1
|
Berkholz J, Karle W. Unravelling the molecular interplay: SUMOylation, PML nuclear bodies and vascular cell activity in health and disease. Cell Signal 2024; 119:111156. [PMID: 38574938 DOI: 10.1016/j.cellsig.2024.111156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
In the seemingly well-researched field of vascular research, there are still many underestimated factors and molecular mechanisms. In recent years, SUMOylation has become increasingly important. SUMOylation is a post-translational modification in which small ubiquitin-related modifiers (SUMO) are covalently attached to target proteins. Sites where these SUMO modification processes take place in the cell nucleus are PML nuclear bodies (PML-NBs) - multiprotein complexes with their essential main component and organizer, the PML protein. PML and SUMO, either alone or as partners, influence a variety of cellular processes, including regulation of transcription, senescence, DNA damage response and defence against microorganisms, and are involved in innate immunity and inflammatory responses. They also play an important role in maintaining homeostasis in the vascular system and in pathological processes leading to the development and progression of cardiovascular diseases. This review summarizes information about the function of SUMO(ylation) and PML(-NBs) in the human vasculature from angiogenesis to disease and highlights their clinical potential as drug targets.
Collapse
Affiliation(s)
- Janine Berkholz
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany.
| | - Weronika Karle
- Institute of Physiology, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
2
|
Qiu M, Lin Q, Liu Y, Chen P, Zhou Y, Jiang Y, Zhou Z, Wen Q, Zhou X, Liang X, Gan H, Yu H. Potentially functional genetic variants in RPS6KA4 and MAP2K5 in the MAPK signaling pathway predict HBV-related hepatocellular carcinoma survival. Mol Carcinog 2023; 62:1378-1387. [PMID: 37278562 DOI: 10.1002/mc.23583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks the third leading cause of cancer deaths with a dismal 5-year survival rate. The mitogen-activated protein kinase (MAPK) signaling pathway is abnormally activated in HCC to promote growth and aggressive metastatic potential of cancer cells. Therefore, genetic variants in the MAPK signaling pathway may serve as potential predictors of Hepatitis B virus (HBV)-related HCC survival. In the present study, we performed a two-stage survival analysis to evaluate the associations between 10,912 single nucleotide polymorphisms (SNPs) in 79 MAPK signaling pathway genes and the overall survival (OS) of 866 HBV-related HCC patients, followed by functional annotation. In combined datasets, we identified two novel and potential functional SNPs (RPS6KA4 rs600377 T>G and MAP2K5 rs17300363 A>C) as prognostic factors for HBV-related HCC, with adjusted allelic hazards ratios of 1.24 (95% confidence interval [CI] = 1.05-1.46, p = 0.010) and 1.48 (1.15-1.91, p = 0.001), respectively. Furthermore, their combined risk genotypes also predicted a poor survival in a dose-response manner in the combined data set (Ptrend < 0.001). Additional functional analysis showed that RPS6KA4 rs600377 G and MAP2K5 rs17300363 C alleles were associated with elevated mRNA expression levels of the corresponding genes in normal tissues. These results provide new insights into the role of genetic variants in the MAPK signaling pathway genes in HBV-related HCC survival.
Collapse
Affiliation(s)
- Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuling Lin
- Drug Clinical Trial Institution, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Peiqin Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yunxiang Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yanji Jiang
- Department of Research Service, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zihan Zhou
- Department of Tumor Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuping Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianguo Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiumei Liang
- Department of Disease Process Management, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Haijie Gan
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Tsitsikov EN, Phan KP, Liu Y, Tsytsykova AV, Kinter M, Selland L, Garman L, Griffin C, Dunn IF. TRAF7 is an essential regulator of blood vessel integrity during mouse embryonic and neonatal development. iScience 2023; 26:107474. [PMID: 37583551 PMCID: PMC10424150 DOI: 10.1016/j.isci.2023.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/19/2023] [Accepted: 07/21/2023] [Indexed: 08/17/2023] Open
Abstract
Targeted deletion of TRAF7 revealed that it is a crucial part of shear stress-responsive MEKK3-MEK5-ERK5 signaling pathway induced in endothelial cells by blood flow. Similar to Mekk3-, Mek5- or Erk5-deficient mice, Traf7-deficient embryos died in utero around midgestation due to impaired endothelium integrity. They displayed significantly lower expression of transcription factor Klf2, an essential regulator of vascular hemodynamic forces downstream of the MEKK3-MEK-ERK5 signaling pathway. In addition, deletion of Traf7 in endothelial cells of postnatal mice was associated with severe cerebral hemorrhage. Here, we show that besides MEKK3 and MEK5, TRAF7 associates with a planar cell polarity protein SCRIB. SCRIB binds with an N-terminal region of TRAF7, while MEKK3 associates with the C-terminal WD40 domain. Downregulation of TRAF7 as well as SCRIB inhibited fluid shear stress-induced phosphorylation of ERK5 in cultured endothelial cells. These findings suggest that TRAF7 and SCRIB may comprise an upstream part of the MEKK3-MEK5-ERK5 signaling pathway.
Collapse
Affiliation(s)
- Erdyni N. Tsitsikov
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Khanh P. Phan
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Yufeng Liu
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alla V. Tsytsykova
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mike Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lauren Selland
- Histology, Immunohistochemistry, Microscopy Core-COBRE Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Lori Garman
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Ian F. Dunn
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Mondru AK, Aljasir MA, Alrumayh A, Nithianandarajah GN, Ahmed K, Muller J, Goldring CEP, Wilm B, Cross MJ. VEGF Stimulates Activation of ERK5 in the Absence of C-Terminal Phosphorylation Preventing Nuclear Localization and Facilitating AKT Activation in Endothelial Cells. Cells 2023; 12:967. [PMID: 36980305 PMCID: PMC10047687 DOI: 10.3390/cells12060967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Extracellular-signal-regulated kinase 5 (ERK5) is critical for normal cardiovascular development. Previous studies have defined a canonical pathway for ERK5 activation, showing that ligand stimulation leads to MEK5 activation resulting in dual phosphorylation of ERK5 on Thr218/Tyr220 residues within the activation loop. ERK5 then undergoes a conformational change, facilitating phosphorylation on residues in the C-terminal domain and translocation to the nucleus where it regulates MEF2 transcriptional activity. Our previous research into the importance of ERK5 in endothelial cells highlighted its role in VEGF-mediated tubular morphogenesis and cell survival, suggesting that ERK5 played a unique role in endothelial cells. Our current data show that in contrast to EGF-stimulated HeLa cells, VEGF-mediated ERK5 activation in human dermal microvascular endothelial cells (HDMECs) does not result in C-terminal phosphorylation of ERK5 and translocation to the nucleus, but instead to a more plasma membrane/cytoplasmic localisation. Furthermore, the use of small-molecule inhibitors to MEK5 and ERK5 shows that instead of regulating MEF2 activity, VEGF-mediated ERK5 is important for regulating AKT activity. Our data define a novel pathway for ERK5 activation in endothelial cells leading to cell survival.
Collapse
Affiliation(s)
- Anil Kumar Mondru
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Mohammad A. Aljasir
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Ahmed Alrumayh
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Gopika N. Nithianandarajah
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Katie Ahmed
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Jurgen Muller
- Cardiovascular Research Group, School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Christopher E. P. Goldring
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael J. Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
5
|
Braun AE, Mitchel OR, Gonzalez TL, Sun T, Flowers AE, Pisarska MD, Winn VD. Sex at the interface: the origin and impact of sex differences in the developing human placenta. Biol Sex Differ 2022; 13:50. [PMID: 36114567 PMCID: PMC9482177 DOI: 10.1186/s13293-022-00459-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
The fetal placenta is a source of hormones and immune factors that play a vital role in maintaining pregnancy and facilitating fetal growth. Cells in this extraembryonic compartment match the chromosomal sex of the embryo itself. Sex differences have been observed in common gestational pathologies, highlighting the importance of maternal immune tolerance to the fetal compartment. Over the past decade, several studies examining placentas from term pregnancies have revealed widespread sex differences in hormone signaling, immune signaling, and metabolic functions. Given the rapid and dynamic development of the human placenta, sex differences that exist at term (37–42 weeks gestation) are unlikely to align precisely with those present at earlier stages when the fetal–maternal interface is being formed and the foundations of a healthy or diseased pregnancy are established. While fetal sex as a variable is often left unreported in studies performing transcriptomic profiling of the first-trimester human placenta, four recent studies have specifically examined fetal sex in early human placental development. In this review, we discuss the findings from these publications and consider the evidence for the genetic, hormonal, and immune mechanisms that are theorized to account for sex differences in early human placenta. We also highlight the cellular and molecular processes that are most likely to be impacted by fetal sex and the evolutionary pressures that may have given rise to these differences. With growing recognition of the fetal origins of health and disease, it is important to shed light on sex differences in early prenatal development, as these observations may unlock insight into the foundations of sex-biased pathologies that emerge later in life. Placental sex differences exist from early prenatal development, and may help explain sex differences in pregnancy outcomes. Transcriptome profiling of early to mid-gestation placenta reveals that immune signaling is a hub of early prenatal sex differences. Differentially expressed genes between male and female placenta fall into the following functional associations: chromatin modification, transcription, splicing, translation, signal transduction, metabolic regulation, cell death and autophagy regulation, ubiquitination, cell adhesion and cell–cell interaction. Placental sex differences likely reflect the interaction of cell-intrinsic chromosome complement with extrinsic endocrine signals from the fetal compartment that accompany gonadal differentiation. Understanding the mechanisms behind sex differences in placental development and function will provide key insight into molecular targets that can be modulated to improve sex-biased obstetrical complications.
Collapse
|
6
|
Effect of Extracellular Signal-Regulated Protein Kinase 5 Inhibition in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23158448. [PMID: 35955582 PMCID: PMC9369143 DOI: 10.3390/ijms23158448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Extracellular signal-regulating kinase 5 (ERK5) has been implicated in many cellular functions, including survival, proliferation, and vascularization. Our objectives were to examine the expression and effect of ERK5 in clear cell renal cell carcinoma (ccRCC). (2) Methods: The expressions of ERK5 and its regulating micro-RNA miR-143 were investigated using immunohistochemistry and quantitative reverse transcriptase PCR in surgical specimens of ccRCC patients. With invitro and in vivo studies, we used pharmacologic ERK5 inhibitor XMD8-92, RNA interference, pre-miR-143 transduction, Western blotting, MTS assay, apoptosis assay, and subcutaneous xenograft model. (3) Results: A strong ERK5 expression in surgical specimen was associated with high-grade (p = 0.01), high-recurrence free rate (p = 0.02), and high cancer-specific survival (p = 0.03). Expression levels of ERK5 and miR-143 expression level were correlated (p = 0.049). Pre-miR-143 transduction into ccRCC cell A498 suppressed ERK5 expression. ERK5 inhibition enhanced cyclin-dependent kinase inhibitor p21 expression and decreased anti-apoptotic molecules BCL2, resulting in decreased cell proliferation and survival both in ccRCC and endothelial cells. In the xenograft model, ERK5 inhibitor XMD8-92 suppressed tumor growth. (4) Conclusions: ERK5 is regulated by miR-143, and ERK5 inhibition is a promising target for ccRCC treatment.
Collapse
|
7
|
Estaras M, Gonzalez A. Modulation of cell physiology under hypoxia in pancreatic cancer. World J Gastroenterol 2021; 27:4582-4602. [PMID: 34366624 PMCID: PMC8326256 DOI: 10.3748/wjg.v27.i28.4582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
In solid tumors, the development of vasculature is, to some extent, slower than the proliferation of the different types of cells that form the tissue, both cancer and stroma cells. As a consequence, the oxygen availability is compromised and the tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable depending on where the cells are localized, being less extreme at the periphery of the tumor and more severe in areas located deep within the tumor mass. Surprisingly, the cells do not die. Intracellular pathways that are critical for cell fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are all involved in cellular responses to the low oxygen availability and are orchestrated by hypoxia-inducible factor. Oxidative stress and inflammation are critical conditions that develop under hypoxia. Together with changes in cellular bioenergetics, all contribute to cell survival. Moreover, cell-to-cell interaction is established within the tumor such that cancer cells and the microenvironment maintain a bidirectional communication. Additionally, the release of extracellular vesicles, or exosomes, represents short and long loops that can convey important information regarding invasion and metastasis. As a result, the tumor grows and its malignancy increases. Currently, one of the most lethal tumors is pancreatic cancer. This paper reviews the most recent advances in the knowledge of how cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the physiological processes that help the tumor increase its size and their regulation will be of major relevance for the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres 10003, Spain
| | - Antonio Gonzalez
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres 10003, Spain
| |
Collapse
|
8
|
Mita-Mendoza NK, Magallon-Tejada A, Parmar P, Furtado R, Aldrich M, Saidi A, Taylor T, Smith J, Seydel K, Daily JP. Dimethyl fumarate reduces TNF and Plasmodium falciparum induced brain endothelium activation in vitro. Malar J 2020; 19:376. [PMID: 33087130 PMCID: PMC7579885 DOI: 10.1186/s12936-020-03447-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral malaria (CM) is associated with morbidity and mortality despite the use of potent anti-malarial agents. Brain endothelial cell activation and dysfunction from oxidative and inflammatory host responses and products released by Plasmodium falciparum-infected erythrocytes (IE), are likely the major contributors to the encephalopathy, seizures, and brain swelling that are associated with CM. The development of adjunctive therapy to reduce the pathological consequences of host response pathways could improve outcomes. A potentially protective role of the nuclear factor E2-related factor 2 (NRF2) pathway, which serves as a therapeutic target in brain microvascular diseases and central nervous system (CNS) inflammatory diseases such as multiple sclerosis was tested to protect endothelial cells in an in vitro culture system subjected to tumour necrosis factor (TNF) or infected red blood cell exposure. NRF2 is a transcription factor that mediates anti-oxidant and anti-inflammatory responses. Methods To accurately reflect clinically relevant parasite biology a unique panel of parasite isolates derived from patients with stringently defined CM was developed. The effect of TNF and these parasite lines on primary human brain microvascular endothelial cell (HBMVEC) activation in an in vitro co-culture model was tested. HBMVEC activation was measured by cellular release of IL6 and nuclear translocation of NFκB. The transcriptional and functional effects of dimethyl fumarate (DMF), an FDA approved drug which induces the NRF2 pathway, on host and parasite induced HBMVEC activation was characterized. In addition, the effect of DMF on parasite binding to TNF stimulated HBMVEC in a semi-static binding assay was examined. Results Transcriptional profiling demonstrates that DMF upregulates the NRF2-Mediated Oxidative Stress Response, ErbB4 Signaling Pathway, Peroxisome Proliferator-activated Receptor (PPAR) Signaling and downregulates iNOS Signaling and the Neuroinflammation Signaling Pathway on TNF activated HBMVEC. The parasite lines derived from eight paediatric CM patients demonstrated increased binding to TNF activated HBMVEC and varied in their binding and activation of HBMVEC. Overall DMF reduced both TNF and CM derived parasite activation of HBMVEC. Conclusions These findings provide evidence that targeting the NRF2 pathway in TNF and parasite activated HBMVEC mediates multiple protective pathways and may represent a novel adjunctive therapy to improve infection outcomes in CM.
Collapse
Affiliation(s)
- Neida K Mita-Mendoza
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariel Magallon-Tejada
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Department of Research in Parasitology, Gorgas Memorial Research Institute for Health Studies, Panama City, Panama
| | - Priyanka Parmar
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raquel Furtado
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Margaret Aldrich
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Saidi
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Joe Smith
- Seattle Children's Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Johanna P Daily
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
9
|
Song XL, Zhang FF, Wang WJ, Li XN, Dang Y, Li YX, Yang Q, Shi MJ, Qi XY. LncRNA A2M-AS1 lessens the injury of cardiomyocytes caused by hypoxia and reoxygenation via regulating IL1R2. Genes Genomics 2020; 42:1431-1441. [PMID: 33057899 DOI: 10.1007/s13258-020-01007-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myocardial ischemia and reperfusion injury (MI/RI) is a complex pathophysiological process, which can lead to severe myocardial injury. The long noncoding RNA alpha-2-macroglobulin antisense RNA 1 (A2M-AS1) has been revealed to be abnormally expressed in MI, However, its function in MI and the potential mechanism are still unclear. OBJECTIVE To evaluate the functional role of A2M-AS1 in hypoxia/reoxygenation (H/R)-induced neonatal cardiomyocytes and its potential molecular mechanism. METHODS Dataset GSE66360 was obtained from GEO database for analyzing the RNA expression of A2M-AS1 and interleukin 1 receptor type 2 (IL1R2). KEGG pathway enrichment analysis of the genes that co-expressed with A2M-AS1 was performed. Human neonatal cardiomyocytes were subjected to H/R to construct in vitro models. QRT-PCR and Western blot were adopted to test the levels of mRNA and protein. The viability and apoptosis of cardiomyocytes were tested by CCK-8 and flow cytometry assays, respectively. RESULTS The expression of A2M-AS1 was notably downregulated in H/R-treated cardiomyocytes. Overexpression of A2M-AS1 can notably enhance the cell viability of H/R-damaged cardiomyocytes, whereas knockdown of A2M-AS1 showed the opposite outcomes. Besides, a negative correlation was showed between A2M-AS1 and IL1R2 expression. In H/R-treated cardiomyocytes, overexpression of IL1R2 weakened the promoting proliferation and anti-apoptosis effects caused by overexpressing A2M-AS1, however, IL1R2-knockdown abolished the anti-proliferation and pro-apoptosis effects caused by silencing A2M-AS1. CONCLUSION This study demonstrates the potential regulatory role of A2M-AS1/ IL1R2 axis in cardiomyocytes suffered from H/R, and provides insight into the protection of MI/RI.
Collapse
Affiliation(s)
- Xue-Lian Song
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Fei-Fei Zhang
- Department of Cardiology Center, Hebei General Hospital, No. 348 of Heping West Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Wen-Jing Wang
- Department of Cardiology Center, Hebei General Hospital, No. 348 of Heping West Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Xin-Ning Li
- Department of Cardiology Center, Hebei General Hospital, No. 348 of Heping West Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Yi Dang
- Department of Cardiology Center, Hebei General Hospital, No. 348 of Heping West Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Ying-Xiao Li
- Department of Cardiology Center, Hebei General Hospital, No. 348 of Heping West Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Qian Yang
- Department of Cardiology Center, Hebei General Hospital, No. 348 of Heping West Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Mei-Jing Shi
- Department of Cardiology Center, Hebei General Hospital, No. 348 of Heping West Road, Shijiazhuang, 050051, Hebei, People's Republic of China
| | - Xiao-Yong Qi
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China.
- Department of Cardiology Center, Hebei General Hospital, No. 348 of Heping West Road, Shijiazhuang, 050051, Hebei, People's Republic of China.
| |
Collapse
|
10
|
Lyu Z, Jin H, Yan Z, Hu K, Jiang H, Peng H, Zhuo H. Effects of NRP1 on angiogenesis and vascular maturity in endothelial cells are dependent on the expression of SEMA4D. Int J Mol Med 2020; 46:1321-1334. [PMID: 32945351 PMCID: PMC7447310 DOI: 10.3892/ijmm.2020.4692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis and vascular maturation play important roles in tumorigenesis and tumor development. The expression of neuropilin 1 (NRP1) is closely associated with angiogenesis in tumors; however, the molecular mechanisms of action in angiogenesis and tumor maturation, as well as the potential clinical value of NRP1 remain unclear. The importance of NRP1 expression in tumor progression was determined using The Cancer Genome Atlas (TCGA) database analysis. Gain- and loss-of-function experiments of NRP1 were performed in vascular endothelial cells (ECs) to investigate the functions in angiogenesis. CCK-8, flow cytometry, Transwell experiments and a series of in vitro experiments were used to detect cell functions. A combination of angiogenesis antibody arrays and RNA-Seq analyses were performed to reveal the proangiogenic mechanisms of action. The function of semaphorin 4D (SEMA4D) was also investigated separately. NRP1 mRNA levels were significantly increased in primary tumors compared with normal tissues based on TCGA data (P<0.01) and were associated with tumor development in patients. Gain- and loss-of-function experiments highlighted the function of NRP1 in promoting EC proliferation, motility and capillary-like tube formation and in reducing apoptosis. NRP1 overexpression led to significantly decreased EC markers (PECAM-1, angiogenin, PIGF and MMP-9) expression levels and reduced the vascular maturity. MAPK7, TPM1, RRBP1, PTPRK, HSP90A, PRKD2, PFKFB3, RGS4 and SPARC were revealed to play important roles in this process. SEMA4D was revealed to be a key protein associated with NRP1 in ECs. These data indicated that NRP1-promoted angiogenesis may be induced at the cost of reducing maturity of the ECs. NRP1 may also be a therapeutic target for antiangiogenic strategies and a candidate prognostic marker for tumors.
Collapse
Affiliation(s)
- Zhi Lyu
- Respiratory Department, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Hongwei Jin
- Medical Laboratory Center, The Affiliated Xiamen Humanity Hospital, Fujian Medical University, Xiamen, Fujian 361000, P.R. China
| | - Zhijian Yan
- Department of Urology, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| | - Keyan Hu
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, P.R. China
| | - Hongwei Jiang
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, P.R. China
| | - Huifang Peng
- Department of Endocrinology, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471000, P.R. China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361004, P.R. China
| |
Collapse
|
11
|
Kim S, Lim JH, Woo CH. Therapeutic potential of targeting kinase inhibition in patients with idiopathic pulmonary fibrosis. Yeungnam Univ J Med 2020; 37:269-276. [PMID: 32693446 PMCID: PMC7606966 DOI: 10.12701/yujm.2020.00458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix components. The fibrotic process ultimately leads to organ dysfunction and failure in chronic inflammatory and metabolic diseases such as pulmonary fibrosis, advanced kidney disease, and liver cirrhosis. Idiopathic pulmonary fibrosis (IPF) is a common form of progressive and chronic interstitial lung disease of unknown etiology. Pathophysiologically, the parenchyma of the lung alveoli, interstitium, and capillary endothelium becomes scarred and stiff, which makes breathing difficult because the lungs have to work harder to transfer oxygen and carbon dioxide between the alveolar space and bloodstream. The transforming growth factor beta (TGF-β) signaling pathway plays an important role in the pathogenesis of pulmonary fibrosis and scarring of the lung tissue. Recent clinical trials focused on the development of pharmacological agents that either directly or indirectly target kinases for the treatment of IPF. Therefore, to develop therapeutic targets for pulmonary fibrosis, it is essential to understand the key factors involved in the pathogenesis of pulmonary fibrosis and the underlying signaling pathway. The objective of this review is to discuss the role of kinase signaling cascades in the regulation of either TGF-β-dependent or other signaling pathways, including Rho-associated coiled-coil kinase, c-jun N-terminal kinase, extracellular signal-regulated kinase 5, and p90 ribosomal S6 kinase pathways, and potential therapeutic targets in IPF.
Collapse
Affiliation(s)
- Suji Kim
- Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea.,Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae Hyang Lim
- Department of Microbiology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Chang-Hoon Woo
- Smart-Ageing Convergence Research Center, Yeungnam University College of Medicine, Daegu, Korea.,Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
12
|
Turpaev KT. Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes. BIOCHEMISTRY (MOSCOW) 2020; 85:54-67. [PMID: 32079517 DOI: 10.1134/s0006297920010058] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KLF2 is a member of the Krüppel-like transcription factor family of proteins containing highly conserved DNA-binding zinc finger domains. KLF2 participates in the differentiation and regulation of the functional activity of monocytes, T lymphocytes, adipocytes, and vascular endothelial cells. The activity of KLF2 is controlled by several regulatory systems, including the MEKK2,3/MEK5/ERK5/MEF2 MAP kinase cascade, Rho family G-proteins, histone acetyltransferases CBP and p300, and histone deacetylases HDAC4 and HDAC5. Activation of KLF2 in endothelial cells induces eNOS expression and provides vasodilatory effect. Many KLF2-dependent genes participate in the suppression of blood coagulation and aggregation of T cells and macrophages with the vascular endothelium, thereby preventing atherosclerosis progression. KLF2 can have a dual effect on the gene transcription. Thus, it induces expression of multiple genes, but suppresses transcription of NF-κB-dependent genes. Transcription factors KLF2 and NF-κB are reciprocal antagonists. KLF2 inhibits induction of NF-κB-dependent genes, whereas NF-κB downregulates KLF2 expression. KLF2-mediated inhibition of NF-κB signaling leads to the suppression of cell response to the pro-inflammatory cytokines IL-1β and TNFα and results in the attenuation of inflammatory processes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
13
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
14
|
Roles of extra-cellular signal-regulated protein kinase 5 signaling pathway in the development of spinal cord injury. Chin Med J (Engl) 2019; 132:2601-2611. [PMID: 31373906 PMCID: PMC6846248 DOI: 10.1097/cm9.0000000000000362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: In consideration of characteristics and functions, extra-cellular signal-regulated protein kinase 5 (ERK5) signaling pathway could be a new target for spinal cord injury (SCI) treatment. Our study aimed to evaluate the roles of ERK5 signaling pathway in secondary damage of SCI. Methods: We randomly divided 70 healthy Wistar rats into five groups: ten in the blank group, 15 in the sham surgery + BIX02188 (sham + B) group, 15 in the sham surgery + dimethyl sulfoxide (DMSO; sham + D) group, 15 in the SCI + BIX02188 (SCI + B) group, and 15 in the SCI + DMSO (SCI + D) group. BIX02188 is a specific inhibitor of the ERK5 signaling pathway. SCI was induced by the application of vascular clips (with the force of 30 g) to the dura on T10 level, while rats in the sham surgery group underwent only T9-T11 laminectomy. BIX02188 or DMSO was intra-thecally injected at 1, 6, and 12 h after surgery or SCI. Spinal cord samples were taken for testing at 24 h after surgery or SCI. Results: Expression of phosphorylated-ERK5 (p-ERK5) significantly increased after SCI. Application of BIX02188 indeed inhibited ERK5 signaling pathway and reduced the degree of spinal cord tissue injury, neutrophil infiltration and proinflammatory cytokine expression, nuclear factor-κB (NF-κB) activation and apoptosis (measured by TdT-mediated 2′-deoxyuridine 5′-triphosphate nick-end labeling, expression of Fas-ligand, BCL2-associated X [Bax], and B-cell lymphoma-2 [Bcl-2]). Double immunofluorescence revealed activation of ERK5 in neurons and microglia after SCI. Conclusion: ERK5 signaling pathway was activated in spinal neurons and microglia, contributing to secondary injury of SCI. Moreover, inhibition of ERK5 signaling pathway could alleviate the degree of SCI, which might be related to its regulation of infiltration of inflammatory cells and release of inflammatory cytokines, expression of NF-κB and cell apoptosis.
Collapse
|
15
|
Myers SM, Miller DC, Molyneux L, Arasta M, Bawn RH, Blackburn TJ, Cook SJ, Edwards N, Endicott JA, Golding BT, Griffin RJ, Hammonds T, Hardcastle IR, Harnor SJ, Heptinstall AB, Lochhead PA, Martin MP, Martin NC, Newell DR, Owen PJ, Pang LC, Reuillon T, Rigoreau LJM, Thomas HD, Tucker JA, Wang LZ, Wong AC, Noble MEM, Wedge SR, Cano C. Identification of a novel orally bioavailable ERK5 inhibitor with selectivity over p38α and BRD4. Eur J Med Chem 2019; 178:530-543. [PMID: 31212132 DOI: 10.1016/j.ejmech.2019.05.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/30/2019] [Accepted: 05/20/2019] [Indexed: 11/18/2022]
Abstract
Extracellular regulated kinase 5 (ERK5) signalling has been implicated in driving a number of cellular phenotypes including endothelial cell angiogenesis and tumour cell motility. Novel ERK5 inhibitors were identified using high throughput screening, with a series of pyrrole-2-carboxamides substituted at the 4-position with an aroyl group being found to exhibit IC50 values in the micromolar range, but having no selectivity against p38α MAP kinase. Truncation of the N-substituent marginally enhanced potency (∼3-fold) against ERK5, but importantly attenuated inhibition of p38α. Systematic variation of the substituents on the aroyl group led to the selective inhibitor 4-(2-bromo-6-fluorobenzoyl)-N-(pyridin-3-yl)-1H-pyrrole-2-carboxamide (IC50 0.82 μM for ERK5; IC50 > 120 μM for p38α). The crystal structure (PDB 5O7I) of this compound in complex with ERK5 has been solved. This compound was orally bioavailable and inhibited bFGF-driven Matrigel plug angiogenesis and tumour xenograft growth. The selective ERK5 inhibitor described herein provides a lead for further development into a tool compound for more extensive studies seeking to examine the role of ERK5 signalling in cancer and other diseases.
Collapse
Affiliation(s)
- Stephanie M Myers
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Duncan C Miller
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Lauren Molyneux
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Mercedes Arasta
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ruth H Bawn
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Timothy J Blackburn
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Noel Edwards
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Bernard T Golding
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Roger J Griffin
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Tim Hammonds
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Ian R Hardcastle
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Suzannah J Harnor
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Amy B Heptinstall
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Mathew P Martin
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Nick C Martin
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - David R Newell
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Paul J Owen
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Leon C Pang
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Tristan Reuillon
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Laurent J M Rigoreau
- Cancer Research UK Therapeutic Discovery Laboratories, Jonas Webb Building, Babraham Campus, Babraham, Cambridgeshire, CB22 3AT, UK
| | - Huw D Thomas
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Julie A Tucker
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Lan-Zhen Wang
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Ai-Ching Wong
- Cancer Research UK Therapeutic Discovery Laboratories, London Bioscience Innovation Centre, 2 Royal College Street, London, NW1 0NH, UK
| | - Martin E M Noble
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Stephen R Wedge
- Newcastle Drug Discovery, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Celine Cano
- Newcastle Drug Discovery, Northern Institute for Cancer Research, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
| |
Collapse
|
16
|
CRISPR/Cas9 engineering of ERK5 identifies its FAK/PYK2 dependent role in adhesion-mediated cell survival. Biochem Biophys Res Commun 2019; 513:179-185. [PMID: 30952431 DOI: 10.1016/j.bbrc.2019.03.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/10/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is now considered a key regulator of breast cancer cell proliferation, migration and invasion. It is also implicated in growth factor induced anti-apoptotic signaling. But its contribution to adhesion-induced survival signaling is not clear. In the present study, using CRISPR/Cas9 editing, we knocked-out ERK5 expression in several cancer cell lines. Then MDA-MB 231 breast cancer cells lacking ERK5 were used to understand its role in adhesion-mediated cell viability. We demonstrated that ERK5 deficient cells exhibited reduced cell attachment to matrix proteins fibronectin and vitronectin. The adhesion ability of these cells was further reduced upon chemical inhibition of focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK2) by PF 431396. FAK/PYK2 inhibited ERK5 knock-out cells also showed markedly reduced cell-viability and increased apoptotic signaling. This was evident from the detection of cleaved PARP and caspase 9 in these cells. Thus, our data suggests a FAK/PYK2 regulated pro-survival role of ERK5 in response to cell adhesion.
Collapse
|
17
|
Deng Y, Lei T, Li H, Mo X, Wang Z, Ou H. ERK5/KLF2 activation is involved in the reducing effects of puerarin on monocyte adhesion to endothelial cells and atherosclerotic lesion in apolipoprotein E-deficient mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2590-2599. [PMID: 29723698 DOI: 10.1016/j.bbadis.2018.04.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022]
Abstract
Puerarin has properties of anti-oxidation and anti-inflammation, which has been demonstrated protective effects in atherosclerosis and other cardiovascular diseases. However, the detail molecular mechanism still remains unclear. Here, we determined whether the atheroprotective effect of puerarin was by reducing monocyte adhesion and explored the underlying mechanism. The results showed that puerarin dose- and time-dependently reduced oxLDL-induced monocyte THP-1 adhesion to HUVECs and the expression of adhesion-related genes such as VCAM-1, ICAM-1, MCP-1 and IL-8 in HUVECs. Puerarin activated ERK5 phosphorylation and up-regulated expressions of downstream KLF2 and its targeted genes endothelial nitric oxide synthase and thrombomodulin. However, the protective effects were reversed by ERK5/KLF2 pathway inhibitor XDM8-92, BIX02189 or KLF2 siRNA suggesting the pathway involved in the function. The ex vivo assay, in which THP-1 adhesion to endothelium isolated from apoE-/- mice received various treatments further confirmed the results from HUVECs. Finally, we found that the atherosclerotic lesions in both cross sections at aortic root and whole aorta were significantly reduced in high fat-diet (HFD) mice with puerarin treatment compared with the HFD-only mice, but were increased respectively by 76% and 71% in XMD8-92 group, and 82% and 73% in BIX02189 group. Altogether, the data revealed that puerarin inhibited the monocyte adhesion in vitro and in vivo and thus reduced atherosclerotic lesions in apoE-/- mice; the protective effects were mediated by activation of ERK5/KLF2 signaling pathway. Our findings advance the understanding of puerarin function in atherosclerosis and point out a way to prevent the disease.
Collapse
Affiliation(s)
- Yan Deng
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Tingwen Lei
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Hongmei Li
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Xiaochuan Mo
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Zhuting Wang
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China
| | - Hailong Ou
- Department of Biochemistry and Molecular Biology, Guizhou Medical University, Guiyang 550004, Guizhou, PR China.
| |
Collapse
|
18
|
Yang C, Tahiri H, Cai C, Gu M, Gagnon C, Hardy P. microRNA-181a inhibits ocular neovascularization by interfering with vascular endothelial growth factor expression. Cardiovasc Ther 2018; 36:e12329. [PMID: 29608244 DOI: 10.1111/1755-5922.12329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
AIM Excess angiogenesis or neovascularization plays a key role in the pathophysiology of several ocular diseases such as retinopathy of prematurity, diabetic retinopathy, and exudative age-related macular degeneration. microRNA-181a (miR-181a) was found highly expressed in retina and choroidal tissues. This study intends to investigate the role of miR-181a in the regulation of ocular neovascularization in different pathophysiological conditions. METHOD We performed the RNA sequence to identify the microRNAs components of anti-angiogenic lymphocyte-derived microparticles (LMPs). The effect of miR-181a on human retinal endothelial cells proliferation was assessed in vitro. The impact of miR-181a on angiogenesis was confirmed using in vitro angiogenesis assay, ex vivo choroidal explant, and in vivo retinal neovascularization. The expression of major angiogenic factors was assessed by real-time qPCR. RESULTS RNA sequence revealed that miR-181a is selectively enriched in LMPs. Importantly, the inhibition of miR-181a significantly abrogated the effect of LMPs on endothelial viability, but overexpression of miR-181a reduced endothelial cell viability in a dose-dependent manner. miR-181a strongly inhibited in vitro angiogenesis and ex vivo choroidal neovascularization. The strong anti-angiogenic effect of miR-181a was also displayed on the retinal neovascularization of the in vivo mouse model of oxygen-induced retinopathy. In keeping with its effect, several angiogenesis-related genes were dysregulated in the miR-181a overexpressed endothelial cells. CONCLUSION These data may open unexpected avenues for the development of miR-181a as a novel therapeutic strategy that would be particularly useful and relevant for the treatment of neovascular diseases.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, QC, Canada
| | - Houda Tahiri
- Departments of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, QC, Canada
| | - Chenrongrong Cai
- Departments of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, QC, Canada
| | - Muqing Gu
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Carmen Gagnon
- Departments of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, QC, Canada
| | - Pierre Hardy
- Departments of Pediatrics, Physiology and Pharmacology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
19
|
Loveridge CJ, van 't Hof RJ, Charlesworth G, King A, Tan EH, Rose L, Daroszewska A, Prior A, Ahmad I, Welsh M, Mui EJ, Ford C, Salji M, Sansom O, Blyth K, Leung HY. Analysis of Nkx3.1:Cre-driven Erk5 deletion reveals a profound spinal deformity which is linked to increased osteoclast activity. Sci Rep 2017; 7:13241. [PMID: 29038439 PMCID: PMC5643304 DOI: 10.1038/s41598-017-13346-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5) has been implicated during development and carcinogenesis. Nkx3.1-mediated Cre expression is a useful strategy to genetically manipulate the mouse prostate. While grossly normal at birth, we observed an unexpected phenotype of spinal protrusion in Nkx3.1:Cre;Erk5 fl/fl (Erk5 fl/fl) mice by ~6-8 weeks of age. X-ray, histological and micro CT (µCT) analyses showed that 100% of male and female Erk5 fl/fl mice had a severely deformed curved thoracic spine, with an associated loss of trabecular bone volume. Although sex-specific differences were observed, histomorphometry measurements revealed that both bone resorption and bone formation parameters were increased in male Erk5 fl/fl mice compared to wild type (WT) littermates. Osteopenia occurs where the rate of bone resorption exceeds that of bone formation, so we investigated the role of the osteoclast compartment. We found that treatment of RANKL-stimulated primary bone marrow-derived macrophage (BMDM) cultures with small molecule ERK5 pathway inhibitors increased osteoclast numbers. Furthermore, osteoclast numbers and expression of osteoclast marker genes were increased in parallel with reduced Erk5 expression in cultures generated from Erk5 fl/fl mice compared to WT mice. Collectively, these results reveal a novel role for Erk5 during bone maturation and homeostasis in vivo.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Rob J van 't Hof
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK.
| | - Gemma Charlesworth
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Ayala King
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Ee Hong Tan
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Lorraine Rose
- Centre for Molecular Medicine, MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Anna Daroszewska
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Amanda Prior
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Michelle Welsh
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ernest J Mui
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Catriona Ford
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Mark Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Owen Sansom
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK.
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
20
|
Cheng Z, Gao W, Fan X, Chen X, Mei H, Liu J, Luo X, Hu Y. Extracellular signal-regulated kinase 5 associates with casein kinase II to regulate GPIb-IX-mediated platelet activation via the PTEN/PI3K/Akt pathway. J Thromb Haemost 2017; 15:1679-1688. [PMID: 28603902 DOI: 10.1111/jth.13755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Indexed: 12/19/2022]
Abstract
Essentials The mechanisms of extracellular signal-regulated kinase 5 (ERK5) in GPIb-IX signaling are unclear. Function of ERK5 in GPIb-IX was tested using aggregation, western blotting, and mass spectrometry. The protein interacting with ERK5 in human platelets was identified as casein kinase II (CKII). ERK5 associates with CKII to regulate the activation of the PI3K/Akt pathway in GPIb-IX signaling. SUMMARY Background The platelet glycoprotein (GP) Ib-IX complex plays essential roles in thrombosis and hemostasis. The mitogen-activated protein kinases (MAPKs) ERK1/2 and p38 have been shown to be important in the GPIb-IX-mediated signaling leading to integrin activation. However, the roles of the MAPK extracellular signal-regulated kinase 5 (ERK5) in GPIb-IX-mediated platelet activation are unknown. Objective To reveal the function and mechanisms of ERK5 in GPIb-IX-mediated platelet activation. Methods The functions of ERK5 in GPIb-IX-mediated human platelet activation were assessed using botrocetin/VWF, ristocetin/VWF, or platelet adhesion to von Willebrand factor (VWF) under shear stress in the presence of a specific inhibitor of ERK5. ERK5-associated proteins were pulled down from Chinese hamster ovary (CHO) cells transfected with HA-tagged-ERK5, identified by mass spectrometry, and confirmed in human platelets. Roles of ERK5-associated proteins in GPIb-IX-mediated platelet activation were clarified using specific inhibitors. Results The phosphorylation levels of ERK5 were significantly enhanced in human platelets stimulated with botrocetin/VWF or ristocetin/VWF. The ERK5 inhibitor XMD8-92 suppressed the second wave of human platelet aggregation induced by botrocetin/VWF or ristocetin/VWF and inhibited human platelet adhesion on immobilized VWF under shear stress. Casein kinase II (CKII) was identified as an ERK5-associated protein in human platelets. The CKII inhibitor TBB, similar to the ERK5 inhibitor XMD8-92, specifically restrained PTEN phosphorylation, therefore suppressing Akt phosphorylation in human platelets treated with botrocetin/VWF. Conclusion ERK5 associates with CKII to play essential roles in GPIb-IX-mediated platelet activation via the PTEN/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Z Cheng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - X Fan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H Mei
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - J Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - X Luo
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Y Hu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Xu Y, Liu P, Xu S, Koroleva M, Zhang S, Si S, Jin ZG. Tannic acid as a plant-derived polyphenol exerts vasoprotection via enhancing KLF2 expression in endothelial cells. Sci Rep 2017; 7:6686. [PMID: 28751752 PMCID: PMC5532219 DOI: 10.1038/s41598-017-06803-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
The transcription factor Kruppel-like factor 2 (KLF2) is a critical anti-inflammatory and anti-atherogenic molecule in vascular endothelium. Enhancing KLF2 expression and activity improves endothelial function and prevents atherosclerosis. However, the pharmacological and molecular regulators for KLF2 are scarce. Using high-throughput luciferase reporter assay to screen for KLF2 activators, we have identified tannic acid (TA), a polyphenolic compound, as a potent KLF2 activator that attenuates endothelial inflammation. Mechanistic studies suggested that TA induced KLF2 expression in part through the ERK5/MEF2 pathway. Functionally, TA markedly decreased monocyte adhesion to ECs by reducing expression of adhesion molecule VCAM1. Using lung ECs isolated from Klf2+/+ and Klf2+/− mice, we showed that the anti-inflammatory effect of TA is dependent on KLF2. Collectively, our results demonstrate that TA is a potent KLF2 activator and TA attenuated endothelial inflammation through upregulation of KLF2. Our findings provide a novel mechanism for the well-established beneficial cardiovascular effects of TA and suggest that KLF2 could be a novel therapeutic target for atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA
| | - Shuya Zhang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan, China
| | - Shuyi Si
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA. .,Institute of Medicinal Biotechnology Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14620, USA.
| |
Collapse
|
22
|
Loveridge CJ, Mui EJ, Patel R, Tan EH, Ahmad I, Welsh M, Galbraith J, Hedley A, Nixon C, Blyth K, Sansom O, Leung HY. Increased T-cell Infiltration Elicited by Erk5 Deletion in a Pten-Deficient Mouse Model of Prostate Carcinogenesis. Cancer Res 2017; 77:3158-3168. [PMID: 28515147 PMCID: PMC5474317 DOI: 10.1158/0008-5472.can-16-2565] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/09/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022]
Abstract
Prostate cancer does not appear to respond to immune checkpoint therapies where T-cell infiltration may be a key limiting factor. Here, we report evidence that ablating the growth regulatory kinase Erk5 can increase T-cell infiltration in an established Pten-deficient mouse model of human prostate cancer. Mice that were doubly mutant in prostate tissue for Pten and Erk5 (prostate DKO) exhibited a markedly increased median survival with reduced tumor size and proliferation compared with control Pten-mutant mice, the latter of which exhibited increased Erk5 mRNA expression. A comparative transcriptomic analysis revealed upregulation in prostate DKO mice of the chemokines Ccl5 and Cxcl10, two potent chemoattractants for T lymphocytes. Consistent with this effect, we observed a relative increase in a predominantly CD4+ T-cell infiltrate in the prostate epithelial and stroma of tumors from DKO mice. Collectively, our results offer a preclinical proof of concept for ERK5 as a target to enhance T-cell infiltrates in prostate cancer, with possible implications for leveraging immune therapy in this disease. Cancer Res; 77(12); 3158-68. ©2017 AACR.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Ernest J Mui
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Rachana Patel
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Ee Hong Tan
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Michelle Welsh
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Julie Galbraith
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Karen Blyth
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Owen Sansom
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, United Kingdom.
- CRUK Beatson Institute, Bearsden, Glasgow, United Kingdom
| |
Collapse
|
23
|
Schoellhorn M, Fischer S, Wagner A, Handrick R, Otte K. miR-143 targets MAPK7 in CHO cells and induces a hyperproductive phenotype to enhance production of difficult-to-express proteins. Biotechnol Prog 2017; 33:1046-1058. [DOI: 10.1002/btpr.2475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/24/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Melanie Schoellhorn
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| | - Simon Fischer
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| | - Andreas Wagner
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| | - René Handrick
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| | - Kerstin Otte
- Inst. of Applied Biotechnology, University of Applied Sciences Biberach; Hubertus-Liebrecht-Strasse 35 Biberach 88400 Germany
| |
Collapse
|
24
|
Broad KD, Kawano G, Fierens I, Rocha-Ferreira E, Hristova M, Ezzati M, Rostami J, Alonso-Alconada D, Chaban B, Hassell J, Fleiss B, Gressens P, Sanders RD, Robertson NJ. Surgery increases cell death and induces changes in gene expression compared with anesthesia alone in the developing piglet brain. PLoS One 2017; 12:e0173413. [PMID: 28355229 PMCID: PMC5371291 DOI: 10.1371/journal.pone.0173413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/19/2017] [Indexed: 11/24/2022] Open
Abstract
In a range of animal species, exposure of the brain to general anaesthesia without surgery during early infancy may adversely affect its neural and cognitive development. The mechanisms mediating this are complex but include an increase in brain cell death. In humans, attempts to link adverse cognitive development to infantile anaesthesia exposure have yielded ambiguous results. One caveat that may influence the interpretation of human studies is that infants are not exposed to general anaesthesia without surgery, raising the possibility that surgery itself, may contribute to adverse cognitive development. Using piglets, we investigated whether a minor surgical procedure increases cell death and disrupts neuro-developmental and cognitively salient gene transcription in the neonatal brain. We randomly assigned neonatal male piglets to a group who received 6h of 2% isoflurane anaesthesia or a group who received an identical anaesthesia plus 15 mins of surgery designed to replicate an inguinal hernia repair. Compared to anesthesia alone, surgery-induced significant increases in cell death in eight areas of the brain. Using RNAseq data derived from all 12 piglets per group we also identified significant changes in the expression of 181 gene transcripts induced by surgery in the cingulate cortex, pathway analysis of these changes suggests that surgery influences the thrombin, aldosterone, axonal guidance, B cell, ERK-5, eNOS and GABAA signalling pathways. This suggests a number of novel mechanisms by which surgery may influence neural and cognitive development independently or synergistically with the effects of anaesthesia.
Collapse
MESH Headings
- Aldosterone/genetics
- Aldosterone/metabolism
- Anesthesia, General/adverse effects
- Anesthetics, Inhalation/administration & dosage
- Anesthetics, Inhalation/adverse effects
- Animals
- Animals, Newborn
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Cell Death/drug effects
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/drug effects
- Gyrus Cinguli/drug effects
- Gyrus Cinguli/metabolism
- Gyrus Cinguli/pathology
- Hernia, Inguinal/complications
- Hernia, Inguinal/surgery
- Herniorrhaphy/adverse effects
- Isoflurane/administration & dosage
- Isoflurane/adverse effects
- Male
- Mitogen-Activated Protein Kinase 7/genetics
- Mitogen-Activated Protein Kinase 7/metabolism
- Nerve Net/drug effects
- Nerve Net/metabolism
- Nerve Net/pathology
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Sequence Analysis, RNA
- Signal Transduction
- Swine
- Thrombin/genetics
- Thrombin/metabolism
Collapse
Affiliation(s)
- Kevin D. Broad
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Go Kawano
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Igor Fierens
- Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Mariya Hristova
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Mojgan Ezzati
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Jamshid Rostami
- Institute for Women’s Health, University College London, London, United Kingdom
| | | | - Badr Chaban
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Jane Hassell
- Institute for Women’s Health, University College London, London, United Kingdom
| | - Bobbi Fleiss
- Centre for the Developing Brain, Kings College, St Thomas Campus, London, United Kingdom
- Inserm, U1141, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, UMRS 1141, Paris, France
| | - Pierre Gressens
- Centre for the Developing Brain, Kings College, St Thomas Campus, London, United Kingdom
- Inserm, U1141, Paris, France
- University Paris Diderot, Sorbonne Paris Cite, UMRS 1141, Paris, France
| | - Robert D. Sanders
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Myers SM, Bawn RH, Bisset LC, Blackburn TJ, Cottyn B, Molyneux L, Wong AC, Cano C, Clegg W, Harrington RW, Leung H, Rigoreau L, Vidot S, Golding BT, Griffin RJ, Hammonds T, Newell DR, Hardcastle IR. High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors. ACS COMBINATORIAL SCIENCE 2016; 18:444-55. [PMID: 27400250 DOI: 10.1021/acscombsci.5b00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP progressive binding system, and used to identify hits from a library of 57 617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and reassay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38α kinase.
Collapse
Affiliation(s)
- Stephanie M Myers
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Ruth H Bawn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Louise C Bisset
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Framlington Place, Newcastle University , Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, U.K
| | - Timothy J Blackburn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Betty Cottyn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Lauren Molyneux
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Ai-Ching Wong
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - Celine Cano
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - William Clegg
- School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Ross W Harrington
- School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Hing Leung
- The Beatson Institute for Cancer Research , Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, U.K
| | - Laurent Rigoreau
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - Sandrine Vidot
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Bernard T Golding
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Roger J Griffin
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Tim Hammonds
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - David R Newell
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Framlington Place, Newcastle University , Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, U.K
| | - Ian R Hardcastle
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
26
|
Cui R, Lu Q, Teng Y, Li K, Li N. Chitosan Promoted the Corneal Epithelial Wound Healing via Activation of ERK Pathway. Curr Eye Res 2016; 42:21-27. [DOI: 10.3109/02713683.2016.1145235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.
Collapse
Affiliation(s)
- Ian Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK,
| |
Collapse
|
28
|
Diao D, Wang L, Wan J, Chen Z, Peng J, Liu H, Chen X, Wang W, Zou L. MEK5 overexpression is associated with the occurrence and development of colorectal cancer. BMC Cancer 2016; 16:302. [PMID: 27160304 PMCID: PMC4862041 DOI: 10.1186/s12885-016-2327-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/20/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Mitogen/extracellular signal-regulated kinase kinase-5 (MEK5) has been confirmed to play a pivotal role in tumor carcinogenesis and progression. However, few studies have investigated the role of MEK5 in colorectal cancer (CRC). METHODS MEK5 expression was determined by immunohistochemistry (IHC) in tissue microarrays (TMAs) containing 2 groups of tissues, and western blotting was used to confirm MEK5 expression in 8 cases of primary CRC tissues and paired normal mucosa. RNA interference was used to verify the biological function of MEK5 gene in the development of CRC. RESULTS IHC revealed the expression of MEK5 was higher in tumor tissues (38.1 %), compared with adjacent normal tissue (8.3 %). Western blot showed that, MEK5 expression was upregulated in CRC tumor tissues compared with normal tissue. Analysis of clinical pathology parameters indicated MEK5 overexpression was significantly correlated with the depth of invasion, lymph node metastasis, distant metastasis and histological grade. Survival analysis revealed that MEK5 overexpression negatively correlated with cancer-free survival (hazard ratio 1.64, P = 0.017). RNA interference-mediated knockdown of MEK5 in SW480 colon cancer cells decreased their proliferation, division, migration and invasiveness in vitro and slowed down tumors growth in mice engrafted with the cells. CONCLUSION MEK5 plays an important role in CRC progression and may be a potential molecular target for the treatment of CRC.
Collapse
Affiliation(s)
- Dechang Diao
- Department of Gastrointestinal Surgery, Guangdong Provincal Hospital of Traditional Chinese Medicine, Guangdong, 510120, China.
| | - Lei Wang
- Institute of Gastroenterology, Sun Yat-Sen University, Guangzhou, 510655, China.,Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Jin Wan
- Department of Gastrointestinal Surgery, Guangdong Provincal Hospital of Traditional Chinese Medicine, Guangdong, 510120, China
| | - Zhiqiang Chen
- Department of Gastrointestinal Surgery, Guangdong Provincal Hospital of Traditional Chinese Medicine, Guangdong, 510120, China
| | - Junsheng Peng
- Department of Gastrointestinal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
| | - Huanliang Liu
- Institute of Gastroenterology, Sun Yat-Sen University, Guangzhou, 510655, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, 510080, China
| | - Xinlin Chen
- Department of Preventive Medicine and Medical Statistics, College of Fundamental Medical Science, Guangzhou University of Traditional Chinese Medicine, Guangdong, 510006, China
| | - Wei Wang
- Department of Gastrointestinal Surgery, Guangdong Provincal Hospital of Traditional Chinese Medicine, Guangdong, 510120, China
| | - Liaonan Zou
- Department of Gastrointestinal Surgery, Guangdong Provincal Hospital of Traditional Chinese Medicine, Guangdong, 510120, China
| |
Collapse
|
29
|
ERK5/HDAC5-mediated, resveratrol-, and pterostilbene-induced expression of MnSOD in human endothelial cells. Mol Nutr Food Res 2015; 60:266-77. [DOI: 10.1002/mnfr.201500466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 11/07/2022]
|
30
|
Tesser-Gamba F, Lopes LJDS, Petrilli AS, Toledo SRC. MAPK7 gene controls proliferation, migration and cell invasion in osteosarcoma. Mol Carcinog 2015; 55:1700-1713. [PMID: 26460937 DOI: 10.1002/mc.22420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/02/2015] [Accepted: 09/18/2015] [Indexed: 11/11/2022]
Abstract
Osteosarcomas (OS) are the most common malignant bone tumors, and the identification of useful tumor biomarkers and target proteins is required to predict the clinical outcome of patients and therapeutic response as well as to develop novel therapeutic strategies. In our previous study, MAPK7 has been identified as a candidate oncogene, and a promising prognostic marker for OS. Sequential activation of protein kinases within the mitogen-activated protein kinase (MAPK) cascades is a common mechanism of signal transduction in many cellular processes. In this study, we investigated the behavior of MAPK7 gene in OS cell lines. Technical viability, proliferation, migration, invasion, and apoptosis were used to evaluate the function of the MAPK7 gene. We evaluated the behavior of the OS cells with MAPK7 gene silenced, not silenced, and exposed to the main chemotherapy drugs used in OS treatment. We found that silenced MAPK7 gene is effective at suppressing cell proliferation, inhibiting cell migration, and invasion. Furthermore, MAPK7 is an important activator of transcription factors and is the main expression modulator of other key genes in the MAPK pathway. In summary, our study suggests that MAPK7 might be a promising therapeutic target for OS. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Francine Tesser-Gamba
- Department of Pediatrics, Genetics Laboratory, Pediatric Oncology Institute (IOP/GRAACC), Federal University of São Paulo, São Paulo-SP, Brazil.,Department of Morphology and Genetics, Genetics Laboratory, Pediatric Oncology Institute (IOP/GRAACC), Federal University of São Paulo, São Paulo-SP, Brazil
| | - Luana Joyce da Silva Lopes
- Department of Clinical and Experimental Oncology, Genetics Laboratory, Pediatric Oncology Institute (IOP/GRAACC), Federal University of São Paulo, São Paulo-SP, Brazil
| | - Antonio Sergio Petrilli
- Department of Pediatrics, Pediatric Oncology Institute (IOP/GRAACC), Federal University of São Paulo, São Paulo-SP, Brazil
| | - Silvia Regina Caminada Toledo
- Department of Pediatrics, Genetics Laboratory, Pediatric Oncology Institute (IOP/GRAACC), Federal University of São Paulo, São Paulo-SP, Brazil. .,Department of Morphology and Genetics, Genetics Laboratory, Pediatric Oncology Institute (IOP/GRAACC), Federal University of São Paulo, São Paulo-SP, Brazil. .,Department of Clinical and Experimental Oncology, Genetics Laboratory, Pediatric Oncology Institute (IOP/GRAACC), Federal University of São Paulo, São Paulo-SP, Brazil.
| |
Collapse
|
31
|
|
32
|
Wilhelmsen K, Xu F, Farrar K, Tran A, Khakpour S, Sundar S, Prakash A, Wang J, Gray NS, Hellman J. Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci Signal 2015; 8:ra86. [PMID: 26307013 DOI: 10.1126/scisignal.aaa3206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammatory critical illness is a syndrome that is characterized by acute inflammation and organ injury, and it is triggered by infections and noninfectious tissue injury, both of which activate innate immune receptors and pathways. Although reports suggest an anti-inflammatory role for the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5), we previously found that ERK5 mediates proinflammatory responses in primary human cells in response to stimulation of Toll-like receptor 2 (TLR2). We inhibited the kinase activities and reduced the abundances of ERK5 and MEK5, a MAPK kinase directly upstream of ERK5, in primary human vascular endothelial cells and monocytes, and found that ERK5 promoted inflammation induced by a broad range of microbial TLR agonists and by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Furthermore, we found that inhibitors of MEK5 or ERK5 reduced the plasma concentrations of proinflammatory cytokines in mice challenged with TLR ligands or heat-killed Staphylococcus aureus, as well as in mice that underwent sterile lung ischemia-reperfusion injury. Finally, we found that inhibition of ERK5 protected endotoxemic mice from death. Together, our studies support a proinflammatory role for ERK5 in primary human endothelial cells and monocytes, and suggest that ERK5 is a potential therapeutic target in diverse disorders that cause inflammatory critical illness.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Farrar
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alphonso Tran
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samira Khakpour
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shirin Sundar
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA. Division of Critical Care Medicine and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
33
|
Kaneshiro S, Otsuki D, Yoshida K, Yoshikawa H, Higuchi C. MEK5 suppresses osteoblastic differentiation. Biochem Biophys Res Commun 2015; 463:241-7. [PMID: 25998381 DOI: 10.1016/j.bbrc.2015.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/09/2015] [Indexed: 01/07/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family and is activated by its upstream kinase, MAPK kinase 5 (MEK5), which is a member of the MEK family. Although the role of MEK5 has been investigated in several fields, little is known about its role in osteoblastic differentiation. In this study, we have demonstrated the role of MEK5 in osteoblastic differentiation in mouse preosteoblastic MC3T3-E1 cells and bone marrow stromal ST2 cells. We found that treatment with BIX02189, an inhibitor of MEK5, increased alkaline phosphatase (ALP) activity and the gene expression of ALP, osteocalcin (OCN) and osterix, as well as it enhanced the calcification of the extracellular matrix. Moreover, osteoblastic cell proliferation decreased at a concentration of greater than 0.5 μM. In addition, knockdown of MEK5 using siRNA induced an increase in ALP activity and in the gene expression of ALP, OCN, and osterix. In contrast, overexpression of wild-type MEK5 decreased ALP activity and attenuated osteoblastic differentiation markers including ALP, OCN and osterix, but promoted cell proliferation. In summary, our results indicated that MEK5 suppressed the osteoblastic differentiation, but promoted osteoblastic cell proliferation. These results implied that MEK5 may play a pivotal role in cell signaling to modulate the differentiation and proliferation of osteoblasts. Thus, inhibition of MEK5 signaling in osteoblasts may be of potential use in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shoichi Kaneshiro
- Department of Orthopaedic Surgery, Japan Community Health Care Organization Osaka Hospital, 4-2-78 Fukushima, Fukushima Ward, Osaka City, Osaka 553-0003, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dai Otsuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kiyoshi Yoshida
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikahisa Higuchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
34
|
Honda T, Obara Y, Yamauchi A, Couvillon AD, Mason JJ, Ishii K, Nakahata N. Phosphorylation of ERK5 on Thr732 is associated with ERK5 nuclear localization and ERK5-dependent transcription. PLoS One 2015; 10:e0117914. [PMID: 25689862 PMCID: PMC4331489 DOI: 10.1371/journal.pone.0117914] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/05/2015] [Indexed: 12/20/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) play critical roles in numerous cellular processes, including proliferation and differentiation. ERK5 contains a kinase domain at the N-terminal, and the unique extended C-terminal includes multiple autophosphorylation sites that enhance ERK5-dependent transcription. However, the impact of phosphorylation at the various sites remain unclear. In this study, we examined the role of phosphorylation at the ERK5 C-terminal. We found that a constitutively active MEK5 mutant phosphorylated ERK5 at the TEY motif, resulting in the sequential autophosphorylation of multiple C-terminal residues, including Thr732 and Ser769/773/775. However, when ERK1/2 was selectively activated by an oncogenic RAS mutant, ERK5 phosphorylation at Thr732 was induced without affecting the phosphorylation status at TEY or Ser769/773/775. The Thr732 phosphorylation was U0126-sensitive and was observed in a kinase-dead mutant of ERK5 as well, suggesting that ERK1/2 can phosphorylate ERK5 at Thr732. This phosphorylation was also promoted by epidermal growth factor and nerve growth factor in HEK293 and PC12 cells, respectively. The ERK5–T732A mutant was localized in the cytosol under basal conditions. In contrast, ERK5 phosphorylated at Thr732 via the RAS-ERK1/2 pathway and ERK5–T732E, which mimics the phosphorylated form, were localized in both the nucleus and cytosol. Finally, ER–32A and U0126 blocked ERK5-dependent MEF2C transcriptional activity. Based on these findings, we propose a novel cross-talk mechanism in which ERK1/2, following activation by growth factor stimulation, phosphorylates ERK5 at Thr732. This phosphorylation event is responsible for ERK5 nuclear localization and ERK5-dependent transcription.
Collapse
Affiliation(s)
- Takuto Honda
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3 Aoba, Aramaki, Aoba-ku, Sendai 980–8578, Japan
| | - Yutaro Obara
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3 Aoba, Aramaki, Aoba-ku, Sendai 980–8578, Japan
- Department of Pharmacology, Yamagata University School of Medicine, 2–2–2 Iida-Nishi, Yamagata, 990–9585, Japan
- * E-mail:
| | - Arata Yamauchi
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3 Aoba, Aramaki, Aoba-ku, Sendai 980–8578, Japan
| | - Anthony D. Couvillon
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923, United States of America
| | - Justin J. Mason
- Cell Signaling Technology, 3 Trask Lane, Danvers, MA 01923, United States of America
| | - Kuniaki Ishii
- Department of Pharmacology, Yamagata University School of Medicine, 2–2–2 Iida-Nishi, Yamagata, 990–9585, Japan
| | - Norimichi Nakahata
- Department of Cellular Signaling, Graduate School of Pharmaceutical Sciences, Tohoku University, 6–3 Aoba, Aramaki, Aoba-ku, Sendai 980–8578, Japan
| |
Collapse
|
35
|
Nithianandarajah-Jones GN, Cross MJ. Analysis of VEGF-Mediated ERK5 Activity in Endothelial Cells. Methods Mol Biol 2015; 1332:133-142. [PMID: 26285750 DOI: 10.1007/978-1-4939-2917-7_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as big MAPK (BMK1), is the most recently identified member of the mitogen-activated kinase pathway. It is ubiquitously expressed in mammalian cells and is activated by a number of growth factors. Gene knockout studies in mice have shown a critical role for ERK5 cardiovascular development and vascular integrity. Current methods to detect ERK5 activation in cells have relied on in vitro kinase assays and more recently phospho-specific antibodies. However, antibodies produced against phosphorylated proteins can often yield inconsistent data. Phos-tag™ Acrylamide is a reagent that enables specific tagging of phosphorylated proteins, resulting in retarded mobility and a distinct upward band shift from the non-phosphorylated protein following SDS-PAGE. Here, we describe the details of Phosphate affinity SDS-PAGE of ERK5 using acrylamide-pendant Phos-tag™.
Collapse
Affiliation(s)
- Gopika N Nithianandarajah-Jones
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3GE, UK
| | | |
Collapse
|
36
|
Komaravolu RK, Adam C, Moonen JRA, Harmsen MC, Goebeler M, Schmidt M. Erk5 inhibits endothelial migration via KLF2-dependent down-regulation of PAK1. Cardiovasc Res 2014; 105:86-95. [DOI: 10.1093/cvr/cvu236] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
37
|
Wang X, Pesakhov S, Harrison JS, Danilenko M, Studzinski GP. ERK5 pathway regulates transcription factors important for monocytic differentiation of human myeloid leukemia cells. J Cell Physiol 2014; 229:856-67. [PMID: 24264602 DOI: 10.1002/jcp.24513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/18/2013] [Indexed: 12/25/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) are important transducers of external signals for cell growth, survival, and other cellular responses including cell differentiation. Several MAPK cascades are known with the MEK1/2-ERK1/2, JNK, and p38MAPKs receiving most attention, but the role of MEK5-ERK5 in intracellular signaling deserves more scrutiny, as this pathway transmits signals that can complement ERK/2 signaling. We hypothesized that the ERK5 pathway plays a role in the control of monocytic differentiation, which is disturbed in myeloid leukemia. We therefore examined the cellular phenotype and key molecular events which occur when human myeloid leukemia cells, acute (AML) or chronic (CML), are forced to differentiate by vitamin D derivatives (VDDs). This study was performed using established cell lines HL60 and U937, and primary cultures of blasts from 10 patients with ML. We found that ERK5 and its direct downstream target transcription factor MEF2C are upregulated by 1,25D in parallel with monocytic differentiation. Further, inhibition of ERK5 activity by specific pharmacological agents BIX02189 and XMD8-92 alters the phenotype of these cells by reducing the abundance of the VDD-induced surface monocytic marker CD14, and concomitantly increasing surface expression of the general myeloid marker CD11b. Similar results were obtained when the expression of ERK5 was reduced by siRNA or short hairpin (sh) RNA. ERK5 inhibition resulted in an expected decrease in MEF2C activation. We also found that in AML cells the transcription factor C/EBPβ is positively regulated, while C/EBPα is negatively regulated by ERK5. These findings provide new understanding of dysregulated differentiation in human myeloid leukemia.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology and Laboratory Medicine, Rutgers Biomedical and Health Sciences, Newark, New Jersey
| | | | | | | | | |
Collapse
|
38
|
Zhu H, Guariglia S, Li W, Brancho D, Wang ZV, Scherer PE, Chow CW. Role of extracellular signal-regulated kinase 5 in adipocyte signaling. J Biol Chem 2014; 289:6311-22. [PMID: 24425864 DOI: 10.1074/jbc.m113.506584] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Increased adiposity due to energy imbalance is a critical factor of the epidemic crisis of obesity and type II diabetes. In addition to the obvious role in energy storage, regulatory factors are secreted from adipose depots to control appetite and cellular homeostasis. Complex signaling cross-talks within adipocyte are also evident due to the metabolic and immune nature of adipose depots. Here, we uncover a role of extracellular signal-regulated kinase 5 (ERK5) in adipocyte signaling. We find that deletion of ERK5 in adipose depots (adipo-ERK5(-/-)) increases adiposity, in part, due to increased food intake. Dysregulated secretion of adipokines, leptin resistance, and impaired glucose handling are also found in adipo-ERK5(-/-) mice. Mechanistically, we show that ERK5 impinges on transcription factor NFATc4. Decreased phosphorylation at the conserved gate-keeping Ser residues and increased nuclear localization of NFATc4 are found in adipo-ERK5(-/-) mice. We also find attenuated PKA activation in adipo-ERK5(-/-) mice. In response to stimulation of β-adrenergic G-protein-coupled receptor, we find decreased NFATc4 phosphorylation and impaired PKA activation in adipo-ERK5(-/-) mice. Reduced cAMP accumulation and increased phosphodiesterase activity are also found. Together, these results demonstrate integration of ERK5 with NFATc4 nucleo-cytoplasmic shuttling and PKA activation in adipocyte signaling.
Collapse
Affiliation(s)
- Hong Zhu
- From the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | | | | | |
Collapse
|
39
|
ERK5/BMK1 is a novel target of the tumor suppressor VHL: implication in clear cell renal carcinoma. Neoplasia 2014; 15:649-59. [PMID: 23730213 DOI: 10.1593/neo.121896] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/20/2013] [Accepted: 03/24/2013] [Indexed: 11/18/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase (MAPK) 1, is implicated in a wide range of biologic processes, which include proliferation or vascularization. Here, we show that ERK5 is degraded through the ubiquitin-proteasome system, in a process mediated by the tumor suppressor von Hippel-Lindau (VHL) gene, through a prolyl hydroxylation-dependent mechanism. Our conclusions derive from transient transfection assays in Cos7 cells, as well as the study of endogenous ERK5 in different experimental systems such as MCF7, HMEC, or Caki-2 cell lines. In fact, the specific knockdown of ERK5 in pVHL-negative cell lines promotes a decrease in proliferation and migration, supporting the role of this MAPK in cellular transformation. Furthermore, in a short series of fresh samples from human clear cell renal cell carcinoma, high levels of ERK5 correlate with more aggressive and metastatic stages of the disease. Therefore, our results provide new biochemical data suggesting that ERK5 is a novel target of the tumor suppressor VHL, opening a new field of research on the role of ERK5 in renal carcinomas.
Collapse
|
40
|
Novodvorsky P, Chico TJ. The Role of the Transcription Factor KLF2 in Vascular Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 124:155-88. [DOI: 10.1016/b978-0-12-386930-2.00007-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Qiu F, Yang L, Fang W, Li Y, Yang R, Yang X, Deng J, Huang B, Xie C, Zhou Y, Lu J. A functional polymorphism in the promoter of ERK5 gene interacts with tobacco smoking to increase the risk of lung cancer in Chinese populations. Mutagenesis 2013; 28:561-7. [PMID: 23804708 DOI: 10.1093/mutage/get033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitogen/extracellular signal-regulated kinase-5 (MEK5)/extracellular signal-regulated protein kinase-5 (ERK5) pathway plays a pro-oncogenic role in tumourigenesis by anticell apoptosis, promoting cell proliferation and differentiation in response to extracellular stimuli. As overexpressed MEK5/ERK5 is involved in the development of lung cancer, we hypothesised that the single nucleotide polymorphisms (SNPs) in MEK5 and ERK5 genes may influence gene expression and thus be associated with lung cancer risk. Five putative functional polymorphisms (rs3743353T>C, rs7172582C>T and rs2278076A>G of MEK5 and rs3866958G>T and rs2233083C>T of ERK5) were genotyped in two independent case-control studies with a total of 1559 lung cancer patients and 1679 controls in southern and eastern Chinese population. We found the rs3866958G>T of ERK5 was significantly associated with lung cancer risk, while other SNPs were not. Compared with the rs3866958TG/TT genotypes, the GG genotype conferred an increased risk of lung cancer (odds ratio = 1.30, 95% confidence interval = 1.12-1.51, P = 5.0×10(-4)), and this effect was more pronounced in smokers, accompanying with a significant interaction with smoking (P interaction = 0.013). The GG genotype also had significant higher mRNA levels of ERK5 in lung cancer tissues than TG/TT genotypes (P = 1.0×10(-4)); the luciferase reporter with the G allele showed significant higher transcription activities than the T allele, especially after the treatment with tobacco extract in vitro. Our data indicated that the functional polymorphism rs3866958G>T in ERK5 was associated with an increased lung cancer risk in smokers by virtue of the positive interaction with smoking on promoting the ERK5 expression, which might be a valuable indicator for predicting lung cancer risk in smokers.
Collapse
Affiliation(s)
- Fuman Qiu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Obara Y. [Roles of ERK5 in neuronal cells]. Nihon Yakurigaku Zasshi 2013; 141:251-5. [PMID: 23665555 DOI: 10.1254/fpj.141.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Frueh J, Maimari N, Homma T, Bovens SM, Pedrigi RM, Towhidi L, Krams R. Systems biology of the functional and dysfunctional endothelium. Cardiovasc Res 2013; 99:334-41. [PMID: 23650287 DOI: 10.1093/cvr/cvt108] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This review provides an overview of the effect of blood flow on endothelial cell (EC) signalling pathways, applying microarray technologies to cultured cells, and in vivo studies of normal and atherosclerotic animals. It is found that in cultured ECs, 5-10% of genes are up- or down-regulated in response to fluid flow, whereas only 3-6% of genes are regulated by varying levels of fluid flow. Of all genes, 90% are regulated by the steady part of fluid flow and 10% by pulsatile components. The associated gene profiles show high variability from experiment to experiment depending on experimental conditions, and importantly, the bioinformatical methods used to analyse the data. Despite this high variability, the current data sets can be summarized with the concept of endothelial priming. In this concept, fluid flows confer protection by an up-regulation of anti-atherogenic, anti-thrombotic, and anti-inflammatory gene signatures. Consequently, predilection sites of atherosclerosis, which are associated with low-shear stress, confer low protection for atherosclerosis and are, therefore, more sensitive to high cholesterol levels. Recent studies in intact non-atherosclerotic animals confirmed these in vitro studies, and suggest that a spatial component might be present. Despite the large variability, a few signalling pathways were consistently present in the majority of studies. These were the MAPK, the nuclear factor-κB, and the endothelial nitric oxide synthase-NO pathways.
Collapse
Affiliation(s)
- Jennifer Frueh
- Department of Bioengineering, Royal School of Mines, Imperial College London, Exhibition Road, SW7 2AZ London, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Wu K, Tian S, Zhou H, Wu Y. Statins protect human endothelial cells from TNF-induced inflammation via ERK5 activation. Biochem Pharmacol 2013; 85:1753-60. [PMID: 23608189 DOI: 10.1016/j.bcp.2013.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 12/21/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) exert pleiotropic effects on the cardiovascular system, in part through a decrease in reactive oxygen species (ROS) formation and reduction of vascular inflammation. To elucidate the molecular mechanisms involved in these effects, we investigated the effect of statins on TNF-α-induced ROS production, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) expression in human aortic endothelial cells (HAECs). Exposure of HAECs to TNF-α caused production of ROS via Rac-1 membrane translocation and activation. The Rac-1 activation and ROS liberation mediated TNF-stimulated NF-κB activation and the subsequent VCAM-1 and ICAM-1 expression. Extracellular-signal-regulated kinase 5 (ERK5) plays a central role in inhibiting endothelial inflammation. Immune complex kinase assay of protein extracts from HAECs treated with atorvastatin revealed increased ERK5 activity in a time- and dose-dependent manner. In addition, pretreatment with atorvastatin inhibited TNF-α-induced ROS production and VCAM-1 and ICAM-1 expression. Chemical or genetic inhibition of ERK5 ablated the statins inhibition of Rac-1 activation, ROS formation, NF-κB, VCAM-1 and ICAM-1 expression induced by TNF-α. Taken together, statins, via ERK5 activation, suppress TNF-stimulated Rac-1 activation, ROS generation, NF-κB activation and VCAM-1 and ICAM-1 expression in human ECs, which provides a novel explanation for the pleiotropic effects of statins that benefit the cardiovascular system.
Collapse
Affiliation(s)
- Ke Wu
- Center for Animal Experiment/ABSL-3 Laboratory, Wuhan University, Hubei 430071, China
| | | | | | | |
Collapse
|
45
|
Pritchard AL, Hayward NK. Molecular pathways: mitogen-activated protein kinase pathway mutations and drug resistance. Clin Cancer Res 2013; 19:2301-9. [PMID: 23406774 DOI: 10.1158/1078-0432.ccr-12-0383] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Receptor tyrosine kinases are a diverse family of transmembrane proteins that can activate multiple pathways upon ligation of the receptor, one of which is the series of mitogen-activated protein kinase (MAPK) signaling cascades. The MAPK pathways play critical roles in a wide variety of cancer types, from hematologic malignancies to solid tumors. Aberrations include altered expression levels and activation states of pathway components, which can sometimes be attributable to mutations in individual members. The V600E mutation of BRAF was initially described in 2002 and has been found at particularly high frequency in melanoma and certain subtypes of colorectal cancer. In the relatively short time since this discovery, a family of drugs has been developed that specifically target this mutated BRAF isoform, which, after results from phase I/II and III clinical trials, was granted U.S. Food and Drug Administration approval in August 2011. Although these drugs produce clinically meaningful increases in progression-free and overall survival, due to acquired resistance they have not improved mortality rates. New drugs targeting other members of the MAPK pathways are in clinical trials or advanced stages of development. It is hoped that combination therapies of these new drugs in conjunction with BRAF inhibitors will counteract the mechanisms of resistance and provide cures. The clinical implementation of next-generation sequencing is leading to a greater understanding of the genetic architecture of tumors, along with acquired mechanisms of drug resistance, which will guide the development of tumor-specific inhibitors and combination therapies in the future.
Collapse
Affiliation(s)
- Antonia L Pritchard
- Oncogenomics Research Group, CBCRC Building, Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia
| | | |
Collapse
|
46
|
Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation. Int J Inflam 2012; 2012:678190. [PMID: 22991685 PMCID: PMC3443607 DOI: 10.1155/2012/678190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/26/2012] [Indexed: 12/14/2022] Open
Abstract
Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.
Collapse
|
47
|
Nithianandarajah-Jones GN, Wilm B, Goldring CEP, Müller J, Cross MJ. ERK5: structure, regulation and function. Cell Signal 2012; 24:2187-96. [PMID: 22800864 DOI: 10.1016/j.cellsig.2012.07.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/09/2012] [Indexed: 01/06/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also termed big mitogen-activated protein kinase-1 (BMK1), is the most recently identified member of the mitogen-activated protein kinase (MAPK) family and consists of an amino-terminal kinase domain, with a relatively large carboxy-terminal of unique structure and function that makes it distinct from other MAPK members. It is ubiquitously expressed in numerous tissues and is activated by a variety of extracellular stimuli, such as cellular stresses and growth factors, to regulate processes such as cell proliferation and differentiation. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade plays a critical role in cardiovascular development and vascular integrity. Recent data points to a potential role in pathological conditions such as cancer and tumour angiogenesis. This review focuses on the physiological and pathological role of ERK5, the regulation of this kinase and the recent development of small molecule inhibitors of the ERK5 signalling cascade.
Collapse
Affiliation(s)
- Gopika N Nithianandarajah-Jones
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
48
|
Wilhelmsen K, Mesa KR, Lucero J, Xu F, Hellman J. ERK5 protein promotes, whereas MEK1 protein differentially regulates, the Toll-like receptor 2 protein-dependent activation of human endothelial cells and monocytes. J Biol Chem 2012; 287:26478-94. [PMID: 22707717 DOI: 10.1074/jbc.m112.359489] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endothelial cell (EC) Toll-like receptor 2 (TLR2) activation up-regulates the expression of inflammatory mediators and of TLR2 itself and modulates important endothelial functions, including coagulation and permeability. We defined TLR2 signaling pathways in EC and tested the hypothesis that TLR2 signaling differs in EC and monocytes. We found that ERK5, heretofore unrecognized as mediating TLR2 activation in any cell type, is a central mediator of TLR2-dependent inflammatory signaling in human umbilical vein endothelial cells, primary human lung microvascular EC, and human monocytes. Additionally, we observed that, although MEK1 negatively regulates TLR2 signaling in EC, MEK1 promotes TLR2 signaling in monocytes. We also noted that activation of TLR2 led to the up-regulation of intracellularly expressed TLR2 and inflammatory mediators via NF-κB, JNK, and p38-MAPK. Finally, we found that p38-MAPK, JNK, ERK5, and NF-κB promote the attachment of human neutrophils to lung microvascular EC that were pretreated with TLR2 agonists. This study newly identifies ERK5 as a key regulator of TLR2 signaling in EC and monocytes and indicates that there are fundamental differences in TLR signaling pathways between EC and monocytes.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143,USA.
| | | | | | | | | |
Collapse
|
49
|
Gareau T, Lara GG, Shepherd RD, Krawetz R, Rancourt DE, Rinker KD, Kallos MS. Shear stress influences the pluripotency of murine embryonic stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med 2012; 8:268-78. [PMID: 22653738 DOI: 10.1002/term.1518] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 12/22/2011] [Accepted: 02/28/2012] [Indexed: 12/13/2022]
Abstract
Pluripotent embryonic stem cells (ESCs) have been used increasingly in research as primary material for various tissue-engineering applications. Pluripotency, or the ability to give rise to all cells of the body, is an important characteristic of ESCs. Traditional methods use leukaemia inhibitory factor (LIF) to maintain murine embryonic stem cell (mESC) pluripotency in static and bioreactor cultures. When LIF is removed from mESCs in static cultures, pluripotency genes are downregulated and the cultures will spontaneously differentiate. Recently we have shown the maintenance of pluripotency gene expression of mESCs in stirred suspension bioreactors during differentiation experiments in the absence of LIF. This is undesired in a differentiation experiment, where the goal is downregulation of pluripotency gene expression and upregulation of gene expression characteristic to the differentiation. Thus, the objective of this study was to examine how effectively different levels of shear stress [100 rpm (6 dyne/cm(2) ), 60 rpm (3 dyne/cm(2) )] maintained and influenced pluripotency in suspension bioreactors. The pluripotency markers Oct-4, Nanog, Sox-2 and Rex-1 were assessed using gene expression profiles and flow-cytometry analysis and showed that shear stress does maintain and influence the gene expression of certain pluripotency markers. Some significant differences between the two levels of shear stress were seen and the combination of shear stress and LIF was observed to synergistically increase the expression of certain pluripotency markers. Overall, this study provides a better understanding of the environmental conditions within suspension bioreactors and how these conditions affect the pluripotency of mESCs.
Collapse
Affiliation(s)
- Tia Gareau
- Pharmaceutical Production Research Facility (PPRF), Schulich School of Engineering, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Yin Y, She H, Li W, Yang Q, Guo S, Mao Z. Modulation of Neuronal Survival Factor MEF2 by Kinases in Parkinson's Disease. Front Physiol 2012; 3:171. [PMID: 22661957 PMCID: PMC3362091 DOI: 10.3389/fphys.2012.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder due to selective death of neurons in the substantia nigra pars compacta. The cause of cell death remains largely unknown. Myocyte enhancer factor 2 (MEF2) is a group of transcriptional factors required to regulate neuronal development, synaptic plasticity, as well as survival. Recent studies show that MEF2 functions are regulated in multiple subcellular organelles and suggest that dysregulation of MEF2 plays essential roles in the pathogenesis of PD. Many kinases associated with transcription, translation, protein misfolding, autophagy, and cellular energy homeostasis are involved in the neurodegenerative process. Following the first demonstration that mitogen-activated protein kinase p38 (p38 MAPK) directly phosphorylates and activates MEF2 to promote neuronal survival, several other kinase regulators of MEF2s have been identified. These include protein kinase A and extracellular signal regulated kinase 5 as positive MEF2 regulators, and cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β as negative regulators in response to diverse toxic signals relevant to PD. It is clear that MEF2 has emerged as a key point where survival and death signals converge to exert their regulatory effects, and dysregulation of MEF2 function in multiple subcellular organelles may underlie PD pathogenesis. Moreover, several other kinases such as leucine-rich repeat kinase 2 and PTEN-induced putative kinase 1 (PINK1) are of particular interest due to their potential interaction with MEF2.
Collapse
Affiliation(s)
- Yue Yin
- Institute of Plastic Surgery, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|