1
|
Kim J, Choi A, Kwon YH. Maternal low-protein diet alters hepatic lipid accumulation and gene expression related to glucose metabolism in young adult mouse offspring fed a postweaning high-fat diet. Biochem Biophys Res Commun 2023; 682:193-198. [PMID: 37820455 DOI: 10.1016/j.bbrc.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
Maternal consumption of low-protein (LP) diet during pregnancy has been demonstrated to increase the chances of adult offspring developing metabolic syndrome, and this risk can be exacerbated when the postnatal diets do not align with the prenatal conditions. However, in our previous study, focusing on serum parameters and gene expression patterns within adipose tissue, we discovered the presence of "healthy obesity" in young adult offspring from dams that were fed an LP, as a response to a postweaning high-fat (HF) diet. Here, we subsequently investigated the role played by the liver and skeletal muscle in alleviation of insulin resistance in male offspring that were fed either control (C/C group) or HF diet (C/HF and LP/HF groups) for 22 weeks. While a postweaning HF diet increased liver weight and hepatic triglyceride (TG) and cholesterol levels in offspring of control dams, these levels were lower in the LP/HF group compared to the C/HF group. Analysis of the liver transcriptome identified 430 differentially expressed genes (DEGs) in the LP/HF and C/HF comparison. Especially, downregulated DEGs were enriched in carbohydrate metabolism and the levels of DEGs were significantly correlated with the levels of markers for serum glucose homeostasis and hepatic lipid accumulation. In the LP/HF group compared to the C/HF group, there was a decrease in the gastrocnemius muscle weight, while no differences were observed in gene expression levels associated with muscle fiber phenotype, mitochondrial function, and inflammation. In conclusion, maternal LP diet induced changes in lipid and glucose metabolism within the liver, similar to what was observed in adipose tissue, while there were no alterations in metabolic functions in the skeletal muscle in young offspring mice fed an HF diet. Further research that investigating the enduring impact of nutritional transition on offspring is essential to gain a comprehensive grasp of developmental programming throughout their entire lifespan.
Collapse
Affiliation(s)
- Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul, South Korea; Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
2
|
Yajnik CS, Wagh R, Kunte P, Asplund O, Ahlqvist E, Bhat D, Shukla SR, Prasad RB. Polygenic scores of diabetes-related traits in subgroups of type 2 diabetes in India: a cohort study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 14:100182. [PMID: 37492423 PMCID: PMC10363502 DOI: 10.1016/j.lansea.2023.100182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 07/27/2023]
Abstract
Background A machine-learning approach identified five subgroups of diabetes in Europeans which included severe autoimmune diabetes (SAID), severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD) and mild age-related diabetes (MARD) with partially distinct genetic aetiologies. We previously validated four of the non-autoimmune subgroups in people with young-onset type 2 diabetes (T2D) from the Indian WellGen study. Here, we aimed to apply European-derived centroids and genetic risk scores (GRSs) to the unselected (for age) WellGen to test their applicability and investigate the genetic aetiology of the Indian T2D subgroups. Methods We applied European derived centroids and GRSs to T2D participants of Indian ancestry (WellGen, n = 2217, 821 genotyped) and compared them with normal glucose tolerant controls (Pune Maternal Nutrition Study, n = 461). Findings SIDD was the predominant subgroup followed by MOD, whereas SIRD and MARD were less frequent. Weighted-GRS for T2D, obesity and lipid-related traits associated with T2D. We replicated some of the previous associations of GRS for T2D, insulin secretion, and BMI with SIDD and MOD. Unique to Indian subgroups was the association of GRS for (a) proinsulin with MOD and MARD, (b) liver-lipids with SIDD, SIRD and MOD, and (c) opposite effect of beta-cell GRS with SIDD and MARD, obesity GRS with MARD compared to Europeans. Genetic variants of fucosyltransferases were associated with T2D and MOD in Indians but not Europeans. Interpretation The similarities emphasise the applicability of some of the European-derived GRSs to T2D and its subgroups in India while the differences highlight the need for large-scale studies to identify aetiologies in diverse ancestries. The data provide robust evidence for genetically distinct aetiologies for the T2D subgroups and at least partly mirror those seen in Europeans. Funding Vetenskapsrådet, Diabetes Wellness, and Hjärt-Lungfonden (Sweden), DST (India), Wellcome Trust, Crafoord Foundation and Albert Påhlsson Foundation.
Collapse
Affiliation(s)
- Chittaranjan S. Yajnik
- Diabetes Unit, Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, 411011, India
| | - Rucha Wagh
- Diabetes Unit, Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, 411011, India
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed) University, Pune, 411021, India
| | - Pooja Kunte
- Diabetes Unit, Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, 411011, India
- Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown Campus, Sydney, 2560, NSW, Australia
| | - Olof Asplund
- Department of Clinical Sciences, Diabetes and Endocrinology, CRC, Lund University, Malmö SE-205 02, Sweden
| | - Emma Ahlqvist
- Department of Clinical Sciences, Diabetes and Endocrinology, CRC, Lund University, Malmö SE-205 02, Sweden
| | - Dattatrey Bhat
- Diabetes Unit, Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, 411011, India
| | - Sharvari R. Shukla
- Diabetes Unit, Kamalnayan Bajaj Diabetology Research Centre, King Edward Memorial Hospital and Research Centre, Pune, 411011, India
- Symbiosis Statistical Institute, Symbiosis International University, Pune, 411005, India
| | - Rashmi B. Prasad
- Department of Clinical Sciences, Diabetes and Endocrinology, CRC, Lund University, Malmö SE-205 02, Sweden
- Institute for Molecular Medicine Finland FIMM, Helsinki University, 00290, Helsinki, Finland
| |
Collapse
|
3
|
Rashmi P, Urmila A, Likhit A, Subhash B, Shailendra G. Rodent models for diabetes. 3 Biotech 2023; 13:80. [PMID: 36778766 PMCID: PMC9908807 DOI: 10.1007/s13205-023-03488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (DM) is associated with many health complications and is potentially a morbid condition. As prevalence increases at an alarming rate around the world, research into new antidiabetic compounds with different mechanisms is the top priority. Therefore, the preclinical experimental induction of DM is imperative for advancing knowledge, understanding pathogenesis, and developing new drugs. Efforts have been made to examine recent literature on the various induction methods of Type I and Type II DM. The review summarizes the different in vivo models of DM induced by chemical, surgical, and genetic (immunological) manipulations and the use of pathogens such as viruses. For good preclinical assessment, the animal model must exhibit face, predictive, and construct validity. Among all reported models, chemically induced DM with streptozotocin was found to be the most preferred model. However, the purpose of the research and the outcomes to be achieved should be taken into account. This review was aimed at bringing together models, benefits, limitations, species, and strains. It will help the researcher to understand the pathophysiology of DM and to choose appropriate animal models.
Collapse
Affiliation(s)
- Patil Rashmi
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Aswar Urmila
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Akotkar Likhit
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Bodhankar Subhash
- Department of Pharmacology, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Paud Road, Erandwane, Pune, 411038 India
| | - Gurav Shailendra
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji, Goa India
| |
Collapse
|
4
|
Lu K, Liang XF, Liu T, Cai W, Zhuang W, Zhang Y, Bibi A. DNA methylation of pck1 might contribute to the programming effects of early high-carbohydrate diets feeding to the glucose metabolism across two generations in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1619-1633. [PMID: 36481836 DOI: 10.1007/s10695-022-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this study is to assess the effects of early high-carbohydrate stimulus on glucose metabolism in zebrafish (Danio rerio) over two generations and explore the mechanisms that explain those nutritional programming effects via epigenetic modifications. The larvae were delivered a high-carbohydrate diet (53.66%) that was used as an early nutritional stimulus from the first feeding to the end of the yolk sac (FF) and 5 days after yolk-sac exhaustion (YE). The larvae (F0) and their offspring (F1) were then both fed the control diet (22.69%) until adulthood (15 weeks), and they were challenged with a high-carbohydrate diet (35.36%) at the 16th week. The results indicated that early stimulus immediately raised the mRNA levels of genes involved in glycolysis and gluconeogenesis. At the end of F0 challenge, both treatment groups decreased the plasma glucose levels, increased the expression levels of glucokinase (gck), and inhibited the mRNA during gluconeogenesis. When challenged in F1, the glucose levels were lower in FF (F1), and the mRNA levels of phosphoenolpyruvate carboxykinase 1 (pck1) were decreased in FF (F1) and YE (F1). Besides, in both experimental groups (F0 and F1), the CpG island of pck1 maintained lower levels of hypermethylated expression from F0 adult, 24 h post-fertilization embryo, to F1 adult. In conclusion, these results indicated that an early high-carbohydrate stimulus could significantly reprogram glucose metabolism in adult zebrafish, that those modifications could be partially transmitted to the next generation, and that the DNA methylation of pck1 might work as a stable epigenetic marker to contribute to those processes.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Tong Liu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wenjing Cai
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Wuyuan Zhuang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Yanpeng Zhang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Asima Bibi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, Hubei Province, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
5
|
Alkhalefah A, Eyre HJ, Hussain R, Glazier JD, Ashton N. Impact of maternal intermittent fasting during pregnancy on cardiovascular, metabolic and renal function in adult rat offspring. PLoS One 2022; 17:e0258372. [PMID: 35271586 PMCID: PMC8912128 DOI: 10.1371/journal.pone.0258372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Pregnant Muslim women are exempt from fasting during Ramadan; however a majority are reported to fast. The impact of this form of maternal intermittent fasting (IF) on fetal development and offspring health is not well defined. Using a rat model, we have shown previously that maternal IF results in fetal growth restriction accompanied by changes in placental nutrient transport function. The aim of this study was to assess cardiovascular, metabolic and renal function in adult offspring of IF-exposed dams. Food was withheld from Wistar rats from 17:00 to 09:00 daily throughout pregnancy; controls had ad libitum access to food. Birth weight was unaffected; however male IF pups grew more slowly up to 10 weeks of age (P < 0.01) whereas IF females matched their control counterparts. Systolic blood pressure (SBP), glucose tolerance and basal renal function at 14 weeks were not affected by IF exposure. When offered saline solutions (0.9–2.1%) to drink, females showed a greater salt preference than males (P < 0.01); however there were no differences between dietary groups. A separate group of pups was weaned onto a 4% NaCl diet. SBP increased in IF pups sooner, at 7 weeks (P < 0.01), than controls which became hypertensive from 10 weeks. Renal function did not appear to differ; however markers of renal injury were elevated in IF males (P < 0.05). Maternal IF does not affect resting cardiovascular, metabolic and renal function; but when challenged by dietary salt load male IF offspring are more prone to renal injury.
Collapse
Affiliation(s)
- Alaa Alkhalefah
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Heather J. Eyre
- Divison of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Rezwana Hussain
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, St. Mary’s Hospital, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Nick Ashton
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
López Valiente S, Rodriguez AM, Long NM, Lacau-Mengido IM, Maresca S. The degree of maternal nutrient restriction during late gestation influences the growth and endocrine profiles of offspring from beef cows. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ContextCow–calf operations in Argentina are managed under extensive grazing condition and the quality of forages is often poor during the second half of gestation. The severity of nutrient restriction in bovine gestation, caused by seasonal pasture production, often results in poor production traits in progeny.AimsThe objective of the current study was to determine whether different levels of maternal nutrient intake in beef cows during late gestation affect fetal and postnatal growth, glucose metabolism, and insulin-like growth factor 1 (IGF1) concentrations in offspring of beef cattle.MethodsAt 180±4 days of gestation, multiparous Angus cows (n=56) were blocked by bodyweight (BW) and expected calving date, and assigned to pens (2 or 3 cows/pen). Pens (n=8 per treatment) were then randomly assigned to the following treatments: severely restricted (SR; 50% of net energy and 58% of CP requirements), moderately restricted (MR; 75% of net energy and 85% of CP requirements), or control (CON; 100% of net energy and 116% of CP requirements). Pen was the experimental unit and data were analysed by ANOVA or repeated measures analysis, as appropriate. After calving, all cows were managed in a single group until weaning.Key resultsCow BW and body condition score decreased as nutritional restriction increased (P<0.05). At parturition, birth weight of calves from SR dams and MR dams was lower than that of calves from CON dams (P=0.05; 4.9kg and 2.1kg respectively). Average daily gain of calves from birth to 24 days of age was higher (P=0.01) in calves from SR dams than in calves from CON and MR dams. Calves from MR dams were lighter (P=0.04) than were calves from SR and CON dams at weaning. Treatments did not affect milk production or composition (P>0.10) or glucose–insulin metabolism of offspring during lactation (P>0.10). Concentration of IGF1 tended to be lower in MR progeny than in SR and CON progeny during lactation (P=0.09).ConclusionsLate gestation maternal nutrient restriction, irrespective of the severity of the restriction, decreased birth weight of offspring; however, severe nutrient restriction induced early postnatal compensatory growth.ImplicationsThe severe nutritional restriction produced calves with weaning weights indistinguishable from the control cows due to early postnatal compensatory growth. However, the longer-term effects of nutritional restriction of the dam in the second half of pregnancy on metabolic and reproductive performance in replacement heifers or meat production/quality in steers is yet to be determined.
Collapse
|
7
|
Blesson CS, Schutt AK, Vipin VA, Tanchico DT, Mathew PR, Balakrishnan M, Betancourt A, Yallampalli C. In utero low-protein-diet-programmed type 2 diabetes in adult offspring is mediated by sex hormones in rats†. Biol Reprod 2020; 103:1110-1120. [PMID: 32766739 PMCID: PMC7609843 DOI: 10.1093/biolre/ioaa133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/21/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Sex steroids regulate insulin sensitivity and glucose metabolism. We had characterized a lean type 2 diabetes (T2D) rat model using gestational low-protein (LP) diet programming. Our objective was to identify if endocrine dysfunction leading to decreased sex hormone levels will precede the development of T2D and if steroid replacement will prevent the onset of the disease. Pregnant rats were fed control or isocaloric LP diet from gestational day 4 until delivery. Normal diet was given to all mothers after delivery and to pups after weaning. LP offspring developed glucose intolerance and insulin resistance at 4 months. We measured sex steroid hormone profiles and expression of key genes involved in steroidogenesis in testis and ovary. Furthermore, one-month old rats were implanted with 90-day slow release T and E2 pellets for males and females, respectively. Glucose tolerance test (GTT) and euglycemic hyperinsulinemic clamp was performed at 4 months. LP-programmed T2D males had low T levels and females had low E2 levels due to dysregulated gene expression during steroidogenesis in gonads. GTT and euglycemic hyperinsulinemic clamp showed that LP males and females were glucose intolerant and insulin resistant; however, steroid supplementation prevented the onset of glucose intolerance and insulin resistance. Rats that developed T2D by LP programming have compromised gonadal steroidogenesis leading to low T and E2 in males and females, respectively. Sex steroid supplementation prevented the onset of glucose intolerance and insulin resistance indicating low sex steroid levels could cause compromised glucose metabolism ultimately leading to T2D.
Collapse
Affiliation(s)
- Chellakkan S Blesson
- Division for Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030
| | - Amy K Schutt
- Division for Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Baylor College of Medicine, and Family Fertility Center, Texas Children's Hospital, Houston, Texas 77030
| | - Vidyadharan A Vipin
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Daren T Tanchico
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Pretty R Mathew
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Meena Balakrishnan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Kim J, Choi A, Kwon YH. Maternal Protein Restriction Altered Insulin Resistance and Inflammation-Associated Gene Expression in Adipose Tissue of Young Adult Mouse Offspring in Response to a High-Fat Diet. Nutrients 2020; 12:nu12041103. [PMID: 32316103 PMCID: PMC7230574 DOI: 10.3390/nu12041103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/27/2022] Open
Abstract
Maternal protein restriction is associated with increased risk of insulin resistance and inflammation in adulthood offspring. Here, we investigated whether maternal protein restriction could alter the risk of metabolic syndrome in postweaning high-fat (HF)-diet-challenged offspring, with focus on epididymal adipose tissue gene expression profile. Female ICR mice were fed a control (C) or a low-protein (LP) diet for two weeks before mating and throughout gestation and lactation, and their male offspring were fed an HF diet for 22 weeks (C/HF and LP/HF groups). A subset of offspring of control dams was fed a low-fat control diet (C/C group). In response to postweaning HF diet, serum insulin level and the homeostasis model assessment of insulin resistance (HOMA-IR) were increased in control offspring. Maternal LP diet decreased HOMA-IR and adipose tissue inflammation, and increased serum adiponectin level in the HF-diet-challenged offspring. Accordingly, functional analysis revealed that differentially expressed genes (DEGs) enriched in cytokine production were downregulated in the LP/HF group compared to the C/HF group. We also observed the several annotated gene ontology terms associated with innate immunity and phagocytosis in down-regulated DEGs between LP/HF and C/C groups. In conclusion, maternal protein restriction alleviated insulin resistance and inflammation in young offspring mice fed a HF diet but may impair development of immune system in offspring.
Collapse
Affiliation(s)
- Juhae Kim
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.K.); (A.C.)
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.K.); (A.C.)
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (J.K.); (A.C.)
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-6833
| |
Collapse
|
9
|
Oke SL, Sohi G, Hardy DB. Perinatal protein restriction with postnatal catch-up growth leads to elevated p66Shc and mitochondrial dysfunction in the adult rat liver. Reproduction 2020; 159:27-39. [PMID: 31689235 PMCID: PMC6933810 DOI: 10.1530/rep-19-0188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022]
Abstract
Epidemiological data suggest an inverse relationship between birth weight and long-term metabolic deficits, which is exacerbated by postnatal catch-up growth. We have previously demonstrated that rat offspring subject to maternal protein restriction (MPR) followed by catch-up growth exhibit impaired hepatic function and ER stress. Given that mitochondrial dysfunction is associated with various metabolic pathologies, we hypothesized that altered expression of p66Shc, a gatekeeper of oxidative stress and mitochondrial function, contributes to the hepatic defects observed in MPR offspring. To test this hypothesis, pregnant Wistar rats were fed a control (20% protein) diet or an isocaloric low protein (8%; LP) diet throughout gestation. Offspring born to control dams received a control diet in postnatal life, while MPR offspring remained on a LP diet (LP1) or received a control diet post weaning (LP2) or at birth (LP3). At four months, LP2 offspring exhibited increased protein abundance of both p66Shc and the cis-trans isomerase PIN1. This was further associated with aberrant markers of oxidative stress (i.e. elevated 4-HNE, SOD1 and SOD2, decreased catalase) and aerobic metabolism (i.e., increased phospho-PDH and LDHa, decreased complex II, citrate synthase and TFAM). We further demonstrated that tunicamycin-induced ER stress in HepG2 cells led to increased p66Shc protein abundance, suggesting that ER stress may underlie the programmed effects observed in vivo. In summary, because these defects are exclusive to adult LP2 offspring, it is possible that a low protein diet during perinatal life, a period of liver plasticity, followed by catch-up growth is detrimental to long-term mitochondrial function.
Collapse
Affiliation(s)
- Shelby L Oke
- The Children’s Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London, Ontario, Canada
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
| | - Gurjeev Sohi
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
| | - Daniel B Hardy
- The Children’s Health Research Institute, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Obstetrics and Gynaecology, London, Ontario, Canada
- Department of Physiology and Pharmacology, London, Ontario, Canada
- The University of Western Ontario, London, Ontario, Canada
- Correspondence should be addressed to D B Hardy;
| |
Collapse
|
10
|
Abstract
In order to better understand the events that precede and precipitate the onset of type 2 diabetes (T2DM), several nutritional animal models have been developed. These models are generated by manipulating the diet of either the animal itself, or its mother during her pregnancy, and in comparison to traditional genetic and knock out models, have the advantage that they more accurately reflect the etiology of human T2DM. This chapter will discuss some of the most widely used nutritional models of T2DM: Diet-induced obesity (DIO) in adult rodents, and studies of offspring of mothers fed a low-protein, high-fat and/or high-sugar diet during pregnancy and/or lactation. Several common mechanisms have been identified through which these nutritional manipulations can lead to metabolic disease, including pancreatic beta-cell dysfunction, impaired insulin signaling in skeletal muscle, and the excess accumulation of visceral adipose tissue and consequent deposition of nonesterified fatty acids in peripheral tissues. In addition, there is an emerging concept that obesity/poor quality diets result in increased production and release of pro-inflammatory cytokines from adipose tissue leading to a state of chronic low-grade inflammation, and that this is likely to represent an important link between obesity/diet and metabolic dysfunction. The following chapter will discuss the most common nutritional models of T2DM in experimental animals, their application, and relationship to human etiology, and will highlight the important insights these models have provided into the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Beverly Sara Mühlhäusler
- Food and Nutrition Research Group, Department of Food and Wine Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia.
- FOODplus Research Centre, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia.
- CSIRO, Health and Biosecurity, Adelaide, SA, Australia.
| | - Carla Toop
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sheridan Gentili
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
11
|
Szlapinski SK, King RT, Retta G, Yeo E, Strutt BJ, Hill DJ. A mouse model of gestational glucose intolerance through exposure to a low protein diet during fetal and neonatal development. J Physiol 2019; 597:4237-4250. [PMID: 31206692 DOI: 10.1113/jp277884] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Pancreatic β-cell dysfunction is hypothesized to be the significant determinant of gestational diabetes pathogenesis, however pancreatic samples from patients are scarce. This study reports a novel mouse model of gestational glucose intolerance in pregnancy, originating from previous nutrition restriction in utero, in which glucose intolerance was restricted to late gestation as is seen in human gestational diabetes. Glucose intolerance was attributed to reduced β-cell proliferation, leading to impaired gestational β-cell mass expansion in maternal endocrine pancreas, in addition to reduced glucose-stimulated insulin secretion. This model reproduces some of the features of gestational diabetes and is suitable for testing safe therapeutic interventions that increase β-cell mass during pregnancy and prevent or reverse gestational glucose intolerance. ABSTRACT Gestational diabetes mellitus (GDM) is an increasingly prevalent form of diabetes that appears during pregnancy. Pathological studies link a failure to adaptively increase maternal pancreatic β-cell mass (BCM) in pregnancy to GDM. Due to the scarcity of pancreatic samples from GDM patients, we sought to develop a novel mouse model for impaired gestational glucose tolerance. Mature female C57Bl/6 mouse offspring (F1) born to dams fed either a control (C) or low-protein (LP) diet during gestation and lactation were randomly allocated into two subsequent study groups: pregnant (CP, LPP) or non-pregnant (CNP, LPNP). Glucose tolerance tests were performed at gestational day (GD) 9, 12 and 18. Subsequently, pancreata were removed for fluorescence immunohistochemistry to assess α-cell mass (ACM), BCM and β-cell proliferation. An additional group of animals was used to measure insulin secretion from isolated islets at GD18. LPP females displayed glucose intolerance compared to CP females at GD18 (P < 0.001). BCM increased threefold at GD18 in CP females. However, LPP females had reduced BCM expansion (P < 0.01) concurrent with reduced β-cell proliferation at GD12 (P < 0.05). LPP females also had reduced ACM expansion at GD18 (P < 0.01). LPP islets had impaired glucose-stimulated insulin secretion in vitro compared to CP islets (P < 0.01). Therefore, impaired glucose tolerance during pregnancy is associated with a failure to adequately adapt BCM, as a result of reduced β-cell proliferation, in addition to lower glucose-stimulated insulin secretion. This model could be used to evaluate novel interventions during pregnancy to increase BCM or function as a strategy to prevent/reverse GDM.
Collapse
Affiliation(s)
- Sandra K Szlapinski
- Department of Physiology and Pharmacology, Western University, 1151 Richmond St., London, ON, Canada.,Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - Renee T King
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - Gabrielle Retta
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - Erica Yeo
- Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - Brenda J Strutt
- Department of Physiology and Pharmacology, Western University, 1151 Richmond St., London, ON, Canada.,Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| | - David J Hill
- Department of Physiology and Pharmacology, Western University, 1151 Richmond St., London, ON, Canada.,Lawson Health Research Institute, St Joseph's Health Care, 268 Grosvenor St., F4-124, London, ON, Canada
| |
Collapse
|
12
|
Ruiz D, Regnier SM, Kirkley AG, Hara M, Haro F, Aldirawi H, Dybala MP, Sargis RM. Developmental exposure to the endocrine disruptor tolylfluanid induces sex-specific later-life metabolic dysfunction. Reprod Toxicol 2019; 89:74-82. [PMID: 31260803 DOI: 10.1016/j.reprotox.2019.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/16/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are implicated in the developmental mis-programming of energy metabolism. This study examined the impact of combined gestational and lactational exposure to the fungicide tolylfluanid (TF) on metabolic physiology in adult offspring. C57BL/6 J dams received standard rodent chow or the same diet containing 67 mg/kg TF. Offspring growth and metabolism were assessed up to 22 weeks of age. TF-exposed offspring exhibited reduced weaning weight. Body weight among female offspring remained low throughout the study, while male offspring matched controls by 17 weeks of age. Female offspring exhibited reduced glucose tolerance, markedly enhanced systemic insulin sensitivity, reduced adiposity, and normal gluconeogenic capacity during adulthood. In contrast, male offspring exhibited impaired glucose tolerance with unchanged insulin sensitivity, no differences in adiposity, and increased gluconeogenic capacity. These data indicate that developmental exposure to TF induces sex-specific metabolic disruptions that recapitulate key aspects of other in utero growth restriction models.
Collapse
Affiliation(s)
- Daniel Ruiz
- Committee on Molecular Metabolism and Nutrition, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Shane M Regnier
- Committee on Molecular Metabolism and Nutrition, Chicago, IL, United States; Pritzker School of Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Andrew G Kirkley
- Committee on Molecular Pathogenesis and Molecular Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Manami Hara
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Chicago, IL, United States; University of Chicago, Chicago, IL, United States
| | - Fidel Haro
- University of Chicago, Chicago, IL, United States
| | - Hani Aldirawi
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL, United States
| | - Michael P Dybala
- Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Chicago, IL, United States
| | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
13
|
Martin Agnoux A, El Ghaziri A, Moyon T, Pagniez A, David A, Simard G, Parnet P, Qannari EM, Darmaun D, Antignac JP, Alexandre-Gouabau MC. Maternal protein restriction during lactation induces early and lasting plasma metabolomic and hepatic lipidomic signatures of the offspring in a rodent programming model. J Nutr Biochem 2018; 55:124-141. [DOI: 10.1016/j.jnutbio.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/12/2017] [Accepted: 11/14/2017] [Indexed: 02/01/2023]
|
14
|
Monaghan P, Ozanne SE. Somatic growth and telomere dynamics in vertebrates: relationships, mechanisms and consequences. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160446. [PMID: 29335370 PMCID: PMC5784066 DOI: 10.1098/rstb.2016.0446] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 01/11/2023] Open
Abstract
Much telomere loss takes place during the period of most rapid growth when cell proliferation and potentially energy expenditure are high. Fast growth is linked to reduced longevity. Therefore, the effects of somatic cell proliferation on telomere loss and cell senescence might play a significant role in driving the growth-lifespan trade-off. While different species will have evolved a growth strategy that maximizes lifetime fitness, environmental conditions encountered during periods of growth will influence individual optima. In this review, we first discuss the routes by which altered cellular conditions could influence telomere loss in vertebrates, with a focus on oxidative stress in both in vitro and in vivo studies. We discuss the relationship between body growth and telomere length, and evaluate the empirical evidence that this relationship is generally negative. We further discuss the potentially conflicting hypotheses that arise when other factors are taken into account, and the further work that needs to be undertaken to disentangle confounding variables.This article is part of the theme issue 'Understanding diversity in telomere dynamics'.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Susan E Ozanne
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge Metabolic Research Laboratories, Level 4, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
15
|
Vithayathil MA, Gugusheff JR, Ong ZY, Langley-Evans SC, Gibson RA, Muhlhausler BS. Exposure to maternal cafeteria diets during the suckling period has greater effects on fat deposition and Sterol Regulatory Element Binding Protein-1c (SREBP-1c) gene expression in rodent offspring compared to exposure before birth. Nutr Metab (Lond) 2018; 15:17. [PMID: 29467799 PMCID: PMC5815184 DOI: 10.1186/s12986-018-0253-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/07/2018] [Indexed: 12/15/2022] Open
Abstract
Background While the adverse metabolic effects of exposure to obesogenic diets during both the prenatal and early postnatal period are well established, the relative impact of exposure during these separate developmental windows remains unclear. This study aimed to assess the relative contribution of exposure to a maternal cafeteria diet during pregnancy and lactation on body weight, fat mass and expression of lipogenic and adipokine genes in the offspring. Methods Wistar rats were fed either a control chow (Control, n = 14) or obesogenic cafeteria diet (CAF, n = 12) during pregnancy and lactation. Pups were cross-fostered to another dam in either the same or different dietary group within 24 h of birth. Body weight, body fat mass and expression of lipogenic and adipokine genes in subcutaneous and visceral adipose tissues were determined in offspring at weaning and 3 weeks post-weaning. Results Offspring suckled by CAF dams had a lower body weight (P < 0.05), but ~ 2-fold higher percentage body fat at weaning than offspring suckled by Control dams (P < 0.01), independent of whether they were born to a Control or CAF dam. At 6 weeks of age, after all offspring were weaned onto standard chow, males and females suckled by CAF dams remained lighter (P < 0.05) than offspring suckled by Control dams, but the percentage fat mass was no longer different between groups. Sterol Regulatory Element Binding Protein-1c (SREBP-1c) mRNA expression was ~ 25% lower in offspring suckled by cafeteria dams in males at weaning (P < 0.05) and in females at 6 weeks of age (P < 0.05). Exposure to a cafeteria diet during the suckling period alone also resulted in increased adipocyte Peroxisome Proliferator Activated Receptor-γ (PPAR-γ) mRNA expression in females, and adiponectin and leptin mRNA expression in both sexes at weaning. Conclusions The findings from this study point to the critical role of the suckling period for deposition of adipose tissue in rodents, and the potential role of altered adipocyte gene expression in mediating these effects.
Collapse
Affiliation(s)
- M A Vithayathil
- 1FOODplus Research Centre, Department of Wine and Food Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia
| | - J R Gugusheff
- 1FOODplus Research Centre, Department of Wine and Food Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia
| | - Z Y Ong
- 1FOODplus Research Centre, Department of Wine and Food Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia.,3Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001 Australia
| | - S C Langley-Evans
- 4School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - R A Gibson
- 1FOODplus Research Centre, Department of Wine and Food Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia.,2Healthy Mothers, Babies and Childrens Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001 Australia
| | - B S Muhlhausler
- 1FOODplus Research Centre, Department of Wine and Food Sciences, School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, South Australia 5064 Australia.,2Healthy Mothers, Babies and Childrens Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia 5001 Australia.,3Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia 5001 Australia
| |
Collapse
|
16
|
Effects on metabolic parameters in young rats born with low birth weight after exposure to a mixture of pesticides. Sci Rep 2018; 8:305. [PMID: 29321614 PMCID: PMC5762645 DOI: 10.1038/s41598-017-18626-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/13/2017] [Indexed: 01/07/2023] Open
Abstract
Pesticide exposure during fetal life can lead to low birth weight and is commonly observed in reproductive toxicology studies. Associations have also been found in low birth weight babies born from pesticide-exposed gardeners. Since low birth weight is also linked to metabolic disorders, it can be speculated that early life exposure to pesticides could increase the risk of becoming obese or developing diabetes later in life. We have analyzed potential long-term effects of gestational and lactational exposure to a low dose mixture of six pesticides that individually can cause low birth weight: Cyromazine, MCPB, Pirimicarb, Quinoclamine, Thiram, and Ziram. Exposed male offspring, who were smaller than controls, displayed some degree of catch-up growth. Insulin and glucagon regulation was not significantly affected, and analyses of liver and pancreas did not reveal obvious histopathological effects. Efforts towards identifying potential biomarkers of metabolic disease-risk did not result in any strong candidates, albeit leptin levels were altered in exposed animals. In fat tissues, the key genes Lep, Nmb and Nmbr were altered in high dosed offspring, and were differentially expressed between sexes. Our results suggest that early-life exposure to pesticides may contribute to the development of metabolic disorders later in life.
Collapse
|
17
|
Abstract
Developmental programming resulting from maternal malnutrition can lead to an increased risk of metabolic disorders such as obesity, insulin resistance, type 2 diabetes and cardiovascular disorders in the offspring in later life. Furthermore, many conditions linked with developmental programming are also known to be associated with the aging process. This review summarizes the available evidence about the molecular mechanisms underlying these effects, with the potential to identify novel areas of therapeutic intervention. This could also lead to the discovery of new treatment options for improved patient outcomes.
Collapse
|
18
|
Sun LY, Fang Y, Patki A, Koopman JJ, Allison DB, Hill CM, Masternak MM, Darcy J, Wang J, McFadden S, Bartke A. Longevity is impacted by growth hormone action during early postnatal period. eLife 2017; 6. [PMID: 28675141 PMCID: PMC5515575 DOI: 10.7554/elife.24059] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Life-long lack of growth hormone (GH) action can produce remarkable extension of longevity in mice. Here we report that GH treatment limited to a few weeks during development influences the lifespan of long-lived Ames dwarf and normal littermate control mice in a genotype and sex-specific manner. Studies in a separate cohort of Ames dwarf mice show that this short period of the GH exposure during early development produces persistent phenotypic, metabolic and molecular changes that are evident in late adult life. These effects may represent mechanisms responsible for reduced longevity of dwarf mice exposed to GH treatment early in life. Our data suggest that developmental programming of aging importantly contributes to (and perhaps explains) the well documented developmental origins of adult disease.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States
| | - Yimin Fang
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, United States
| | - Jacob Je Koopman
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - David B Allison
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, United States.,Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, United States
| | - Cristal M Hill
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, United States.,Department of Head and Neck Surgery, The Greater Poland Cancer Centre, Poznan, Poland
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Jian Wang
- Department of Biology, University of Alabama at Birmingham, Birmingham, United States
| | - Samuel McFadden
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University, School of Medicine, Springfield, United States
| |
Collapse
|
19
|
Blesson CS, Chinnathambi V, Kumar S, Yallampalli C. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats. Endocrinology 2017; 158:756-767. [PMID: 28324067 PMCID: PMC5460798 DOI: 10.1210/en.2016-1675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/23/2017] [Indexed: 01/18/2023]
Abstract
Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P < 0.01; glycemia Δ area under the curve 342 ± 28 in LP vs 155 ± 23 in controls, mmol/L * 120 minutes) without any change in insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)-3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis.
Collapse
Affiliation(s)
| | - Vijayakumar Chinnathambi
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sathish Kumar
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
20
|
Xie L, Zhang K, Rasmussen D, Wang J, Wu D, Roemmich JN, Bundy A, Johnson WT, Claycombe K. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring. PLoS One 2017; 12:e0169581. [PMID: 28141871 PMCID: PMC5283658 DOI: 10.1371/journal.pone.0169581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. The study aims to answer whether maternal undernutrition by protein restriction affects the ATM M1 or M2 phenotype under postnatal high fat diet in F1 offspring. Using a rat model of prenatal low protein (LP, 8% protein) diet followed by a postnatal high fat energy diet (HE, 45% fat) or low fat normal energy diet (NE, 10% fat) for 12 weeks, we investigated the effects of these diets on adiposity, programming of the offspring ATM phenotype, and the associated inflammatory response in adipose tissue. Fat mass in newborn and 12-week old LP fed offspring was lower than that of normal protein (20%; NP) fed offspring; however, the adipose tissue growth rate was higher compared to the NP fed offspring. While LP did not affect the number of CD68+ or CD206+ cells in adipose tissue of NE offspring, it attenuated the number of these cells in offspring fed HE. In offspring fed HE, LP offspring had a lower percentage of CD11c+CD206+ ATMs, whose abundancy was correlated with the size of the adipocytes. Noteworthy, similar to HE treatment, LP increased gene expression of IL-6 within ATMs. Two-way ANOVA showed an interaction of prenatal LP and postnatal HE on IL-6 and IL-1β transcription. Overall, both LP and HE diets impact ATM phenotype by affecting the ratio of CD11c+CD206+ ATMs and the expression of IL-6.
Collapse
Affiliation(s)
- Linglin Xie
- Department of Nutrition and Food Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- * E-mail: (LX); (KJC)
| | - Ke Zhang
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
- ND INBRE Bioinformatics Core, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Dane Rasmussen
- Department of Basic Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Junpeng Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - Dayong Wu
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, United States of America
| | - James N. Roemmich
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - Amy Bundy
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - W. Thomas Johnson
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
| | - Kate Claycombe
- USDA Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, North Dakota, United States of America
- * E-mail: (LX); (KJC)
| |
Collapse
|
21
|
Qasem RJ, Li J, Tang HM, Pontiggia L, D'mello AP. Maternal protein restriction during pregnancy and lactation alters central leptin signalling, increases food intake, and decreases bone mass in 1 year old rat offspring. Clin Exp Pharmacol Physiol 2016; 43:494-502. [PMID: 26763577 DOI: 10.1111/1440-1681.12545] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/08/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022]
Abstract
The effects of perinatal nutrition on offspring physiology have mostly been examined in young adult animals. Aging constitutes a risk factor for the progressive loss of metabolic flexibility and development of disease. Few studies have examined whether the phenotype programmed by perinatal nutrition persists in aging offspring. Persistence of detrimental phenotypes and their accumulative metabolic effects are important for disease causality. This study determined the effects of maternal protein restriction during pregnancy and lactation on food consumption, central leptin sensitivity, bone health, and susceptibility to high fat diet-induced adiposity in 1-year-old male offspring. Sprague-Dawley rats received either a control or a protein restricted diet throughout pregnancy and lactation and pups were weaned onto laboratory chow. One-year-old low protein (LP) offspring exhibited hyperphagia. The inability of an intraperitoneal (i.p.) leptin injection to reduce food intake indicated that the hyperphagia was mediated by decreased central leptin sensitivity. Hyperphagia was accompanied by lower body weight suggesting increased energy expenditure in LP offspring. Bone density and bone mineral content that are negatively regulated by leptin acting via the sympathetic nervous system (SNS), were decreased in LP offspring. LP offspring did not exhibit increased susceptibility to high fat diet induced metabolic effects or adiposity. The results presented here indicate that the programming effects of perinatal protein restriction are mediated by specific decreases in central leptin signalling to pathways involved in the regulation of food intake along with possible enhancement of different CNS leptin signalling pathways acting via the SNS to regulate bone mass and energy expenditure.
Collapse
Affiliation(s)
- Rani J Qasem
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jing Li
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hee Man Tang
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Laura Pontiggia
- Department of Mathematics, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anil P D'mello
- Department of Pharmaceutical Sciences, Physics and Statistics, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Barry JS, Davidsen ML, Limesand SW, Galan HL, Friedman JE, Regnault TRH, Hay WW. Developmental Changes in Ovine Myocardial Glucose Transporters and Insulin Signaling Following Hyperthermia-Induced Intrauterine Fetal Growth Restriction. Exp Biol Med (Maywood) 2016; 231:566-75. [PMID: 16636305 DOI: 10.1177/153537020623100511] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Developmental changes in ovine myocardial glucose transporters and insulin signaling following hyperthermia-induced intrauterine fetal growth restriction (IUGR) were the focus of our study. Our objective was to test the hypothesis that the fetal ovine myocardium adapts during an IUGR gestation by increasing glucose transporter protein expression, plasma membrane-bound glucose transporter protein concentrations, and insulin signal transduction protein concentrations. Growth measurements and whole heart tissue were obtained at 55 days gestational age (dGA), 90 dGA, and 135 dGA (term = 145 dGA) in fetuses from control (C) and hyperthermic (HT) pregnant sheep. Additionally, in 135 dGA animals, arterial blood was obtained and Doppler ultrasound was used to determine umbilical artery systolic (S) and diastolic (D) flow velocity waveform profiles to calculate pulsatility (S – D/mean) and resistance (S – D/S) indices. Myocardial Glut-1, Glut-4, insulin signal transduction proteins involved in Glut-4 translocation, and glycogen content were measured. Compared to age-matched controls, HT 90-dGA fetal body weights and HT 135-dGA fetal weights and gross heart weights were lower. Heart weights as a percent of body weights were similar between C and HT sheep at 135 dGA. HT 135-dGA animals had (i) lower fetal arterial plasma glucose and insulin concentrations, (ii) lower arterial blood oxygen content and higher plasma lactate concentrations, (iii) higher myocardial Glut-4 plasma membrane (PM) protein and insulin receptor β protein (IRβ) concentrations, (iv) higher myocardial glycogen content, and (v) higher umbilical artery Doppler pulsatility and resistance indices. The HT ovine fetal myocardium adapts to reduced circulating glucose and insulin concentrations by increasing plasma membrane Glut-4 and IRβ protein concentrations. The increased myocardial Glut-4 PM and IRβ protein concentrations likely contribute to or increase the intracellular delivery of glucose and, together with the increased lactate concentrations, enhance glycogen synthesis, which allows for maintained myocardial growth commensurate with fetal body growth.
Collapse
Affiliation(s)
- James S Barry
- Department of Pediatrics, Section of Neonatology, University of Colorado School of Medicine, The Children's Hospital, 1056 East 19th Avenue, Box B070, Denver, CO 80218, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Neergheen V, Aiken CE, Ozanne SE. Poor maternal nutrition and accelerated postnatal growth induces an accelerated aging phenotype and oxidative stress in skeletal muscle of male rats. Dis Model Mech 2016; 9:1221-1229. [PMID: 27585884 PMCID: PMC5087829 DOI: 10.1242/dmm.026591] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/18/2016] [Indexed: 01/09/2023] Open
Abstract
‘Developmental programming’, which occurs as a consequence of suboptimal in utero and early environments, can be associated with metabolic dysfunction in later life, including an increased incidence of cardiovascular disease and type 2 diabetes, and predisposition of older men to sarcopenia. However, the molecular mechanisms underpinning these associations are poorly understood. Many conditions associated with developmental programming are also known to be associated with the aging process. We therefore utilized our well-established rat model of low birth weight and accelerated postnatal catch-up growth (termed ‘recuperated’) in this study to establish the effects of suboptimal maternal nutrition on age-associated factors in skeletal muscle. We demonstrated accelerated telomere shortening (a robust marker of cellular aging) as evidenced by a reduced frequency of long telomeres (48.5-8.6 kb) and an increased frequency of short telomeres (4.2-1.3 kb) in vastus lateralis muscle from aged recuperated offspring compared to controls. This was associated with increased protein expression of the DNA-damage-repair marker 8-oxoguanine-glycosylase (OGG1) in recuperated offspring. Recuperated animals also demonstrated an oxidative stress phenotype, with decreased citrate synthase activity, increased electron-transport-complex activities of complex I, complex II-III and complex IV (all markers of functional mitochondria), and increased xanthine oxidase (XO), p67phox and nuclear-factor kappa-light-chain-enhancer of activated B-cells (NF-κB). Recuperated offspring also demonstrated increased antioxidant defense capacity, with increased protein expression of manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), catalase and heme oxygenase-1 (HO1), all of which are known targets of NF-κB and can be upregulated as a consequence of oxidative stress. Recuperated offspring also had a pro-inflammatory phenotype, as evidenced by increased tumor necrosis factor-α (TNFα) and interleukin-1β (IL1β) protein levels. Taken together, we demonstrate, for the first time to our knowledge, an accelerated aging phenotype in skeletal muscle in the context of developmental programming. These findings may pave the way for suitable interventions in at-risk populations. Summary: Muscle of ‘developmentally programmed’ rat offspring demonstrated accelerated aging and oxidative stress, which could explain why some individuals are at greater risk of developing age-associated muscular dysfunction than others.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Jian Hua Chen
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital, University College London, London WC1N 3BG, UK
| | - Viruna Neergheen
- Neurometabolic Unit, National Hospital, University College London, London WC1N 3BG, UK
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Hills Road, Cambridge CB2 OQQ, UK
| |
Collapse
|
24
|
Holemans K, Aerts L, Van Assche FA. Fetal Growth Restriction and Consequences for the Offspring in Animal Models. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300134-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- K. Holemans
- Department of Obstetrics and Gynaecology, Katholieke Universiteit Leuven, Leuven, Belgium; UZ Gasthuisberg, Department of Obstetrics and Gynaecology, Herestraat 49, B-3000 Leuven, Belgium
| | | | - F. A. Van Assche
- Department of Obstetrics and Gynaecology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Abstract
The early life environment is a crucial time for establishing the trajectory of future health. Low birthweight is considered a marker of an adverse in utero environment and predisposes to cardio-metabolic disease later in life. It has been proposed that this is mediated by glucocorticoids, with life-long activation of the HPA axis. Here we review the evidence to support this hypothesis, with particular emphasis on the effects of fetal growth and nutrient stresses in utero on steroid pathways of the HPA axis. A better understanding of the mechanisms underlying these processes could help to optimize in utero health, and identify individuals at greatest risk of future disease.
Collapse
Affiliation(s)
- Laura I Stirrat
- MRC Centre for Reproductive Health, University of Edinburgh, United Kingdom; Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, United Kingdom
| | - Rebecca M Reynolds
- Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, United Kingdom; University/BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom.
| |
Collapse
|
26
|
Sutton EF, Gilmore LA, Dunger DB, Heijmans BT, Hivert MF, Ling C, Martinez JA, Ozanne SE, Simmons RA, Szyf M, Waterland RA, Redman LM, Ravussin E. Developmental programming: State-of-the-science and future directions-Summary from a Pennington Biomedical symposium. Obesity (Silver Spring) 2016; 24:1018-26. [PMID: 27037645 PMCID: PMC4846483 DOI: 10.1002/oby.21487] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current scientific advances in animal models, population-based cohort studies, and human clinical trials, (ii) the state-of-the-science of epigenetic-based research, and (iii) considerations for future studies. RESULTS This symposium provided a comprehensive assessment of the state of the scientific field and identified research gaps and opportunities for future research in order to understand the mechanisms contributing to the developmental programming of health and disease. CONCLUSIONS Identifying the mechanisms which cause or contribute to developmental programming of future generations will be invaluable to the scientific and medical community. The ability to intervene during critical periods of prenatal and early postnatal life to promote lifelong health is the ultimate goal. Considerations for future research including the use of animal models, the study design in human cohorts with considerations about the timing of the intrauterine exposure, and the resulting tissue-specific epigenetic signature were extensively discussed and are presented in this meeting summary.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Robert A. Waterland
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, USA
| | | | | |
Collapse
|
27
|
Barry JS, Rozance PJ, Brown LD, Anthony RV, Thornburg KL, Hay WW. Increased fetal myocardial sensitivity to insulin-stimulated glucose metabolism during ovine fetal growth restriction. Exp Biol Med (Maywood) 2016; 241:839-47. [PMID: 26873920 PMCID: PMC4950398 DOI: 10.1177/1535370216632621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/21/2016] [Indexed: 01/18/2023] Open
Abstract
Unlike other visceral organs, myocardial weight is maintained in relation to fetal body weight in intrauterine growth restriction (IUGR) fetal sheep despite hypoinsulinemia and global nutrient restriction. We designed experiments in fetal sheep with placental insufficiency and restricted growth to determine basal and insulin-stimulated myocardial glucose and oxygen metabolism and test the hypothesis that myocardial insulin sensitivity would be increased in the IUGR heart. IUGR was induced by maternal hyperthermia during gestation. Control (C) and IUGR fetal myocardial metabolism were measured at baseline and under acute hyperinsulinemic/euglycemic clamp conditions at 128-132 days gestation using fluorescent microspheres to determine myocardial blood flow. Fetal body and heart weights were reduced by 33% (P = 0.008) and 30% (P = 0.027), respectively. Heart weight to body weight ratios were not different. Basal left ventricular (LV) myocardial blood flow per gram of LV tissue was maintained in IUGR fetuses compared to controls. Insulin increased LV myocardial blood flow by ∼38% (P < 0.01), but insulin-stimulated LV myocardial blood flow in IUGR fetuses was 73% greater than controls. Similar to previous reports testing acute hypoxia, LV blood flow was inversely related to arterial oxygen concentration (r(2 )= 0.71) in both control and IUGR animals. Basal LV myocardial glucose delivery and uptake rates were not different between IUGR and control fetuses. Insulin increased LV myocardial glucose delivery (by 40%) and uptake (by 78%) (P < 0.01), but to a greater extent in the IUGR fetuses compared to controls. During basal and hyperinsulinemic-euglycemic clamp conditions LV myocardial oxygen delivery, oxygen uptake, and oxygen extraction efficiency were not different between groups. These novel results demonstrate that the fetal heart exposed to nutrient and oxygen deprivation from placental insufficiency appears to maintain myocardial energy supply in the IUGR condition via increased glucose uptake and metabolic response to insulin, which support myocardial function and growth.
Collapse
Affiliation(s)
- James S Barry
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul J Rozance
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Laura D Brown
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Russell V Anthony
- Department of Biomedical Sciences, Colorado State University, Ft. Collins, CO 80503, USA
| | - Kent L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - William W Hay
- Perinatal Research Center, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
28
|
Qasem RJ, Li J, Tang HM, Browne V, Mendez-Garcia C, Yablonski E, Pontiggia L, D'Mello AP. Decreased liver triglyceride content in adult rats exposed to protein restriction during gestation and lactation: role of hepatic triglyceride utilization. Clin Exp Pharmacol Physiol 2015; 42:380-8. [PMID: 25641378 DOI: 10.1111/1440-1681.12359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/19/2014] [Accepted: 01/01/2015] [Indexed: 12/19/2022]
Abstract
We have previously demonstrated that protein restriction throughout gestation and lactation reduces liver triglyceride content in adult rat offspring. However, the mechanisms mediating the decrease in liver triglyceride content are not understood. The aim of the current study was to use a new group of pregnant animals and their offspring and determine the contribution of increased triglyceride utilization via the hepatic fatty-acid oxidation and triglyceride secretory pathways to the reduction in liver triglyceride content. Pregnant Sprague-Dawley rats received either a control or a low protein diet throughout pregnancy and lactation. Pups were weaned onto laboratory chow on day 28 and killed on day 65. Liver triglyceride content was reduced in male, but not female, low-protein offspring, both in the fed and fasted states. The reduction was accompanied by a trend towards higher liver carnitine palmitoyltransferase-1a activity, suggesting increased fatty-acid transport into the mitochondrial matrix. However, medium-chain acyl coenzyme A dehydrogenase activity within the mitochondrial matrix, expression of nuclear peroxisome proliferator activated receptor-α, and plasma levels of β-hydroxybutyrate were similar between low protein and control offspring, indicating a lack of change in fatty-acid oxidation. Hepatic triglyceride secretion, assessed by blocking peripheral triglyceride utilization and measuring serum triglyceride accumulation rate, and the activity of microsomal transfer protein, were similar between low protein and control offspring. Because enhanced triglyceride utilization is not a significant contributor, the decrease in liver triglyceride content in male low-protein offspring is likely due to alterations in liver fatty-acid transport or triglyceride biosynthesis.
Collapse
Affiliation(s)
- Rani J Qasem
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tarry-Adkins JL, Fernandez-Twinn DS, Chen JH, Hargreaves IP, Martin-Gronert MS, McConnell JM, Ozanne SE. Nutritional programming of coenzyme Q: potential for prevention and intervention? FASEB J 2014; 28:5398-405. [PMID: 25172893 PMCID: PMC4232289 DOI: 10.1096/fj.14-259473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low birth weight and rapid postnatal growth increases risk of cardiovascular-disease (CVD); however, underlying mechanisms are poorly understood. Previously, we demonstrated that rats exposed to a low-protein diet in utero that underwent postnatal catch-up growth (recuperated) have a programmed deficit in cardiac coenzyme Q (CoQ) that was associated with accelerated cardiac aging. It is unknown whether this deficit occurs in all tissues, including those that are clinically accessible. We investigated whether aortic and white blood cell (WBC) CoQ is programmed by suboptimal early nutrition and whether postweaning dietary supplementation with CoQ could prevent programmed accelerated aging. Recuperated male rats had reduced aortic CoQ [22 d (35±8.4%; P<0.05); 12 m (53±8.8%; P<0.05)], accelerated aortic telomere shortening (P<0.01), increased DNA damage (79±13% increase in nei-endonucleaseVIII-like-1), increased oxidative stress (458±67% increase in NAPDH-oxidase-4; P<0.001), and decreased mitochondrial complex II-III activity (P<0.05). Postweaning dietary supplementation with CoQ prevented these detrimental programming effects. Recuperated WBCs also had reduced CoQ (74±5.8%; P<0.05). Notably, WBC CoQ levels correlated with aortic telomere-length (P<0.0001) suggesting its potential as a diagnostic marker of vascular aging. We conclude that early intervention with CoQ in at-risk individuals may be a cost-effective and safe way of reducing the global burden of CVDs.—Tarry-Adkins, J. L., Fernandez-Twinn, D. S., Chen, J.-H., Hargreaves, I. P., Martin-Gronert, M. S., McConnell, J. M., Ozanne, S. E. Nutritional programming of coenzyme Q: potential for prevention and intervention?
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; and
| | - Denise S Fernandez-Twinn
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; and
| | - Jian-Hua Chen
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; and
| | - Iain P Hargreaves
- Neurometabolic Unit, National Hospital, University College London, London, UK
| | - Malgorzata S Martin-Gronert
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; and
| | - Josie M McConnell
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; and
| | - Susan E Ozanne
- Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Cambridge, UK; and
| |
Collapse
|
30
|
Blesson CS, Sathishkumar K, Chinnathambi V, Yallampalli C. Gestational protein restriction impairs insulin-regulated glucose transport mechanisms in gastrocnemius muscles of adult male offspring. Endocrinology 2014; 155:3036-46. [PMID: 24797633 PMCID: PMC4098002 DOI: 10.1210/en.2014-1094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Type II diabetes originates from various genetic and environmental factors. Recent studies showed that an adverse uterine environment such as that caused by a gestational low-protein (LP) diet can cause insulin resistance in adult offspring. The mechanism of insulin resistance induced by gestational protein restriction is not clearly understood. Our aim was to investigate the role of insulin signaling molecules in gastrocnemius muscles of gestational LP diet-exposed male offspring to understand their role in LP-induced insulin resistance. Pregnant Wistar rats were fed a control (20% protein) or isocaloric LP (6%) diet from gestational day 4 until delivery and a normal diet after weaning. Only male offspring were used in this study. Glucose and insulin responses were assessed after a glucose tolerance test. mRNA and protein levels of molecules involved in insulin signaling were assessed at 4 months in gastrocnemius muscles. Muscles were incubated ex vivo with insulin to evaluate insulin-induced phosphorylation of insulin receptor (IR), Insulin receptor substrate-1, Akt, and AS160. LP diet-fed rats gained less weight than controls during pregnancy. Male pups from LP diet-fed mothers were smaller but exhibited catch-up growth. Plasma glucose and insulin levels were elevated in LP offspring when subjected to a glucose tolerance test; however, fasting levels were comparable. LP offspring showed increased expression of IR and AS160 in gastrocnemius muscles. Ex vivo treatment of muscles with insulin showed increased phosphorylation of IR (Tyr972) in controls, but LP rats showed higher basal phosphorylation. Phosphorylation of Insulin receptor substrate-1 (Tyr608, Tyr895, Ser307, and Ser318) and AS160 (Thr642) were defective in LP offspring. Further, glucose transporter type 4 translocation in LP offspring was also impaired. A gestational LP diet leads to insulin resistance in adult offspring by a mechanism involving inefficient insulin-induced IR, Insulin receptor substrate-1, and AS160 phosphorylation and impaired glucose transporter type 4 translocation.
Collapse
Affiliation(s)
- Chellakkan S Blesson
- Department of Obstetrics and Gynecology (C.S.B., C.Y.), Baylor College of Medicine, Houston, Texas 77030; and Division of Reproductive Endocrinology (K.S., V.C.), Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | | | | | | |
Collapse
|
31
|
Agnoux AM, Antignac JP, Simard G, Poupeau G, Darmaun D, Parnet P, Alexandre-Gouabau MC. Time window-dependent effect of perinatal maternal protein restriction on insulin sensitivity and energy substrate oxidation in adult male offspring. Am J Physiol Regul Integr Comp Physiol 2014; 307:R184-97. [DOI: 10.1152/ajpregu.00015.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological and experimental evidence suggests that a suboptimal environment during perinatal life programs offspring susceptibility to the development of metabolic syndrome and Type 2 diabetes. We hypothesized that the lasting impact of perinatal protein deprivation on mitochondrial fuel oxidation and insulin sensitivity would depend on the time window of exposure. To improve our understanding of underlying mechanisms, an integrative approach was used, combining the assessment of insulin sensitivity and untargeted mass spectrometry-based metabolomics in the offspring. A hyperinsulinemic-euglycemic clamp was performed in adult male rats born from dams fed a low-protein diet during gestation and/or lactation, and subsequently exposed to a Western diet (WD) for 10 wk. Metabolomics was combined with targeted acylcarnitine profiling and analysis of liver gene expression to identify markers of adaptation to WD that influence the phenotype outcome evaluated by body composition analysis. At adulthood, offspring of protein-restricted dams had impaired insulin secretion when fed a standard diet. Moreover, rats who demonstrated catch-up growth at weaning displayed higher gluconeogenesis and branched-chain amino acid catabolism, and lower fatty acid β-oxidation compared with control rats. Postweaning exposure of intrauterine growth restriction-born rats to a WD exacerbated incomplete fatty acid β-oxidation and excess fat deposition. Control offspring nursed by protein-restricted mothers showed peculiar low-fat accretion through adulthood and preserved insulin sensitivity even after WD-exposure. Altogether, our findings suggest a testable hypothesis about how maternal diet might influence metabolic outcomes (insulin sensitivity) in the next generation such as mitochondrial overload and/or substrate oxidation inflexibility dependent on the time window of perinatal dietary manipulation.
Collapse
Affiliation(s)
- Aurore Martin Agnoux
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Jean-Philippe Antignac
- L'Université Nantes Angers Le Mans (LUNAM) université, Oniris, Laboratoire d'Etude des Résidus et Contaminants dans les Aliments, Unité Sous Contrat (USC) INRA, Nantes, France
| | - Gilles Simard
- LUNAM Université, Angers, France
- Institut National de la Santé et de la Recherche Médicale U1063, Angers, France; and
- Université d'Angers, Centre Hospitalier Universitaire (CHU) Angers, Department of Biochemistry, Angers, France
| | - Guillaume Poupeau
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Dominique Darmaun
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Patricia Parnet
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| | - Marie-Cécile Alexandre-Gouabau
- Institut National de la Recherche Agronomique (INRA), UMR 1280, Physiologie des Adaptations Nutritionnelles, Institut des maladies de l'appareil digestif (IMAD), Centre de Recherche en Nutrition Humaine Ouest (CRNH), Nantes, France
- Université de Nantes, UMR 1280, Physiologie des Adaptations Nutritionnelles, IMAD, CRNH, Nantes, France
| |
Collapse
|
32
|
Abstract
Available data from both experimental and epidemiological studies suggest that inadequate diet in early life can permanently change the structure and function of specific organs or homoeostatic pathways, thereby ‘programming’ the individual’s health status and longevity. Sufficient evidence has accumulated showing significant impact of epigenetic regulation mechanisms in nutritional programming phenomenon. The essential role of early-life diet in the development of aging-related chronic diseases is well established and described in many scientific publications. However, the programming effects on lifespan have not been extensively reviewed systematically. The aim of the review is to provide a summary of research findings and theoretical explanations that indicate that longevity can be influenced by early nutrition.
Collapse
|
33
|
Goosse K, Bouckenooghe T, Sisino G, Aurientis S, Remacle C, Reusens B. Increased susceptibility to streptozotocin and impeded regeneration capacity of beta-cells in adult offspring of malnourished rats. Acta Physiol (Oxf) 2014; 210:99-109. [PMID: 23701924 DOI: 10.1111/apha.12121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/22/2013] [Accepted: 05/16/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Epidemiological studies related poor maternal nutrition and subsequent growth retardation in the progeny to the development of diabetes later in life. Low-protein diet during gestation altered the beta-cell development of the rat progeny by decreasing beta-cell proliferation and increasing their sensitivity to nitric oxide and cytokines in the foetus. This disturbed maternal environment had long-lasting consequences because the higher beta-cell vulnerability was maintained at adulthood. AIM The aim of this study was to determine whether early malnutrition influences the vulnerability and the regeneration capacity of beta-cells after streptozotocin (STZ) damage at adulthood. METHODS Gestating rats were fed either a control or a low-protein diet until weaning. Adult female offspring received injections of Freund's adjuvant weekly for 5 weeks followed 24 h later by STZ. Half of the cohort was killed at d34, whereas the other half was maintained until d48 to analyse the regeneration capacity of the beta-cells. RESULTS Although control and low-protein rats had equivalent pancreatic insulin content and beta-cell volume density at d34, hyperglycaemia appeared earlier and was more dramatic in low-protein rats than in control rats. STZ treatment increased beta-cell proliferation similarly in both groups. At d48, apoptotic rate was higher in the low-protein group. Regeneration appeared in control, but not in the low-protein rats, where beta-cell aggregates/surface area and Reg1-positive area were decreased compared to control. CONCLUSION Maternal malnutrition programmes a more vulnerable endocrine pancreas in the progeny which is unable to regenerate after injury, therefore predisposing it to develop glucose intolerance and diabetes later in life.
Collapse
Affiliation(s)
- K. Goosse
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - T. Bouckenooghe
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - G. Sisino
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - S. Aurientis
- EA 4489 “Environnement périnatal et croissance”; Faculté de Médecine; H Warembourg; Lille France
| | - C. Remacle
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - B. Reusens
- Laboratory of Cell Biology; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
34
|
Miñana-Solis MDC, Angeles-Castellanos M, Buijs RM, Escobar C. Altered Fos immunoreactivity in the hypothalamus after glucose administration in pre- and post-weaning malnourished rats. Nutr Neurosci 2013; 13:152-60. [DOI: 10.1179/147683010x12611460764246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Partadiredja G, Bedi K. Undernutrition during either the pre- or immediate post-weaning period does not affect longevity in Quackenbush mice. Nutr Neurosci 2013; 13:33-42. [DOI: 10.1179/147683010x12611460763724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Osumek JE, Revesz A, Morton JS, Davidge ST, Hardy DB. Enhanced trimethylation of histone h3 mediates impaired expression of hepatic glucose 6-phosphatase expression in offspring from rat dams exposed to hypoxia during pregnancy. Reprod Sci 2013; 21:112-21. [PMID: 23744881 DOI: 10.1177/1933719113492212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Given that hepatic glucose 6-phosphatase (G6Pase, involved in gluconeogenesis) has been demonstrated to be altered long term in animal models of intrauterine growth restriction (IUGR), we hypothesized that hypoxia in utero may regulate G6Pase expression via epigenetic mechanisms. To address this further, a rat model of maternal hypoxia leading to IUGR and impaired liver growth was utilized. In the 12-month-old male offspring of pregnant rat dams exposed to 11.5% atmospheric oxygen from gestational day (gd) 15 to gd 21, nonfasting glucose was lower in association with decreased hepatic G6Pase messenger RNA and protein levels. This was concomitant with enhanced methylation of histone H3 [K9] surrounding the promoter of G6Pase. Moreover, when McA-RH7777 hepatoma cells were exposed to various concentrations of oxygen for 48 hours, we observed an oxygen-dependent decrease in G6Pase expression associated with enhanced histone H3 [K9] methylation. Collectively, these results indicate that hypoxia directly and indirectly impairs G6Pase expression through enhanced methylation of histone H3 [K9].
Collapse
Affiliation(s)
- Jessica E Osumek
- 1The Department of Physiology & Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
37
|
Abstract
Intrauterine growth retardation has been linked to the development of type 2 diabetes later in life and the mechanisms underlying this phenomena are unknown. Epidemiological studies in humans show a distinct link with the exposure to an intrauterine insult that results in low birth weight and the development of type 2 diabetes in adulthood. Intrauterine growth retardation can be induced in rodent models by exposing the pregnant rat to a low protein diet, total calorie restriction, high dose glucocorticoids or inducing uteroplacental insufficiency, all which result in abnormalities in glucose homeostasis in the offspring later in life. Animal models of intrauterine growth retardation allow for a better characterization of changes in glucose homeostasis and corresponding changes in gene expression that can provide insight in the mechanisms by which intrauterine growth retardation leads to type 2 diabetes.
Collapse
|
38
|
Garg M, Thamotharan M, Dai Y, Lee PW, Devaskar SU. Embryo-transfer of the F2 postnatal calorie restricted female rat offspring into a control intra-uterine environment normalizes the metabolic phenotype. Metabolism 2013; 62:432-41. [PMID: 23021963 PMCID: PMC4208919 DOI: 10.1016/j.metabol.2012.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/23/2012] [Accepted: 08/30/2012] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Postnatal calorie and growth restriction (PNGR) in the first generation (F1) rat female offspring causes a lean and glucose tolerant phenotype associated with hypoinsulinemia and reduced glucose-stimulated insulin secretion (GSIS). Despite the absence of gestational hyperglycemia in the F1 PNGR female, naturally born second generation (F2) PNGR female adult offspring reportedly exhibit obesity, hyperglycemia with insulin resistance. The objective of this study was to determine the role of the intrauterine environment on the heritability of the trans-generational phenotypic expression in the F2 PNGR female adult offspring. MATERIALS/METHODS We performed embryo transfer (ET) of the F2 embryos from the procreating F1 pregnant PNGR or control (CON) females to gestate in control recipient rat mothers. Employing stable isotopes glucose metabolic kinetics was determined. RESULTS Birth weight, postnatal growth pattern and white adipose tissue in female F2 ET-PNGR were similar to ET-CON. Similarly, no differences in basal glucose and insulin concentrations, GSIS, glucose futile cycling and glucose clearance were seen. When compared to F2 ET-CON, F2 ET-PNGR showed no overall difference in glucose or hepatic glucose production (HGP) AUCs with minimal hyperglycemia (p<0.04) as a result of unsuppressed endogenous HGP (p<0.02) observed only during the first phase of IVGTT. CONCLUSIONS We conclude that the lean, glucose tolerant and hypoinsulinemic phenotype with reduced GSIS in the F1 generation is nearly normalized when the embryo-transferred F2 offspring gestates in a normal metabolic environment. This observation supports a role for the intra-uterine environment in modifying the heritability of the trans-generational PNGR phenotype.
Collapse
Affiliation(s)
- Meena Garg
- Department of Pediatrics, Division of Neonatology & Developmental Biology and Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752
| | - Manikkavasagar Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology and Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752
| | - Yun Dai
- Department of Pediatrics, Division of Neonatology & Developmental Biology and Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752
| | - Paul W.N. Lee
- Harbor-UCLA Medical Center 1000 W. Carson Street, Torrance, California 90502
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology and Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752
- Address all correspondence to: Sherin U. Devaskar M.D., , Professor, Department of Pediatrics, 10833, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752, Phone No. 310-825-9357; FAX No. 310-267-0154
| |
Collapse
|
39
|
Podlas K, Helfenstein F, Richner H. Brood reduction via intra-clutch variation in testosterone--an experimental test in the great tit. PLoS One 2013; 8:e56672. [PMID: 23437207 PMCID: PMC3577683 DOI: 10.1371/journal.pone.0056672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
In birds, yolk androgen concentrations in eggs can increase or decrease over the laying sequence and common hypotheses hold that this serves to favour the competitive ability of either first- or last-hatched chicks depending on the prevailing conditions, and thus promote brood reduction or maintenance of original brood size respectively. Intra-clutch variation of testosterone can shift relative competitive ability of siblings and hence competitive dynamics. In a natural population of great tits, we experimentally investigated the effects and function of maternal testosterone on offspring phenotype in relation to the laying position of the egg in a context of hatching asynchrony. To this end, we created three types of clutches where either the first three or the last three eggs of a clutch were injected with testosterone (T) dissolved in sesame oil, and the remaining eggs with sesame oil only, or where all eggs of a clutch were injected with sesame oil. Increased levels of yolk T in the last-laid eggs resulted in the last-hatched chicks being significantly lighter and smaller than their siblings, while increased levels of T in the first-laid eggs had no direct effect on the first-hatched chicks, but an indirect negative effect on their siblings. Our results suggest that females can potentially adjust offspring phenotype by modulating, over the laying sequence, the amounts of T deposited in the eggs. These results are in contradiction, however, with current hypotheses and previous findings, which suggest that under good conditions higher levels of maternally derived T in the last-laid eggs should mitigate the negative effects of hatching asynchrony.
Collapse
Affiliation(s)
- Katarzyna Podlas
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland.
| | | | | |
Collapse
|
40
|
Thompson RF, Einstein FH. Epigenetic basis for fetal origins of age-related disease. J Womens Health (Larchmt) 2013; 19:581-7. [PMID: 20136551 DOI: 10.1089/jwh.2009.1408] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The current concept of fetal origins of adult diseases describes in utero programming, or adaptation to a spectrum of adverse environmental conditions that ultimately leads to increased susceptibility to age-related diseases (e.g., type 2 diabetes and cardiovascular disease) later in life. Although the precise mechanism of this biological memory remains unclear, mounting evidence suggests an epigenetic basis. The increased susceptibility to chronic disease and involvement of multiple organ systems that is observed is analogous to the decline in resistance to disease that is typical of normal aging. Although the cumulative environment over the course of a lifetime can induce increasing epigenetic dysregulation, we propose that adverse events that occur during early development can induce significant additional dysregulation of the epigenome. Here, we describe the current evidence for fetal origins of adult disease and the associated role of epigenetic dysregulation. In addition, we present a new perspective on the induction of epigenetic alterations in utero, which subsequently lead to an aging phenotype marked by increased susceptibility to age-related diseases.
Collapse
|
41
|
Rodríguez-Trejo A, Ortiz-López MG, Zambrano E, Granados-Silvestre MDLÁ, Méndez C, Blondeau B, Bréant B, Nathanielsz PW, Menjivar M. Developmental programming of neonatal pancreatic β-cells by a maternal low-protein diet in rats involves a switch from proliferation to differentiation. Am J Physiol Endocrinol Metab 2012; 302:E1431-9. [PMID: 22436693 PMCID: PMC3378070 DOI: 10.1152/ajpendo.00619.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Maternal low-protein diets (LP) impair pancreatic β-cell development, resulting in later-life failure and susceptibility to type 2 diabetes (T2D). We hypothesized that intrauterine and/or postnatal developmental programming seen in this situation involve altered β-cell structure and relative time course of expression of genes critical to β-cell differentiation and growth. Pregnant Wistar rats were fed either control (C) 20% or restricted (R) 6% protein diets during pregnancy (1st letter) and/or lactation (2nd letter) in four groups: CC, RR, RC, and CR. At postnatal days 7 and 21, we measured male offspring β-cell fraction, mass, proliferation, aggregate number, and size as well as mRNA level for 13 key genes regulating β-cell development and function in isolated islets. Compared with CC, pre- and postnatal LP (RR) decreased β-cell fraction, mass, proliferation, aggregate size, and number and increased Hnf1a, Hnf4a, Pdx1, Isl1, Rfx6, and Slc2a2 mRNA levels. LP only in pregnancy (RC) also decreased β-cell fraction, mass, proliferation, aggregate size, and number and increased Hnf1a, Hnf4a, Pdx1, Rfx6, and Ins mRNA levels. Postnatal LP offspring (CR) showed decreased β-cell mass but increased β-cell fraction, aggregate number, and Hnf1a, Hnf4a, Rfx6, and Slc2a2 mRNA levels. We conclude that LP in pregnancy sets the trajectory of postnatal β-cell growth and differentiation, whereas LP in lactation has smaller effects. We propose that LP promotes differentiation through upregulation of transcription factors that stimulate differentiation at the expense of proliferation. This results in a decreased β-cell reserve, which can contribute to later-life predisposition to T2D.
Collapse
Affiliation(s)
- Adriana Rodríguez-Trejo
- Universidad Nacional Autónoma de México. Av. Universidad 3000, Facultad de Química, Mexico City, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maternal protein restriction before pregnancy reduces offspring early body mass and affects glucose metabolism in C57BL/6JBom mice. J Dev Orig Health Dis 2012; 3:364-74. [DOI: 10.1017/s2040174412000347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dietary protein restriction in pregnant females reduces offspring birth weight and increases the risk of developing obesity, type 2 diabetes and cardiovascular disease. Despite these grave consequences, few studies have addressed the effects of preconceptional maternal malnutrition. Here we investigate how a preconceptional low-protein (LP) diet affects offspring body mass and insulin-regulated glucose metabolism. Ten-week-old female mice (C57BL/6JBom) received either an LP or isocaloric control diet (8% and 22% crude protein, respectively) for 10 weeks before conception, but were thereafter fed standard laboratory chow (22.5% crude protein) during pregnancy, lactation and offspring growth. When the offspring were 10 weeks old, they were subjected to an intraperitoneal glucose tolerance test (GTT), and sacrificed after a 5-day recovery period to determine visceral organ mass. Body mass of LP male offspring was significantly lower at weaning compared with controls. A similar, nonsignificant, tendency was observed for LP female offspring. These differences in body mass disappeared within 1 week after weaning, a consequence of catch-up growth in LP offspring. GTTs of 10-week-old offspring revealed enhanced insulin sensitivity in LP offspring of both sexes. No differences were found in body mass, food intake or absolute size of visceral organs of adult offspring. Our results indicate that maternal protein restriction imposed before pregnancy produces effects similar to postconceptional malnutrition, namely, low birth weight, catch-up growth and enhanced insulin sensitivity at young adulthood. This could imply an increased risk of offspring developing lifestyle-acquired diseases during adulthood.
Collapse
|
43
|
G.E. J, Pratap S, Ramesh A, Hood D. In utero exposure to benzo(a)pyrene predisposes offspring to cardiovascular dysfunction in later-life. Toxicology 2012; 295:56-67. [PMID: 22374506 PMCID: PMC3575114 DOI: 10.1016/j.tox.2012.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 02/07/2023]
Abstract
In utero exposure of the fetus to benzo(a)pyrene [B(a)P], a polycyclic aromatic hydrocarbon, is thought to dysregulate cardiovascular development. To investigate the effects of in utero B(a)P exposure on cardiovascular development, timed-pregnant Long Evans Hooded (LEH) rats were exposed to diluent or B(a)P (150, 300, 600 and 1200 μg/kg/BW) by oral gavage on embryonic (E) days E14 (the metamorphosing embryo stage) through E17 (the 1st fetal stage). There were no significant effects of in utero exposure to B(a)P on the number of pups born per litter or in pre-weaning growth curves. Pre-weaning profiles for B(a)P metabolite generation from cardiovascular tissue were shown to be dose-dependent and elimination of these metabolites was shown to be time-dependent in exposed offspring. Systolic blood pressure on postnatal day P53 in the middle and high exposure groups of offspring were significantly elevated as compared to controls. Microarray and quantitative real-time PCR results were directly relevant to a biological process pathway in animal models for "regulation of blood pressure". Microarray and quantitative real-time PCR analysis revealed upregulation of mRNA expression for angiotensin (AngII), angiotensinogen (AGT) and endothelial nitric oxide synthase (eNOS) in exposed offspring. Biological network analysis and gene set enrichment analysis subsequently identified potential signaling mechanisms and molecular pathways that might explain the elevated systolic blood pressures observed in B(a)P-exposed offspring. Our findings suggest that in utero exposure to B(a)P predispose offspring to functional deficits in cardiovascular development that may contribute to cardiovascular dysfunction in later life.
Collapse
Affiliation(s)
- Jules G.E.
- Department of Neuroscience and Pharmacology, Environmental-Health Disparities and Medicine, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| | - S. Pratap
- Department of Microbiology & Immunology, Microarray/Bioinformatics Core, Meharry Medical College, Nashville, TN 37208, USA
| | - A. Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - D.B. Hood
- Department of Neuroscience and Pharmacology, Environmental-Health Disparities and Medicine, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
44
|
Qasem RJ, Yablonski E, Li J, Tang HM, Pontiggia L, D'mello AP. Elucidation of thrifty features in adult rats exposed to protein restriction during gestation and lactation. Physiol Behav 2011; 105:1182-93. [PMID: 22210394 DOI: 10.1016/j.physbeh.2011.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/08/2011] [Accepted: 12/13/2011] [Indexed: 02/08/2023]
Abstract
Since the introduction of the thrifty phenotype hypothesis, the potential traits of thrift have been described in increasingly broad terms but biochemical and behavioral evidence of thrift has not been well demonstrated. The objective of our studies was to use a rodent model to identify features of thrift programmed by early life protein restriction. Robust programming of thrifty features requires a thrifty nutritional environment during the entire window of developmental plasticity. Therefore, pregnant rats were exposed to a low protein diet throughout the window of developmental plasticity spanning the period of gestation and lactation and its effects on energy acquisition, storage and expenditure in the adult offspring were examined. Maternal protein restriction reduced birth weight and produced long term reductions in body and organ weights in the offspring. Low protein offspring demonstrated an increased drive to seek food as evidenced by hyperphagia that was mediated by changes in plasma leptin and ghrelin levels. Hyperphagia was accompanied by increased efficiency in converting caloric intake into body mass. The higher feed efficiency was mediated by greater insulin sensitivity. Energy expenditure of low protein offspring in locomotion was not affected either in the light or dark phase. However, low protein offspring exhibited higher resting and basal metabolic rates as evidenced by higher core body temperature in the fed and fasted states. The increased thermogenesis was not mediated by thyroid hormones but by an increased sympathetic nervous system drive as reflected by a lower areal bone mineral density and bone mineral content and lower plasma adiponectin and triglyceride levels. Elevated thermogenesis in the low protein offspring possibly offsets the effects of hyperphagia, minimizes their chances of weight gain, and improves survivability. This constellation of metabolic features in the low protein offspring will maximize survival potential in a post natal environment of nutritional scarcity and constitute a thrifty phenotype.
Collapse
Affiliation(s)
- Rani J Qasem
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
45
|
Remacle C, Bieswal F, Bol V, Reusens B. Developmental programming of adult obesity and cardiovascular disease in rodents by maternal nutrition imbalance. Am J Clin Nutr 2011; 94:1846S-1852S. [PMID: 21543546 DOI: 10.3945/ajcn.110.001651] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies on fetal undernutrition have generated the hypothesis that fetal programming corresponds to an attempt of the fetus to adapt to adverse conditions encountered in utero. These adaptations would be beneficial if these conditions prevail later in life, but they become detrimental in the case of normal or plentiful nutrition and favor the appearance of the metabolic syndrome. In this article, the discussion is limited to the developmental programming of obesity and cardiovascular disorders caused by an early mismatched nutrition, particularly intrauterine growth retardation followed by postnatal catch-up growth. Selected data in humans are reviewed before evoking some mechanisms revealed or suggested by experiments in rodents. A variety of physiologic mechanisms are implicated in obesity programming, 2 of which are detailed. In some, but not all observations, hyperphagia resulting namely from perturbed development of the hypothalamic circuitry devoted to appetite regulation may contribute to obesity. Another contribution may be the developmental changes in the population of fat cell precursors in adipose tissue. Even if the link between obesity and cardiovascular disease is well established, alteration of blood pressure regulation may appear independently of obesity. A loss of diurnal variation in heart rate and blood pressure in adulthood has resulted from maternal undernutrition followed by postnatal overnutrition. Further research should clarify the effect of mismatched early nutrition on the development of brain centers regulating energy intake, energy expenditure, and circadian rhythms.
Collapse
Affiliation(s)
- Claude Remacle
- Université Catholique de Louvain, Life Sciences Institute, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
46
|
Balasa A, Sanchez-Valle A, Sadikovic B, Sangi-Haghpeykar H, Bravo J, Chen L, Liu W, Wen S, Fiorotto ML, Van den Veyver IB. Chronic maternal protein deprivation in mice is associated with overexpression of the cohesin-mediator complex in liver of their offspring. J Nutr 2011; 141:2106-12. [PMID: 22013202 PMCID: PMC3223869 DOI: 10.3945/jn.111.146597] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/06/2011] [Accepted: 09/05/2011] [Indexed: 12/31/2022] Open
Abstract
Epigenetic mechanisms may play an important role in the developmental programming of adult-onset chronic metabolic diseases resulting from suboptimal fetal nutrition, but the exact molecular mechanisms are incompletely understood. Given the central role of the liver in metabolic regulation, we investigated whether chronic maternal dietary protein restriction has long-term effects on liver gene expression in the offspring. We fed adult C57BL/6J dams ad libitum an 8% maternal low-protein (MLP) or 20% protein control diet (C) from 4 wk prior to mating until the end of lactation. Male pups were weaned to standard nonpurified diet and singly housed at 21 d of age (d 21). Body weights were followed to 1 y of age (1 y). At d 21 and 1 y, organs were quantitatively dissected and analyzed. MLP offspring had significantly lower body weights at all ages and significantly lower serum activity of alanine aminotransferase and lactate dehydrogenase at 1 y. Gene expression profiling of liver at 1 y showed 521 overexpressed and 236 underexpressed genes in MLP compared to C offspring. The most important novel finding was the overexpression of genes found in liver that participate in organization and maintenance of higher order chromatin architecture and regulation of transcriptional activation. These included members of the cohesin-mediator complex, which regulate gene expression by forming DNA loops between promoters and enhancers in a cell type-specific fashion. Thus, our findings of increased expression of these factors in liver of MLP offspring implicate a possible novel epigenetic mechanism in developmental programming.
Collapse
Affiliation(s)
- Alfred Balasa
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, and
| | | | | | | | | | - Liang Chen
- Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | | | - Shu Wen
- Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Marta L. Fiorotto
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, and
| | - Ignatia B. Van den Veyver
- Department of Molecular and Human Genetics
- Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
47
|
Souza DDFI, Ignácio-Souza LM, Reis SRDL, Reis MADB, Stoppiglia LF, Carneiro EM, Boschero AC, Arantes VC, Latorraca MQ. A low-protein diet during pregnancy alters glucose metabolism and insulin secretion. Cell Biochem Funct 2011; 30:114-21. [PMID: 22034157 DOI: 10.1002/cbf.1824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 09/15/2011] [Accepted: 09/27/2011] [Indexed: 11/06/2022]
Abstract
In pancreatic islets, glucose metabolism is a key process for insulin secretion, and pregnancy requires an increase in insulin secretion to compensate for the typical insulin resistance at the end of this period. Because a low-protein diet decreases insulin secretion, this type of diet could impair glucose homeostasis, leading to gestational diabetes. In pancreatic islets, we investigated GLUT2, glucokinase and hexokinase expression patterns as well as glucose uptake, utilization and oxidation rates. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. The insulin secretion in 2.8 mmol l(-1) of glucose was higher in islets from LPP rats than that in islets from CP, CNP and LPNP rats. Maximal insulin release was obtained at 8.3 and 16.7 mmol l(-1) of glucose in LPP and CP groups, respectively. The glucose dose-response curve from LPNP group was shifted to the right in relation to the CNP group. In the CP group, the concentration-response curve to glucose was shifted to the left compared with the CNP group. The LPP groups exhibited an "inverted U-shape" dose-response curve. The alterations in the GLUT2, glucokinase and hexokinase expression patterns neither impaired glucose metabolism nor correlated with glucose islet sensitivity, suggesting that β-cell sensitivity to glucose requires secondary events other than the observed metabolic/molecular events.
Collapse
|
48
|
Lim K, Armitage JA, Stefanidis A, Oldfield BJ, Black MJ. IUGR in the absence of postnatal "catch-up" growth leads to improved whole body insulin sensitivity in rat offspring. Pediatr Res 2011; 70:339-44. [PMID: 21885936 DOI: 10.1203/pdr.0b013e31822a65a3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A suboptimal in utero environment leads to fetal adaptations to ensure short-term survival but in the long-term may lead to disease when the postnatal growth does not reflect that in utero. This study examined the effect of IUGR on whole body insulin sensitivity and metabolic activity in adult rats. Female Wistar-Kyoto rats were fed either a normal protein diet (NPD 20% casein) or a low protein diet (LPD; 8.7% casein) during pregnancy and 2 wk of lactation. In offspring at 32 wk of age, indirect calorimetry and dual energy x-ray absorptiometry (DEXA) were performed to assess metabolic activity and body composition. Insulin sensitivity was assessed using a euglycemic-hyperinsulinemic clamp. At 3 d of age, male and female LPD offspring were 23 and 27% smaller than controls, respectively. They remained significantly smaller throughout the experimental period (∼10% smaller at 32 wk). Importantly, there was increased insulin sensitivity in LPD offspring (47% increase in males and 38% increase in females); pancreatic insulin content was normal. Body composition, O2 consumption, respiratory exchange ratio (RER), and locomotor activity were not different to controls. These findings suggest that in the absence of "catch-up" growth IUGR programs for improved insulin sensitivity.
Collapse
Affiliation(s)
- Kyungjoon Lim
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
49
|
Miñana-Solis MDC, Escobar C. Early and post-weaning malnutrition impairs alpha-MSH expression in the hypothalamus: a possible link to long-term overweight. Nutr Neurosci 2011; 14:72-9. [PMID: 21605503 DOI: 10.1179/1476830511y.0000000003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study explored the effects of early and post-weaning malnutrition and nutritional rehabilitation on orexigenic (orexin (ORX) and neuropeptide Y (NPY)) and anorexigenic peptides (alpha-melanocyte stimulating hormone (alpha-MSH)) expressed in hypothalamic nuclei. Male Wistar rats were malnourished during gestation-lactation (MGL) or from weaning to post-natal day 55 (MPW; P55). Two groups of rats were rehabilitated with a balanced diet until P90 (MGL-R and MPW-R, respectively). After a glucose tolerance test (GTT) brains were processed for immunohistochemistry. Malnourished groups were hyperglycemic after GTT. ORX expression did not display any difference. Only MGL rats showed increased NPY immunoreactivity in ARC and PVN nuclei, and both malnourished groups showed low alpha-MSH expression in the PVN and DMH, as compared with their controls. After nutritional rehabilitation rats showed normal GTT, increased rate of body and adipose tissue weights and high proportion of food ingestion. Both rehabilitated groups maintained low alpha-MSH expression in the PVN, indicating a deleterious long-lasting effect.
Collapse
|
50
|
Pilgaard K, Hammershaimb Mosbech T, Grunnet L, Eiberg H, Van Hall G, Fallentin E, Larsen T, Larsen R, Poulsen P, Vaag A. Differential nongenetic impact of birth weight versus third-trimester growth velocity on glucose metabolism and magnetic resonance imaging abdominal obesity in young healthy twins. J Clin Endocrinol Metab 2011; 96:2835-43. [PMID: 21733994 DOI: 10.1210/jc.2011-0577] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Low birth weight is associated with type 2 diabetes, which to some extent may be mediated via abdominal adiposity and insulin resistance. Fetal growth velocity is high during the third trimester, constituting a potential critical window for organ programming. Intra-pair differences among monozygotic twins are instrumental in determining nongenetic associations between early environment and adult metabolic phenotype. OBJECTIVE Our objective was to investigate the relationship between size at birth and third-trimester growth velocity on adult body composition and glucose metabolism using intra-pair differences in young healthy twins. METHODS Fifty-eight healthy twins (42 monozygotic/16 dizygotic) aged 18-24 yr participated. Insulin sensitivity was assessed using hyperinsulinemic-euglycemic clamps. Whole-body fat was assessed by dual-energy x-ray absorptiometry scan, whereas abdominal visceral and sc fat (L1-L4) were assessed by magnetic resonance imaging. Third-trimester growth velocity was determined by repeated ultrasound examinations. RESULTS Size at birth was nongenetically inversely associated with adult visceral and sc fat accumulation but unrelated to adult insulin action. In contrast, fetal growth velocity during third trimester was not associated with adult visceral or sc fat accumulation. Interestingly, third-trimester growth was associated with insulin action in a paradoxical inverse manner. CONCLUSIONS Abdominal adiposity including accumulation of both sc and visceral fat may constitute primary nongenetic factors associated with low birth weight and reduced fetal growth before the third trimester. Reduced fetal growth during vs. before the third trimester may define distinct adult trajectories of metabolic and anthropometric characteristics influencing risk of developing type 2 diabetes.
Collapse
|