrectomy (SG) successfully recovers metabolic homeostasis in obese humans and rodents while also resulting in the normalization of insulin sensitivity and insulinemia. Reduced insulin levels have been attributed to lower insulin secretion and increased insulin clearance in individuals submitted to SG. Insulin degradation mainly occurs in the liver in a process controlled, at least in part, by the insulin-degrading enzyme (IDE). However, research has yet to explore whether liver IDE expression or activity is altered after SG surgery. In this study, C57BL/6 mice were fed a chow (CTL) or high-fat diet (HFD) for 10 weeks. Afterward, the HFD mice were randomly assigned to two groups: sham-surgical (HFD-SHAM) and SG-surgical (HFD-SG). Here, we confirmed that SG improves glucose-insulin homeostasis in obese mice. Additionally, SG reduced insulinemia by reducing insulin secretion, assessed by the analysis of plasmatic C-peptide content, and increasing insulin clearance, which was evaluated through the calculation of the plasmatic C-peptide:insulin ratio. Although no changes in hepatic IDE activity were observed, IDE expression was higher in the liver of HFD-SG compared with HFD-SHAM mice. These results indicate that SG may be helpful to counteract obesity-induced hyperinsulinemia by increasing insulin clearance, likely through enhanced liver IDE expression.
Collapse
|
14
|
Gu S, Zhou Z, Zhang S, Cai Y. Advances in Anti-Diabetic Cognitive Dysfunction Effect of Erigeron Breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16:ph16010050. [PMID: 36678547 PMCID: PMC9867432 DOI: 10.3390/ph16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid β hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.
Collapse
Affiliation(s)
- Shanye Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziyi Zhou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shijie Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Yefeng Cai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-136-3133-3842
| |
Collapse
|
15
|
Woodfield A, Gonzales T, Helmerhorst E, Laws S, Newsholme P, Porter T, Verdile G. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer's Disease. Int J Mol Sci 2022; 23:15811. [PMID: 36555450 PMCID: PMC9779379 DOI: 10.3390/ijms232415811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2D) are chronic diseases that share several pathological mechanisms, including insulin resistance and impaired insulin signalling. Their shared features have prompted the evaluation of the drugs used to manage diabetes for the treatment of AD. Insulin delivery itself has been utilized, with promising effects, in improving cognition and reducing AD related neuropathology. The most recent clinical trial involving intranasal insulin reported no slowing of cognitive decline; however, several factors may have impacted the trial outcomes. Long-acting and rapid-acting insulin analogues have also been evaluated within the context of AD with a lack of consistent outcomes. This narrative review provided insight into how targeting insulin signalling in the brain has potential as a therapeutic target for AD and provided a detailed update on the efficacy of insulin, its analogues and the outcomes of human clinical trials. We also discussed the current evidence that warrants the further investigation of the use of the mimetics of insulin for AD. These small molecules may provide a modifiable alternative to insulin, aiding in developing drugs that selectively target insulin signalling in the brain with the aim to attenuate cognitive dysfunction and AD pathologies.
Collapse
Affiliation(s)
- Amy Woodfield
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tatiana Gonzales
- Curtin Medical School, Curtin University, Bentley 6102, Australia
| | - Erik Helmerhorst
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Simon Laws
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Philip Newsholme
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
| | - Tenielle Porter
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup 6027, Australia
- Collaborative Genomics and Translation Group, School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| | - Giuseppe Verdile
- Curtin Medical School, Curtin University, Bentley 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
| |
Collapse
|
16
|
Tyagi A, Musa M, Labeikovsky W, Pugazhenthi S. Sirt3 deficiency induced down regulation of insulin degrading enzyme in comorbid Alzheimer's disease with metabolic syndrome. Sci Rep 2022; 12:19808. [PMID: 36396721 PMCID: PMC9672095 DOI: 10.1038/s41598-022-23652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
SIRT3 deacetylates mitochondrial proteins, thereby enhancing their function. We have previously demonstrated that Sirt3 gene deletion leads to brain mitochondrial dysfunction and neuroinflammation. We also reported that silencing of Sirt3 gene in APP/PS1 mice results in exacerbation of insulin resistance, neuroinflammation and β amyloid plaque deposition. To further understand how metabolic syndrome and amyloid pathology interact, we performed RNA-seq analysis of the brain samples of APP/PS1/Sirt3-/- mice. Gene expression patterns were modulated in metabolic and inflammatory pathways by Sirt3 gene deletion, amyloid pathology, and the combination. Following Sirt3 gene deletion, a key finding was the decreased expression of insulin-degrading enzyme (IDE), an enzyme that regulates the levels of insulin and Aβ peptides. Western diet feeding of Sirt3-/- and APP/PS1 mice resulted in decrease of IDE protein, parallel to Sirt3 downregulation. Conversely, activation of SIRT3 by nicotinamide riboside in vivo and in vitro resulted in IDE upregulation. SIRT3 activation in vivo also increased the levels of neprilysin, another Aβ degrading enzyme and decreased the levels of BACE1 which generates Aβ peptide suggesting SIRT3's role in amyloid plaque reduction. Our findings provide a plausible mechanism linking metabolic syndrome and amyloid pathology. SIRT3 may be a potential therapeutic target to treat AD.
Collapse
Affiliation(s)
- Alpna Tyagi
- grid.422100.50000 0000 9751 469XRocky Mountain Regional VA Medical Center, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Musa Musa
- grid.422100.50000 0000 9751 469XRocky Mountain Regional VA Medical Center, Aurora, CO USA
| | - Wladimir Labeikovsky
- grid.430503.10000 0001 0703 675XDepartment of Education and Research, Strauss Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Subbiah Pugazhenthi
- grid.422100.50000 0000 9751 469XRocky Mountain Regional VA Medical Center, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDepartment of Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
17
|
Cummings J, Ortiz A, Castellino J, Kinney J. Diabetes: Risk factor and translational therapeutic implications for Alzheimer's disease. Eur J Neurosci 2022; 56:5727-5757. [PMID: 35128745 PMCID: PMC9393901 DOI: 10.1111/ejn.15619] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022]
Abstract
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) commonly co-occur. T2DM increases the risk for AD by approximately twofold. Animal models provide one means of interrogating the relationship of T2DM to AD and investigating brain insulin resistance in the pathophysiology of AD. Animal models show that persistent hyperglycaemia results in chronic low-grade inflammation that may contribute to the development of neuroinflammation and accelerate the pathobiology of AD. Epidemiological studies suggest that patients with T2DM who received treatment with specific anti-diabetic agents have a decreased risk for the occurrence of AD and all-cause dementia. Agents such as metformin ameliorate T2DM and may have other important systemic effects that lower the risk of AD. Glucagon-like peptide 1 (GLP-1) agonists have been associated with a decreased risk for AD in patients with T2DM. Both insulin and non-insulin anti-diabetic treatments have been evaluated for the treatment of AD in clinical trials. In most cases, patients included in the trials have clinical features of AD but do not have T2DM. Many of the trials were conducted prior to the use of diagnostic biomarkers for AD. Trials have had a wide range of durations and population sizes. Many of the agents used to treat T2DM do not cross the blood brain barrier, and the effects are posited to occur via lowering of peripheral hyperglycaemia and reduction of peripheral and central inflammation. Clinical trials of anti-diabetic agents to treat AD are ongoing and will provide insight into the therapeutic utility of these agents.
Collapse
Affiliation(s)
- Jeffrey Cummings
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | - Andrew Ortiz
- Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| | | | - Jefferson Kinney
- Chambers‐Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA,Department of Brain Health, School of Integrated Health SciencesUniversity of Nevada Las Vegas (UNLV)Las VegasNevadaUSA
| |
Collapse
|
18
|
Marmentini C, Guimarães DSPSF, de Lima TI, Teófilo FBS, da Silva NS, Soares GM, Boschero AC, Kurauti MA. Rosiglitazone protects INS-1E cells from human islet amyloid polypeptide toxicity. Eur J Pharmacol 2022; 928:175122. [PMID: 35764131 DOI: 10.1016/j.ejphar.2022.175122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
Abstract
Human islet amyloid polypeptide (hIAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells, and is the main component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes and may be involved in β-cell dysfunction and death, observed in this disease. Thus, counteracting islet amyloid toxicity represents a therapeutic approach to preserve β-cell mass and function. In this sense, thiazolidinediones (TZDs), as rosiglitazone, have shown protective effects against other harmful insults to β-cells. For this reason, we investigated whether rosiglitazone could protect β-cells from hIAPP-induced cell death and the underlying mechanisms mediating such effect. Here, we show that rosiglitazone improved the viability of hIAPP-exposed INS-1E cells. This benefit is not dependent on the insulin-degrading enzyme (IDE) since rosiglitazone did not modulate IDE protein content and activity. However, rosiglitazone inhibited hIAPP fibrillation and decreased hIAPP-induced expression of C/EBP homologous protein (CHOP) (CTL 100.0 ± 8.4; hIAPP 182.7 ± 19.1; hIAPP + RGZ 102.8 ± 9.5), activating transcription factor-4 (ATF4) (CTL 100.0 ± 3.1; hIAPP 234.9 ± 19.3; hIAPP + RGZ 129.6 ± 3.0) and phospho-eukaryotic initiation factor 2-alpha (p-eIF2α) (CTL 100.0 ± 31.1; hIAPP 234.1 ± 36.2; hIAPP + RGZ 150.4 ± 18.0). These findings suggest that TZDs treatment may be a promising approach to preserve β-cell mass and function by inhibiting islet amyloid formation and decreasing endoplasmic reticulum stress hIAPP-induced.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Dimitrius Santiago P S F Guimarães
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Tanes I de Lima
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Francisco Breno S Teófilo
- Electron Microscopy Laboratory, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Natália S da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Gabriela M Soares
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Mirian A Kurauti
- Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Parana, Brazil.
| |
Collapse
|
19
|
He CF, Xue WJ, Xu XD, Wang JT, Wang XR, Feng Y, Zhou HG, Guo JC. Knockdown of NRSF Alleviates Ischemic Brain Injury and Microvasculature Defects in Diabetic MCAO Mice. Front Neurol 2022; 13:869220. [PMID: 35645950 PMCID: PMC9136417 DOI: 10.3389/fneur.2022.869220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes is one of the well-established risk factors of stroke and is associated with a poor outcome in patients with stroke. Previous studies have shown that the expression of neuron restrictive silencer factor (NRSF) is elevated in diabetes as well as ischemic stroke. However, the role of NRSF in regulating an outcome of diabetic ischemic stroke has not been completely understood. Here, we hypothesized that diabetes-induced NRSF elevation can aggravate brain injury and cognition impairment in ischemic stroke. The diabetic ischemic stroke mice model was established by 8 weeks of high-fat-diet feeding and 5 days of streptozotocin injection followed by 30 min of middle cerebral artery occlusion (MCAO). We found that diabetes enhanced the MCAO-induced elevation of NRSF in the hippocampus in accompany with an elevation of its corepressors, HDAC1, and mSin3A, and decrease of β-TrCP. By using histological/immunofluorescence staining and neurobehavioral testing, our results showed that the brain damage and learning/memory impairment were aggravated in diabetic ischemic mice but significantly attenuated after stereotaxic injection of NRSF-shRNA. Meanwhile, by performing whole-brain clearing with PEGASOS, microvascular reconstruction, western blotting, and ELISA, we found that NRSF-shRNA markedly alleviated the vasculature disorders and rescued the suppression of NRP-1, VEGF, and VEGFR2 in the hippocampus of diabetic ischemic mice. Therefore, our results demonstrated for the first time that the elevation of hippocampal NRSF plays an important role in alleviating brain injury and cognitive disabilities in diabetic ischemic mice, potentially via the reduction of NRP-1/VEGF signaling.
Collapse
Affiliation(s)
- Cheng-Feng He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Jiao Xue
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Die Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian-Tao Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Xin-Ru Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Yi Feng
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Yi Feng
| | - Hou-Guang Zhou
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Hou-Guang Zhou
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
- Jing-Chun Guo
| |
Collapse
|
20
|
Azam MS, Wahiduzzaman M, Reyad-Ul-Ferdous M, Islam MN, Roy M. Inhibition of Insulin Degrading Enzyme to Control Diabetes Mellitus and its Applications on some Other Chronic Disease: a Critical Review. Pharm Res 2022; 39:611-629. [PMID: 35378698 DOI: 10.1007/s11095-022-03237-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE This review aims to provide a precise perceptive of the insulin-degrading enzyme (IDE) and its relationship to type 2 diabetes (T2D), Alzheimer's disease (AD), obesity, and cardiovascular diseases. The purpose of the current study was to provide clear idea of treating prevalent diseases such as T2D, and AD by molecular pharmacological therapeutics rather than conventional medicinal therapy. METHODS To achieve the aims, molecular docking was performed using several softwares such as LIGPLOT+, Python, and Protein-Ligand Interaction Profiler with corresponding tools. RESULTS The IDE is a large zinc-metalloprotease that breakdown numerous pathophysiologically important extracellular substrates, comprising amyloid β-protein (Aβ) and insulin. Recent studies demonstrated that dysregulation of IDE leads to develop AD and T2D. Specifically, IDE regulates circulating insulin in a variety of organs via a degradation-dependent clearance mechanism. IDE is unique because it was subjected to allosteric activation and mediated via an oligomer structure. CONCLUSION In this review, we summarised the factors that modulate insulin reformation by IDE and interaction of IDE and some recent reports on IDE inhibitors against AD and T2D. We also highlighted the latest signs of progress of the function of IDE and challenges in advancing IDE- targetted therapies against T2D and AD.
Collapse
Affiliation(s)
- Md Shofiul Azam
- Department of Chemical and Food Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh.
| | - Md Wahiduzzaman
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Md Reyad-Ul-Ferdous
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Shandong University, Jinan, 250021, Shandong, China
| | - Md Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mukta Roy
- Department of Food Engineering and Tea Technology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| |
Collapse
|
21
|
Ghoula M, Janel N, Camproux AC, Moroy G. Exploring the Structural Rearrangements of the Human Insulin-Degrading Enzyme through Molecular Dynamics Simulations. Int J Mol Sci 2022; 23:ijms23031746. [PMID: 35163673 PMCID: PMC8836115 DOI: 10.3390/ijms23031746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a ubiquitously expressed metallopeptidase that degrades insulin and a large panel of amyloidogenic peptides. IDE is thought to be a potential therapeutic target for type-2 diabetes and neurodegenerative diseases, such as Alzheimer’s disease. IDE catalytic chamber, known as a crypt, is formed, so that peptides can be enclosed and degraded. However, the molecular mechanism of the IDE function and peptide recognition, as well as its conformation changes, remains elusive. Our study elucidates IDE structural changes and explains how IDE conformational dynamics is important to modulate the catalytic cycle of IDE. In this aim, a free-substrate IDE crystallographic structure (PDB ID: 2JG4) was used to model a complete structure of IDE. IDE stability and flexibility were studied through molecular dynamics (MD) simulations to witness IDE conformational dynamics switching from a closed to an open state. The description of IDE structural changes was achieved by analysis of the cavity and its expansion over time. Moreover, the quasi-harmonic analysis of the hinge connecting IDE domains and the angles formed over the simulations gave more insights into IDE shifts. Overall, our results could guide toward the use of different approaches to study IDE with different substrates and inhibitors, while taking into account the conformational states resolved in our study.
Collapse
Affiliation(s)
- Mariem Ghoula
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université de Paris, F-75013 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université de Paris, F-75013 Paris, France;
| | - Anne-Claude Camproux
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université de Paris, F-75013 Paris, France;
- Correspondence: (A.-C.C.); (G.M.); Tel.: +33-1-57-27-83-77 (A.-C.C.); +33-1-57-27-83-85 (G.M.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, CNRS, INSERM, Université de Paris, F-75013 Paris, France;
- Correspondence: (A.-C.C.); (G.M.); Tel.: +33-1-57-27-83-77 (A.-C.C.); +33-1-57-27-83-85 (G.M.)
| |
Collapse
|
22
|
Liang YY, Zhang LD, Luo X, Wu LL, Chen ZW, Wei GH, Zhang KQ, Du ZA, Li RZ, So KF, Li A. All roads lead to Rome - a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer's disease. Neural Regen Res 2021; 17:1210-1227. [PMID: 34782555 PMCID: PMC8643060 DOI: 10.4103/1673-5374.325012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related neurodegenerative disorders such as Alzheimer’s disease (AD) have become a critical public health issue due to the significantly extended human lifespan, leading to considerable economic and social burdens. Traditional therapies for AD such as medicine and surgery remain ineffective, impractical, and expensive. Many studies have shown that a variety of bioactive substances released by physical exercise (called “exerkines”) help to maintain and improve the normal functions of the brain in terms of cognition, emotion, and psychomotor coordination. Increasing evidence suggests that exerkines may exert beneficial effects in AD as well. This review summarizes the neuroprotective effects of exerkines in AD, focusing on the underlying molecular mechanism and the dynamic expression of exerkines after physical exercise. The findings described in this review will help direct research into novel targets for the treatment of AD and develop customized exercise therapy for individuals of different ages, genders, and health conditions.
Collapse
Affiliation(s)
- Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Dan Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University; Guangdong Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhao-Wei Chen
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Guang-Hao Wei
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Kai-Qing Zhang
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze-An Du
- Department of Clinical Medicine, International School, Jinan University, Guangzhou, Guangdong Province, China
| | - Ren-Zhi Li
- International Department of the Affiliated High School of South China Normal University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| |
Collapse
|
23
|
Wang B, Guo J, Zhang M, Liu Z, Zhou R, Guo F, Li K, Mu Y. Insulin-Degrading Enzyme Regulates the Proliferation and Apoptosis of Porcine Skeletal Muscle Stem Cells via Myostatin/MYOD Pathway. Front Cell Dev Biol 2021; 9:685593. [PMID: 34712657 PMCID: PMC8545900 DOI: 10.3389/fcell.2021.685593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Identifying the genes relevant for muscle development is pivotal to improve meat production and quality in pigs. Insulin-degrading enzyme (IDE), a thiol zinc-metalloendopeptidase, has been known to regulate the myogenic process of mouse and rat myoblast cell lines, while its myogenic role in pigs remained elusive. Therefore, the current study aimed to identify the effects of IDE on the proliferation and apoptosis of porcine skeletal muscle stem cells (PSMSCs) and underlying molecular mechanism. We found that IDE was widely expressed in porcine tissues, including kidney, lung, spleen, liver, heart, and skeletal muscle. Then, to explore the effects of IDE on the proliferation and apoptosis of PSMSCs, we subjected the cells to siRNA-mediated knockdown of IDE expression, which resulted in promoted cell proliferation and reduced apoptosis. As one of key transcription factors in myogenesis, MYOD, its expression was also decreased with IDE knockdown. To further elucidate the underlying molecular mechanism, RNA sequencing was performed. Among transcripts perturbed by the IDE knockdown after, a downregulated gene myostatin (MSTN) which is known as a negative regulator for muscle growth attracted our interest. Indeed, MSTN knockdown led to similar results as those of the IDE knockdown, with upregulation of cell cycle-related genes, downregulation of MYOD as well as apoptosis-related genes, and enhanced cell proliferation. Taken together, our findings suggest that IDE regulates the proliferation and apoptosis of PSMSCs via MSTN/MYOD pathway. Thus, we recruit IDE to the gene family of regulators for porcine skeletal muscle development and propose IDE as an example of gene to prioritize in order to improve pork production.
Collapse
Affiliation(s)
- Bingyuan Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiankang Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingrui Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhiguo Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rong Zhou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kui Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Marmentini C, Branco RCS, Boschero AC, Kurauti MA. Islet amyloid toxicity: From genesis to counteracting mechanisms. J Cell Physiol 2021; 237:1119-1142. [PMID: 34636428 DOI: 10.1002/jcp.30600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in β-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards β-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in β-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved β-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renato C S Branco
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| |
Collapse
|
25
|
Shapira R, Gdalyahu A, Gottfried I, Sasson E, Hadanny A, Efrati S, Blinder P, Ashery U. Hyperbaric oxygen therapy alleviates vascular dysfunction and amyloid burden in an Alzheimer's disease mouse model and in elderly patients. Aging (Albany NY) 2021; 13:20935-20961. [PMID: 34499614 PMCID: PMC8457592 DOI: 10.18632/aging.203485] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/10/2021] [Indexed: 04/21/2023]
Abstract
Vascular dysfunction is entwined with aging and in the pathogenesis of Alzheimer's disease (AD) and contributes to reduced cerebral blood flow (CBF) and consequently, hypoxia. Hyperbaric oxygen therapy (HBOT) is in clinical use for a wide range of medical conditions. In the current study, we exposed 5XFAD mice, a well-studied AD model that presents impaired cognitive abilities, to HBOT and then investigated the therapeutical effects using two-photon live animal imaging, behavioral tasks, and biochemical and histological analysis. HBOT increased arteriolar luminal diameter and elevated CBF, thus contributing to reduced hypoxia. Furthermore, HBOT reduced amyloid burden by reducing the volume of pre-existing plaques and attenuating the formation of new ones. This was associated with changes in amyloid precursor protein processing, elevated degradation and clearance of Aß protein and improved behavior of 5XFAD mice. Hence, our findings are consistent with the effects of HBOT being mediated partially through a persistent structural change in blood vessels that reduces brain hypoxia. Motivated by these findings, we exposed elderly patients with significant memory loss at baseline to HBOT and observed an increase in CBF and improvement in cognitive performances. This study demonstrates HBOT efficacy in hypoxia-related neurological conditions, particularly in AD and aging.
Collapse
Affiliation(s)
- Ronit Shapira
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Amos Gdalyahu
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Shai Efrati
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Pablo Blinder
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
26
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
27
|
Wei Z, Koya J, Reznik SE. Insulin Resistance Exacerbates Alzheimer Disease via Multiple Mechanisms. Front Neurosci 2021; 15:687157. [PMID: 34349617 PMCID: PMC8326507 DOI: 10.3389/fnins.2021.687157] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is a chronic neurodegenerative disease that accounts for 60–70% of dementia and is the sixth leading cause of death in the United States. The pathogenesis of this debilitating disorder is still not completely understood. New insights into the pathogenesis of AD are needed in order to develop novel pharmacologic approaches. In recent years, numerous studies have shown that insulin resistance plays a significant role in the development of AD. Over 80% of patients with AD have type II diabetes (T2DM) or abnormal serum glucose, suggesting that the pathogenic mechanisms of insulin resistance and AD likely overlap. Insulin resistance increases neuroinflammation, which promotes both amyloid β-protein deposition and aberrant tau phosphorylation. By increasing production of reactive oxygen species, insulin resistance triggers amyloid β-protein accumulation. Oxidative stress associated with insulin resistance also dysregulates glycogen synthase kinase 3-β (GSK-3β), which leads to increased tau phosphorylation. Both insulin and amyloid β-protein are metabolized by insulin degrading enzyme (IDE). Defects in this enzyme are the basis for a strong association between T2DM and AD. This review highlights multiple pathogenic mechanisms induced by insulin resistance that are implicated in AD. Several pharmacologic approaches to AD associated with insulin resistance are presented.
Collapse
Affiliation(s)
- Zenghui Wei
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Jagadish Koya
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States
| | - Sandra E Reznik
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, United States.,Department of Pathology, Albert Einstein College of Medicine, New York, NY, United States.,Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
28
|
Role of liraglutide in Alzheimer's disease pathology. ALZHEIMERS RESEARCH & THERAPY 2021; 13:112. [PMID: 34118986 PMCID: PMC8199799 DOI: 10.1186/s13195-021-00853-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
Background The described relationship between Alzheimer’s disease (AD) and type 2 diabetes (T2D) and the fact that AD has no succesful treatment has led to the study of antidiabetic drugs that may limit or slow down AD pathology. Main body Although T2D treatment has evident limitations, options are increasing including glucagon-like peptide 1 analogs. Among these, liraglutide (LRGT) is commonly used by T2D patients to improve β cell function and suppress glucagon to restore normoglycaemia. Interestingly, LRGT also counterbalances altered brain metabolism and has anti-inflammatory properties. Previous studies have reported its capacity to reduce AD pathology, including amyloid production and deposition, tau hyperphosphorylation, or neuronal and synaptic loss in animal models of AD, accompanied by cognitive improvement. Given the beneficial effects of LRGT at central level, studies in patients have been carried out, showing modest beneficial effects. At present, the ELAD trial (Evaluating Liraglutide in Alzheimer’s Disease NCT01843075) is an ongoing phase IIb study in patients with mild AD. In this minireview, we resume the outcomes of LRGT treatment in preclinical models of AD as well as the available results in patients up to date. Conclusion The effects of LRGT on animal models show significant benefits in AD pathology and cognitive impairment. While studies in patients are limited, ongoing clinical trials will probably provide more definitive conclusions on the role of LRGT in AD patients.
Collapse
|
29
|
Abnormal Expression of microRNA-296-3p in Type 2 Diabetes Patients and its Role in Pancreatic β-Cells Function by Targeting Tensin Homolog Deleted on Chromosome Ten. Biochem Genet 2021; 60:39-53. [PMID: 34085179 DOI: 10.1007/s10528-021-10083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
Diabetes mellitus (DM), a familiar disease, is characterized by high blood glucose levels owing to insulin deficiency. Researches have suggested that the incidence rate of diabetes is increasing and it has become an important global epidemic. The type 2 diabetes mellitus (T2DM) is featured with pancreatic β-cell loss and lack of insulin release. Nevertheless, the therapeutic methods that was helpful to improve pancreatic β-cell damage still unclear. Previous report have revealed that tensin homolog deleted on chromosome ten (PTEN) was remarkably enhanced in serum of patients with T2DM, and the lack of PTEN may prevent function deficiency of pancreatic β-cells in DM. However, the underlying mechanisms are rarely illustrated. Our purpose in this report was to illustrated the roles and potential mechanism of microRNA-296-3p (miR-296-3p) in uric acid (UA)-induced pancreatic β-cell injury. The direct target of miR-296-3p was predicted and verified by dual-luciferase reporter system and TargetScan assay. Moreover, Min6 cells were induced by 5 mg/dl UA and the cell proliferation, apoptosis, and insulin release were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and glucose-stimulated insulin secretion (GSIS), respectively. Quantitative reverse transcription PCR (qRT-PCR) and western blot assay were adopted to analyze the levels of miR-296-3p, PTEN and apoptosis-related proteins. TargetScan and Dual-luciferase reporter system confirmed that PTEN directly target miR-296-3p. MiR-296-3p was downregulated in UA-induced Min6 cells and the serum of type 2 diabetes patients, while PTEN was upregulated in UA-induced Min6 cells. Upregulation of miR-296-3p by mimic dramatically promoted miR-296-3p level and decreased PTEN level. Besides, PTEN was over-expressed after PTEN-plasmid transfection. UA treatment prominently decreased cell viability, promoted apoptotic cells, enhanced Bax levels, declined Bcl-2 level as well as decreased insulin release in Min6 cells. MiR-296-3p mimic significantly alleviated UA-induced pancreatic β-cells dysfunction, and PTEN-plasmid eliminated the protective effect of miR-296-3p on insulin release, cell viability, and apoptosis of pancreatic β-cells in UA-stimulated Min6 cells. In summary, our findings revealed that upregulation of miR-296-3p protected pancreatic β-cells functions against UA-induced dysfunction by targeting PTEN, which provides a novel agent for type 2 diabetes treatment.
Collapse
|
30
|
Pan XJ, Misrani A, Tabassum S, Yang L. Mitophagy pathways and Alzheimer's disease: From pathogenesis to treatment. Mitochondrion 2021; 59:37-47. [PMID: 33872797 DOI: 10.1016/j.mito.2021.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is an age-dependent, incurable mental illness that is associated with the accumulation of aggregates of amyloid-beta (Aβ) and hyperphosphorylated tau fragments (p-tau). Detailed studies on postmortem AD brains, cell lines, and mouse models of AD have shown that numerous cellular alterations, including mitochondrial deficits, synaptic disruption and glial/astrocytic activation, are involved in the disease process. Mitophagy is a cellular process by which damaged/weakened mitochondria are selectively eliminated from the cell. In AD, impairments in mitophagy trigger the gradual accumulation of defective mitochondria. This review will focus on the recent progress in understanding the molecular mechanisms and pathological role of mitophagy and its implications for AD pathogenesis. We will also discuss the novel concept of the regulation of mitophagy as a therapeutic avenue for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Xian-Ji Pan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
Qi CC, Chen XX, Gao XR, Xu JX, Liu S, Ge JF. Impaired Learning and Memory Ability Induced by a Bilaterally Hippocampal Injection of Streptozotocin in Mice: Involved With the Adaptive Changes of Synaptic Plasticity. Front Aging Neurosci 2021; 13:633495. [PMID: 33732137 PMCID: PMC7957014 DOI: 10.3389/fnagi.2021.633495] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, psychiatric symptoms and behavioral disorders, resulting in disability, and loss of self-sufficiency. Objective: To establish an AD-like mice model, investigate the behavioral performance, and explore the potential mechanism. Methods: Streptozotocin (STZ, 3 mg/kg) was microinjected bilaterally into the dorsal hippocampus of C57BL/6 mice, and the behavioral performance was observed. The serum concentrations of insulin and nesfatin-1 were measured by ELISA, and the activation of hippocampal microglia and astrocytes was assessed by immunohistochemistry. The protein expression of several molecular associated with the regulation of synaptic plasticity in the hippocampus and the pre-frontal cortex (PFC) was detected via western blotting. Results: The STZ-microinjected model mice showed a slower bodyweight gain and higher serum concentration of insulin and nesfatin-1. Although there was no significant difference between groups with regard to the ability of balance and motor coordination, the model mice presented a decline of spontaneous movement and exploratory behavior, together with an impairment of learning and memory ability. Increased activated microglia was aggregated in the hippocampal dentate gyrus of model mice, together with an increase abundance of Aβ1-42 and Tau in the hippocampus and PFC. Moreover, the protein expression of NMDAR2A, NMDAR2B, SynGAP, PSD95, BDNF, and p-β-catenin/β-catenin were remarkably decreased in the hippocampus and the PFC of model mice, and the expression of p-GSK-3β (ser9)/GSK-3β were reduced in the hippocampus. Conclusion: A bilateral hippocampal microinjection of STZ could induce not only AD-like behavioral performance in mice, but also adaptive changes of synaptic plasticity against neuroinflammatory and endocrinal injuries. The underlying mechanisms might be associated with the imbalanced expression of the key proteins of Wnt signaling pathway in the hippocampus and the PFC.
Collapse
Affiliation(s)
- Cong-Cong Qi
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Xing-Xing Chen
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xin-Ran Gao
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jing-Xian Xu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Sen Liu
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jin-Fang Ge
- School of Pharmacy, Anhui Medical University, Hefei, China.,Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Wang YZ, Meng L, Zhuang QS, Shen L. Screening Traditional Chinese Medicine Combination for Cotreatment of Alzheimer's Disease and Type 2 Diabetes Mellitus by Network Pharmacology. J Alzheimers Dis 2021; 80:787-797. [PMID: 33579846 DOI: 10.3233/jad-201336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In recent years, the efficacy of type 2 diabetes mellitus (T2DM) drugs in the treatment of Alzheimer's disease (AD) has attracted extensive interest owing to the close associations between the two diseases. OBJECTIVE Here, we screened traditional Chinese medicine (TCM) and multi-target ingredients that may have potential therapeutic effects on both T2DM and AD from T2DM prescriptions. METHODS Network pharmacology and molecular docking were used. RESULTS Firstly, the top 10 frequently used herbs and corresponding 275 active ingredients were identified from 263 T2DM-related TCM prescriptions. Secondly, through the comparative analysis of 208 potential targets of ingredients, 1,740 T2DM-related targets, and 2,060 AD-related targets, 61 common targets were identified to be shared. Thirdly, by constructing pharmacological network, 26 key targets and 154 representative ingredients were identified. Further enrichment analysis showed that common targets were involved in regulating multiple pathways related to T2DM and AD, while network analysis also found that the combination of Danshen (Radix Salviae)-Gancao (Licorice)-Shanyao (Rhizoma Dioscoreae) contained the vast majority of the representative ingredients and might be potential for the cotreatment of the two diseases. Fourthly, MAPK1, PPARG, GSK3B, BACE1, and NR3C1 were selected as potential targets for virtual screening of multi-target ingredients. Further docking studies showed that multiple natural compounds, including salvianolic acid J, gancaonin H, gadelaidic acid, icos-5-enoic acid, and sigmoidin-B, exhibited high binding affinities with the five targets. CONCLUSION To summarize, the present study provides a potential TCM combination that might possess the potential advantage of cotreatment of AD and T2DM.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Lei Meng
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Qi-Shuai Zhuang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| |
Collapse
|
33
|
Zhang H, Zahid A, Ismail H, Tang Y, Jin T, Tao J. An overview of disease models for NLRP3 inflammasome over-activation. Expert Opin Drug Discov 2020; 16:429-446. [PMID: 33131335 DOI: 10.1080/17460441.2021.1844179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Inflammatory reactions, including those mediated by the NLRP3 inflammasome, maintain the body's homeostasis by removing pathogens, repairing damaged tissues, and adapting to stressed environments. However, uncontrolled activation of the NLRP3 inflammasome tends to cause various diseases using different mechanisms. Recently, many inhibitors of the NLRP3 inflammasome have been reported and many are being developed. In order to assess their efficacy, specificity, and mechanism of action, the screening process of inhibitors requires various types of cell and animal models of NLRP3-associated diseases.Areas covered: In the following review, the authors give an overview of the cell and animal models that have been used during the research and development of various inhibitors of the NLRP3 inflammasome.Expert opinion: There are many NLRP3 inflammasome inhibitors, but most of the inhibitors have poor specificity and often influence other inflammatory pathways. The potential risk for cross-reaction is high; therefore, the development of highly specific inhibitors is essential. The selection of appropriate cell and animal models, and combined use of different models for the evaluation of these inhibitors can help to clarify the target specificity and therapeutic effects, which is beneficial for the development and application of drugs targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hongliang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ayesha Zahid
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hazrat Ismail
- MOE Key Laboratory for Cellular Dynamics & Anhui Key Laboratory for Chemical Biology, CAS Center for Excellence in Molecular Cell Science. Hefei National Science Center for Physical Sciences at Microscale. University of Science and Technology of China, Hefei, China
| | - Yujie Tang
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tengchuan Jin
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
34
|
Huang CN, Wang CJ, Lin CL, Li HH, Yen AT, Peng CH. Abelmoschus esculentus subfractions attenuate Aβ and tau by regulating DPP-4 and insulin resistance signals. BMC Complement Med Ther 2020; 20:370. [PMID: 33267804 PMCID: PMC7709418 DOI: 10.1186/s12906-020-03163-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Background Insulin resistance could be associated with the development of Alzheimer disease (AD). The neuropathological hallmarks of AD are beta amyloid (Aβ) produced from sequential cleavage initiated by β-secretase and degraded by insulin degradation enzyme (IDE), as well as hyperphosphorylation of tau (p-tau). Insulin action involves the cascades of insulin receptor substrates (IRS) and phosphatidylinositol 3-kinase (PI3K), while phosphorylation of IRS-1 at ser307 (p-ser307IRS-1) hinders the response. Our previous report suggested dipeptidyl peptidase-4 (DPP-4) is crucial to insulin resistance, and the subfractions of Abelmoschus esculentus (AE), F1 and F2, attenuate the signaling. Here we aim to investigate whether AE works to reduce Aβ generation via regulating DPP4 and insulin resistance. Methods The subfractions F1 and F2 were prepared according to a succession of procedures. F1 was composed by quercetin glycosides and triterpene ester, and F2 contained a large amount of polysaccharides. The in vitro insulin resistance model was established by SK-N-MC cell line treated with palmitate. MTT was used to define the dose range, and thereby Western blot, ELISA, and the activity assay were used to detect the putative markers. One-way ANOVA was performed for the statistical analysis. Results Treatment of palmitate induced the level of p-ser307IRS-1. Both F1 and F2 effectively decrease p-ser307IRS-1, and recover the expression of p-PI3K. However, the expression of total IRS plunged with 25 μg/mL of F1, while descended steadily with 5 μg/mL of F2. As palmitate increased the levels of Aβ40 and Aβ42, both AE subfractions were effective to reduce Aβ generation of and β-secretase activity, but IDE was not altered in any treatment conditions. The expression of DPP4 was also accompanied with insulin resistance signals. Inhibition of DPP4 attenuated the activity of β-secretase and production of Aβ. Moreover, the present data revealed that both AE subfractions significantly decrease the level of p-Tau. Conclusions In conclusion, we demonstrated that AE would be a potential adjuvant to prevent insulin resistance and the associated pathogenesis of AD, and F2 seems more feasible to be developed.
Collapse
Affiliation(s)
- Chien-Ning Huang
- Department of Internal Medicine, Chung-Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Chau-Jong Wang
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - An-Ting Yen
- Institute of Biochemistry, Microbiology and Immunology, Chung-Shan Medical University, Taichung, Taiwan
| | - Chiung-Huei Peng
- Division of Basic Medical Science, Hungkuang University, Taichung City, Taiwan.
| |
Collapse
|
35
|
Lauer AA, Mett J, Janitschke D, Thiel A, Stahlmann CP, Bachmann CM, Ritzmann F, Schrul B, Müller UC, Stein R, Riemenschneider M, Grimm HS, Hartmann T, Grimm MOW. Regulatory feedback cycle of the insulin-degrading enzyme and the amyloid precursor protein intracellular domain: Implications for Alzheimer's disease. Aging Cell 2020; 19:e13264. [PMID: 33128835 PMCID: PMC7681056 DOI: 10.1111/acel.13264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 12/04/2022] Open
Abstract
One of the major pathological hallmarks of Alzheimer´s disease (AD) is an accumulation of amyloid‐β (Aβ) in brain tissue leading to formation of toxic oligomers and senile plaques. Under physiological conditions, a tightly balanced equilibrium between Aβ‐production and ‐degradation is necessary to prevent pathological Aβ‐accumulation. Here, we investigate the molecular mechanism how insulin‐degrading enzyme (IDE), one of the major Aβ‐degrading enzymes, is regulated and how amyloid precursor protein (APP) processing and Aβ‐degradation is linked in a regulatory cycle to achieve this balance. In absence of Aβ‐production caused by APP or Presenilin deficiency, IDE‐mediated Aβ‐degradation was decreased, accompanied by a decreased IDE activity, protein level, and expression. Similar results were obtained in cells only expressing a truncated APP, lacking the APP intracellular domain (AICD) suggesting that AICD promotes IDE expression. In return, APP overexpression mediated an increased IDE expression, comparable results were obtained with cells overexpressing C50, a truncated APP representing AICD. Beside these genetic approaches, also AICD peptide incubation and pharmacological inhibition of the γ‐secretase preventing AICD production regulated IDE expression and promoter activity. By utilizing CRISPR/Cas9 APP and Presenilin knockout SH‐SY5Y cells results were confirmed in a second cell line in addition to mouse embryonic fibroblasts. In vivo, IDE expression was decreased in mouse brains devoid of APP or AICD, which was in line with a significant correlation of APP expression level and IDE expression in human postmortem AD brains. Our results show a tight link between Aβ‐production and Aβ‐degradation forming a regulatory cycle in which AICD promotes Aβ‐degradation via IDE and IDE itself limits its own production by degrading AICD.
Collapse
Affiliation(s)
- Anna A. Lauer
- Experimental Neurology Saarland University Homburg/Saar Germany
| | - Janine Mett
- Experimental Neurology Saarland University Homburg/Saar Germany
- Biosciences Zoology/Physiology‐Neurobiology Faculty NT‐Natural Science and Technology Saarland University Saarbrücken Germany
| | | | - Andrea Thiel
- Experimental Neurology Saarland University Homburg/Saar Germany
| | | | | | - Felix Ritzmann
- Department of Internal Medicine V – Pulmonology Allergology, Respiratory Intensive Care Medicine Saarland University Hospital Homburg/Saar Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology Center for Molecular Signaling (PZMS) Faculty of Medicine Saarland University Homburg/Saar Germany
| | - Ulrike C. Müller
- Department of Functional Genomics Institute of Pharmacy and Molecular Biotechnology Heidelberg University Germany
| | - Reuven Stein
- Department of Neurology George S. Wise Faculty of Life Sciences Tel Aviv University Ramat Aviv Israel
| | | | - Heike S. Grimm
- Experimental Neurology Saarland University Homburg/Saar Germany
| | - Tobias Hartmann
- Experimental Neurology Saarland University Homburg/Saar Germany
- Deutsches Institut für DemenzPrävention (DIDP) Saarland University Homburg/Saar Germany
| | - Marcus O. W. Grimm
- Experimental Neurology Saarland University Homburg/Saar Germany
- Deutsches Institut für DemenzPrävention (DIDP) Saarland University Homburg/Saar Germany
| |
Collapse
|
36
|
Cao Y, Liu B, Xu W, Wang L, Shi F, Li N, Lei Y, Wang J, Tian Q, Zhou X. Inhibition of mTORC1 improves STZ-induced AD-like impairments in mice. Brain Res Bull 2020; 162:166-179. [PMID: 32599128 DOI: 10.1016/j.brainresbull.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) share some pathological features, including tau hyperphosphorylation and deficits in insulin signaling, but the underlying mechanism and effective drugs for treating AD are unknown. The AD-like brain impairments are almost same in both of mouse type 2 DM models induced by the multiple low-dose intraperitoneal (i.p.) streptozotocin (STZ) injection and twice intracerebroventricular (i.c.v.) STZ injection. We found that memory disorders, impairment of insulin signaling, and AD-like tauopathies were exhibited in two different STZ-induced mouse models and that the level of Advanced Glycation End Products (AGEs) was increased in two STZ mouse models. Inhibition of mTORC1 with rapamycin reversed the deficits of insulin signaling associated kinases activity, decreased levels of AGEs and AD-like tau phosphorylation, and also improved memory deficit in both STZ mice. Rapamycin attenuated HG-induced tau hyperphosphorylation via the AKT/AMPK/GSK-3β pathways and p70S6K in SH-SY5Y cells. Taken together, these data demonstrated that rapamycin improved STZ-induced AD-like tauopathies and memory deficit in mice via improving p70S6K and AKT/AMPK/GSK-3β signaling and decreasing AGEs. Therefore, regulating insulin signaling via mTORC1 is a new strategy for preventing T2DM-associated AD, and mTORC1 is a potential drug target.
Collapse
Affiliation(s)
- Yun Cao
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bingjin Liu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, PR China
| | - Weiqi Xu
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Lin Wang
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Fangxiao Shi
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Na Li
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ying Lei
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Jianzhi Wang
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Qing Tian
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Xinwen Zhou
- Key Laboratory of Neurological Diseases of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
37
|
Rosiglitazone has a neutral effect on the risk of dementia in type 2 diabetes patients. Aging (Albany NY) 2020; 11:2724-2734. [PMID: 31085804 PMCID: PMC6535054 DOI: 10.18632/aging.101944] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/27/2019] [Indexed: 12/15/2022]
Abstract
This study investigated whether rosiglitazone might increase or reduce dementia risk. Taiwan’s National Health Insurance database was used to enroll a cohort of 1:1 matched-pairs of ever and never users of rosiglitazone based on propensity score from patients with new-onset type 2 diabetes during 1999-2006. The patients were alive on January 1, 2007 and were followed up for dementia until December 31, 2011. A total of 5,048 pairs of never users and ever users were identified. The incident case numbers were 127 and 121, respectively. The adjusted hazard ratio for ever versus never users was 0.895 (95% confidence interval: 0.696-1.151). The adjusted hazard ratios for the first (<12.1 months), second (12.1-25.1 months) and third (>25.1 months) tertiles of cumulative duration of rosiglitazone therapy were 0.756 (0.509-1.123), 0.964 (0.685-1.357) and 0.949 (0.671-1.341), respectively. When cumulative duration was treated as a continuous variable, the adjusted hazard ratio was 1.000 (0.992-1.008). Subgroup analyses conducted in ever users and never users of metformin and in patients diagnosed with diabetes during three different periods of time, i.e., 1999-2000, 2001-2003 and 2004-2006, all supported a neutral effect of rosiglitazone. In conclusion, rosiglitazone does not increase or redcue the risk of dementia.
Collapse
|
38
|
Dhayalan B, Chen YS, Phillips NB, Swain M, Rege NK, Mirsalehi A, Jarosinski M, Ismail-Beigi F, Metanis N, Weiss MA. Reassessment of an Innovative Insulin Analogue Excludes Protracted Action yet Highlights the Distinction between External and Internal Diselenide Bridges. Chemistry 2020; 26:4695-4700. [PMID: 31958351 DOI: 10.1002/chem.202000309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 01/31/2023]
Abstract
Long-acting insulin analogues represent the most prescribed class of therapeutic proteins. An innovative design strategy was recently proposed: diselenide substitution of an external disulfide bridge. This approach exploited the distinctive physicochemical properties of selenocysteine (U). Relative to wild type (WT), Se-insulin[C7UA , C7UB ] was reported to be protected from proteolysis by insulin-degrading enzyme (IDE), predicting prolonged activity. Because of this strategy's novelty and potential clinical importance, we sought to validate these findings and test their therapeutic utility in an animal model of diabetes mellitus. Surprisingly, the analogue did not exhibit enhanced stability, and its susceptibility to cleavage by either IDE or a canonical serine protease (glutamyl endopeptidase Glu-C) was similar to WT. Moreover, the analogue's pharmacodynamic profile in rats was not prolonged relative to a rapid-acting clinical analogue (insulin lispro). Although [C7UA , C7UB ] does not confer protracted action, nonetheless its comparison to internal diselenide bridges promises to provide broad biophysical insight.
Collapse
Affiliation(s)
- Balamurugan Dhayalan
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yen-Shan Chen
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nelson B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Mamuni Swain
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Nischay K Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Ali Mirsalehi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Mark Jarosinski
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Michael A Weiss
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| |
Collapse
|
39
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
40
|
Cassano V, Leo A, Tallarico M, Nesci V, Cimellaro A, Fiorentino TV, Citraro R, Hribal ML, De Sarro G, Perticone F, Sesti G, Russo E, Sciacqua A. Metabolic and Cognitive Effects of Ranolazine in Type 2 Diabetes Mellitus: Data from an in vivo Model. Nutrients 2020; 12:nu12020382. [PMID: 32023991 PMCID: PMC7071286 DOI: 10.3390/nu12020382] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a risk factor for cognitive impairment. Ranolazine, an anti-ischemic drug used in the treatment of angina pectoris, has been shown to possess hypoglycemic properties in pre-clinical and clinical studies. The aim of this study was to evaluate the effects of ranolazine on glucose metabolism and cognitive function in a T2DM model of Wistar rats. Diabetes was induced by a high fat diet (HFD) and streptozotocin (STZ). The control group received a normal caloric diet (NCD) and sodium citrate buffer. Metformin, an effective hypoglycemic drug, was employed as a positive control. Animals were divided into the following groups: HFD/STZ + Ranolazine, HFD/STZ + Metformin, HFD/STZ + Vehicle, NCD + Vehicle, NCD + Ranolazine, and NCD + Metformin. Rats received ranolazine (20 mg/kg), metformin (300 mg/kg), or water, for 8 weeks. At the end of the treatments, all animals underwent to an intraperitoneal glucose tolerance test (IPGTT) and behavioral tests, including passive avoidance, novel object recognition, forced swimming, and elevate plus maze tests. Interleukin-6 plasma levels in the six treatment groups were assessed by Elisa assay. Body mass composition was estimated by nuclear magnetic resonance (NMR). Glucose responsiveness significantly improved in the HFD/STZ + Ranolazine (p < 0.0001) and HFD/STZ + Metformin (p = 0.003) groups. There was a moderate effect on blood glucose levels in the NCD + Ranolazine and NCD + Metformin groups. Lean body mass was significantly increased in the HFD/STZ + Ranolazine and HFD/STZ + Metformin animals, compared to HFD/STZ + Vehicle animals. Ranolazine improved learning and long-term memory in HFD/STZ + Ranolazine compared to HFD/STZ + Vehicle (p < 0.001) and ameliorated the pro-inflammatory profile of diabetic mice. These results support the hypothesis of a protective effect of ranolazine against cognitive decline caused by T2DM.
Collapse
Affiliation(s)
- Velia Cassano
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy (V.N.)
| | - Martina Tallarico
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy (V.N.)
| | - Valentina Nesci
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy (V.N.)
| | - Antonio Cimellaro
- Pugliese-Ciaccio, Hospital, Internal Medicine Unit, 88100 Catanzaro, Italy
| | | | - Rita Citraro
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy (V.N.)
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
- Correspondence: ; Tel.: +39-0961-364-7411
| | | | - Francesco Perticone
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, 00189 Rome, Italy
| | - Emilio Russo
- Science of Health Department, Magna Græcia University, 88100 Catanzaro, Italy (V.N.)
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| |
Collapse
|
41
|
Polis B, Samson AO. Role of the metabolism of branched-chain amino acids in the development of Alzheimer's disease and other metabolic disorders. Neural Regen Res 2020; 15:1460-1470. [PMID: 31997805 PMCID: PMC7059578 DOI: 10.4103/1673-5374.274328] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alzheimer’s disease is an incurable chronic neurodegenerative disorder and the leading cause of dementia, imposing a growing economic burden upon society. The disease progression is associated with gradual deposition of amyloid plaques and the formation of neurofibrillary tangles within the brain parenchyma, yet severe dementia is the culminating phase of the enduring pathology. Converging evidence suggests that Alzheimer’s disease-related cognitive decline is the outcome of an extremely complex and persistent pathophysiological process. The disease is characterized by distinctive abnormalities apparent at systemic, histological, macromolecular, and biochemical levels. Moreover, besides the well-defined and self-evident characteristic profuse neurofibrillary tangles, dystrophic neurites, and amyloid-beta deposits, the Alzheimer’s disease-associated pathology includes neuroinflammation, substantial neuronal loss, apoptosis, extensive DNA damage, considerable mitochondrial malfunction, compromised energy metabolism, and chronic oxidative stress. Likewise, distinctive metabolic dysfunction has been named a leading cause and a hallmark of Alzheimer’s disease that is apparent decades prior to disease manifestation. State-of-the-art metabolomics studies demonstrate that altered branched-chain amino acids (BCAAs) metabolism accompanies Alzheimer’s disease development. Lower plasma valine levels are correlated with accelerated cognitive decline, and, conversely, an increase in valine concentration is associated with reduced risk of Alzheimer’s disease. Additionally, a clear BCAAs-related metabolic signature has been identified in subjects with obesity, diabetes, and atherosclerosis. Also, arginine metabolism is dramatically altered in Alzheimer’s disease human brains and animal models. Accordingly, a potential role of the urea cycle in the Alzheimer’s disease development has been hypothesized, and preclinical studies utilizing intervention in the urea cycle and/or BCAAs metabolism have demonstrated clinical potential. Continual failures to offer a competent treatment strategy directed against amyloid-beta or Tau proteins-related lesions, which could face all challenges of the multifaceted Alzheimer’s disease pathology, led to the hypothesis that hyperphosphorylated Tau and deposited amyloid-beta proteins are just hallmarks or epiphenomena, but not the ultimate causes of Alzheimer’s disease. Therefore, approaches targeting amyloid-beta or Tau are not adequate to cure the disease. Accordingly, the modern scientific vision of Alzheimer’s disease etiology and pathogenesis must reach beyond the hallmarks, and look for alternative strategies and areas of research.
Collapse
Affiliation(s)
- Baruh Polis
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Abraham O Samson
- Drug Discovery Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
42
|
Li H, Zhang L, Qin C. Current state of research on non-human primate models of Alzheimer's disease. Animal Model Exp Med 2019; 2:227-238. [PMID: 31942555 PMCID: PMC6930996 DOI: 10.1002/ame2.12092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
With the increasingly serious aging of the global population, dementia has already become a severe clinical challenge on a global scale. Dementia caused by Alzheimer's disease (AD) is the most common form of dementia observed in the elderly, but its pathogenetic mechanism has still not been fully elucidated. Furthermore, no effective treatment strategy has been developed to date, despite considerable efforts. This can be mainly attributed to the paucity of animal models of AD that are sufficiently similar to humans. Among the presently established animal models, non-human primates share the closest relationship with humans, and their neural anatomy and neurobiology share highly similar characteristics with those of humans. Thus, there is no doubt that these play an irreplaceable role in AD research. Considering this, the present literature on non-human primate models of AD was reviewed to provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Hong‐Wei Li
- NHC Key Laboratory of Human Disease Comparative MedicinePeking Union Medical College (PUMC)BeijingChina
- Key Laboratory of Human Diseases Animal ModelState Administration of Traditional Chinese MedicinePeking Union Medical College (PUMC)BeijingChina
- The Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Peking Union Medical College (PUMC)BeijingChina
- Ministry of HealthComparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative MedicinePeking Union Medical College (PUMC)BeijingChina
- Key Laboratory of Human Diseases Animal ModelState Administration of Traditional Chinese MedicinePeking Union Medical College (PUMC)BeijingChina
- The Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Peking Union Medical College (PUMC)BeijingChina
- Ministry of HealthComparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicinePeking Union Medical College (PUMC)BeijingChina
- Key Laboratory of Human Diseases Animal ModelState Administration of Traditional Chinese MedicinePeking Union Medical College (PUMC)BeijingChina
- The Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS)Peking Union Medical College (PUMC)BeijingChina
- Ministry of HealthComparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
| |
Collapse
|
43
|
Delikkaya B, Moriel N, Tong M, Gallucci G, de la Monte SM. Altered expression of insulin-degrading enzyme and regulator of calcineurin in the rat intracerebral streptozotocin model and human apolipoprotein E-ε4-associated Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:392-404. [PMID: 31193223 PMCID: PMC6522644 DOI: 10.1016/j.dadm.2019.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION This study assesses insulin-degrading enzyme (IDE) and regulator of calcineurin 1 (RCAN1) as potential mediators of brain insulin deficiency and neurodegeneration in experimental and human Alzheimer's disease (AD). METHODS Temporal lobes from Long Evans rats treated with intracerebral streptozotocin or vehicle and postmortem frontal lobes from humans with normal aging AD (Braak 0-2), moderate (Braak 3-4) AD, or advanced (Braak 5-6) AD were used to measure IDE and RCAN mRNA and protein. RESULTS Intracerebral streptozotocin significantly increased IDE and RCAN mRNA and protein. In humans with apolipoprotein E (ApoE) ε3/ε4 or ε4/ε4 and AD, IDE was elevated at Braak 3-4, but at Braak 5-6, IDE expression was significantly reduced. RCAN1 mRNA was similarly reduced in ApoE ε4+ patients with moderate or severe AD, whereas RCAN1 protein declined with the severity of AD and ApoE ε4 dose. DISCUSSION The findings suggest that IDE and RCAN1 differentially modulate brain insulin signaling in relation to AD severity and ApoE genotype.
Collapse
Affiliation(s)
- Büşra Delikkaya
- Istanbul University-Cerrahpasa Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Natalia Moriel
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA,Alpert Medical School of Brown University, Providence, RI, USA
| | - Gina Gallucci
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Medicine, Rhode Island Hospital, Providence, RI, USA,Alpert Medical School of Brown University, Providence, RI, USA,Departments of Neurology and Neurosurgery, Rhode Island Hospital, Providence, RI, USA,Department of Pathology and Laboratory Medicine, Providence VA Medical Center, Providence, RI, USA,Corresponding author. Tel.: +401-444-7364; Fax: +401-444-2939.
| |
Collapse
|
44
|
Maletínská L, Popelová A, Železná B, Bencze M, Kuneš J. The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. J Endocrinol 2019; 240:R47-R72. [PMID: 30475219 DOI: 10.1530/joe-18-0532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder in the elderly population. Numerous epidemiological and experimental studies have demonstrated that patients who suffer from obesity or type 2 diabetes mellitus have a higher risk of cognitive dysfunction and AD. Several recent studies demonstrated that food intake-lowering (anorexigenic) peptides have the potential to improve metabolic disorders and that they may also potentially be useful in the treatment of neurodegenerative diseases. In this review, the neuroprotective effects of anorexigenic peptides of both peripheral and central origins are discussed. Moreover, the role of leptin as a key modulator of energy homeostasis is discussed in relation to its interaction with anorexigenic peptides and their analogs in AD-like pathology. Although there is no perfect experimental model of human AD pathology, animal studies have already proven that anorexigenic peptides exhibit neuroprotective properties. This phenomenon is extremely important for the potential development of new drugs in view of the aging of the human population and of the significantly increasing incidence of AD.
Collapse
Affiliation(s)
- Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - Michal Bencze
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
- Institute of Physiology AS CR, Prague, Czech Republic
| |
Collapse
|
45
|
Huang HJ, Chen SL, Huang HY, Sun YC, Lee GC, Lee-Chen GJ, Hsieh-Li HM, Su MT. Chronic low dose of AM404 ameliorates the cognitive impairment and pathological features in hyperglycemic 3xTg-AD mice. Psychopharmacology (Berl) 2019; 236:763-773. [PMID: 30426182 PMCID: PMC6469654 DOI: 10.1007/s00213-018-5108-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
RATIONALE Hyperglycemia accelerates the progression of Alzheimer's disease (AD), and GSK3β plays a potential link between AD and hyperglycemia. Therefore, a direct or indirect GSK3β inhibition may have potential to delay the progression of AD. Our previous biochemical assay identified AM404 as a GSK3β inhibitor at high dose (IC50 = 5.353 μM); however, other study suggests that AM404 impaired synaptic plasticity of hippocampus at high dose (10 mg/kg; i.p.). Therefore, the dose and duration of treatment are crucial for the effects of AM404. OBJECTIVE The effects and molecular mechanisms of AM404 at low dose were evaluated from in vitro to in vivo models. METHODS AM404 (0.1-0.5 μM) was tested on tau hyperphosphorylated mouse hippocampal primary cultures treated with Wortmannin (WT) and GF109203X (GFX). Hyperglycemic triple transgenic AD (3×Tg-AD) mice at 6 months old were intraperitoneally injected with AM404 (0.25 mg/kg) for 4 weeks. The spatial learning and memory of mice were measured using the Morris water maze. Mouse brain and serum samples were collected for pathological analyses. RESULTS AM404 (0.5 μM) exhibited significantly augmented neuroprotection toward tau hyperphosphorylation in primary cultures. The chronic systemic administration of AM404 (0.25 mg/kg) attenuated cognitive deficits in hyperglycemic 3×Tg-AD mice. Moreover, chronic low dose of AM404 significantly attenuated Aβ production, tau protein phosphorylation, and inflammation associated with an increase of pS473Akt and pS9-GSK3β. Therefore, AM404 at low dose, not only increased neuroprotection, but also ameliorated cognitive deficit, could be partly by regulating the Akt/GSK3β signaling, which may contribute to downregulation of Aβ, tau hyperphosphorylation, and inflammation in hyperglycemic 3×Tg-AD mice. CONCLUSIONS These results highlight that chronic administration of AM404 at low dose may be through the Akt/GSK3β pathway to ameliorate the impairment in hyperglycemic 3×Tg-AD mice.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, 11260 Taiwan
| | - Shu-Ling Chen
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Hsin-Yu Huang
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Ying-Chieh Sun
- 0000 0001 2158 7670grid.412090.eDepartment of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Guan-Chiun Lee
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Guey-Jen Lee-Chen
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
46
|
Defect of branched-chain amino acid metabolism promotes the development of Alzheimer's disease by targeting the mTOR signaling. Biosci Rep 2018; 38:BSR20180127. [PMID: 29802157 PMCID: PMC6028749 DOI: 10.1042/bsr20180127] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/10/2023] Open
Abstract
Diabetes is a risk factor for Alzheimer’s disease (AD) in humans. Branched-chain amino acids (BCAAs, namely valine, leucine, and isoleucine) metabolic defect is observed in human diabetes, which is associated with insulin resistance. But whether BCAAs connect diabetes and AD remains unknown. Here, we show that BCAA metabolic defect may be one of the drivers of AD. BCAA levels were increased in the blood in human patients and mice with diabetes or AD. BCAA-enriched diet promoted the development of AD in mice as evidenced by the behavior and pathological analysis. Branched-chain amino acid transaminase 1 and 2 (BCAT1 and BCAT2) are the two enzymes for the first step metabolism of BCAAs by catalyzing BCAAs to generate branched-chain ketoacids. The expression of Bcat1 but not Bcat2 was significantly down-regulated in the brain tissues of diabetic, aged, and AD mice. Leucine up-regulated the phosphorylation of Tau but not affected the accumulation of amyloid β in the brain tissues or isolated neurons. In addition, knockdown of the expression of Bcat1, which would result in the accumulation of BCAAs, led to the same phenotype as BCAAs supplement in neurons. Interestingly, leucine supplement or Bcat1 knockdown promoted the activation of the mTOR signaling in the brains of AD mice or neurons. Subsequently, mTOR was critically involved in leucine and Bcat1 knockdown-mediated phosphorylation of Tau. Taken together, our findings demonstrated that diabetes-related BCAA accumulation in the brain tissues led to the phosphorylation of Tau and, subsequently, the development of diabetes-related AD.
Collapse
|