1
|
Oliveira-Silva JM, Oliveira LS, Chiminazo CB, Fonseca R, de Souza CVE, Aissa AF, de Almeida Lima GD, Ionta M, Castro-Gamero AM. WT161, a selective HDAC6 inhibitor, decreases growth, enhances chemosensitivity, promotes apoptosis, and suppresses motility of melanoma cells. Cancer Chemother Pharmacol 2025; 95:22. [PMID: 39821335 DOI: 10.1007/s00280-024-04731-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025]
Abstract
PURPOSE Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines. METHODS Cell proliferation was assessed using both 2D and 3D cell culture systems, including MTT assays, spheroid growth analyses, and colony formation assays. The interaction between WT161 and the chemotherapeutic agents temozolomide (TMZ) or dacarbazine (DTIC) was evaluated using the Chou-Talalay method. Apoptotic cell death was analyzed through flow cytometry, while migration, adhesion, and invasion assays were conducted to evaluate the motility capacities of melanoma cells. Western blot assays quantified α-tubulin acetylation (Lys40), PARP cleavage, and protein levels of β-catenin and E-cadherin. RESULTS WT161 significantly reduced cell growth in both 2D and 3D cultures, decreased clonogenic capacity, and showed synergistic interactions with TMZ and DTIC. The inhibitor also induced apoptotic cell death and enhanced TMZ-induced apoptosis. Additionally, WT161 reduced cell migration and invasion while increasing cell adhesion. These effects were linked to changes in β-catenin and E-cadherin levels, depending on the specific cell type evaluated. CONCLUSION Our study underscores the pivotal role of HDAC6 in melanoma progression, establishing it as a promising therapeutic target. We provide the first comprehensive evidence of WT161's anti-melanoma effects, setting the stage for further research into HDAC6 inhibitors as a potential strategy for melanoma treatment.
Collapse
Affiliation(s)
- João Marcos Oliveira-Silva
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Leilane Sales Oliveira
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Carolina Berraut Chiminazo
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Rafael Fonseca
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | | | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Graziela Domingues de Almeida Lima
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Marisa Ionta
- Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil
| | - Angel Mauricio Castro-Gamero
- Human Genetics Laboratory, Institute of Natural Sciences, Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL-MG), Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
2
|
Huang Z, Li L, Cheng B, Li D. Small molecules targeting HDAC6 for cancer treatment: Current progress and novel strategies. Biomed Pharmacother 2024; 178:117218. [PMID: 39084081 DOI: 10.1016/j.biopha.2024.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) plays a crucial role in the initiation and progression of various cancers, as its overexpression is linked to tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Therefore, HDAC6 has emerged as an attractive target for anticancer drug discovery in the past decade. However, the development of conventional HDAC6 inhibitors has been hampered by their limited clinical efficacy, acquired resistance, and inability to inhibit non-enzymatic functions of HDAC6. To overcome these challenges, new strategies, such as dual-acting inhibitors, targeted protein degradation (TPD) technologies (including PROTACs, HyT), are essential to enhance the anticancer activity of HDAC6 inhibitors. In this review, we focus on the recent advances in the design and development of HDAC6 modulators, including isoform-selective HDAC6 inhibitors, HDAC6-based dual-target inhibitors, and targeted protein degraders (PROTACs, HyT), from the perspectives of rational design, pharmacodynamics, pharmacokinetics, and clinical status. Finally, we discuss the challenges and future directions for HDAC6-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Ziqian Huang
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China
| | - Ling Li
- The Eighth Affiliated Hospital Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen 518000, China.
| | - Binbin Cheng
- School of Medicine, Hubei Polytechnic University, Huangshi 435003, China.
| | - Deping Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
3
|
Yang J, Yu YC, Wang ZX, Li QQ, Ding N, Leng XJ, Cai J, Zhang MY, Wang JJ, Zhou Y, Wei TH, Xue X, Dai WC, Sun SL, Yang Y, Li NG, Shi ZH. Research strategies of small molecules as chemotherapeutics to overcome multiple myeloma resistance. Eur J Med Chem 2024; 271:116435. [PMID: 38648728 DOI: 10.1016/j.ejmech.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.
Collapse
Affiliation(s)
- Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
4
|
Getsy PM, Coffee GA, Kelley TJ, Lewis SJ. Male histone deacetylase 6 (HDAC6) knockout mice have enhanced ventilatory responses to hypoxic challenge. Front Physiol 2024; 14:1332810. [PMID: 38384929 PMCID: PMC10880035 DOI: 10.3389/fphys.2023.1332810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024] Open
Abstract
Histone deacetylase 6 (HDAC6) is a class II histone deacetylase that is predominantly localized in the cytoplasm of cells. HDAC6 associates with microtubules and regulates acetylation of tubulin and other proteins. The possibility that HDAC6 participates in hypoxic signaling is supported by evidence that 1) hypoxic gas challenges cause microtubule depolymerization, 2) expression of hypoxia inducible factor alpha (HIF-1α) is regulated by microtubule alterations in response to hypoxia, and 3) inhibition of HDAC6 prevents HIF-1α expression and protects tissue from hypoxic/ischemic insults. The aim of this study was to address whether the absence of HDAC6 alters ventilatory responses during and/or after hypoxic gas challenge (10% O2, 90% N2 for 15 min) in adult male wildtype (WT) C57BL/6 mice and HDAC6 knock-out (KO) mice. Key findings were that 1) baseline values for frequency of breathing, tidal volume, inspiratory and expiratory times, and end expiratory pause were different between knock-out mice and wildtype mice, 2) ventilatory responses during hypoxic challenge were more robust in KO mice than WT mice for recorded parameters including, frequency of breathing, minute ventilation, inspiratory and expiratory durations, peak inspiratory and expiratory flows, and inspiratory and expiratory drives, and 3) responses upon return to room-air were markedly different in KO compared to WT mice for frequency of breathing, minute ventilation, inspiratory and expiratory durations, end expiratory pause (but not end inspiratory pause), peak inspiratory and expiratory flows, and inspiratory and expiratory drives. These data suggest that HDAC6 may have a fundamentally important role in regulating the hypoxic ventilatory response in mice.
Collapse
Affiliation(s)
- Paulina M. Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Gregory A. Coffee
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas J. Kelley
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Genetics and Genome Sciences, CWRU, Cleveland, OH, United States
| | - Stephen J. Lewis
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, CWRU, Cleveland, OH, United States
- Functional Electrical Stimulation Center, CWRU, Cleveland, OH, United States
| |
Collapse
|
5
|
Kulig P, Łuczkowska K, Bakinowska E, Baumert B, Machaliński B. Epigenetic Alterations as Vital Aspects of Bortezomib Molecular Action. Cancers (Basel) 2023; 16:84. [PMID: 38201512 PMCID: PMC10778101 DOI: 10.3390/cancers16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Bortezomib (BTZ) is widely implemented in the treatment of multiple myeloma (MM). Its main mechanism of action is very well established. BTZ selectively and reversibly inhibits the 26S proteasome. More precisely, it interacts with the chymotryptic site of the 20S proteasome and therefore inhibits the degradation of proteins. This results in the intracellular accumulation of misfolded or otherwise defective proteins leading to growth inhibition and apoptosis. As well as interfering with the ubiquitin-proteasome complex, BTZ elicits various epigenetic alterations which contribute to its cytotoxic effects as well as to the development of BTZ resistance. In this review, we summarized the epigenetic alterations elicited by BTZ. We focused on modifications contributing to the mechanism of action, those mediating drug-resistance development, and epigenetic changes promoting the occurrence of peripheral neuropathy. In addition, there are therapeutic strategies which are specifically designed to target epigenetic changes. Herein, we also reviewed epigenetic agents which might enhance BTZ-related cytotoxicity or restore the sensitivity to BTZ of resistant clones. Finally, we highlighted putative future perspectives regarding the role of targeting epigenetic changes in patients exposed to BTZ.
Collapse
Affiliation(s)
- Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Estera Bakinowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.K.); (K.Ł.); (E.B.)
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
6
|
Mardones C, Navarrete-Munoz C, Armijo ME, Salgado K, Rivas-Valdes F, Gonzalez-Pecchi V, Farkas C, Villagra A, Hepp MI. Role of HDAC6-STAT3 in immunomodulatory pathways in Colorectal cancer cells. Mol Immunol 2023; 164:98-111. [PMID: 37992541 DOI: 10.1016/j.molimm.2023.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant neoplasms and the second leading cause of death from tumors worldwide. Therefore, there is a great need to study new therapeutical strategies, such as effective immunotherapies against these malignancies. Unfortunately, many CRC patients do not respond to current standard immunotherapies, making it necessary to search for adjuvant treatments. Histone deacetylase 6 (HDAC6) is involved in several processes, including immune response and tumor progression. Specifically, it has been observed that HDAC6 is required to activate the Signal Transducer and Activator of Transcription 3 (STAT3), a transcription factor involved in immunogenicity, by activating different genes in these pathways, such as PD-L1. Over-expression of immunosuppressive pathways in cancer cells deregulates T-cell activation. Therefore, we focused on the pharmacological inhibition of HDAC6 in CRC cells because of its potential as an adjuvant to avoid immunotolerance in immunotherapy. We investigated whether HDAC6 inhibitors (HDAC6is), such as Nexturastat A (NextA), affected STAT3 activation in CRC cells. First, we found that NextA is less cytotoxic than the non-selective HDACis panobinostat. Then, NextA modified STAT3 and decreased the mRNA and protein expression levels of PD-L1. Importantly, transcriptomic analysis showed that NextA treatment affected the expression of critical genes involved in immunomodulatory pathways in CRC malignancies. These results suggest that treatments with NextA reduce the functionality of STAT3 in CRC cells, impacting the expression of immunomodulatory genes involved in the inflammatory and immune responses. Therefore, targeting HDAC6 may represent an interesting adjuvant strategy in combination with immunotherapy.
Collapse
Affiliation(s)
- C Mardones
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - C Navarrete-Munoz
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - M E Armijo
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - K Salgado
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - F Rivas-Valdes
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - V Gonzalez-Pecchi
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - C Farkas
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - A Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States
| | - M I Hepp
- Laboratorio de Investigación en Ciencias Biomédicas, Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile.
| |
Collapse
|
7
|
Dual LSD1 and HDAC6 Inhibition Induces Doxorubicin Sensitivity in Acute Myeloid Leukemia Cells. Cancers (Basel) 2022; 14:cancers14236014. [PMID: 36497494 PMCID: PMC9737972 DOI: 10.3390/cancers14236014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Defects in epigenetic pathways are key drivers of oncogenic cell proliferation. We developed a LSD1/HDAC6 multitargeting inhibitor (iDual), a hydroxamic acid analogue of the clinical candidate LSD1 inhibitor GSK2879552. iDual inhibits both targets with IC50 values of 540, 110, and 290 nM, respectively, against LSD1, HDAC6, and HDAC8. We compared its activity to structurally similar control probes that act by HDAC or LSD1 inhibition alone, as well as an inactive null compound. iDual inhibited the growth of leukemia cell lines at a higher level than GSK2879552 with micromolar IC50 values. Dual engagement with LSD1 and HDAC6 was supported by dose dependent increases in substrate levels, biomarkers, and cellular thermal shift assay. Both histone methylation and acetylation of tubulin were increased, while acetylated histone levels were only mildly affected, indicating selectivity for HDAC6. Downstream gene expression (CD11b, CD86, p21) was also elevated in response to iDual treatment. Remarkably, iDual synergized with doxorubicin, triggering significant levels of apoptosis with a sublethal concentration of the drug. While mechanistic studies did not reveal changes in DNA repair or drug efflux pathways, the expression of AGPAT9, ALOX5, BTG1, HIPK2, IFI44L, and LRP1, previously implicated in doxorubicin sensitivity, was significantly elevated.
Collapse
|
8
|
Kaur S, Rajoria P, Chopra M. HDAC6: A unique HDAC family member as a cancer target. Cell Oncol (Dordr) 2022; 45:779-829. [PMID: 36036883 DOI: 10.1007/s13402-022-00704-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND HDAC6, a structurally and functionally distinct member of the HDAC family, is an integral part of multiple cellular functions such as cell proliferation, apoptosis, senescence, DNA damage and genomic stability, all of which when deregulated contribute to carcinogenesis. Among several HDAC family members known so far, HDAC6 holds a unique position. It differs from the other HDAC family members not only in terms of its subcellular localization, but also in terms of its substrate repertoire and hence cellular functions. Recent findings have considerably expanded the research related to the substrate pool, biological functions and regulation of HDAC6. Studies in HDAC6 knockout mice highlighted the importance of HDAC6 as a cell survival player in stressful situations, making it an important anticancer target. There is ample evidence stressing the importance of HDAC6 as an anti-cancer synergistic partner of many chemotherapeutic drugs. HDAC6 inhibitors have been found to enhance the effectiveness of conventional chemotherapeutic drugs such as DNA damaging agents, proteasome inhibitors and microtubule inhibitors, thereby highlighting the importance of combination therapies involving HDAC6 inhibitors and other anti-cancer agents. CONCLUSIONS Here, we present a review on HDAC6 with emphasis on its role as a critical regulator of specific physiological cellular pathways which when deregulated contribute to tumorigenesis, thereby highlighting the importance of HDAC6 inhibitors as important anticancer agents alone and in combination with other chemotherapeutic drugs. We also discuss the synergistic anticancer effect of combination therapies of HDAC6 inhibitors with conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sumeet Kaur
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
9
|
A review on the treatment of multiple myeloma with small molecular agents in the past five years. Eur J Med Chem 2022; 229:114053. [PMID: 34974338 DOI: 10.1016/j.ejmech.2021.114053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
Multiple myeloma is currently incurable, and the incidence rate is increasing year by year worldwide. Although in recent years the combined treatment plan based on proteasome inhibitors and immunomodulatory drugs has greatly improved the treatment effect of multiple myeloma, most patients still relapse and become resistant to current treatments. To solve this problem, scientists are committed to developing drugs with higher specificity, such as iberdomide, which is highly specific to ikaros and aiolos. This review aims to focus on the small molecular agents that are being researched/clinically used for the treatment of multiple myeloma, including the target mechanism, structure-activity relationship and application prospects of small molecular agents.
Collapse
|
10
|
Zheng L, Zhang A, Liu J, Liu M, Zhang Y. HDAC1 promotes the migration of human myeloma cells via regulation of the lncRNA/Slug axis. Int J Mol Med 2022; 49:3. [PMID: 34738621 PMCID: PMC8589458 DOI: 10.3892/ijmm.2021.5058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms underlying malignancy in myeloma cells is important for targeted treatment and drug development. Histone deacetylases (HDACs) can regulate the progression of various cancer types; however, their roles in myeloma are not well known. In the present study, the expression of class I HDACs in myeloma cells and tissues was evaluated. Furthermore, the effects of HDAC1 on the migration of myeloma cells and the associated mechanisms were investigated. Among the class I HDACs evaluated, HDAC1 was upregulated in both myeloma cells and tissues. Targeted inhibition of HDAC1 suppressed the migration of myeloma cells. Of the assessed transcription factors, small interfering (si)‑HDAC1 decreased the expression of Slug. Overexpression of Slug reversed the si‑HDAC1‑mediated suppressed migration of myeloma cells. Mechanistically, the results revealed that HDAC1 regulated the mRNA stability of Slug, while it had no effect on its transcription or nuclear export. Furthermore, HDAC1 negatively regulated the expression of long non‑coding RNA (lncRNA) NONHSAT113026, which could bind with the 3'‑untranslated region of Slug mRNA to facilitate its degradation. The present study demonstrated that HDAC1 promoted the migration of human myeloma cells via regulation of lncRNA/Slug signaling.
Collapse
Affiliation(s)
- Lisha Zheng
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Ang Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, P.R. China
| | - Jishan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Min Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Yikun Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, P.R. China
| |
Collapse
|
11
|
Paradzik T, Bandini C, Mereu E, Labrador M, Taiana E, Amodio N, Neri A, Piva R. The Landscape of Signaling Pathways and Proteasome Inhibitors Combinations in Multiple Myeloma. Cancers (Basel) 2021; 13:1235. [PMID: 33799793 PMCID: PMC8000754 DOI: 10.3390/cancers13061235] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma is a malignancy of terminally differentiated plasma cells, characterized by an extreme genetic heterogeneity that poses great challenges for its successful treatment. Due to antibody overproduction, MM cells depend on the precise regulation of the protein degradation systems. Despite the success of PIs in MM treatment, resistance and adverse toxic effects such as peripheral neuropathy and cardiotoxicity could arise. To this end, the use of rational combinatorial treatments might allow lowering the dose of inhibitors and therefore, minimize their side-effects. Even though the suppression of different cellular pathways in combination with proteasome inhibitors have shown remarkable anti-myeloma activities in preclinical models, many of these promising combinations often failed in clinical trials. Substantial progress has been made by the simultaneous targeting of proteasome and different aspects of MM-associated immune dysfunctions. Moreover, targeting deranged metabolic hubs could represent a new avenue to identify effective therapeutic combinations with PIs. Finally, epigenetic drugs targeting either DNA methylation, histone modifiers/readers, or chromatin remodelers are showing pleiotropic anti-myeloma effects alone and in combination with PIs. We envisage that the positive outcome of patients will probably depend on the availability of more effective drug combinations and treatment of early MM stages. Therefore, the identification of sensitive targets and aberrant signaling pathways is instrumental for the development of new personalized therapies for MM patients.
Collapse
Affiliation(s)
- Tina Paradzik
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Cecilia Bandini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisabetta Mereu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Maria Labrador
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
| | - Elisa Taiana
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy;
| | - Antonino Neri
- Department of Oncology and Hemato-oncology, University of Milano, 20122 Milano, Italy; (E.T.); (A.N.)
- Hematology Unit, Fondazione Cà Granda IRCCS, Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Roberto Piva
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy; (T.P.); (C.B.); (E.M.); (M.L.)
- Città Della Salute e della Scienza Hospital, 10126 Torino, Italy
| |
Collapse
|
12
|
Zhang XH, Qin-Ma, Wu HP, Khamis MY, Li YH, Ma LY, Liu HM. A Review of Progress in Histone Deacetylase 6 Inhibitors Research: Structural Specificity and Functional Diversity. J Med Chem 2021; 64:1362-1391. [PMID: 33523672 DOI: 10.1021/acs.jmedchem.0c01782] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histone deacetylases (HDACs) are essential for maintaining homeostasis by catalyzing histone deacetylation. Aberrant expression of HDACs is associated with various human diseases. Although HDAC inhibitors are used as effective chemotherapeutic agents in clinical practice, their applications remain limited due to associated side effects induced by weak isoform selectivity. HDAC6 displays unique structure and cellular localization as well as diverse substrates and exhibits a wider range of biological functions than other isoforms. HDAC6 inhibitors have been effectively used to treat cancers, neurodegenerative diseases, and autoimmune disorders without exerting significant toxic effects. Progress has been made in defining the crystal structures of HDAC6 catalytic domains which has influenced the structure-based drug design of HDAC6 inhibitors. This review summarizes recent literature on HDAC6 inhibitors with particular reference to structural specificity and functional diversity. It may provide up-to-date guidance for the development of HDAC6 inhibitors and perspectives for optimization of therapeutic applications.
Collapse
Affiliation(s)
- Xin-Hui Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Qin-Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hui-Pan Wu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Mussa Yussuf Khamis
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yi-Han Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| | - Li-Ying Ma
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China.,China Meheco Topfond Pharmaceutical Co., Ltd., Zhumadian, 463000, PR China
| | - Hong-Min Liu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Technology Drug Preparation (Zhengzhou University), Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
13
|
He X, Li Z, Zhuo XT, Hui Z, Xie T, Ye XY. Novel Selective Histone Deacetylase 6 (HDAC6) Inhibitors: A Patent Review (2016-2019). Recent Pat Anticancer Drug Discov 2021; 15:32-48. [PMID: 32065106 DOI: 10.2174/1574892815666200217125419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Many human diseases are associated with dysregulation of HDACs. HDAC6 exhibits deacetylase activity not only to histone protein but also to non-histone proteins such as α- tubulin, HSP90, cortactin, and peroxiredoxin. These unique functions of HDAC6 have gained significant attention in the medicinal chemistry community in recent years. Thus a great deal of effort has devoted to developing selective HDAC6 inhibitors for therapy with the hope to minimize the side effects caused by pan-HDAC inhibition. OBJECTIVE The review intends to analyze the structural feature of the scaffolds, to provide useful information for those who are interested in this field, as well as to spark the future design of the new inhibitors. METHODS The primary tool used for patent searching is SciFinder. All patents are retrieved from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®), Espacenet®, and Google Patents. The years of patents covered in this review are between 2016 and 2019. RESULTS Thirty-six patents from seventeen companies/academic institutes were classified into three categories based on the structure of ZBG: hydroxamic acid, 1,3,4-oxadiazole, and 1,2,4-oxadiazole. ZBG connects to the cap group through a linker. The cap group can tolerate different functional groups, including amide, urea, sulfonamide, sulfamide, etc. The cap group appears to modulate the selectivity of HDAC6 over other HDAC subtypes. CONCLUSION Selectively targeting HDAC6 over other subtypes represents two fold advantages: it maximizes the pharmacological effects and minimizes the side effects seen in pan-HDAC inhibitors. Many small molecule selective HDAC6 inhibitors have advanced to clinical studies in recent years. We anticipate the approval of selective HDAC6 inhibitors as therapeutic agents in the near future.
Collapse
Affiliation(s)
- Xingrui He
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen Li
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Tao Zhuo
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zi Hui
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiang-Yang Ye
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
14
|
Ruan Y, Wang L, Lu Y. HDAC6 inhibitor, ACY1215 suppress the proliferation and induce apoptosis of gallbladder cancer cells and increased the chemotherapy effect of gemcitabine and oxaliplatin. Drug Dev Res 2021; 82:598-604. [PMID: 33428788 DOI: 10.1002/ddr.21780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022]
Abstract
As an anti-tumor agent, histone deacetylases (HDACs) inhibitors have attracted wide attention. ACY1215 is a highly effective selective inhibitor of HDAC6, which can inhibit many kinds of tumors. Whether the expression of HDAC6 and its new inhibitor ACY1215 can inhibit the proliferation of gallbladder cancer cells and induce their apoptosis remains to be further studied. The purpose of this study was to explore the effects of ACY1215 on the gallbladder cancer cells. Cell proliferation of GBC-SD and SGC-996 was assessed by cell counting kit-8 assay and colony formation assay. Flow cytometry was used to detect the apoptosis of gallbladder cancer cells. Western blot was used to detect the expressions of PCNA,KI67, and apoptosis-related proteins of gallbladder cancer cells. The HDAC6 inhibitor ACY1215 suppressed the proliferation of GBC-SD and SDC-996 cells and promoted the apoptosis of gallbladder cancer cells. The HDAC6 inhibitor ACY1215 increases the chemotherapy effect of gemcitabine and oxaliplatin. ACY1215 could suppress cell proliferation and induce apoptosis of GBC-SD and SGC-996, and increased the chemotherapy effect of gemcitabine and oxaliplatin, which provides a rationale for the combination of HDAC6 selective inhibitors with other anticancer agents in treating gallbladder cancer.
Collapse
Affiliation(s)
- Yi Ruan
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Luoluo Wang
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yeting Lu
- Department of Minimal Invasive Surgery, Ninbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Ružić D, Đoković N, Nikolić K, Vujić Z. Medicinal chemistry of histone deacetylase inhibitors. ARHIV ZA FARMACIJU 2021. [DOI: 10.5937/arhfarm71-30618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Today, we are witnessing an explosion of scientific concepts in cancer chemotherapy. It has been considered for a long time that genetic instability in cancer should be treated with drugs that directly damage the DNA. Understanding the molecular basis of malignant diseases shed light on studying phenotypic plasticity. In the era of epigenetics, many efforts are being made to alter the aberrant homeostasis in cancer without modifying the DNA sequence. One such strategy is modulation of the lysine acetylome in human cancers. To remove the acetyl group from the histones, cells use the enzymes that are called histone deacetylases (HDACs). The disturbed equilibrium between acetylation and deacetylation on lysine residues of histones can be manipulated with histone deacetylase inhibitors (HDACi). Throughout the review, an effort will be made to present the mechanistic basis of targeting the HDAC isoforms, discovered selective HDAC inhibitors, and their therapeutical implications and expectations in modern drug discovery.
Collapse
|
16
|
Pulya S, Amin SA, Adhikari N, Biswas S, Jha T, Ghosh B. HDAC6 as privileged target in drug discovery: A perspective. Pharmacol Res 2020; 163:105274. [PMID: 33171304 DOI: 10.1016/j.phrs.2020.105274] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022]
Abstract
HDAC6, a class IIB HDAC isoenzyme, stands unique in its structural and physiological functions. Besides histone modification, largely due to its cytoplasmic localization, HDAC6 also targets several non-histone proteins including Hsp90, α-tubulin, cortactin, HSF1, etc. Thus, it is one of the key regulators of different physiological and pathological disease conditions. HDAC6 is involved in different signaling pathways associated with several neurological disorders, various cancers at early and advanced stage, rare diseases and immunological conditions. Therefore, targeting HDAC6 has been found to be effective for various therapeutic purposes in recent years. Though several HDAC6 inhibitors (HDAC6is) have been developed till date, only two ACY-1215 (ricolinostat) and ACY-241 (citarinostat) are in the clinical trials. A lot of work is still needed to pinpoint strictly selective as well as potent HDAC6i. Considering the recent crystal structure of HDAC6, novel HDAC6is of significant therapeutic value can be designed. Notably, the canonical pharmacophore features of HDAC6is consist of a zinc binding group (ZBG), a linker function and a cap group. Significant modifications of cap function may lead to achieve better selectivity of the inhibitors. This review details the study about the structural biology of HDAC6, the physiological and pathological role of HDAC6 in several disease states and the detailed structure-activity relationships (SARs) of the known HDAC6is. This detailed review will provide key insights to design novel and highly effective HDAC6i in the future.
Collapse
Affiliation(s)
- Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|
17
|
Zhang BJ, Chen D, Dekker FJ, Quax WJ. Improving TRAIL-induced apoptosis in cancers by interfering with histone modifications. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:791-803. [PMID: 35582230 PMCID: PMC8992553 DOI: 10.20517/cdr.2020.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 11/12/2022]
Abstract
Epigenetic regulation refers to alterations to the chromatin template that collectively establish differential patterns of gene transcription. Post-translational modifications of the histones play a key role in epigenetic regulation of gene transcription. In this review, we provide an overview of recent studies on the role of histone modifications in carcinogenesis. Since tumour-selective ligands such as tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are well-considered as promising anti-tumour therapies, we summarise strategies for improving TRAIL sensitivity by inhibiting aberrant histone modifications in cancers. In this perspective we also discuss new epigenetic drug targets for enhancing TRAIL-mediated apoptosis.
Collapse
Affiliation(s)
- Bao-Jie Zhang
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Deng Chen
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Frank J. Dekker
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Wim J. Quax
- University of Groningen, Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| |
Collapse
|
18
|
A452, HDAC6-selective inhibitor synergistically enhances the anticancer activity of immunomodulatory drugs in IMiDs-resistant multiple myeloma. Leuk Res 2020; 95:106398. [DOI: 10.1016/j.leukres.2020.106398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/16/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022]
|
19
|
Dawood M, Fleischer E, Klinger A, Bringmann G, Shan L, Efferth T. Inhibition of cell migration and induction of apoptosis by a novel class II histone deacetylase inhibitor, MCC2344. Pharmacol Res 2020; 160:105076. [PMID: 32659428 DOI: 10.1016/j.phrs.2020.105076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Epigenetic modifiers provide a new target for the development of anti-cancer drugs. The eraser histone deacetylase 6 (HDAC6) is a class IIb histone deacetylase that targets various non-histone proteins such as transcription factors, nuclear receptors, cytoskeletal proteins, DNA repair proteins, and molecular chaperones. Therefore, it became an attractive target for cancer treatment. In this study, virtual screening was applied to the MicroCombiChem database with 1162 drug-like compounds to identify new HDAC6 inhibitors. Five compounds were tested in silico and in vitro as HDAC6 inhibitors. Both analyses revealed 1-cyclohexene-1-carboxamide, 2-hydroxy-4,4-dimethyl-N-1-naphthalenyl-6-oxo- (MCC2344) as the best HDAC6 inhibitor among the five ligands. The binding affinity of MCC2344 to HDAC6 was further confirmed by microscale thermophoresis. Additionally, the anti-cancer activity of MCC2344 was tested in several tumor cell lines. Leukemia cells were the most sensitive cells towards MCC2344, particularly the P-glycoprotein-overexpressing multidrug-resistant cell line CEM/ADR5000 exhibited remarkable collateral sensitivity towards MCC2344. Transcriptome analysis using microarray hybridization was performed for investigating downstream mechanisms of action of MCC2344 in leukemia cells. MCC2344 affected microtubule dynamics and suppressed cell migration in the wound healing assay as well as in a spheroid model by hyper-acetylation of tubulin and HSP-90. MCC2344 induced cell death in CEM/ADR5000 cells by activation of PARP, caspase-3, and p21 in addition to the downregulation of p62. MCC2344 significantly inhibited tumor growth in vivo in zebrafish larvae without mortality until 20 pM. We propose MCC2344 as a novel HDAC6 inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany; Department of Molecular Biology, Faculty of Medical Laboratory Sciences, Al-Neelain University, Khartoum, Sudan
| | | | | | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
20
|
Ji T, Feng W, Zhang X, Zang K, Zhu X, Shang F. HDAC inhibitors promote pancreatic stellate cell apoptosis and relieve pancreatic fibrosis by upregulating miR-15/16 in chronic pancreatitis. Hum Cell 2020; 33:1006-1016. [PMID: 32524326 PMCID: PMC7505886 DOI: 10.1007/s13577-020-00387-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Abstract
In chronic pancreatitis, PSCs are activated by proinflammatory cytokines to induce pancreatic fibrogenesis. HDAC inhibition protected against the pancreatic fibrosis and the apoptosis of PSCs through induced apoptosis and depressed inflammation. In our study, we found that miR-15 and miR-16 decreased significantly in chronic pancreatitis and HDAC inhibition could recover the levels of these two miRNAs. HDAC regulated the transcription of miR-15 and miR-16, which then modulate the apoptosis and fibrosis of PSCs. And we proved that Bcl-2 and Smad5 were the target genes of miR-15 and miR-16, which illustrated how HDAC inhibition alleviated the apoptosis and fibrogenesis of PSCs in chronic pancreatitis. These results suggested that HDAC inhibition protects against CP by promoting apoptosis and TGF-β/Smads signaling pathways, and indicated that HDAC inhibition is a potential therapy to alleviate CP patients in clinic, and these need to be explored further.
Collapse
Affiliation(s)
- Ting Ji
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Weiguang Feng
- Intensive Care Unit, Huai'an No 4 People's Hospital, 128 Yan'an East Road, Qingjiangpu District, Huai'an, 223002, Jiangsu, China
| | - Xiangcheng Zhang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Kui Zang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xingxing Zhu
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Futai Shang
- Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Beijing West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
21
|
HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms. Blood 2020; 135:191-207. [PMID: 31750881 DOI: 10.1182/blood.2019895326] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022] Open
Abstract
Protein acetylation is an important contributor to cancer initiation. Histone deacetylase 6 (HDAC6) controls JAK2 translation and protein stability and has been implicated in JAK2-driven diseases best exemplified by myeloproliferative neoplasms (MPNs). By using novel classes of highly selective HDAC inhibitors and genetically deficient mouse models, we discovered that HDAC11 rather than HDAC6 is necessary for the proliferation and survival of oncogenic JAK2-driven MPN cells and patient samples. Notably, HDAC11 is variably expressed in primitive stem cells and is expressed largely upon lineage commitment. Although Hdac11is dispensable for normal homeostatic hematopoietic stem and progenitor cell differentiation based on chimeric bone marrow reconstitution, Hdac11 deficiency significantly reduced the abnormal megakaryocyte population, improved splenic architecture, reduced fibrosis, and increased survival in the MPLW515L-MPN mouse model during primary and secondary transplantation. Therefore, inhibitors of HDAC11 are an attractive therapy for treating patients with MPN. Although JAK2 inhibitor therapy provides substantial clinical benefit in MPN patients, the identification of alternative therapeutic targets is needed to reverse MPN pathogenesis and control malignant hematopoiesis. This study establishes HDAC11 as a unique type of target molecule that has therapeutic potential in MPN.
Collapse
|
22
|
Eleutherakis-Papaiakovou E, Kanellias N, Kastritis E, Gavriatopoulou M, Terpos E, Dimopoulos MA. Efficacy of Panobinostat for the Treatment of Multiple Myeloma. JOURNAL OF ONCOLOGY 2020; 2020:7131802. [PMID: 32411240 PMCID: PMC7201625 DOI: 10.1155/2020/7131802] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Panobinostat represents a potent oral nonselective pan-histone deacetylase inhibitor (HDAC) with activity in myeloma patients. It has been approved by the FDA and EMA in combination with bortezomib and dexamethasone for the treatment of multiple myeloma, in patients who have received at least two prior regimens, including bortezomib and an immunomodulatory agent. In order to further explore its clinical potential, it is evaluated in different combinations in relapsed/refractory and newly diagnosed multiple myeloma. This review focuses on available data about panobinostat's pharmacology and its role in clinical practice. This review will reveal panobinostat's efficacy as antimyeloma treatment, describing drug evolution from preclinical experimental administration to administration in phase III trials, which established its role in current clinical practice. Based on the latest data, we will present its mechanism of action, its efficacy, and most important issues regarding its toxicity profile. We will further try to shed light on its role in current and future therapeutic landscape of myeloma patients. Panobinostat retains its role in therapy of multiple myeloma because of its manageable toxicity profile and its efficacy, mainly in heavily pretreated multiple myeloma patients. These characteristics make it valuable also for novel regimens in combination with second-generation proteasome inhibitors, IMiDs, and monoclonal antibodies. Results of ongoing trials are expected to shed light on drug introduction in different therapeutic combinations or even at an earlier level of disease course.
Collapse
Affiliation(s)
- Evangelos Eleutherakis-Papaiakovou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| |
Collapse
|
23
|
Cartron PF, Cheray M, Bretaudeau L. Epigenetic protein complexes: the adequate candidates for the use of a new generation of epidrugs in personalized and precision medicine in cancer. Epigenomics 2020; 12:171-177. [DOI: 10.2217/epi-2019-0169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Until recently, drug development in oncology was focused on treating most patients for a specific cancer type without taking in account the heterogeneity between these patients in term of response to treatment. Therefore, this type of broad treatment approach excludes the treatment of patient not responding to disease-specific common drugs. In this review, we focus on the different types of epigenetic drugs currently used as DNA methylation inhibitor agents and their limits in patient care due to their lack of specificity. We also highlight the emergence of a new type of epidrug with higher target specificity due to their original mechanism of action: the disruption of protein complexes involved in the epigenetic modifications.
Collapse
Affiliation(s)
- Pierre-François Cartron
- CRCINA, INSERM, Université de Nantes, Nantes, France
- Equipe Apoptose et Progression tumorale, LaBCT, Institut de Cancérologie de l'Ouest, Saint Herblain, France
- Niches & Epigenetics of Tumors’ Network, Cancéropôle Grand Ouest, Nantes, France
- EpiSAVMEN Consortium, Région Pays de la Loire, Nantes, France
- LabEX IGO, Université de Nantes, Nantes, France
| | - Mathilde Cheray
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm 17177, Sweden
| | | |
Collapse
|
24
|
Ziegler N, Raichur S, Brunner B, Hemmann U, Stolte M, Schwahn U, Prochnow HP, Metz-Weidmann C, Tennagels N, Margerie D, Wohlfart P, Bielohuby M. Liver-Specific Knockdown of Class IIa HDACs Has Limited Efficacy on Glucose Metabolism but Entails Severe Organ Side Effects in Mice. Front Endocrinol (Lausanne) 2020; 11:598. [PMID: 32982982 PMCID: PMC7485437 DOI: 10.3389/fendo.2020.00598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of epigenetic gene modification that are involved in the transcriptional control of metabolism. In particular class IIa HDACs have been shown to affect hepatic gluconeogenesis and previous approaches revealed that their inhibition reduces blood glucose in type 2 diabetic mice. In the present study, we aimed to evaluate the potential of class IIa HDAC inhibition as a therapeutic opportunity for the treatment +of metabolic diseases. For that, siRNAs selectively targeting HDAC4, 5 and 7 were selected and used to achieve a combinatorial knockdown of these three class IIa HDAC isoforms. Subsequently, the hepatocellular effects as well as the impact on glucose and lipid metabolism were analyzed in vitro and in vivo. The triple knockdown resulted in a statistically significant decrease of gluconeogenic gene expression in murine and human hepatocyte cell models. A similar HDAC-induced downregulation of hepatic gluconeogenesis genes could be achieved in mice using a liver-specific lipid nanoparticle siRNA formulation. However, the efficacy on whole body glucose metabolism assessed by pyruvate-tolerance tests were only limited and did not outweigh the safety findings observed by histopathological analysis in spleen and kidney. Mechanistically, Affymetrix gene expression studies provide evidence that class IIa HDACs directly target other key factors beyond the described forkhead box (FOXP) transcription regulators, such as hepatocyte nuclear factor 4 alpha (HNF4a). Downstream of these factors several additional pathways were regulated not merely including glucose and lipid metabolism and transport. In conclusion, the liver-directed combinatorial knockdown of HDAC4, 5 and 7 by therapeutic siRNAs affected multiple pathways in vitro, leading in vivo to the downregulation of genes involved in gluconeogenesis. However, the effects on gene expression level were not paralleled by a significant reduction of gluconeogenesis in mice. Combined knockdown of HDAC isoforms was associated with severe adverse effects in vivo, challenging this approach as a treatment option for chronic metabolic disorders like type 2 diabetes.
Collapse
|