1
|
Ahmad A, Khan SA, Khan IN, Iqbal A, Hamayun M. Fungal endophytes isolated from Withania somnifera Markedly exhibit antitumor activity against human glioblastoma. Nat Prod Res 2024:1-6. [PMID: 39377349 DOI: 10.1080/14786419.2024.2409370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/02/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024]
Abstract
In the current study, five fungal endophytes (WR-1, WR-2, WR-3, WR-4, WS-6) were isolated from the roots and stem of Withania somnifera (L.) Dunal, and tested fungal culture filtrates (FCF) against the brain tumour (glioblastoma) cell line (U-87). All FCFs showed anti-tumour activity with an IC50 value of 3.5, 6.0, 3.2, 6.0, and 0.95 µg/mL, respectively. HPLC fractionation of WS-6 showed the presence of 11 compounds (A1-A11), all with good anti-tumour activities (IC 50 3.5, 5.0, 5.0, 3.6, 2.5, 1.7, 2.3, 2.7, 0.9, 1.8 and 0.4 µg/mL, respectively). We report for the first time, the anti-tumour activity of 1-Docosene, Phenol, 2,4-bis(1,1-dimethylethyl), 1,2-Benzenedicarboxylic acid, diisooctyl ester, Hexadecane, 1,1-bis(dodecyloxy)-, Benzene, 1,1'-(2-methyl-2-(phenylthio)cyclopropylidene) bis-, Naphthalene, 1,2-dihydro-1-phenyl- (A1-A6), identified by GC-MS. The rest (A7-A11) had earlier reports of anticancer activities on cell lines other than U-87. We conclude that endophytic WS-6 (Aspergillus fumigatus) produces antitumor compounds that might be helpful in future drug development against brain tumours, especially glioblastoma.
Collapse
Affiliation(s)
- Arshad Ahmad
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Ishaq Nasib Khan
- Institute of Basic Medical Sciences, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Amjad Iqbal
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
2
|
Feng T, Liu Y, Huang M, Chen G, Tian Q, Duan C, Chen J. Reshaping the root endophytic microbiota in plants to combat mercury-induced stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174019. [PMID: 38885713 DOI: 10.1016/j.scitotenv.2024.174019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Emerging evidence suggests that plants experiencing abiotic stress actively seek help from soil microbes. However, the empirical evidence supporting this strategy is limited, especially in response to heavy metal stress. We used integrated microbial community profiling and culture-based methods to investigate the interaction between mercury (Hg) stress, the entophytic root microbiome, and maize seedlings. The results of the pot experiment showed that soil Hg (20 mg/kg) strongly inhibited maize growth, indicating its strong phytotoxicity. Furthermore, Hg stress significantly altered the structure of the bacterial and fungal communities and enriched the potentially pathogenic Fusarium sp., suggesting that soil Hg stress may enhance the bio-stress induced by Fusarium species in maize. Additionally, soil Hg also led to the enrichment of beneficial bacterial members of Streptomyces, Lysobacter, and Sphingomonas (defined as differential species), which were also identified as keystone species in the Hg treatment by the analysis of co-occurrence networks. Therefore, it can be postulated that the members of Streptomyces, Lysobacter, and Sphingomonas function as stress-alleviating microbes. We successfully isolated the representatives of these stress-alleviating microbes. As expected, these strains mitigated the detrimental effects of Hg stess for the maize seedlings, suggesting that plants recruit the stress-alleviated microbiota to combat Hg stress. This study provides insights into the potential of manipulating the root microbiome to enhance plant growth in polluted environments.
Collapse
Affiliation(s)
- Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yiyi Liu
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Mingyu Huang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Guohui Chen
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China
| | - Qindong Tian
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| |
Collapse
|
3
|
Noor J, Ahmad I, Ullah A, Iqbal B, Anwar S, Jalal A, Okla MK, Alaraidh IA, Abdelgawad H, Fahad S. Enhancing saline stress tolerance in soybean seedlings through optimal NH 4+/NO 3- ratios: a coordinated regulation of ions, hormones, and antioxidant potential. BMC PLANT BIOLOGY 2024; 24:572. [PMID: 38890574 PMCID: PMC11184694 DOI: 10.1186/s12870-024-05294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2•--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2•--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.
Collapse
Affiliation(s)
- Javaria Noor
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Izhar Ahmad
- Department of Botany, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Shazma Anwar
- Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25000, Pakistan
| | - Arshad Jalal
- School of Engineering, Department of Plant Health, Rural Engineering and Soils, São Paulo State University - UNESP-FEIS, Ilha Solteira, São Paulo, 15385-000, Brazil
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hamada Abdelgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, Antwerp, 2020, Belgium
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
| |
Collapse
|
4
|
Xiao X, Lang D, Yong J, Zhang X. Bacillus cereus G2 alleviate salt stress in Glycyrrhiza uralensis Fisch. by balancing the downstream branches of phenylpropanoids and activating flavonoid biosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116129. [PMID: 38430580 DOI: 10.1016/j.ecoenv.2024.116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
The salinity environment is one of the biggest threats to Glycyrrhiza uralensis Fisch. (G. uralensis) growth, resulting from the oxidative stress caused by excess reactive oxygen species (ROS). Flavonoids are the main pharmacodynamic composition and help maintain ROS homeostasis and mitigate oxidative damage in G. uralensis in the salinity environment. To investigate whether endophytic Bacillus cereus G2 can improve the salt-tolerance of G. uralensis through controlling flavonoid biosynthesis, the transcriptomic and physiological analysis of G. uralensis treated by G2 in the saline environment was conducted, focused on flavonoid biosynthesis-related pathways. Results uncovered that salinity inhibited flavonoids synthesis by decreasing the activities of phenylalanine ammonialyase (PAL) and 4-coumarate-CoA ligase (4CL) (42% and 39%, respectively) due to down-regulated gene Glyur000910s00020578 at substrate level, and then decreasing the activities of chalcone isomerase (CHI) and chalcone synthase (CHS) activities (50% and 42%, respectively) due to down-regulated genes Glyur006062s00044203 and Glyur000051s00003431, further decreasing isoliquiritigenin content by 53%. However, salt stress increased liquiritin content by 43%, which might be a protective mechanism of salt-treated G. uralensis seedlings. Interestingly, G2 enhanced PAL activity by 27% whereas reduced trans-cinnamate 4-monooxygenase (C4H) activity by 43% which could inhibit lignin biosynthesis but promote flavonoid biosynthesis of salt-treated G. uralensis at the substrate level. G2 decreased shikimate O-hydroxycinnamoyltransferase (HCT) activity by 35%, increased CHS activity by 54% through up-regulating the gene Glyur000051s00003431 encoding CHS, and increased CHI activity by 72%, thereby decreasing lignin (34%) and liquiritin (24%) content, but increasing isoliquiritigenin content (35%), which could mitigate oxidative damage and changed salt-tolerance mechanism of G. uralensis.
Collapse
Affiliation(s)
- Xiang Xiao
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Duoyong Lang
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjiao Yong
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Ningxia Minority Medicine Modernization, Ministry of Education, Yinchuan 750004, China.
| |
Collapse
|
5
|
Moore GG, Chalivendra S, Mack BM, Gilbert MK, Cary JW, Rajasekaran K. Microbiota of maize kernels as influenced by Aspergillus flavus infection in susceptible and resistant inbreds. Front Microbiol 2023; 14:1291284. [PMID: 38029119 PMCID: PMC10657875 DOI: 10.3389/fmicb.2023.1291284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Nearly everything on Earth harbors a microbiome. A microbiome is a community of microbes (bacteria, fungi, and viruses) with potential to form complex networks that involve mutualistic and antagonistic interactions. Resident microbiota on/in an organism are determined by the external environment, both biotic and abiotic, and the intrinsic adaptability of each organism. Although the maize microbiome has been characterized, community changes that result from the application of fungal biocontrol strains, such as non-aflatoxigenic Aspergillus flavus, have not. Methods We silk channel inoculated field-grown maize separately with a non-aflatoxigenic biocontrol strain (K49), a highly toxigenic strain (Tox4), and a combination of both A. flavus strains. Two maize inbreds were treated, A. flavus-susceptible B73 and A. flavus-resistant CML322. We then assessed the impacts of A. flavus introduction on the epibiota and endobiota of their maize kernels. Results We found that the native microbial communities were significantly affected, irrespective of genotype or sampled tissue. Overall, bacteriomes exhibited greater diversity of genera than mycobiomes. The abundance of certain genera was unchanged by treatment, including genera of bacteria (e.g., Enterobacter, Pantoea) and fungi (e.g., Sarocladium, Meyerozyma) that are known to be beneficial, antagonistic, or both on plant growth and health. Conclusion Beneficial microbes like Sarocladium that responded well to A. flavus biocontrol strains are expected to enhance biocontrol efficacy, while also displacing/antagonizing harmful microbes.
Collapse
Affiliation(s)
- Geromy G. Moore
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Subbaiah Chalivendra
- Department of Plant Pathology and Crop Physiology, College of Agriculture, Louisiana State University, Baton Rouge, LA, United States
| | - Brian M. Mack
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Matthew K. Gilbert
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | - Jeffrey W. Cary
- Southern Regional Research Center, USDA-ARS, New Orleans, LA, United States
| | | |
Collapse
|
6
|
Xiao S, Wan Y, Zheng Y, Wang Y, Fan J, Xu Q, Gao Z, Wu C. Halomonas ventosae JPT10 promotes salt tolerance in foxtail millet ( Setaria italica) by affecting the levels of multiple antioxidants and phytohormones. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:275-290. [PMID: 37822729 PMCID: PMC10564379 DOI: 10.1002/pei3.10122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 10/13/2023]
Abstract
Plant growth-promoting bacterias (PGPBs) can increase crop output under normal and abiotic conditions. However, the mechanisms underlying the plant salt tolerance-promoting role of PGPBs still remain largely unknown. In this study, we demonstrated that Halomonas ventosae JPT10 promoted the salt tolerance of both dicots and monocots. Physiological analysis revealed that JPT10 reduced reactive oxygen species accumulation by improving the antioxidant capability of foxtail millet seedlings. The metabolomic analysis of JPT10-inoculated foxtail millet seedlings led to the identification of 438 diversely accumulated metabolites, including flavonoids, phenolic acids, lignans, coumarins, sugar, alkaloids, organic acids, and lipids, under salt stress. Exogenous apigenin and chlorogenic acid increased the salt tolerance of foxtail millet seedlings. Simultaneously, JPT10 led to greater amounts of abscisic acid (ABA), indole-3-acetic acid (IAA), salicylic acid (SA), and their derivatives but lower levels of 12-oxo-phytodienoic acid (OPDA), jasmonate (JA), and JA-isoleucine (JA-Ile) under salt stress. Exogenous JA, methyl-JA, and OPDA intensified, whereas ibuprofen or phenitone, two inhibitors of JA and OPDA biosynthesis, partially reversed, the growth inhibition of foxtail millet seedlings caused by salt stress. Our results shed light on the response of foxtail millet seedlings to H. ventosae under salt stress and provide potential compounds to increase salt tolerance in foxtail millet and other crops.
Collapse
Affiliation(s)
- Shenghui Xiao
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yiman Wan
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yue Zheng
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Yongdong Wang
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Jiayin Fan
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Qian Xu
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Zheng Gao
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| | - Changai Wu
- National Key Laboratory of Wheat Improvement, Shandong Engineering Research Center of Plant‐Microbial Restoration for Saline‐Alkali Land, College of Life SciencesShandong Agricultural UniversityTai'anShandong provinceChina
| |
Collapse
|
7
|
Aziz L, Hamayun M, Rauf M, Iqbal A, Husssin A, Khan SA, Shafique M, Arif M, Ahmad A, Rehman G, Ali S, Kang SM, Lee IJ. Aspergillus violaceofuscus alleviates cadmium and chromium stress in Okra through biochemical modulation. PLoS One 2022; 17:e0273908. [PMID: 36240136 PMCID: PMC9565449 DOI: 10.1371/journal.pone.0273908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
Abstract
Endophytic fungi from the Chilli were used to help okra plants exposed to cadmium (Cd) or chromium (Cr) stress. Initially, the strain Ch06 produced higher amounts of indole acetic acid (IAA) (230.5 μg/mL), sugar (130.7 μg/mL), proteins (128.2 μg/mL), phenolics (525.6 μg/mL) and flavonoids (98.4 μg/mL) in Czapek broth supplemented with Cd or Cr. The production of IAA and other metabolites in such a higher concentration suggested that Ch06 might improve plant growth under heavy metal stress. For this reason, an experiment was designed, in which biomass of Ch06 (at 2g/100g of sand) were applied to the okra plants exposed to Cd or Cr stress (at 100 or 500 μg/g). The results exhibited that Ch06 improved the total chlorophyll (36.4±0.2 SPAD), shoot length (22.6±0.2 cm), root length (9.1±0.6 cm), fresh weight (5±0.6 g), dry weight (1.25±0.01 g), sugars (151.6 μg/g), proteins (114.8 μg/g), proline (6.7 μg/g), flavonoids (37.9 μg/g), phenolics (70.7 μg/g), IAA (106.7 μg/g), catalase (0.75 enzyme units/g tissue) and ascorbic acid oxidaze (2.2 enzyme units/g tissue) of the associated okra plants. Similar observations have been recorded in Ch06 associated okra plants under Cd and Cr stress. Also, Ch06 association reduced translocation of Cd (35% and 45%) and Cr (47% and 53%) to the upper parts of the okra plants and thus reduced their toxicity. The internal transcribed spacer (ITS) region amplification of 18S rDNA (ribosomal deoxyribo nucleic acid) exhibited that the potent strain Ch06 was Aspergillus violaceofuscus. The results implied that A. violaceofuscus has the ability to promote host species growth exposed to Cd and Cr. Moreover, it helped the host plants to recover in Cd and Cr polluted soils, hence can be used as biofertilizer.
Collapse
Affiliation(s)
- Laila Aziz
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
- * E-mail: (IL); (MH)
| | - Mamoona Rauf
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Amjad Iqbal
- Department of Food Science & Technology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Anwar Husssin
- Department of Botany, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sumera Afzal Khan
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Maryam Shafique
- Department of Microbiology, Federal Urdu University of Art, Science & Technology, Karachi, Pakistan
| | - Muhammad Arif
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ayaz Ahmad
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Gauhar Rehman
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeumgnam University, Gyeongsan, Republic of Korea
| | - Sang Mo Kang
- Department of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - In-Jung Lee
- Department of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
- * E-mail: (IL); (MH)
| |
Collapse
|
8
|
Li Z, Wen W, Qin M, He Y, Xu D, Li L. Biosynthetic Mechanisms of Secondary Metabolites Promoted by the Interaction Between Endophytes and Plant Hosts. Front Microbiol 2022; 13:928967. [PMID: 35898919 PMCID: PMC9309545 DOI: 10.3389/fmicb.2022.928967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 12/28/2022] Open
Abstract
Endophytes is a kind of microorganism resource with great potential medicinal value. The interactions between endophytes and host not only promote the growth and development of each other but also drive the biosynthesis of many new medicinal active substances. In this review, we summarized recent reports related to the interactions between endophytes and hosts, mainly regarding the research progress of endophytes affecting the growth and development of host plants, physiological stress and the synthesis of new compounds. Then, we also discussed the positive effects of multiomics analysis on the interactions between endophytes and their hosts, as well as the application and development prospects of metabolites synthesized by symbiotic interactions. This review may provide a reference for the further development and utilization of endophytes and the study of their interactions with their hosts.
Collapse
Affiliation(s)
- Zhaogao Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Weie Wen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Ming Qin
- Department of Immunology, Zunyi Medical University, Zunyi, China
| | - Yuqi He
- Engineering Research Center of Key Technology Development for Gui Zhou Provincial Dendrobium Nobile Industry, Zunyi Medical University, Zunyi, China
- *Correspondence: Yuqi He,
| | - Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Delin Xu,
| | - Lin Li
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
- Lin Li,
| |
Collapse
|
9
|
Tadioto V, Milani LM, Barrilli ÉT, Baptista CW, Bohn L, Dresch A, Harakava R, Fogolari O, Mibielli GM, Bender JP, Treichel H, Stambuk BU, Müller C, Alves SL. Analysis of glucose and xylose metabolism in new indigenous Meyerozyma caribbica strains isolated from corn residues. World J Microbiol Biotechnol 2022; 38:35. [PMID: 34989919 DOI: 10.1007/s11274-021-03221-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2021] [Indexed: 11/26/2022]
Abstract
Aiming to broaden the base of knowledge about wild yeasts, four new indigenous strains were isolated from corn residues, and phylogenetic-tree assemblings on ITS and LSU regions indicated they belong to Meyerozyma caribbica. Yeasts were cultivated under full- and micro-aerobiosis, starting with low or high cell-density inoculum, in synthetic medium or corn hydrolysate containing glucose and/or xylose. Cells were able to assimilate both monosaccharides, albeit by different metabolic routes (fermentative or respiratory). They grew faster in glucose, with lag phases ~ 10 h shorter than in xylose. The hexose exhaustion occurred between 24 and 34 h, while xylose was entirely consumed in the last few hours of cultivation (44-48 h). In batch fermentation in synthetic medium with high cell density, under full-aerobiosis, 18-20 g glucose l-1 were exhausted in 4-6 h, with a production of 6.5-7.0 g ethanol l-1. In the xylose medium, cells needed > 12 h to consume the carbohydrate, and instead of ethanol, cells released 4.4-6.4 g l-1 xylitol. Under micro-aerobiosis, yeasts were unable to assimilate xylose, and glucose was more slowly consumed, although the ethanol yield was the theoretical maximum. When inoculated into the hydrolysate, cells needed 4-6 h to deplete glucose, and xylose had a maximum consumption of 57%. Considering that the hydrolysate contained ~ 3 g l-1 acetic acid, it probably has impaired sugar metabolism. Thus, this study increases the fund of knowledge regarding indigenous yeasts and reveals the biotechnological potential of these strains.
Collapse
Affiliation(s)
- Viviani Tadioto
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Letícia M Milani
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Évelyn T Barrilli
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Cristina W Baptista
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Letícia Bohn
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Aline Dresch
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Ricardo Harakava
- Laboratory of Phytopathological Biochemistry, Biological Institute, São Paulo, SP, Brazil
| | - Odinei Fogolari
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Guilherme M Mibielli
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - João P Bender
- Laboratory of Solid Waste, Campus Chapecó, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Campus Erechim, Federal University of Fronteira Sul, Erechim, RS, Brazil
| | - Boris U Stambuk
- Laboratory of Biochemistry and Molecular Biotechnology of Yeasts, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Caroline Müller
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil
| | - Sérgio L Alves
- Laboratory of Biochemistry and Genetics, Campus Chapecó, Federal University of Fronteira Sul, Rodovia SC 484, Km 2, 89815-899, Bairro Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
10
|
Khan MI, Ali N, Jan G, Hamayun M, Jan FG, Iqbal A, Hussain A, Lee IJ. Salt Stress Alleviation in Triticum aestivum Through Primary and Secondary Metabolites Modulation by Aspergillus terreus BTK-1. FRONTIERS IN PLANT SCIENCE 2022; 13:779623. [PMID: 35360328 PMCID: PMC8960994 DOI: 10.3389/fpls.2022.779623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/17/2022] [Indexed: 05/17/2023]
Abstract
We report the growth promoting potential in wheat under saline conditions by an endophytic fungus Aspergillus terreus BTK-1. The isolated BTK-1 from the root of Chenopodium album was identified as Aspergillus terreus through 18S rDNA sequence analysis. BTK-1 secreted indole acetic acid (IAA), exhibited 1- aminocyclopropane-1- carboxylate deaminase (ACC) and siderophores activity, and solubilized phosphate. Wheat seedlings were exposed to a saline environment (0, 60, 120, and 180 mM) with or without BKT-1 inoculation. Seedlings inoculated with BTK-1 showed higher concentrations of IAA and gibberellins, whereas they showed low concentrations of abscisic acid compared to the BTK-1 non-inoculated plants. Also, BTK-1 inoculated wheat plants revealed significantly (P = 0.05) longer shoots and roots, biomass, and chlorophyll contents. On the contrary, plants without BTK-1 inoculation indicated significantly (P = 0.05) low amounts of carbohydrates, phenolics, prolines, potassium, magnesium, and calcium, with high amounts of Na and malonaldehyde under salt stress. Likewise, BTK-1 inoculated wheat plants showed high activity of reduced glutathione, and low activity of ascorbate, catalase, and peroxidase under salt stress. The mitigation of salinity stress by BTK-1 inoculated wheat plants suggested its use as a bio-stimulator in salt affected soils.
Collapse
Affiliation(s)
| | - Niaz Ali
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Farzana Gul Jan
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - Amjad Iqbal
- Department of Food Science & Technology, Abdul Wali Khan University, Mardan, Pakistan
- Amjad Iqbal,
| | - Anwar Hussain
- Department of Botany, Abdul Wali Khan University, Mardan, Pakistan
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- *Correspondence: In-Jung Lee,
| |
Collapse
|
11
|
Badawy AA, Alotaibi MO, Abdelaziz AM, Osman MS, Khalil AMA, Saleh AM, Mohammed AE, Hashem AH. Enhancement of Seawater Stress Tolerance in Barley by the Endophytic Fungus Aspergillus ochraceus. Metabolites 2021; 11:metabo11070428. [PMID: 34209783 PMCID: PMC8307109 DOI: 10.3390/metabo11070428] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/17/2023] Open
Abstract
Symbiotic plant-fungi interaction is a promising approach to alleviate salt stress in plants. Moreover, endophytic fungi are well known to promote the growth of various crop plants. Herein, seven fungal endophytes were screened for salt tolerance; the results revealed that Aspergillus ochraceus showed a great potentiality in terms of salt tolerance, up to 200 g L−1. The indole acetic acid (IAA) production antioxidant capacity and antifungal activity of A. ochraceus were evaluated, in vitro, under two levels of seawater stress, 15 and 30% (v/v; seawater/distilled water). The results illustrated that A. ochraceus could produce about 146 and 176 µg mL−1 IAA in 15 and 30% seawater, respectively. The yield of IAA by A. ochraceus at 30% seawater was significantly higher at all tryptophan concentrations, as compared with that at 15% seawater. Moreover, the antioxidant activity of ethyl acetate extract of A. ochraceus (1000 µg mL−1) at 15 and 30% seawater was 95.83 ± 1.25 and 98.33 ± 0.57%, respectively. Crude extracts of A. ochraceus obtained at 15 and 30% seawater exhibited significant antifungal activity against F. oxysporum, compared to distilled water. The irrigation of barley plants with seawater (15 and 30%) caused notable declines in most morphological indices, pigments, sugars, proteins, and yield characteristics, while increasing the contents of proline, malondialdehyde, and hydrogen peroxide and the activities of antioxidant enzymes. On the other hand, the application of A. ochraceus mitigated the harmful effects of seawater on the growth and physiology of barley plants. Therefore, this study suggests that the endophytic fungus A. ochraceus MT089958 could be applied as a strategy for mitigating the stress imposed by seawater irrigation in barley plants and, therefore, improving crop growth and productivity.
Collapse
Affiliation(s)
- Ali A. Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
| | - Modhi O. Alotaibi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
| | - Mahmoud S. Osman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| | - Ahmed M. A. Khalil
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Biology Department, College of Science, Taibah University, Yanbu 41911, Saudi Arabia
| | - Ahmed M. Saleh
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.A.B.); (A.M.A.); (A.M.A.K.)
- Correspondence: (M.O.A.); (M.S.O.); (A.H.H.)
| |
Collapse
|
12
|
Methane utilizing plant growth-promoting microbial diversity analysis of flooded paddy ecosystem of India. World J Microbiol Biotechnol 2021; 37:56. [PMID: 33619649 DOI: 10.1007/s11274-021-03018-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/01/2021] [Indexed: 01/10/2023]
Abstract
Methane utilizing bacteria (MUB) are known to inhabit the flooded paddy ecosystem where they play an important role in regulating net methane (CH4) emission. We hypothesize that efficient MUB having plant growth-promoting (PGP) attributes can be used for developing novel bio-inoculant for flooded paddy ecosystem which might not only reduce methane emission but also assist in improving the plant growth parameters. Hence, soil and plant samples were collected from the phyllosphere, rhizosphere, and non-rhizosphere of five rice-growing regions of India at the tillering stage and investigated for efficient methane-oxidizing and PGP bacteria. Based on the monooxygenase activity and percent methane utilization on NMS medium with methane as the sole C source, 123 isolates were identified and grouped phylogenetically into 13 bacteria and 2 yeast genera. Among different regions, a significantly higher number of isolates were obtained from lowland flooded paddy ecosystems of Aduthurai (33.33%) followed by Ernakulum (20.33%) and Brahmaputra valley (19.51%) as compared to upland irrigated regions of Gaya (17.07%) and Varanasi (8.94%). Among sub-samples, a significantly higher number of isolates were found inhabiting the phyllosphere (58.54%) followed by non-rhizosphere (25.20%) and rhizosphere (15.45%). Significantly higher utilization of methane and PGP attributes were observed in 30 isolates belonging to genera Hyphomicrobium, Burkholderia, Methylobacterium, Paenibacillus, Pseudomonas, Rahnella, and Meyerozyma. M. oryzae MNL7 showed significantly better growth with 74.33% of CH4 utilization at the rate of 302.9 ± 5.58 and exhibited half-maximal growth rate, Ks of 1.92 ± 0.092 mg CH4 L-1. Besides the ability to utilize CH4, P. polymyxa MaAL70 possessed PGP attributes such as solubilization of P, K, and Zn, fixation of atmospheric N and production of indole acetic acid (IAA). Both these promising isolates can be explored in the future for developing novel biofertilizers for flooded paddies.
Collapse
|
13
|
Kthiri Z, Jabeur MB, Chairi F, López-Cristoffanini C, López-Carbonell M, Serret MD, Araus JL, Karmous C, Hamada W. Exploring the Potential of Meyerozyma guilliermondii on Physiological Performances and Defense Response against Fusarium Crown Rot on Durum Wheat. Pathogens 2021; 10:52. [PMID: 33429997 PMCID: PMC7827111 DOI: 10.3390/pathogens10010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 11/17/2022] Open
Abstract
Coating seeds with bio-control agents is a potentially effective approach to reduce the usage of pesticides and fertilizers applied and protect the natural environment. This study evaluated the effect of seed coating with Meyerozyma guilliermondii, strain INAT (MT731365), on seed germination, plant growth and photosynthesis, and plant resistance against Fusarium culmorum, in durum wheat under controlled conditions. Compared to control plants, seed coating with M. guilliermondii promoted the wheat growth (shoot and roots length and biomass), and photosynthesis and transpiration traits (chlorophyll, ɸPSII, rates of photosynthesis and transpiration, etc.) together with higher nitrogen balance index (NBI) and lower flavonols and anthocyanins. At 21 days post infection with Fusarium, M. guilliermondii was found to reduce the disease incidence and the severity, with reduction rates reaching up to 31.2% and 30.4%, respectively, as well as to alleviate the disease damaging impact on photosynthesis and plant growth. This was associated with lower ABA, flavonols and anthocyanins, compared to infected control. A pivotal function of M. guilliermondii as an antagonist of F. culmorum and a growth promoter is discussed.
Collapse
Affiliation(s)
- Zayneb Kthiri
- Laboratory of Genetics and Plant Breeding, National Institute of Agronomy of Tunis, 43, Av Charles Nicolle, Tunis 1082, Tunisia; (M.B.J.); (C.K.); (W.H.)
| | - Maissa Ben Jabeur
- Laboratory of Genetics and Plant Breeding, National Institute of Agronomy of Tunis, 43, Av Charles Nicolle, Tunis 1082, Tunisia; (M.B.J.); (C.K.); (W.H.)
| | - Fadia Chairi
- Section of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain; (F.C.); (C.L.-C.); (M.L.-C.); (M.D.S.); (J.L.A.)
| | - Camilo López-Cristoffanini
- Section of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain; (F.C.); (C.L.-C.); (M.L.-C.); (M.D.S.); (J.L.A.)
| | - Marta López-Carbonell
- Section of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain; (F.C.); (C.L.-C.); (M.L.-C.); (M.D.S.); (J.L.A.)
| | - Maria Dolores Serret
- Section of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain; (F.C.); (C.L.-C.); (M.L.-C.); (M.D.S.); (J.L.A.)
- AGROTECNIO (Center of Research in Agrotechnology), University of Lleida, 25198 Lleida, Spain
| | - Jose Luis Araus
- Section of Plant Physiology, University of Barcelona, 08028 Barcelona, Spain; (F.C.); (C.L.-C.); (M.L.-C.); (M.D.S.); (J.L.A.)
- AGROTECNIO (Center of Research in Agrotechnology), University of Lleida, 25198 Lleida, Spain
| | - Chahine Karmous
- Laboratory of Genetics and Plant Breeding, National Institute of Agronomy of Tunis, 43, Av Charles Nicolle, Tunis 1082, Tunisia; (M.B.J.); (C.K.); (W.H.)
| | - Walid Hamada
- Laboratory of Genetics and Plant Breeding, National Institute of Agronomy of Tunis, 43, Av Charles Nicolle, Tunis 1082, Tunisia; (M.B.J.); (C.K.); (W.H.)
| |
Collapse
|