1
|
de Arruda CM, Doneda DL, de Oliveira VV, da Silva RAL, de Matos YAV, Fernandes IL, Rohden CAH, Viola GG, Rios-Santos F, de Lima E, da Silva Buss Z, Vandresen-Filho S. Involvement of kynurenine pathway and N-methyl-d-aspartate receptors in the antidepressant-like effect of vilazodone in the tail suspension test in mice. Pharmacol Biochem Behav 2022; 218:173433. [PMID: 35901966 DOI: 10.1016/j.pbb.2022.173433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
The present study evaluated the antidepressant-like effects of vilazodone using the tail suspension test in mice. We also investigated the contribution of kynurenine pathway and N-methyl-d-aspartate receptors to this effect. For this purpose, we pretreated animals with sub-effective doses of L-kynurenine, 3-hydroxykynurenine, or quinolinic acid. We then assessed the immobility time, an indicative measure of depressive-like behavior, in the tail suspension test. We also evaluated the possible effects of sub-effective doses of vilazodone combined with sub-effective doses of ketamine (N-methyl-d-aspartate receptor antagonist) in a separate group. Vilazodone (3mg/kg, intraperitoneal) significantly reduced immobility time in the tail suspension test. L-kynurenine (1.7 mg/kg, intraperitoneal), 3-hydroxykynurenine (10 mg/kg, intraperitoneal), and quinolinic acid (3 nmol/site, intracerebroventricular) significantly increased the immobility time in the tail suspension test. The antidepressant-like effects of vilazodone (3mg/kg, intraperitoneal) were inhibited by pre-treatment with non-effective doses of L-kynurenine (0.83 mg/kg, intraperitoneal), 3-hydroxykynurenine (3.33 mg/kg, intraperitoneal), or quinolinic acid (1 nmol/site, intracerebroventricular). Pretreatment of mice with sub-effective doses of ketamine (1 mg/kg, intraperitoneal) optimized the action of a sub-effective dose of vilazodone (0.3mg/kg, intraperitoneal) and reduced the immobility time in the tail suspension test. None of the drugs used in this study induced any changes in locomotor activity in the open field test. The results showed that vilazodone induced an antidepressant-like effect in the tail suspension test, which may be mediated through an interaction with the kynurenine pathway and N-methyl-d-aspartate receptors.
Collapse
Affiliation(s)
- Cristina Maria de Arruda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Diego Luiz Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Vinícius Vezzi de Oliveira
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Rozielly Aparecida Lemes da Silva
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Yohan Alves Victor de Matos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Isadora Luiza Fernandes
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Christopher Alecsander Herane Rohden
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Giordano Gubert Viola
- Grupo de Pesquisa em Biodiversidade, Meio Ambiente e Educação, Instituto Federal de Educação, Ciência e Tecnologia do Ceará-Campus Acopiara, Vila Martins, 63560000 Acopiara, Ceará, Brazil
| | - Fabrício Rios-Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Eliângela de Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil
| | - Ziliani da Silva Buss
- Laboratório de Pesquisa em Imunologia, Departamento de Análises Clínicas, Curso de Farmácia, Universidade Federal de Santa Catarina, Campus Trindade, 88040900, Florianópolis, SC, Brasil
| | - Samuel Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900 Cuiabá, MT, Brazil.
| |
Collapse
|
2
|
Steinbusch HWM, Dolatkhah MA, Hopkins DA. Anatomical and neurochemical organization of the serotonergic system in the mammalian brain and in particular the involvement of the dorsal raphe nucleus in relation to neurological diseases. PROGRESS IN BRAIN RESEARCH 2021; 261:41-81. [PMID: 33785137 DOI: 10.1016/bs.pbr.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The brainstem is a neglected brain area in neurodegenerative diseases, including Alzheimer's and Parkinson's disease, frontotemporal lobar degeneration and autonomic dysfunction. In Depression, several observations have been made in relation to changes in one particular the Dorsal Raphe Nucleus (DRN) which also points toward as key area in various age-related and neurodevelopmental diseases. The DRN is further thought to be related to stress regulated processes and cognitive events. It is involved in neurodegeneration, e.g., amyloid plaques, neurofibrillary tangles, and impaired synaptic transmission in Alzheimer's disease as shown in our autopsy findings. The DRN is a phylogenetically old brain area, with projections that reach out to a large number of regions and nuclei of the central nervous system, particularly in the forebrain. These ascending projections contain multiple neurotransmitters. One of the main reasons for the past and current interest in the DRN is its involvement in depression, and its main transmitter serotonin. The DRN also points toward the increased importance and focus of the brainstem as key area in various age-related and neurodevelopmental diseases. This review describes the morphology, ascending projections and the complex neurotransmitter nature of the DRN, stressing its role as a key research target into the neural bases of depression.
Collapse
Affiliation(s)
- Harry W M Steinbusch
- Department of Cellular Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology-DGIST, Daegu, South Korea.
| | | | - David A Hopkins
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
3
|
Dabrowski W, Siwicka-Gieroba D, Gasinska-Blotniak M, Zaid S, Jezierska M, Pakulski C, Williams Roberson S, Wesley Ely E, Kotfis K. Pathomechanisms of Non-Traumatic Acute Brain Injury in Critically Ill Patients. ACTA ACUST UNITED AC 2020; 56:medicina56090469. [PMID: 32933176 PMCID: PMC7560040 DOI: 10.3390/medicina56090469] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/27/2022]
Abstract
Delirium, an acute alteration in mental status characterized by confusion, inattention and a fluctuating level of arousal, is a common problem in critically ill patients. Delirium prolongs hospital stay and is associated with higher mortality. The pathophysiology of delirium has not been fully elucidated. Neuroinflammation and neurotransmitter imbalance seem to be the most important factors for delirium development. In this review, we present the most important pathomechanisms of delirium in critically ill patients, such as neuroinflammation, neurotransmitter imbalance, hypoxia and hyperoxia, tryptophan pathway disorders, and gut microbiota imbalance. A thorough understanding of delirium pathomechanisms is essential for effective prevention and treatment of this underestimated pathology in critically ill patients.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
- Correspondence: or (W.D.); (K.K.)
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Malgorzata Gasinska-Blotniak
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Sami Zaid
- Department of Anaesthesia, Al-Emadi-Hospital Doha, P.O. Box 5804 Doha, Qatar;
| | - Maja Jezierska
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland; (D.S.-G.); (M.G.-B.); (M.J.)
| | - Cezary Pakulski
- Department of Anaesthesiology, Intensive Therapy and Emergency Medicine, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland;
| | - Shawniqua Williams Roberson
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA; (S.W.R.); (E.W.E.)
- Department of Neurology, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA
- Department of Biomedical Engineering, Vanderbilt University, 1211, Nashville, TN 37232, USA
| | - Eugene Wesley Ely
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA; (S.W.R.); (E.W.E.)
- Geriatric Research, Education and Clinical Center (GRECC), Tennessee Valley Veterans Affairs Healthcare System, 1310, Nashville, TN 37212, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, 1211, Nashville, TN 37232, USA
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: or (W.D.); (K.K.)
| |
Collapse
|
4
|
Garrison AM, Parrott JM, Tuñon A, Delgado J, Redus L, O'Connor JC. Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation. Psychoneuroendocrinology 2018; 94:1-10. [PMID: 29734055 PMCID: PMC5995655 DOI: 10.1016/j.psyneuen.2018.04.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/12/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 h, mRNA expression of interleukin(IL)-1β, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3-dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 h post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO-/- mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect of KMO inhibition on microglia during immune challenge and suggest that KP metabolic balance may play a direct role in regulating microglia activity.
Collapse
Affiliation(s)
- Allison M. Garrison
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
| | - Jennifer M. Parrott
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
| | - Arnulfo Tuñon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
| | - Jennifer Delgado
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
| | - Laney Redus
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio
| | - Jason C. O'Connor
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio,The Center for Biomedical Neuroscience, School of Medicine, The University of Texas Health Science Center at San Antonio,Audie L. Murphy VA Hospital, South Texas Veterans Health System, San Antonio, Texas
| |
Collapse
|
5
|
Vrolijk MF, Opperhuizen A, Jansen EH, Hageman GJ, Bast A, Haenen GR. The vitamin B6 paradox: Supplementation with high concentrations of pyridoxine leads to decreased vitamin B6 function. Toxicol In Vitro 2017; 44:206-212. [DOI: 10.1016/j.tiv.2017.07.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/26/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022]
|
6
|
Mangas A, Yajeya J, González N, Ruiz I, Geffard M, Coveñas R. 3-hydroxi-anthranilic acid is early expressed in stroke. Eur J Histochem 2016; 60:2709. [PMID: 28076933 PMCID: PMC5159783 DOI: 10.4081/ejh.2016.2709] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/22/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022] Open
Abstract
Using an immunohistochemical technique, we have studied the distribution of 3-OH-anthranilic acid (3-HAA) in the rat brain. Our study was carried out in control animals and in rats in which a stroke model (single transient middle cerebral artery occlusion) was performed. A monoclonal antibody directed against 3-HAA was also developed. 3-HAA was exclusively observed in the infarcted regions (ipsilateral striatum/cerebral cortex), 2, 5 and 21 days after the induction of stroke. In control rats and in the contralateral side of the stroke animals, no immunoreactivity for 3-HAA was visualized. Under pathological conditions (from early phases of stroke), we reported for the first time the presence of 3-HAA in the mammalian brain. By double immunohistochemistry, the coexistence of 3-HAA and GFAP was observed in astrocytes. The distribution of 3-HAA matched perfectly with the infarcted regions. Our findings suggest that, in stroke, 3-HAA could be involved in the tissue damage observed in the infarcted regions, since it is well known that 3-HAA exerts cytotoxic effects.
Collapse
Affiliation(s)
- A Mangas
- Gemacbio - Institute for the Development of Research in Human Pathology and Therapeutic (IDRPHT) - University of Salamanca.
| | | | | | | | | | | |
Collapse
|
7
|
Favennec M, Hennart B, Caiazzo R, Leloire A, Yengo L, Verbanck M, Arredouani A, Marre M, Pigeyre M, Bessede A, Guillemin GJ, Chinetti G, Staels B, Pattou F, Balkau B, Allorge D, Froguel P, Poulain-Godefroy O. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity (Silver Spring) 2015; 23:2066-74. [PMID: 26347385 DOI: 10.1002/oby.21199] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study characterized the kynurenine pathway (KP) in human obesity by evaluating circulating levels of kynurenines and the expression of KP enzymes in adipose tissue. METHODS Tryptophan and KP metabolite levels were measured in serum of individuals from the D.E.S.I.R. cohort (case-cohort study: 212 diabetic, 836 randomly sampled) and in women with obesity, diabetic or normoglycemic, from the ABOS cohort (n = 100). KP enzyme gene expressions were analyzed in omental and subcutaneous adipose tissue of women from the ABOS cohort, in human primary adipocytes and in monocyte-derived macrophages. RESULTS In the D.E.S.I.R. cohort, kynurenine levels were positively associated with body mass index (BMI) (P = 4.68 × 10(-19) ) and with a higher HOMA2-IR insulin resistance index (P = 6.23 × 10(-4) ). The levels of kynurenine, kynurenic acid, and quinolinic acid were associated with higher BMI (P < 0.05). The expression of several KP enzyme genes (indoleamine 2,3-dioxygenase 1 [IDO1], kynureninase [KYNU], kynurenine 3-monooxygenase [KMO], and kynurenine aminotransferase III [CCBL2]) was increased in the omental adipose tissue of women with obesity compared to lean (P < 0.05), and their expression was induced by proinflammatory cytokines in human primary adipocytes (P < 0.05), except for KMO that is not expressed in these cells. The expressions of IDO1, KYNU, KMO, and CCBL2 were higher in proinflammatory than in anti-inflammatory macrophages (P < 0.05). CONCLUSIONS In the context of obesity, the presence of macrophages in adipose tissue may contribute to diverting KP toward KMO activation.
Collapse
Affiliation(s)
- Marie Favennec
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
| | - Benjamin Hennart
- University of Lille, Lille, France
- CHRU De Lille, Lille, France
- EA4483, Lille, France
| | - Robert Caiazzo
- University of Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
- INSERM UMR 1190, Lille, France
| | - Audrey Leloire
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Loïc Yengo
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | - Marie Verbanck
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| | | | | | - Marie Pigeyre
- University of Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
- INSERM UMR 1190, Lille, France
| | | | - Gilles J Guillemin
- Neuroinflammation Group, Macquarie University, Sydney, New South Wales, Australia
| | - Giulia Chinetti
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- INSERM UMR 1011, Lille, France
| | - Bart Staels
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- INSERM UMR 1011, Lille, France
| | - François Pattou
- University of Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
- INSERM UMR 1190, Lille, France
| | | | - Delphine Allorge
- University of Lille, Lille, France
- CHRU De Lille, Lille, France
- EA4483, Lille, France
| | - Philippe Froguel
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
- CHRU De Lille, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
| | - Odile Poulain-Godefroy
- CNRS UMR 8199, Lille, France
- University of Lille, Lille, France
- Institut Pasteur De Lille, Lille, France
- European Genomic Institute for Diabetes (EGID), Lille, France
| |
Collapse
|
8
|
Abstract
UNLABELLED It is generally acknowledged that human broadly neutralizing antibodies (bNAbs) capable of neutralizing multiple HIV-1 clades are often polyreactive or autoreactive. Whereas polyreactivity or autoreactivity has been proposed to be crucial for neutralization breadth, no systematic, quantitative study of self-reactivity among nonneutralizing HIV-1 Abs (nNAbs) has been performed to determine whether poly- or autoreactivity in bNAbs is a consequence of chronic antigen (Ag) exposure and/or inflammation or a fundamental property of neutralization. Here, we use protein microarrays to assess binding to >9,400 human proteins and find that as a class, bNAbs are significantly more poly- and autoreactive than nNAbs. The poly- and autoreactive property is therefore not due to the infection milieu but rather is associated with neutralization. Our observations are consistent with a role of heteroligation for HIV-1 neutralization and/or structural mimicry of host Ags by conserved HIV-1 neutralization sites. Although bNAbs are more mutated than nNAbs as a group, V(D)J mutation per se does not correlate with poly- and autoreactivity. Infrequent poly- or autoreactivity among nNAbs implies that their dominance in humoral responses is due to the absence of negative control by immune regulation. Interestingly, four of nine bNAbs specific for the HIV-1 CD4 binding site (CD4bs) (VRC01, VRC02, CH106, and CH103) bind human ubiquitin ligase E3A (UBE3A), and UBE3A protein competitively inhibits gp120 binding to the VRC01 bNAb. Among these four bNAbs, avidity for UBE3A was correlated with neutralization breadth. Identification of UBE3A as a self-antigen recognized by CD4bs bNAbs offers a mechanism for the rarity of this bNAb class. IMPORTANCE Eliciting bNAbs is key for HIV-1 vaccines; most Abs elicited by HIV-1 infection or immunization, however, are strain specific or nonneutralizing, and unsuited for protection. Here, we compare the specificities of bNAbs and nNAbs to demonstrate that bNAbs are significantly more poly- and autoreactive than nNAbs. The strong association of poly- and autoreactivity with bNAbs, but not nNAbs from infected patients, indicates that the infection milieu, chronic inflammation and Ag exposure, CD4 T-cell depletion, etc., alone does not cause poly- and autoreactivity. Instead, these properties are fundamentally linked to neutralization breadth, either by the requirement for heteroligation or the consequence of host mimicry by HIV-1. Indeed, we show that human UBE3A shares an epitope(s) with HIV-1 envelope recognized by four CD4bs bNAbs. The poly- and autoreactivity of bNAbs surely contribute to the rarity of membrane-proximal external region (MPER) and CD4bs bNAbs and identify a roadblock that must be overcome to induce protective vaccines.
Collapse
|
9
|
Endonuclease G mediates α-synuclein cytotoxicity during Parkinson's disease. EMBO J 2013; 32:3041-54. [PMID: 24129513 PMCID: PMC3844953 DOI: 10.1038/emboj.2013.228] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/10/2013] [Indexed: 12/15/2022] Open
Abstract
Malfunctioning of the protein α-synuclein is critically involved in the demise of dopaminergic neurons relevant to Parkinson's disease. Nonetheless, the precise mechanisms explaining this pathogenic neuronal cell death remain elusive. Endonuclease G (EndoG) is a mitochondrially localized nuclease that triggers DNA degradation and cell death upon translocation from mitochondria to the nucleus. Here, we show that EndoG displays cytotoxic nuclear localization in dopaminergic neurons of human Parkinson-diseased patients, while EndoG depletion largely reduces α-synuclein-induced cell death in human neuroblastoma cells. Xenogenic expression of human α-synuclein in yeast cells triggers mitochondria-nuclear translocation of EndoG and EndoG-mediated DNA degradation through a mechanism that requires a functional kynurenine pathway and the permeability transition pore. In nematodes and flies, EndoG is essential for the α-synuclein-driven degeneration of dopaminergic neurons. Moreover, the locomotion and survival of α-synuclein-expressing flies is compromised, but reinstalled by parallel depletion of EndoG. In sum, we unravel a phylogenetically conserved pathway that involves EndoG as a critical downstream executor of α-synuclein cytotoxicity.
Collapse
|
10
|
Weisskopf MG, Moisan F, Tzourio C, Rathouz PJ, Elbaz A. Pesticide exposure and depression among agricultural workers in France. Am J Epidemiol 2013; 178:1051-8. [PMID: 23851580 DOI: 10.1093/aje/kwt089] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pesticides are ubiquitous neurotoxicants, and several lines of evidence suggest that exposure may be associated with depression. Epidemiologic evidence has focused largely on organophosphate exposures, while research on other pesticides is limited. We collected detailed pesticide use history from farmers recruited in 1998-2000 in France. Among 567 farmers aged 37-78 years, 83 (14.6%) self-reported treatment or hospitalization for depression. On the basis of the reported age at the first such instance, we used adjusted Cox proportional hazards models to estimate hazard ratios and 95% confidence intervals for depression (first treatment or hospitalization) by exposure to different pesticides. The hazard ratio for depression among those who used herbicides was 1.93 (95% confidence interval (CI): 0.95, 3.91); there was no association with insecticides or fungicides. Compared with nonusers, those who used herbicides for <19 years and ≥19 years (median for all herbicide users, 19 years) had hazard ratios of 1.51 (95% CI: 0.62, 3.67) and 2.31 (95% CI: 1.05, 5.10), respectively. Similar results were found for total hours of use. Results were stronger when adjusted for insecticides and fungicides. There is widespread use of herbicides by the general public, although likely at lower levels than in agriculture. Thus, determining whether similar associations are seen at lower levels of exposure should be explored.
Collapse
|
11
|
Sheipouri D, Braidy N, Guillemin GJ. Kynurenine Pathway in Skin Cells: Implications for UV-Induced Skin Damage. Int J Tryptophan Res 2012; 5:15-25. [PMID: 22837645 PMCID: PMC3399400 DOI: 10.4137/ijtr.s9835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The kynurenine pathway (KP) is the principle route of catabolism of the essential amino acid tryptophan, leading to the production of several neuroactive and immunoregulatory metabolites. Alterations in the KP have been implicated in various neuropsychiatric and neurodegenerative diseases, immunological disorders, and many other diseased states. Although the role of the KP in the skin has been evaluated in small niche fields, limited studies are available regarding the effect of acute ultra violet exposure and the induction of the KP in human skin-derived fibroblasts and keratinocytes. Since UV exposure can illicit an inflammatory component in skin cells, it is highly likely that the KP may be induced in these cells in response to UV exposure. It is also possible that some KP metabolites may act as pro-inflammatory and anti-inflammatory mediators, since the KP is important in immunomodulation.
Collapse
Affiliation(s)
- Diba Sheipouri
- University of New South Wales, School of Medical Sciences, Dept of Pharmacology, Sydney, Australia
| | | | | |
Collapse
|
12
|
Wszelaki N, Melzig MF. Low level of glutathione can intensify the toxic effect of salsolinol in SH-SY5Y neuroblastoma cell line. Neurotoxicology 2012; 33:424-8. [PMID: 22525935 DOI: 10.1016/j.neuro.2012.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 03/22/2012] [Accepted: 04/10/2012] [Indexed: 02/03/2023]
Abstract
There is increasing evidence that endogenously produced toxins may be involved in the development of a number of neurodegenerative diseases such as Alzheimer's, Parkinson's or Huntington's disease and that the mechanisms leading to cell loss are a combination of oxidative stress, mitochondrial dysfunction and a decrease in antioxidant defenses. The purpose of this study was to investigate the effects of glutathione on 3-hydroxykynurenine, 6-hydroxydopamine and salsolinol mediated neurotoxicity in the human neuroblastoma SH-SY5Y cell line in order to find a possible therapeutic application of this compound to neurodegenerative disorders. In this study, we tested the protective effect of glutathione on SH-SY5Y cells against 3-hydroxykynurenine, 6-hydroxydopamine and salsolinol induced cytotoxicity and demonstrated that glutathione inhibits cell death and adenosine-5'triphosphate depletion caused by 3-hydroxykynurenine and 6-hydroxydopamine. However, unexpectedly salsolinol neurotoxicity toward SH-SY5Y cells was potentiated during treatment with concentrations of glutathione below 250 μM, whereas glutathione concentrations above 250 μM resulted in protection against salsolinol induced neuronal cell death. We also report that the incubation of salsolinol and low concentrations of glutathione led to increased apoptosis. Hence, salsolinol in the presence of low glutathione concentration may be involved in neurodegeneration. These data may provide new promising insights into the pathophysiology of neudegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- N Wszelaki
- Institut für Pharmazie/Pharmazeutische Biologie, Freie Universität Berlin, Königin-Luise-Str, 2+4 D-14195 Berlin, Germany
| | | |
Collapse
|
13
|
Krause D, Suh HS, Tarassishin L, Cui QL, Durafourt BA, Choi N, Bauman A, Cosenza-Nashat M, Antel JP, Zhao ML, Lee SC. The tryptophan metabolite 3-hydroxyanthranilic acid plays anti-inflammatory and neuroprotective roles during inflammation: role of hemeoxygenase-1. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1360-72. [PMID: 21855684 DOI: 10.1016/j.ajpath.2011.05.048] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/25/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022]
Abstract
Tryptophan metabolism by the kynurenine pathway (KP) is important to the pathogenesis of inflammatory, infectious, and degenerative diseases. The 3-hydroxykynurenine (3-HK) branch of the KP is activated in macrophages and microglia, leading to the generation of 3-HK, 3-hydroxyanthranilic acid (3-HAA), and quinolinic acid, which are considered neurotoxic owing to their free radical-generating and N-methyl-d-aspartic acid receptor agonist activities. We investigated the role of 3-HAA in inflammatory and antioxidant gene expression and neurotoxicity in primary human fetal central nervous system cultures treated with cytokines (IL-1 with or without interferon-γ) or with Toll-like receptor ligands mimicking the proinflammatory central nervous system environment. Results were analyzed by microarray, Western blot, immunostain, enzyme-linked immunosorbent assay, and neurotoxicity assays. 3-HAA suppressed glial cytokine and chemokine expression and reduced cytokine-induced neuronal death. 3-HK also suppressed cytokine-induced neuronal death. Unexpectedly, 3-HAA was highly effective in inducing in astrocytes the expression of hemeoxygenase-1 (HO-1), an antioxidant enzyme with anti-inflammatory and cytoprotective properties. Optimal induction of HO-1 required 3-HAA and cytokines. In human microglia, 3-HAA weakly induced HO-1 and lipopolysaccharide suppressed microglial HO-1 expression. 3-HAA-mediated HO-1 expression was confirmed in cultured adult human astrocytes and in vivo after 3-HAA injection to mouse brains. Together, our results demonstrate the novel neuroprotective activity of the tryptophan metabolite 3-HAA and have implications for future therapeutic approaches for neuroinflammatory disorders.
Collapse
Affiliation(s)
- Daniela Krause
- Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Waghmare MD, Wasewar KL, Sonawane SS, Shende DZ. Natural Nontoxic Solvents for Recovery of Picolinic Acid by Reactive Extraction. Ind Eng Chem Res 2011. [DOI: 10.1021/ie201228u] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mangesh D. Waghmare
- Department of Chemical Engineering, Priyadarshini Institute of Engineering and Technology, Nagpur, 440019, India
| | - Kailas L. Wasewar
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Shriram S. Sonawane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Diwakar Z. Shende
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| |
Collapse
|
15
|
Zinger A, Barcia C, Herrero MT, Guillemin GJ. The involvement of neuroinflammation and kynurenine pathway in Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:716859. [PMID: 21687761 PMCID: PMC3109408 DOI: 10.4061/2011/716859] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/31/2011] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterised by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Activated microglia themselves release a large number of inflammatory mediators thus perpetuating neuroinflammation and neurotoxicity. The Kynurenine pathway (KP), the main catabolic pathway for tryptophan, is one of the major regulators of the immune response and may also be implicated in the inflammatory response in parkinsonism. The KP generates several neuroactive compounds and therefore has either a neurotoxic or neuroprotective effect. Several of these molecules produced by microglia can activate the N-methyl-D-aspartate (NMDA) receptor-signalling pathway, leading to an excitotoxic response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that pharmacological modulation of the KP will represent a new therapeutic strategy for PD.
Collapse
Affiliation(s)
- Anna Zinger
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Carlos Barcia
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Maria Trinidad Herrero
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
16
|
Al-Hassan JM, Al-Awadi S, Oommen S, Alkhamis A, Afzal M. Tryptophan oxidative metabolism catalyzed by geobacillus stearothermophilus: a thermophile isolated from kuwait soil contaminated with petroleum hydrocarbons. Int J Tryptophan Res 2011; 4:1-6. [PMID: 22084599 PMCID: PMC3195220 DOI: 10.4137/ijtr.s6457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tryptophan metabolism has been extensively studied in humans as well as in soil. Its metabolism takes place mainly through kynurenine pathway yielding hydroxylated, deaminated and many other products of physiological significance. However, tryptophan metabolism has not been studied in an isolated thermophilic bacterium. Geobacillus stearothermophilus is a local thermophile isolated from Kuwait desert soil contaminated with petroleum hydrocarbons. The bacterium grows well at 65 °C in 0.05 M phosphate buffer (pH 7), when supplied with organic compounds as a carbon source and has a good potential for transformation of steroids and related molecules. In the present study, we used tryptophan ethyl ester as a carbon source for the bacterium to study the catabolism of the amino acid at pH 5 and pH 7. In this endeavor, we have resolved twenty one transformation products of tryptophan by GC/LC and have identified them through their mass spectral fragmentation.
Collapse
Affiliation(s)
- Jassim M Al-Hassan
- Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, 13060, Kuwait
| | | | | | | | | |
Collapse
|
17
|
Lögters TT, Laryea MD, Jäger M, Schädel-Höpfner M, Windolf J, Flohé S, Altrichter J, Scholz M, Paunel-Görgülü AN. Kynurenine inhibits chondrocyte proliferation and is increased in synovial fluid of patients with septic arthritis. J Orthop Res 2010; 28:1490-6. [PMID: 20872586 DOI: 10.1002/jor.21158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kynurenine, the major degradation product of tryptophan has been shown to directly damage various tissues. Its potential contribution to septic arthritis is unknown. In this study, we analyzed the putative diagnostic value of kynurenine for bacterial joint infection and its potential harmful effects on cartilage. In a prospective study 41 patients with a joint effusion who had undergone arthrocentesis were included. Tryptophan and kynurenine levels from synovial fluid were quantified by HPLC. Diagnostic value of kynurenine was evaluated and its effects on the proliferation of the chondrocyte cell line ATDC5 were determined. Synovial fluid kynurenine values from patients with septic arthritis (4.1 ± 0.8 µmol/L, n = 9) were significantly increased compared to patients with non-infectious inflammatory arthropathy (1.8 ± 0.2 µmol/L, n = 17) or osteoarthritis (1.2 ± 0.1 µmol/L, n = 15, p < 0.01). At a cut-off value of 2.28 µmol/L kynurenine had a sensitivity of 0.89 and a specificity of 0.87. Further, kynurenine inhibited chondrocyte (ATDC5) cell proliferation in a dose-dependent manner. Septic arthritis is associated with significantly increased values of synovial kynurenine. Furthermore kynurenine inhibits proliferation of chondrocytes, which strongly suggests a pathophysiological effect of kynurenine on cartilage in inflammatory arthropathies.
Collapse
Affiliation(s)
- Tim T Lögters
- Department of Trauma and Hand Surgery, University Hospital Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PVS, Amminger P, McGorry P, Malhi GS. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 2010; 35:804-17. [PMID: 20934453 DOI: 10.1016/j.neubiorev.2010.10.001] [Citation(s) in RCA: 860] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/29/2010] [Accepted: 10/01/2010] [Indexed: 12/11/2022]
Abstract
There is now strong evidence of progressive neuropathological processes in bipolar disorder (BD). On this basis, the current understanding of the neurobiology of BD has shifted from an initial focus on monoamines, subsequently including evidence of changes in intracellular second messenger systems and more recently to, incorporating changes in inflammatory cytokines, corticosteroids, neurotrophins, mitochondrial energy generation, oxidative stress and neurogenesis into a more comprehensive model capable of explaining some of the clinical features of BD. These features include progressive shortening of the inter-episode interval with each recurrence, occurring in consort with reduced probability of treatment response as the illness progresses. To this end, emerging data shows that these biomarkers may differ between early and late stages of BD in parallel with stage-related structural and neurocognitive alterations. This understanding facilitates identification of rational therapeutic targets, and the development of novel treatment classes. Additionally, these pathways provide a cogent explanation for the efficacy of seemingly diverse therapies used in BD, that appear to share common effects on oxidative, inflammatory and neurotrophic pathways.
Collapse
Affiliation(s)
- M Berk
- Department of Clinical and Biomedical Sciences, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Le Floc'h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 2010; 41:1195-205. [PMID: 20872026 DOI: 10.1007/s00726-010-0752-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/09/2010] [Indexed: 11/28/2022]
Abstract
Tryptophan is an indispensable amino acid that should to be supplied by dietary protein. Apart from its incorporation into body proteins, tryptophan is the precursor for serotonin, an important neuromediator, and for kynurenine, an intermediary metabolite of a complex metabolic pathway ending with niacin, CO(2), and kynurenic and xanthurenic acids. Tryptophan metabolism within different tissues is associated with numerous physiological functions. The liver regulates tryptophan homeostasis through degrading tryptophan in excess. Tryptophan degradation into kynurenine by immune cells plays a crucial role in the regulation of immune response during infections, inflammations and pregnancy. Serotonin is synthesized from tryptophan in the gut and also in the brain, where tryptophan availability is known to influence the sensitivity to mood disorders. In the present review, we discuss the major functions of tryptophan and its role in the regulation of growth, mood, behavior and immune responses with regard to the low availability of this amino acid and the competition between tissues and metabolic pathways for tryptophan utilization.
Collapse
Affiliation(s)
- Nathalie Le Floc'h
- INRA, UMR, Système d'Elevage, Nutrition Animale et Humaine, Saint Gilles, France.
| | | | | |
Collapse
|
20
|
Increased plasma kynurenine values and kynurenine-tryptophan ratios after major trauma are early indicators for the development of sepsis. Shock 2009; 32:29-34. [PMID: 19060785 DOI: 10.1097/shk.0b013e31819714fa] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kynurenine, the major degradation product of tryptophan has been shown to directly damage tissues, but its possible contribution to posttraumatic morbidity is unknown. Here, we studied the kinetics of kynurenine in patients after major trauma and whether this correlates with the development of posttraumatic sepsis. Kynurenine and tryptophan levels of 60 multiple-injured patients with Injury Severity Score of more than 16 were quantified prospectively by high-performance liquid chromatography. Blood samples were obtained daily from admission until day 10 after admission. Significantly increased kynurenine values were detectable already at day 1 after admission in blood from patients who later developed sepsis, regardless of injury pattern (P < 0.01). In contrast, kynurenine values of nonsepsis patients remained low throughout the observation period. However, all patients exhibited significantly decreased tryptophan values versus healthy controls (P < 0.01). Moreover, significantly increased kynurenine-tryptophan ratios rapidly predicted subsequent sepsis, multiple organ failure, and death (P < 0.01). Both increased kynurenine values and kynurenine-tryptophan ratios predicted posttraumatic development of sepsis and organ failure. This ought to be validated in subsequent studies.
Collapse
|
21
|
Jourde-Chiche N, Dou L, Cerini C, Dignat-George F, Vanholder R, Brunet P. Protein-Bound Toxins-Update 2009. Semin Dial 2009; 22:334-9. [DOI: 10.1111/j.1525-139x.2009.00576.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Yamada A, Akimoto H, Kagawa S, Guillemin GJ, Takikawa O. Proinflammatory cytokine interferon-gamma increases induction of indoleamine 2,3-dioxygenase in monocytic cells primed with amyloid beta peptide 1-42: implications for the pathogenesis of Alzheimer's disease. J Neurochem 2009; 110:791-800. [PMID: 19457071 DOI: 10.1111/j.1471-4159.2009.06175.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme of the kynurenine pathway of tryptophan metabolism, ultimately leading to production of the excitotoxin quinolinic acid (QUIN) by monocytic cells. In the Tg2576 mouse model of Alzheimer's disease, systemic inflammation induced by lipopolysaccharide leads to an increase in IDO expression and QUIN production in microglia surrounding amyloid plaques. We examined whether the IDO over-expression in microglia could be mediated by brain proinflammatory cytokines induced during the peripheral inflammation using THP-1 cells and peripheral blood mononuclear cells (PBMC) as models for microglia. THP-1 cells pre-treated with 5-25 muM amyloid beta peptide (Abeta) (1-42) but not with Abeta (1-40) or Abeta (25-35) became an activated state as indicated by their morphological changes and enhanced adhesiveness. IDO expression was only slightly increased in the reactive cells but strongly enhanced following treatment with proinflammatory cytokine interferon-gamma (IFN-gamma) but not with interleukin-1beta, tumor necrosis factor-alpha, or interleukin-6 at 100 U/mL. The concomitant addition of Abeta (1-42) with IFN-gamma was totally ineffective, indicating that Abeta pre-treatment is prerequisite for a high IDO expression. The priming effect of Abeta (1-42) for the IDO induction was also observed for PBMC. These findings suggest that IFN-gamma induces IDO over-expression in the primed microglia surrounding amyloid plaques.
Collapse
Affiliation(s)
- Akiko Yamada
- National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | | | | | | | | |
Collapse
|
23
|
Rodgers J, Stone TW, Barrett MP, Bradley B, Kennedy PGE. Kynurenine pathway inhibition reduces central nervous system inflammation in a model of human African trypanosomiasis. Brain 2009; 132:1259-67. [PMID: 19339256 PMCID: PMC2677800 DOI: 10.1093/brain/awp074] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 02/13/2009] [Accepted: 02/28/2009] [Indexed: 11/13/2022] Open
Abstract
Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasites Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, and is a major cause of systemic and neurological disability throughout sub-Saharan Africa. Following early-stage disease, the trypanosomes cross the blood-brain barrier to invade the central nervous system leading to the encephalitic, or late stage, infection. Treatment of human African trypanosomiasis currently relies on a limited number of highly toxic drugs, but untreated, is invariably fatal. Melarsoprol, a trivalent arsenical, is the only drug that can be used to cure both forms of the infection once the central nervous system has become involved, but unfortunately, this drug induces an extremely severe post-treatment reactive encephalopathy (PTRE) in up to 10% of treated patients, half of whom die from this complication. Since it is unlikely that any new and less toxic drug will be developed for treatment of human African trypanosomiasis in the near future, increasing attention is now being focussed on the potential use of existing compounds, either alone or in combination chemotherapy, for improved efficacy and safety. The kynurenine pathway is the major pathway in the metabolism of tryptophan. A number of the catabolites produced along this pathway show neurotoxic or neuroprotective activities, and their role in the generation of central nervous system inflammation is well documented. In the current study, Ro-61-8048, a high affinity kynurenine-3-monooxygenase inhibitor, was used to determine the effect of manipulating the kynurenine pathway in a highly reproducible mouse model of human African trypanosomiasis. It was found that Ro-61-8048 treatment had no significant effect (P = 0.4445) on the severity of the neuroinflammatory pathology in mice during the early central nervous system stage of the disease when only a low level of inflammation was present. However, a significant (P = 0.0284) reduction in the severity of the neuroinflammatory response was detected when the inhibitor was administered in animals exhibiting the more severe, late central nervous system stage, of the infection. In vitro assays showed that Ro-61-8048 had no direct effect on trypanosome proliferation suggesting that the anti-inflammatory action is due to a direct effect of the inhibitor on the host cells and not a secondary response to parasite destruction. These findings demonstrate that kynurenine pathway catabolites are involved in the generation of the more severe inflammatory reaction associated with the late central nervous system stages of the disease and suggest that Ro-61-8048 or a similar drug may prove to be beneficial in preventing or ameliorating the PTRE when administered as an adjunct to conventional trypanocidal chemotherapy.
Collapse
Affiliation(s)
- Jean Rodgers
- Division of Clinical Neurosciences, Faculty of Medicine, University of Glasgow, Institute of Neurological Sciences, Southern General Hospital, Glasgow G41 4TF, UK
| | | | | | | | | |
Collapse
|
24
|
Braidy N, Grant R, Brew BJ, Adams S, Jayasena T, Guillemin GJ. Effects of Kynurenine Pathway Metabolites on Intracellular NAD Synthesis and Cell Death in Human Primary Astrocytes and Neurons. Int J Tryptophan Res 2009; 2:61-9. [PMID: 22084582 PMCID: PMC3195228 DOI: 10.4137/ijtr.s2318] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The kynurenine pathway (KP) is a major route of L-tryptophan catabolism resulting in the production of the essential pyridine nucleotide nicotinamide adenine dinucleotide, (NAD+). Up-regulation of the KP during inflammation leads to the release of a number of biologically active metabolites into the brain. We hypothesised that while some of the extracellular KP metabolites may be beneficial for intracellular NAD+ synthesis and cell survival at physiological concentrations, they may contribute to neuronal and astroglial dysfunction and cell death at pathophysiological concentrations. In this study, we found that treatment of human primary neurons and astrocytes with 3-hydroxyanthranilic acid (3-HAA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC) at concentrations below 100 nM significantly increased intracellular NAD+ levels compared to non-treated cells. However, a dose dependent decrease in intracellular NAD+ levels and increased extracellular LDH activity was observed in human astrocytes and neurons treated with 3-HAA, 3-HK, QUIN and PIC at concentrations >100 nM and kynurenine (KYN), at concentrations above 1 μM. Intracellular NAD+ levels were unchanged in the presence of the neuroprotectant, kynurenic acid (KYNA), and a dose dependent increase in intracellular NAD+ levels was observed for TRP up to 1 mM. While anthranilic acid (AA) increased intracellular NAD+ levels at concentration below 10 μM in astrocytes. NAD+ depletion and cell death was observed in AA treated neurons at concentrations above 500 nM. Therefore, the differing responses of astrocytes and neurons to an increase in KP metabolites should be considered when assessing KP toxicity during neuroinflammation.
Collapse
Affiliation(s)
- Nady Braidy
- University of New South Wales, Faculty of Medicine, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Smith AJ, Smith RA, Stone TW. 5-Hydroxyanthranilic Acid, a Tryptophan Metabolite, Generates Oxidative Stress and Neuronal Death via p38 Activation in Cultured Cerebellar Granule Neurones. Neurotox Res 2009; 15:303-10. [DOI: 10.1007/s12640-009-9034-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 10/20/2022]
|
26
|
Fatokun AA, Stone TW, Smith RA. Responses of differentiated MC3T3-E1 osteoblast-like cells to reactive oxygen species. Eur J Pharmacol 2008; 587:35-41. [PMID: 18448093 DOI: 10.1016/j.ejphar.2008.03.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 02/03/2008] [Accepted: 03/10/2008] [Indexed: 10/22/2022]
Abstract
MC3T3-E1 osteoblast-like cells represent a suitable model for studying osteogenic development in vitro. The current investigation extends our previous work on the response of these cells to hydrogen peroxide by considering the effects of reactive oxygen species from other sources, and by determining whether differentiation alters sensitivity to oxidative damage. Aspects of hydrogen peroxide-mediated apoptotic and necrotic death were also examined. Cell viability was determined using the Alamar Blue assay; and accompanying morphological changes monitored by phase-contrast microscopy. Sensitivity to hydrogen peroxide increased significantly in cultures which had been induced to differentiate. Hydrogen peroxide and copper (II) ions, when combined, produced greater damage than hydrogen peroxide alone, whilst the hydroxyl radical scavengers mannitol or dimethylsulphoxide had no effect. Cyclosporin A and nicotinamide afforded partial protection. The tryptophan metabolite, 3-hydroxykynurenine significantly reduced viability, although 3-hydroxyanthranilic acid did not. The xanthine/xanthine oxidase system also reduced cell viability, an effect prevented by catalase but potentiated by superoxide dismutase. S-nitroso-N-acetylpenicillamine did not impair viability at the concentrations tested. Cultures were resistant to mitochondrial poisoning by potassium cyanide, but succumbed to 24-h exposures to 3-nitropropionic acid (1 mM). The results reveal a differential sensitivity of MC3T3-E1 cells to hydrogen peroxide-induced oxidative stress, an enhancement of sensitivity by cellular differentiation, and a potential preference for the glycolytic pathway by MC3T3-E1 cells. This study gives new insight into how bone cells may succumb to the toxic effects of oxidative stress generated by different stimuli and has relevance to conditions such as osteoporosis.
Collapse
Affiliation(s)
- Amos A Fatokun
- Institute of Biomedical & Life Sciences, Room 345, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
27
|
Adenosine receptor ligands protect against a combination of apoptotic and necrotic cell death in cerebellar granule neurons. Exp Brain Res 2007; 186:151-60. [PMID: 18040669 DOI: 10.1007/s00221-007-1218-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 11/07/2007] [Indexed: 12/20/2022]
Abstract
Agonists at A(1) receptors and antagonists at A(2A) receptors are known to be neuroprotective against excitotoxicity. We set out to clarify the mechanisms involved by studying interactions between adenosine receptor ligands and endogenous glutamate in cultures of rat cerebellar granule neurons (CGNs). Glutamate and the selective agonist N-methyl-D: -aspartate (NMDA), applied to CGNs at 9 div (days in vitro), both induced cell death in a concentration-dependent manner, which was attenuated by treatment with the NMDA receptor antagonists dizocilpine, D: -2-amino-5-phosphono-pentanoic acid (D: -AP5) or kynurenic acid (KYA), but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Glutamate toxicity was reduced in the presence of all of the following: cyclosporin A (CsA), a blocker of the membrane permeability transition pore, the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone (Z-DEVD-fmk), the poly (ADP-ribose) polymerase (PARP-1) inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ), and nicotinamide. This is indicative of involvement of both apoptotic and necrotic processes. The A(1) receptor agonist, N (6)-cyclopentyladenosine (CPA), and the A(2A) receptor antagonist 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazo-5-yl-amino]ethyl)phenol (ZM241385) afforded significant protection, while the A(1) receptor blocker 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and the A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine (CGS21680) had no effect. These results confirm that glutamate-induced neurotoxicity in CGNs is mainly via the NMDA receptor, but show that a form of cell death which exhibits aspects of both apoptosis and necrosis is involved. The protective activity of A(1) receptor activation or A(2A) receptor blockade occurs against this mixed profile of cell death, and appears not to involve the selective inhibition of classical apoptotic or necrotic cascades.
Collapse
|