1
|
Ondondo B. Editorial: Overcoming challenges in microbial immunology: 2022. Front Immunol 2024; 15:1436631. [PMID: 38953029 PMCID: PMC11215133 DOI: 10.3389/fimmu.2024.1436631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Affiliation(s)
- Beatrice Ondondo
- Immunology Department, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| |
Collapse
|
2
|
Miramón P, Pountain AW, Lorenz MC. Candida auris-macrophage cellular interactions and transcriptional response. Infect Immun 2023; 91:e0027423. [PMID: 37815367 PMCID: PMC10652981 DOI: 10.1128/iai.00274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 10/11/2023] Open
Abstract
The pathogenic yeast Candida auris represents a global threat of the utmost clinical relevance. This emerging fungal species is remarkable in its resistance to commonly used antifungal agents and its persistence in the nosocomial settings. The innate immune system is one the first lines of defense preventing the dissemination of pathogens in the host. C. auris is susceptible to circulating phagocytes, and understanding the molecular details of these interactions may suggest routes to improved therapies. In this work, we examined the interactions of this yeast with macrophages. We found that macrophages avidly phagocytose C. auris; however, intracellular replication is not inhibited, indicating that C. auris resists the killing mechanisms imposed by the phagocyte. Unlike Candida albicans, phagocytosis of C. auris does not induce macrophage lysis. The transcriptional response of C. auris to macrophage phagocytosis is very similar to other members of the CUG clade (C. albicans, C. tropicalis, C. parapsilosis, C. lusitaniae), i.e., downregulation of transcription/translation and upregulation of alternative carbon metabolism pathways, transporters, and induction of oxidative stress response and proteolysis. Gene family expansions are common in this yeast, and we found that many of these genes are induced in response to macrophage co-incubation. Among these, amino acid and oligopeptide transporters, as well as lipases and proteases, are upregulated. Thus, C. auris shares key transcriptional signatures shared with other fungal pathogens and capitalizes on the expansion of gene families coding for potential virulence attributes that allow its survival, persistence, and evasion of the innate immune system.
Collapse
Affiliation(s)
- Pedro Miramón
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | | | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| |
Collapse
|
3
|
Taya T, Teruyama F, Gojo S. Host-directed therapy for bacterial infections -Modulation of the phagolysosome pathway. Front Immunol 2023; 14:1227467. [PMID: 37841276 PMCID: PMC10570837 DOI: 10.3389/fimmu.2023.1227467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Bacterial infections still impose a significant burden on humanity, even though antimicrobial agents have long since been developed. In addition to individual severe infections, the f fatality rate of sepsis remains high, and the threat of antimicrobial-resistant bacteria grows with time, putting us at inferiority. Although tremendous resources have been devoted to the development of antimicrobial agents, we have yet to recover from the lost ground we have been driven into. Looking back at the evolution of treatment for cancer, which, like infectious diseases, has the similarity that host immunity eliminates the lesion, the development of drugs to eliminate the tumor itself has shifted from a single-minded focus on drug development to the establishment of a treatment strategy in which the de-suppression of host immunity is another pillar of treatment. In infectious diseases, on the other hand, the development of therapies that strengthen and support the immune system has only just begun. Among innate immunity, the first line of defense that bacteria encounter after invading the host, the molecular mechanisms of the phagolysosome pathway, which begins with phagocytosis to fusion with lysosome, have been elucidated in detail. Bacteria have a large number of strategies to escape and survive the pathway. Although the full picture is still unfathomable, the molecular mechanisms have been elucidated for some of them, providing sufficient clues for intervention. In this article, we review the host defense mechanisms and bacterial evasion mechanisms and discuss the possibility of host-directed therapy for bacterial infection by intervening in the phagolysosome pathway.
Collapse
Affiliation(s)
- Toshihiko Taya
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Pharmacology Research Department, Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Zautner AE, Tersteegen A, Schiffner CJ, Ðilas M, Marquardt P, Riediger M, Delker AM, Mäde D, Kaasch AJ. Human Erysipelothrix rhusiopathiae infection via bath water – case report and genome announcement. Front Cell Infect Microbiol 2022; 12:981477. [PMID: 36353709 PMCID: PMC9637936 DOI: 10.3389/fcimb.2022.981477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Erysipelothrix rhusiopathiae is a facultative anaerobic, environmentally stable, Gram-positive rod that causes swine and avian erysipelas as a zoonotic pathogen. In humans, the main manifestations described are circumscribed erysipeloid, generalized erysipeloid, and endocarditis. Here, we report a 46-year-old female patient who presented to the physician because of redness and marked functio laesa of the hand, in terms of a pain-related restricted range of motion, and was treated surgically. E. rhusopathiae was detected in tissue biopsy. The source of infection was considered to be a pond in which both swine and, later, her dog bathed. The genome of the isolate was completely sequenced and especially the presumptive virulence associated factors as well as the presumptive antimicrobial resistance genes, in particular a predicted homologue to the multiple sugar metabolism regulator (MsmR), several predicted two-component signal transduction systems, three predicted hemolysins, two predicted neuraminidases, three predicted hyaluronate lyases, the surface protective antigen SpaA, a subset of predicted enzymes that potentially confer resistance to reactive oxygen species (ROS), several predicted phospholipases that could play a role in the escape from phagolysosomes into host cell cytoplasm as well as a predicted vancomycin resistance locus (vex23-vncRS) and three predicted MATE efflux transporters were investigated in more detail.
Collapse
Affiliation(s)
- Andreas E. Zautner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
- *Correspondence: Andreas E. Zautner,
| | - Aljoscha Tersteegen
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Conrad-Jakob Schiffner
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Milica Ðilas
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Pauline Marquardt
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Matthias Riediger
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Anna Maria Delker
- Universitätsklinik für Plastische, Ästhetische und Handchirurgie Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Dietrich Mäde
- Landesamt für Verbraucherschutz Sachsen-Anhalt, Halle (Saale), Germany
| | - Achim J. Kaasch
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Fakultät der Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Yu Y, Zhang Z, Walpole GFW, Yu Y. Kinetics of phagosome maturation is coupled to their intracellular motility. Commun Biol 2022; 5:1014. [PMID: 36163370 PMCID: PMC9512794 DOI: 10.1038/s42003-022-03988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Immune cells degrade internalized pathogens in phagosomes through sequential biochemical changes. The degradation must be fast enough for effective infection control. The presumption is that each phagosome degrades cargos autonomously with a distinct but stochastic kinetic rate. However, here we show that the degradation kinetics of individual phagosomes is not stochastic but coupled to their intracellular motility. By engineering RotSensors that are optically anisotropic, magnetic responsive, and fluorogenic in response to degradation activities in phagosomes, we monitored cargo degradation kinetics in single phagosomes simultaneously with their translational and rotational dynamics. We show that phagosomes that move faster centripetally are more likely to encounter and fuse with lysosomes, thereby acidifying faster and degrading cargos more efficiently. The degradation rates increase nearly linearly with the translational and rotational velocities of phagosomes. Our results indicate that the centripetal motion of phagosomes functions as a clock for controlling the progression of cargo degradation.
Collapse
Affiliation(s)
- Yanqi Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Zihan Zhang
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Glenn F W Walpole
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.
| |
Collapse
|
6
|
Santecchia I, Bonhomme D, Papadopoulos S, Escoll P, Giraud-Gatineau A, Moya-Nilges M, Vernel-Pauillac F, Boneca IG, Werts C. Alive Pathogenic and Saprophytic Leptospires Enter and Exit Human and Mouse Macrophages With No Intracellular Replication. Front Cell Infect Microbiol 2022; 12:936931. [PMID: 35899053 PMCID: PMC9310662 DOI: 10.3389/fcimb.2022.936931] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 02/03/2023] Open
Abstract
Leptospira interrogans are pathogenic bacteria responsible for leptospirosis, a zoonosis impacting 1 million people per year worldwide. Leptospires can infect all vertebrates, but not all hosts develop similar symptoms. Human and cattle may suffer from mild to acute illnesses and are therefore considered as sensitive to leptospirosis. In contrast, mice and rats remain asymptomatic upon infection, although they get chronically colonized in their kidneys. Upon infection, leptospires are stealth pathogens that partially escape the recognition by the host innate immune system. Although leptospires are mainly extracellular bacteria, it was suggested that they could also replicate within macrophages. However, contradictory data in the current literature led us to reevaluate these findings. Using a gentamicin-protection assay coupled to high-content (HC) microscopy, we observed that leptospires were internalized in vivo upon peritoneal infection of C57BL/6J mice. Additionally, three different serotypes of pathogenic L. interrogans and the saprophytic L. biflexa actively infected both human (PMA differentiated) THP1 and mouse RAW264.7 macrophage cell lines. Next, we assessed the intracellular fate of leptospires using bioluminescent strains, and we observed a drastic reduction in the leptospiral intracellular load between 3 h and 6 h post-infection, suggesting that leptospires do not replicate within these cells. Surprisingly, the classical macrophage microbicidal mechanisms (phagocytosis, autophagy, TLR-mediated ROS, and RNS production) were not responsible for the observed decrease. Finally, we demonstrated that the reduction in the intracellular load was associated with an increase of the bacteria in the supernatant, suggesting that leptospires exit both human and murine macrophages. Overall, our study reevaluated the intracellular fate of leptospires and favors an active entrance followed by a rapid exit, suggesting that leptospires do not have an intracellular lifestyle in macrophages.
Collapse
Affiliation(s)
- Ignacio Santecchia
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Delphine Bonhomme
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Stylianos Papadopoulos
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, Unité Biologie des Bactéries Intracellulaires, Paris, France
| | - Alexandre Giraud-Gatineau
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, Unité de Biologie des Spirochètes, Paris, France
| | - Maryse Moya-Nilges
- Institut Pasteur, Université Cité Paris, Plateforme de Bio-imagerie Ultrastructurale, Paris, France
| | - Frédérique Vernel-Pauillac
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| | - Catherine Werts
- Institut Pasteur, Université Cité Paris, CNRS UMR6047, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| |
Collapse
|
7
|
Bulati M, Busà R, Carcione C, Iannolo G, Di Mento G, Cuscino N, Di Gesù R, Piccionello AP, Buscemi S, Carreca AP, Barbera F, Monaco F, Cardinale F, Conaldi PG, Douradinha B. Klebsiella pneumoniae Lipopolysaccharides Serotype O2afg Induce Poor Inflammatory Immune Responses Ex Vivo. Microorganisms 2021; 9:microorganisms9061317. [PMID: 34204279 PMCID: PMC8234205 DOI: 10.3390/microorganisms9061317] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 01/05/2023] Open
Abstract
Currently, Klebsiella pneumoniae is a pathogen of clinical relevance due to its plastic ability of acquiring resistance genes to multiple antibiotics. During K. pneumoniae infections, lipopolysaccharides (LPS) play an ambiguous role as they both activate immune responses but can also play a role in immune evasion. The LPS O2a and LPS O2afg serotypes are prevalent in most multidrug resistant K. pneumoniae strains. Thus, we sought to understand if those two particular LPS serotypes were involved in a mechanism of immune evasion. We have extracted LPS (serotypes O1, O2a and O2afg) from K. pneumoniae strains and, using human monocytes ex vivo, we assessed the ability of those LPS antigens to induce the production of pro-inflammatory cytokines and chemokines. We observed that, when human monocytes are incubated with LPS serotypes O1, O2a or O2afg strains, O2afg and, to a lesser extent, O2a but not O1 failed to elicit the production of pro-inflammatory cytokines and chemokines, which suggests a role in immune evasion. Our preliminary data also shows that nuclear translocation of NF-κB, a process which regulates an immune response against infections, occurs in monocytes incubated with LPS O1 and, to a smaller extent, with LPS O2a, but not with the LPS serotype O2afg. Our results indicate that multidrug resistant K. pneumoniae expressing LPS O2afg serotypes avoid an initial inflammatory immune response and, consequently, are able to systematically spread inside the host unharmed, which results in the several pathologies associated with this bacterium.
Collapse
Affiliation(s)
- Matteo Bulati
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Rosalia Busà
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Claudia Carcione
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
| | - Gioacchin Iannolo
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Giuseppina Di Mento
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Nicola Cuscino
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, 90133 Palermo, Italy; (A.P.P.); (S.B.)
| | - Silvestre Buscemi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies-STEBICEF, University of Palermo, 90133 Palermo, Italy; (A.P.P.); (S.B.)
| | | | - Floriana Barbera
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Francesco Monaco
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Francesca Cardinale
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Pier Giulio Conaldi
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
| | - Bruno Douradinha
- Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta, Specializzazione (IRCCS-ISMETT), 90127 Palermo, Italy; (M.B.); (R.B.); (G.I.); (G.D.M.); (N.C.); (F.B.); (F.M.); (F.C.); (P.G.C.)
- Fondazione Ri.MED, 90133 Palermo, Italy; (C.C.); (R.D.G.); (A.P.C.)
- Correspondence: ; Tel.: +39-091-2192649; Fax: +39-091-2192423
| |
Collapse
|
8
|
Jacobovitz MR, Rupp S, Voss PA, Maegele I, Gornik SG, Guse A. Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. Nat Microbiol 2021; 6:769-782. [PMID: 33927382 PMCID: PMC7611106 DOI: 10.1038/s41564-021-00897-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/25/2021] [Indexed: 02/02/2023]
Abstract
Alveolata comprises diverse taxa of single-celled eukaryotes, many of which are renowned for their ability to live inside animal cells. Notable examples are apicomplexan parasites and dinoflagellate symbionts, the latter of which power coral reef ecosystems. Although functionally distinct, they evolved from a common, free-living ancestor and must evade their host's immune response for persistence. Both the initial cellular events that gave rise to this intracellular lifestyle and the role of host immune modulation in coral-dinoflagellate endosymbiosis are poorly understood. Here, we use a comparative approach in the cnidarian endosymbiosis model Aiptasia, which re-establishes endosymbiosis with free-living dinoflagellates every generation. We find that uptake of microalgae is largely indiscriminate, but non-symbiotic microalgae are expelled by vomocytosis, while symbionts induce host cell innate immune suppression and form a lysosomal-associated membrane protein 1-positive niche. We demonstrate that exogenous immune stimulation results in symbiont expulsion and, conversely, inhibition of canonical Toll-like receptor signalling enhances infection of host animals. Our findings indicate that symbiosis establishment is dictated by local innate immune suppression, to circumvent expulsion and promote niche formation. This work provides insight into the evolution of the cellular immune response and key steps involved in mediating endosymbiotic interactions.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sebastian Rupp
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Philipp A Voss
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Ira Maegele
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sebastian G Gornik
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Annika Guse
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
9
|
Yi J, Wang Y, Zhang H, Deng X, Xi J, Li H, Yang N, Ma Z, Wang Y, Chen C. Interferon-Inducible Transmembrane Protein 3-Containing Exosome as a New Carrier for the Cell-to-Cell Transmission of Anti- Brucella Activity. Front Vet Sci 2021; 8:642968. [PMID: 33816587 PMCID: PMC8010673 DOI: 10.3389/fvets.2021.642968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 01/18/2023] Open
Abstract
Exosomes are small extracellular vesicles that are released from cells and that function in intercellular communication. Recently, interferon-inducible transmembrane protein 3 (IFITM3) has been identified as a highly effective anti-intracellular pathogen protein that can inhibit the invasion of a wide range of pathogenic microorganisms. However, whether Brucella infection induces secretion of exosomes and whether these exosomes contain IFITM3 protein remain unknown. Here, we focused on the immune function of extracellular IFITM3 protein in the process of Brucella infection. This study is the first to show that Brucella melitensis strain M5 (Brucella M5) can stimulate macrophages to secrete large amounts of exosomes. Most importantly, we identified exosomes from Brucella M5-infected cells that were rich in molecules of IFITM3, and these exosomes could transmit the IFITM3 from one cell to another, thereby effectively inhibiting the intracellular survival of Brucella. Moreover, immunization with exosomes carrying IFITM3 decreased mouse spleen tissue damage and spleen colony forming unit (CFU), leading to the establishment of an anti-Brucella state in mice. In conclusion, our findings provide new insights into the anti-Brucella mechanism of IFITM3-containg exosomes, thus providing a theoretical foundation for systematic elaboration of the mechanisms of Brucella infection and host immunity. The results provide new ideas for the development of candidate vaccines for Brucella.
Collapse
Affiliation(s)
- Jihai Yi
- College of Animal Science and Technology, Shihezi University, Shihezi, China.,Key Laboratory of Control and Prevention of Animal Disease, Xinjiang Production & Construction Corps, Shihezi, China
| | - Yueli Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Huan Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xiaoyu Deng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jing Xi
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Honghuan Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ningning Yang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Human Fungal Pathogens: Diversity, Genomics, and Preventions. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60659-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Polyphosphate is an extracellular signal that can facilitate bacterial survival in eukaryotic cells. Proc Natl Acad Sci U S A 2020; 117:31923-31934. [PMID: 33268492 DOI: 10.1073/pnas.2012009117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Polyphosphate is a linear chain of phosphate residues and is present in organisms ranging from bacteria to humans. Pathogens such as Mycobacterium tuberculosis accumulate polyphosphate, and reduced expression of the polyphosphate kinase that synthesizes polyphosphate decreases their survival. How polyphosphate potentiates pathogenicity is poorly understood. Escherichia coli K-12 do not accumulate detectable levels of extracellular polyphosphate and have poor survival after phagocytosis by Dictyostelium discoideum or human macrophages. In contrast, Mycobacterium smegmatis and Mycobacterium tuberculosis accumulate detectable levels of extracellular polyphosphate, and have relatively better survival after phagocytosis by D. discoideum or macrophages. Adding extracellular polyphosphate increased E. coli survival after phagocytosis by D. discoideum and macrophages. Reducing expression of polyphosphate kinase 1 in M. smegmatis reduced extracellular polyphosphate and reduced survival in D. discoideum and macrophages, and this was reversed by the addition of extracellular polyphosphate. Conversely, treatment of D. discoideum and macrophages with recombinant yeast exopolyphosphatase reduced the survival of phagocytosed M. smegmatis or M. tuberculosis D. discoideum cells lacking the putative polyphosphate receptor GrlD had reduced sensitivity to polyphosphate and, compared to wild-type cells, showed increased killing of phagocytosed E. coli and M. smegmatis Polyphosphate inhibited phagosome acidification and lysosome activity in D. discoideum and macrophages and reduced early endosomal markers in macrophages. Together, these results suggest that bacterial polyphosphate potentiates pathogenicity by acting as an extracellular signal that inhibits phagosome maturation.
Collapse
|
12
|
de Lima HG, Pinke KH, Lopes MMR, Buzalaf CP, Campanelli AP, Lara VS. Mast cells exhibit intracellular microbicidal activity against Aggregatibacter actinomycetemcomitans. J Periodontal Res 2020; 55:744-752. [PMID: 32725826 DOI: 10.1111/jre.12763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/27/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Several studies have demonstrated that mast cells are equipped with versatile tools to combat and kill bacteria. Additionally, mast cells produce and secrete a variety of mediators, which either regulate the host's immune system or directly attack bacteria. In this study, the intracellular microbicidal capacity of mast cells against Aggregatibacter actinomycetemcomitans was evaluated. METHODS Murine mast cells were challenged in vitro with A actinomycetemcomitans for 3, 5, 10, and 24 hours. Subsequently, the colony-forming units were counted. Additionally, the production and release of nitric oxide and hydrogen peroxide were analyzed by DAF-FM diacetate, the Griess reaction, and the Amplex Red kit, respectively. Cell death was evaluated using FITC Annexin V and propidium iodide staining. RESULTS Mast cells are able to efficiently eliminate periodontopathogen, with best results after 10 hours of intracellular challenge. The production/release of nitric oxide-and to a lesser extent of hydrogen peroxide-by mast cells was in agreement with its microbicidal capacity. Ninety percent of the mast cells maintained their cellular viability even after 24 hours of bacterial challenge. CONCLUSIONS This is-to the best of our knowledge-the first report to describe the intracellular microbicidal activity of mast cells against A actinomycetemcomitans, concerning the production and release of potentially bactericidal substances. Further, the low number of cell deaths confirms that the decreased number of colony-forming units was due to the higher antimicrobial activity of mast cells. The results highlight the importance of these cells in the defense mechanisms of biofilm-induced periodontal disease.
Collapse
Affiliation(s)
- Heliton G de Lima
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Karen H Pinke
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Marcelo M R Lopes
- Integrated Research Center, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Camila P Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana Paula Campanelli
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Vanessa S Lara
- Department of Surgery, Stomatology, Pathology and Radiology, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
13
|
Pikula J, Heger T, Bandouchova H, Kovacova V, Nemcova M, Papezikova I, Piacek V, Zajíčková R, Zukal J. Phagocyte activity reflects mammalian homeo- and hetero-thermic physiological states. BMC Vet Res 2020; 16:232. [PMID: 32631329 PMCID: PMC7339577 DOI: 10.1186/s12917-020-02450-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 06/30/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Emergence of both viral zoonoses from bats and diseases that threaten bat populations has highlighted the necessity for greater insights into the functioning of the bat immune system. Particularly when considering hibernating temperate bat species, it is important to understand the seasonal dynamics associated with immune response. Body temperature is one of the factors that modulates immune functions and defence mechanisms against pathogenic agents in vertebrates. To better understand innate immunity mediated by phagocytes in bats, we measured respiratory burst and haematology and blood chemistry parameters in heterothermic greater mouse-eared bats (Myotis myotis) and noctules (Nyctalus noctula) and homeothermic laboratory mice (Mus musculus). RESULTS Bats displayed similar electrolyte levels and time-related parameters of phagocyte activity, but differed in blood profile parameters related to metabolism and red blood cell count. Greater mouse-eared bats differed from mice in all phagocyte activity parameters and had the lowest phagocytic activity overall, while noctules had the same quantitative phagocytic values as mice. Homeothermic mice were clustered separately in a high phagocyte activity group, while both heterothermic bat species were mixed in two lower phagocyte activity clusters. Stepwise regression identified glucose, white blood cell count, haemoglobin, total dissolved carbon dioxide and chloride variables as the best predictors of phagocyte activity. White blood cell counts, representing phagocyte numbers available for respiratory burst, were the best predictors of both time-related and quantitative parameters of phagocyte activity. Haemoglobin, as a proxy variable for oxygen available for uptake by phagocytes, was important for the onset of phagocytosis. CONCLUSIONS Our comparative data indicate that phagocyte activity reflects the physiological state and blood metabolic and cellular characteristics of homeothermic and heterothermic mammals. However, further studies elucidating trade-offs between immune defence, seasonal lifestyle physiology, hibernation behaviour, roosting ecology and geographic patterns of immunity of heterothermic bat species will be necessary. An improved understanding of bat immune responses will have positive ramifications for wildlife and conservation medicine.
Collapse
Affiliation(s)
- Jiri Pikula
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic.
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Tomas Heger
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic.
| | - Hana Bandouchova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Veronika Kovacova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Monika Nemcova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Ivana Papezikova
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Vladimir Piacek
- Department of Ecology and Diseases of Zoo Animals, Game, Fish and Bees, University of Veterinary and Pharmaceutical Sciences Brno, Palackého třída 1946/1, 612 42, Brno, Czech Republic
| | - Renata Zajíčková
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Institute of Biostatistics and Analyses, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic
| | - Jan Zukal
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65, Brno, Czech Republic
| |
Collapse
|
14
|
Abstract
Edwardsiella piscicida is an Enterobacteriaceae that is abundant in water and causes food and waterborne infections in fish, animals, and humans. The bacterium causes Edwardsiellosis in farmed fish and can lead to severe economic losses in aquaculture worldwide. E. piscicida is an intracellular pathogen that can also cause systemic infection. Type III and type VI secretion systems are the bacterium’s most lethal weapons against host defenses. It also possesses multi-antibiotic resistant genes and is selected and enriched in the environment due to the overuse of antibiotics. Therefore, the bacterium has great potential to contribute to the evolution of the resistome. All these properties have made this bacterium a perfect model to study bacteria virulence mechanisms and the spread of antimicrobial genes in the environment. We summarize recent advance in E. piscicida biology and provide insights into future research in virulence mechanisms, vaccine development and novel therapeutics.
Collapse
Affiliation(s)
- Ka Yin Leung
- a Guangdong Technion - Israel Institute of Technology, Biotechnology and Food Engineering , Shantou , Guangdong , China
| | - Qiyao Wang
- b State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology , Shanghai , China.,c Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, East China University of Science and Technology , Shanghai , China.,d Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology , Shanghai , China
| | - Zhiyun Yang
- a Guangdong Technion - Israel Institute of Technology, Biotechnology and Food Engineering , Shantou , Guangdong , China
| | - Bupe A Siame
- e Department of Biology , Trinity Western University , Langley , BC , Canada
| |
Collapse
|
15
|
Tyml T, Date SV, Woyke T. A single-cell genome perspective on studying intracellular associations in unicellular eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190082. [PMID: 31587647 PMCID: PMC6792452 DOI: 10.1098/rstb.2019.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Single-cell genomics (SCG) methods provide a unique opportunity to analyse whole genome information at the resolution of an individual cell. While SCG has been extensively used to investigate bacterial and archaeal genomes, the technique has been rarely used to access the genetic makeup of uncultivated microbial eukaryotes. In this regard, the use of SCG can provide a wealth of information; not only do the methods allow exploration of the genome, they can also help elucidate the relationship between the cell and intracellular entities extant in nearly all eukaryotes. SCG enables the study of total eukaryotic cellular DNA, which in turn allows us to better understand the evolutionary history and diversity of life, and the physiological interactions that define complex organisms. This article is part of a discussion meeting issue ‘Single cell ecology’.
Collapse
Affiliation(s)
- Tomáš Tyml
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Global Viral, San Francisco, CA, USA
| | | | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
16
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
17
|
Du W, Li H, Tian B, Sai S, Gao Y, Lan T, Meng Y, Ding C. Development of nose-to-brain delivery of ketoconazole by nanostructured lipid carriers against cryptococcal meningoencephalitis in mice. Colloids Surf B Biointerfaces 2019; 183:110446. [PMID: 31465938 DOI: 10.1016/j.colsurfb.2019.110446] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/25/2019] [Accepted: 08/18/2019] [Indexed: 11/26/2022]
Abstract
Cryptococcus neoformans-mediated meningoencephalitis is a critical infectious disorder of the human central nervous system. However, efficient treatment for the disease is limited due to the poor penetration across the blood brain barrier (BBB). Here, we develop a nose-to-brain drug delivery system utilizing nanostructured lipid carriers (NLCs). We demonstrated that fluorescent-dye-loaded NLCs efficiently uptake into the cytoplasm of encapsulated C. neoformans cells. In comparison with current antifungal drugs, the ketoconazole (keto)-NLCs show significantly increased antifungal activity against C. neoformans in vivo under various growth conditions. The NLCs show enhanced tissue colonization properties. Importantly, using animal imaging analyses, NLCs are able to enter brain tissues via the olfactory bulb region by intranasal administration, bypassing the BBB. In addition, NLCs maintain prolonged residence in tissues. In mouse brain tissue, keto-NLCs showed significantly enhanced antifungal activity when administered intranasally, drastically dampening the C. neoformans burden. Taken together, NLCs not only improve the ketoconazole penetration efficiency against capsulated C. neoformans cells, but also boost the efficacy of antifungal drugs. Most importantly, keto-NLCs significantly contribute to the treatment of cryptococcal meningoencephalitis in mice by bypassing the BBB via the olfactory system.
Collapse
Affiliation(s)
- Wei Du
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Hailong Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Baocheng Tian
- School of Medicine, Binzhou Medical University, Yantai, China
| | - Sixiang Sai
- School of Medicine, Binzhou Medical University, Yantai, China
| | - Yiru Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Tian Lan
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China.
| |
Collapse
|
18
|
Kumar S, Devi S, Sood S, Kapila S, Narayan K, Shandilya S. Antibiotic resistance and virulence genes in nisin‐resistantEnterococcus faecalisisolated from raw buffalo milk modulate the innate functions of rat macrophages. J Appl Microbiol 2019; 127:897-910. [DOI: 10.1111/jam.14343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/02/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
Affiliation(s)
- S. Kumar
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Devi
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S.K. Sood
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Kapila
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - K.S. Narayan
- Animal Biochemistry Division National Dairy Research Institute Karnal Haryana India
| | - S. Shandilya
- Department of Medicine III University Hospital Carl Gustav Carus, Technische Universität Dresden Dresden Germany
| |
Collapse
|
19
|
Inpanathan S, Botelho RJ. The Lysosome Signaling Platform: Adapting With the Times. Front Cell Dev Biol 2019; 7:113. [PMID: 31281815 PMCID: PMC6595708 DOI: 10.3389/fcell.2019.00113] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomes are the terminal degradative compartment of autophagy, endocytosis and phagocytosis. What once was viewed as a simple acidic organelle in charge of macromolecular digestion has emerged as a dynamic organelle capable of integrating cellular signals and producing signal outputs. In this review, we focus on the concept that the lysosome surface serves as a platform to assemble major signaling hubs like mTORC1, AMPK, GSK3 and the inflammasome. These molecular assemblies integrate and facilitate cross-talk between signals such as amino acid and energy levels, membrane damage and infection, and ultimately enable responses such as autophagy, cell growth, membrane repair and microbe clearance. In particular, we review how molecular machinery like the vacuolar-ATPase proton pump, sestrins, the GATOR complexes, and the Ragulator, modulate mTORC1, AMPK, GSK3 and inflammation. We then elaborate how these signals control autophagy initiation and resolution, TFEB-mediated lysosome adaptation, lysosome remodeling, antigen presentation, inflammation, membrane damage repair and clearance. Overall, by being at the cross-roads for several membrane pathways, lysosomes have emerged as the ideal surveillance compartment to sense, integrate and elicit cellular behavior and adaptation in response to changing environmental and cellular conditions.
Collapse
Affiliation(s)
- Subothan Inpanathan
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
20
|
Inhibition of inflammasome activation by a clinical strain of Klebsiella pneumoniae impairs efferocytosis and leads to bacterial dissemination. Cell Death Dis 2018; 9:1182. [PMID: 30518854 PMCID: PMC6281591 DOI: 10.1038/s41419-018-1214-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/11/2023]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium responsible for severe cases of nosocomial pneumonia. During the infectious process, both neutrophils and monocytes migrate to the site of infection, where they carry out their effector functions and can be affected by different patterns of cell death. Our data show that clinical strains of K. pneumoniae have dissimilar mechanisms for surviving within macrophages; these mechanisms include modulation of microbicidal mediators and cell death. The A28006 strain induced high IL-1β production and pyroptotic cell death in macrophages; by contrast, the A54970 strain induced high IL-10 production and low IL-1β production by macrophages. Pyroptotic cell death induced by the A28006 strain leads to a significant increase in bacterial sensitivity to hydrogen peroxide, and efferocytosis of the pyroptotic cells results in efficient bacterial clearance both in vitro and in vivo. In addition, the A54970 strain was able to inhibit inflammasome activation and pyroptotic cell death by inducing IL-10 production. Here, for the first time, we present a K. pneumoniae strain able to inhibit inflammasome activation, leading to bacterial survival and dissemination in the host. The understanding of possible escape mechanisms is essential in the search for alternative treatments against multidrug-resistant bacteria.
Collapse
|
21
|
Dühring S, Ewald J, Germerodt S, Kaleta C, Dandekar T, Schuster S. Modelling the host-pathogen interactions of macrophages and Candida albicans using Game Theory and dynamic optimization. J R Soc Interface 2018; 14:rsif.2017.0095. [PMID: 28701506 PMCID: PMC5550964 DOI: 10.1098/rsif.2017.0095] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
Abstract
The release of fungal cells following macrophage phagocytosis, called non-lytic expulsion, is reported for several fungal pathogens. On one hand, non-lytic expulsion may benefit the fungus in escaping the microbicidal environment of the phagosome. On the other hand, the macrophage could profit in terms of avoiding its own lysis and being able to undergo proliferation. To analyse the causes of non-lytic expulsion and the relevance of macrophage proliferation in the macrophage–Candida albicans interaction, we employ Evolutionary Game Theory and dynamic optimization in a sequential manner. We establish a game-theoretical model describing the different strategies of the two players after phagocytosis. Depending on the parameter values, we find four different Nash equilibria and determine the influence of the systems state of the host upon the game. As our Nash equilibria are a direct consequence of the model parameterization, we can depict several biological scenarios. A parameter region, where the host response is robust against the fungal infection, is determined. We further apply dynamic optimization to analyse whether macrophage mitosis is relevant in the host–pathogen interaction of macrophages and C. albicans. For this, we study the population dynamics of the macrophage–C. albicans interactions and the corresponding optimal controls for the macrophages, indicating the best macrophage strategy of switching from proliferation to attacking fungal cells.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Jan Ewald
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Sebastian Germerodt
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Thomas Dandekar
- Biocenter, Department of Bioinformatics, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
22
|
Macrophage Polarization Alters Postphagocytosis Survivability of the Commensal Streptococcus gordonii. Infect Immun 2018; 86:IAI.00858-17. [PMID: 29229734 DOI: 10.1128/iai.00858-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Oral streptococci are generally considered commensal organisms; however, they are becoming recognized as important associate pathogens during the development of periodontal disease as well as being associated with several systemic diseases, including as a causative agent of infective endocarditis. An important virulence determinant of these bacteria is an ability to evade destruction by phagocytic cells, yet how this subversion occurs is mostly unknown. Using Streptococcus gordonii as a model commensal oral streptococcus that is also associated with disease, we find that resistance to reactive oxygen species (ROS) with an active ability to damage phagosomes allows the bacterium to avoid destruction within macrophages. This ability to survive relies not only on the ROS resistance capabilities of the bacterium but also on ROS production by macrophages, with both being required for maximal survival of internalized bacteria. Importantly, we also show that this dependence on ROS production by macrophages for resistance has functional significance: S. gordonii intracellular survival increases when macrophages are polarized toward an activated (M1) profile, which is known to result in prolonged phagosomal ROS production compared to that of alternatively (M2) polarized macrophages. We additionally find evidence of the bacterium being capable of both delaying the maturation of and damaging phagosomes. Taken together, these results provide essential insights regarding the mechanisms through which normally commensal oral bacteria can contribute to both local and systemic inflammatory disease.
Collapse
|
23
|
Ibrahim AS, Voelz K. The mucormycete-host interface. Curr Opin Microbiol 2017; 40:40-45. [PMID: 29107938 PMCID: PMC5733727 DOI: 10.1016/j.mib.2017.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 01/28/2023]
Abstract
Mucormycosis is a fungal infection with fulminant angioinvasion leading to high morbidity and mortality in susceptible individuals. The major predisposing conditions are uncontrolled diabetes, neutropenia, malignancies, receipt of a transplant and traumatic injury [1]. Over the past decade, mucormycosis has become an emerging fungal infection due to the increase in patient groups presenting with these pre-disposing conditions and our medical advances in diagnosing the infection [2-4]. Yet, we currently lack clinical interventions to treat mucormycosis effectively. This in turn is due to a lack of understanding of mucormycosis pathogenesis. Here, we discuss our current understanding of selected aspects of interactions at the mucormycete-host interface. We will highlight open questions that might guide future research directions for investigations into the pathogenesis of mucormycosis and potential innovative therapeutic approaches.
Collapse
Affiliation(s)
- Ashraf S Ibrahim
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute and David Geffen School of Medicine, Harbor - University of California, Los Angeles, UCLA Medical Center, Torrance, Los Angeles, CA, USA
| | - Kerstin Voelz
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
24
|
Coers J. Sweet host revenge: Galectins and GBPs join forces at broken membranes. Cell Microbiol 2017; 19:10.1111/cmi.12793. [PMID: 28973783 PMCID: PMC5680119 DOI: 10.1111/cmi.12793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/13/2022]
Abstract
Most bacterial pathogens enter and exit eukaryotic cells during their journey through the vertebrate host. In order to endure inside a eukaryotic cell, bacterial invaders commonly employ bacterial secretion systems to inject host cells with virulence factors that co-opt the host's membrane trafficking systems and thereby establish specialised pathogen-containing vacuoles (PVs) as intracellular niches permissive for microbial growth and survival. To defend against these microbial adversaries hiding inside PVs, host organisms including humans evolved an elaborate cell-intrinsic armoury of antimicrobial weapons that include noxious gases, antimicrobial peptides, degradative enzymes, and pore-forming proteins. This impressive defence machinery needs to be accurately delivered to PVs, in order to fight off vacuole-dwelling pathogens. Here, I discuss recent evidence that the presence of bacterial secretion systems at PVs and the associated destabilisation of PV membranes attract such antimicrobial delivery systems consisting of sugar-binding galectins as well as dynamin-like guanylate-binding proteins (GBPs). I will review recent advances in our understanding of intracellular immune recognition of PVs by galectins and GBPs, discuss how galectins and GBPs control host defence, and highlight important avenues of future research in this exciting area of cell-autonomous immunity.
Collapse
Affiliation(s)
- Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
25
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
26
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
27
|
Gilbert AS, Seoane PI, Sephton-Clark P, Bojarczuk A, Hotham R, Giurisato E, Sarhan AR, Hillen A, Velde GV, Gray NS, Alessi DR, Cunningham DL, Tournier C, Johnston SA, May RC. Vomocytosis of live pathogens from macrophages is regulated by the atypical MAP kinase ERK5. SCIENCE ADVANCES 2017; 3:e1700898. [PMID: 28835924 PMCID: PMC5559206 DOI: 10.1126/sciadv.1700898] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
Vomocytosis, or nonlytic extrusion, is a poorly understood process through which macrophages release live pathogens that they have failed to kill back into the extracellular environment. Vomocytosis is conserved across vertebrates and occurs with a diverse range of pathogens, but to date, the host signaling events that underpin expulsion remain entirely unknown. We use a targeted inhibitor screen to identify the MAP kinase ERK5 as a critical suppressor of vomocytosis. Pharmacological inhibition or genetic manipulation of ERK5 activity significantly raises vomocytosis rates in human macrophages, whereas stimulation of the ERK5 signaling pathway inhibits vomocytosis. Lastly, using a zebrafish model of cryptococcal disease, we show that reducing ERK5 activity in vivo stimulates vomocytosis and results in reduced dissemination of infection. ERK5 therefore represents the first host signaling regulator of vomocytosis to be identified and a potential target for the future development of vomocytosis-modulating therapies.
Collapse
Affiliation(s)
- Andrew S. Gilbert
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Paula I. Seoane
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Poppy Sephton-Clark
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Aleksandra Bojarczuk
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Richard Hotham
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Emanuele Giurisato
- Division of Molecular and Clinical Cancer, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Adil R. Sarhan
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Amy Hillen
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven–University of Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven–University of Leuven, Leuven, Belgium
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, SGM 628, Boston, MA 02115, USA
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland
| | - Debbie L. Cunningham
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Cathy Tournier
- Division of Molecular and Clinical Cancer, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Simon A. Johnston
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, UK
- Bateson Centre, University of Sheffield, Sheffield, UK
| | - Robin C. May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
28
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Front Cell Infect Microbiol 2017; 7:316. [PMID: 28752080 PMCID: PMC5508010 DOI: 10.3389/fcimb.2017.00316] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| |
Collapse
|
29
|
Transcriptome analysis of Streptococcus gallolyticus subsp. gallolyticus in interaction with THP-1 macrophage-like cells. PLoS One 2017; 12:e0180044. [PMID: 28672015 PMCID: PMC5495212 DOI: 10.1371/journal.pone.0180044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 06/08/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Streptococcus gallolyticus subsp. gallolyticus (S. gallolyticus) is a pathogen of infective endocarditis. It was observed previously that this bacterium survives longer in macrophages than other species and the phagocytic uptake by and survival in THP-1 macrophages is strain-dependent. METHODS The phagocytosis assay was performed with THP-1 macrophages. S. gallolyticus specific whole genome microarrays were used for transcriptome analysis. RESULTS Better survival in macrophages was observed for UCN34, BAA-2069 and ATCC43143 than for DSM16831 and LMG17956. S. gallolyticus strains show high resistance to tested bactericidal agents (acid, lysozyme and hydrogen peroxide). S. gallolyticus stimulates significant lower cytokine gene expression and causes less lysis of macrophages compared to the control strain Staphylococcus aureus. S. gallolyticus reacts to oxidative burst with a higher gene expression of NADH oxidase initially at the early phase. Expression of genes involved in D-alanylation of teichoic acid, carbohydrate metabolism and transport systems were upregulated thereafter. CONCLUSION S. gallolyticus is very resistant to bactericidal agents normally causing degradation of bacteria in phagolysosomes. Additionally, the D-alanylation of teichoic acid is an important factor for survival.
Collapse
|
30
|
Pauwels AM, Trost M, Beyaert R, Hoffmann E. Patterns, Receptors, and Signals: Regulation of Phagosome Maturation. Trends Immunol 2017; 38:407-422. [PMID: 28416446 PMCID: PMC5455985 DOI: 10.1016/j.it.2017.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/18/2017] [Accepted: 03/21/2017] [Indexed: 12/13/2022]
Abstract
Recognition of microbial pathogens and dead cells and their phagocytic uptake by specialized immune cells are essential to maintain host homeostasis. Phagosomes undergo fusion and fission events with endosomal and lysosomal compartments, a process called ‘phagosome maturation’, which leads to the degradation of the phagosomal content. However, many phagocytic cells also act as antigen-presenting cells and must balance degradation and peptide preservation. Emerging evidence indicates that receptor engagement by phagosomal cargo, as well as inflammatory mediators and cellular activation affect many aspects of phagosome maturation. Unsurprisingly, pathogens have developed strategies to hijack this machinery, thereby interfering with host immunity. Here, we highlight progress in this field, summarize findings on the impact of immune signals, and discuss consequences for pathogen elimination. Self and non-self immune signals are able to delay or accelerate phagosome maturation, and their effects are dependent on the phagocytic cell type, duration of stimulation, and whether the stimulus is particle bound or present in the cellular environment. Acceleration of phagosome maturation enhances pathogen killing, while a delay in phagosome maturation preserves antigenic peptides for presentation to T cells and to initiate adaptive immune responses. Besides its functions in pathogen killing and antigen presentation, the phagosome also functions as a signaling platform and interacts with other cell organelles. Some pathogens are able to arrest phagosome maturation to enhance their intraphagosomal survival and replication or to promote phagosomal escape. The latex bead phagocytosis model system combined with mass spectrometry is a powerful technique to analyze changes in the phagosomal proteome.
Collapse
Affiliation(s)
- Anne-Marie Pauwels
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthias Trost
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eik Hoffmann
- Unit of Molecular Signal Transduction in Inflammation, VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Current address: Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
31
|
Abraham P, Maliekal TT. Single cell biology beyond the era of antibodies: relevance, challenges, and promises in biomedical research. Cell Mol Life Sci 2017; 74:1177-1189. [PMID: 27714408 PMCID: PMC11107591 DOI: 10.1007/s00018-016-2382-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 01/05/2023]
Abstract
Research of the past two decades has proved the relevance of single cell biology in basic research and translational medicine. Successful detection and isolation of specific subsets is the key to understand their functional heterogeneity. Antibodies are conventionally used for this purpose, but their relevance in certain contexts is limited. In this review, we discuss some of these contexts, posing bottle neck for different fields of biology including biomedical research. With the advancement of chemistry, several methods have been introduced to overcome these problems. Even though microfluidics and microraft array are newer techniques exploited for single cell biology, fluorescence-activated cell sorting (FACS) remains the gold standard technique for isolation of cells for many biomedical applications, like stem cell therapy. Here, we present a comprehensive and comparative account of some of the probes that are useful in FACS. Further, we illustrate how these techniques could be applied in biomedical research. It is postulated that intracellular molecular markers like nucleostemin (GNL3), alkaline phosphatase (ALPL) and HIRA can be used for improving the outcome of cardiac as well as bone regeneration. Another field that could utilize intracellular markers is diagnostics, and we propose the use of specific peptide nucleic acid probes (PNPs) against certain miRNAs for cancer surgical margin prediction. The newer techniques for single cell biology, based on intracellular molecules, will immensely enhance the repertoire of possible markers for the isolation of cell types useful in biomedical research.
Collapse
Affiliation(s)
- Parvin Abraham
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India
| | - Tessy Thomas Maliekal
- Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
32
|
Abstract
Phagocytosis is the cellular internalization and sequestration of particulate matter into a `phagosome, which then matures into a phagolysosome. The phagolysosome then offers a specialized acidic and hydrolytic milieu that ultimately degrades the engulfed particle. In multicellular organisms, phagocytosis and phagosome maturation play two key physiological roles. First, phagocytic cells have an important function in tissue remodeling and homeostasis by eliminating apoptotic bodies, senescent cells and cell fragments. Second, phagocytosis is a critical weapon of the immune system, whereby cells like macrophages and neutrophils hunt and engulf a variety of pathogens and foreign particles. Not surprisingly, pathogens have evolved mechanisms to either block or alter phagocytosis and phagosome maturation, ultimately usurping the cellular machinery for their own survival. Here, we review past and recent discoveries that highlight how phagocytes recognize target particles, key signals that emanate after phagocyte-particle engagement, and how these signals help modulate actin-dependent remodeling of the plasma membrane that culminates in the release of the phagosome. We then explore processes related to early and late stages of phagosome maturation, which requires fusion with endosomes and lysosomes. We end this review by acknowledging that little is known about phagosome fission and even less is known about how phagosomes are resolved after particle digestion.
Collapse
|
33
|
New cell motility model observed in parasitic cnidarian Sphaerospora molnari (Myxozoa:Myxosporea) blood stages in fish. Sci Rep 2016; 6:39093. [PMID: 27982057 PMCID: PMC5159882 DOI: 10.1038/srep39093] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022] Open
Abstract
Cellular motility is essential for microscopic parasites, it is used to reach the host, migrate through tissues, or evade host immune reactions. Many cells employ an evolutionary conserved motor protein– actin, to crawl or glide along a substrate. We describe the peculiar movement of Sphaerospora molnari, a myxozoan parasite with proliferating blood stages in its host, common carp. Myxozoa are highly adapted parasitic cnidarians alternately infecting vertebrates and invertebrates. S. molnari blood stages (SMBS) have developed a unique “dancing” behaviour, using the external membrane as a motility effector to rotate and move the cell. SMBS movement is exceptionally fast compared to other myxozoans, non-directional and constant. The movement is based on two cytoplasmic actins that are highly divergent from those of other metazoans. We produced a specific polyclonal actin antibody for the staining and immunolabelling of S. molnari’s microfilaments since we found that neither commercial antibodies nor phalloidin recognised the protein or microfilaments. We show the in situ localization of this actin in the parasite and discuss the importance of this motility for evasion from the cellular host immune response in vitro. This new type of motility holds key insights into the evolution of cellular motility and associated proteins.
Collapse
|
34
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
35
|
Taylor-Smith LM, May RC. New weapons in the Cryptococcus infection toolkit. Curr Opin Microbiol 2016; 34:67-74. [PMID: 27522351 DOI: 10.1016/j.mib.2016.07.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 07/12/2016] [Indexed: 12/30/2022]
Abstract
The global burden of fungal infections is unacceptably high. The human fungal pathogen Cryptococcus neoformans causes cryptococcosis and accounts for a significant proportion of this burden. Cryptococci undergo a number of elaborate interactions with their hosts, including survival and proliferation within phagocytes as well as dissemination to the central nervous system and other tissues. In this review we highlight a number of exciting recent advances in the field of cryptococcal biology. In particular we discuss new insights into cryptococcal morphology and its impact on virulence, as well as describing novel findings revealing how cryptoccoci may 'talk' to each other.
Collapse
Affiliation(s)
- Leanne M Taylor-Smith
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robin C May
- Institute of Microbiology and Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
36
|
Vázquez CL, Rodgers A, Herbst S, Coade S, Gronow A, Guzman CA, Wilson MS, Kanzaki M, Nykjaer A, Gutierrez MG. The proneurotrophin receptor sortilin is required for Mycobacterium tuberculosis control by macrophages. Sci Rep 2016; 6:29332. [PMID: 27389464 PMCID: PMC4937236 DOI: 10.1038/srep29332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/16/2016] [Indexed: 02/05/2023] Open
Abstract
Sorting of luminal and membrane proteins into phagosomes is critical for the immune function of this organelle. However, little is known about the mechanisms that contribute to the spatiotemporal regulation of this process. Here, we investigated the role of the proneurotrophin receptor sortilin during phagosome maturation and mycobacterial killing. We show that this receptor is acquired by mycobacteria-containing phagosomes via interactions with the adaptor proteins AP-1 and GGAs. Interestingly, the phagosomal association of sortilin is critical for the delivery of acid sphingomyelinase (ASMase) and required for efficient phagosome maturation. Macrophages from Sort1(-/-) mice are less efficient in restricting the growth of Mycobacterium bovis BCG and M. tuberculosis. In vivo, Sort1(-/-) mice showed a substantial increase in cellular infiltration of neutrophils in their lungs and higher bacterial burden after infection with M. tuberculosis. Altogether, sortilin defines a pathway required for optimal intracellular mycobacteria control and lung inflammation in vivo.
Collapse
Affiliation(s)
- Cristina L Vázquez
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Angela Rodgers
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Susanne Herbst
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Stephen Coade
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Achim Gronow
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mark S Wilson
- Allergy and Anti-Helminth Immunity Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Anders Nykjaer
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - Maximiliano G Gutierrez
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| |
Collapse
|
37
|
Gupta A, Misra A, Deretic V. Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis. Adv Drug Deliv Rev 2016; 102:10-20. [PMID: 26829287 DOI: 10.1016/j.addr.2016.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/26/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022]
Abstract
One of the promising host-directed chemotherapeutic interventions in tuberculosis (TB) is based on inducing autophagy as an immune effector. Here we consider the strengths and weaknesses of potential autophagy-based pharmacological intervention. Using the existing drugs that induce autophagy is an option, but it has limitations given the broad role of autophagy in most cells, tissues, and organs. Thus, it may be desirable that the agent being used to modulate autophagy is applied in a targeted manner, e.g. delivered to affected tissues, with infected macrophages being an obvious choice. This review addresses the advantages and disadvantages of delivering drugs to induce autophagy in M. tuberculosis-infected macrophages. One option, already being tested in models, is to design particles for inhalation delivery to lung macrophages. The choice of drugs, drug release kinetics and intracellular residence times, non-target cell exposure and feasibility of use by patients is discussed. We term here this (still experimental) approach, of compartment-targeting, autophagy-based, host-directed therapy as "Track-II antituberculosis chemotherapy."
Collapse
|
38
|
Abstract
Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases.
Collapse
|
39
|
Brunke S, Mogavero S, Kasper L, Hube B. Virulence factors in fungal pathogens of man. Curr Opin Microbiol 2016; 32:89-95. [PMID: 27257746 DOI: 10.1016/j.mib.2016.05.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/25/2016] [Accepted: 05/17/2016] [Indexed: 01/29/2023]
Abstract
Human fungal pathogens are a commonly underestimated cause of severe diseases associated with high morbidity and mortality. Like other pathogens, their survival and growth in the host, as well as subsequent host damage, is thought to be mediated by virulence factors which set them apart from harmless microbes. In this review, we describe and discuss commonly employed strategies for fungal survival and growth in the host and how these affect the host-fungus interactions to lead to disease. While many of these strategies require host-specific virulence factors, more generally any fitness factor which allows growth under host-like conditions can be required for pathogenesis. Furthermore, we briefly summarize how different fungal pathogens are thought to damage the host. We find that in addition to a core of common activities relevant for growth, different groups of fungi employ different strategies which in spite of (or together with) the host's response can lead to disease.
Collapse
Affiliation(s)
- Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute Jena (HKI), Beutenbergstrasse 11a, 07745, Jena, Germany; Friedrich Schiller University, Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena, Germany.
| |
Collapse
|
40
|
Château A, Seifert HS. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages. Cell Microbiol 2016; 18:546-60. [PMID: 26426083 PMCID: PMC5240846 DOI: 10.1111/cmi.12529] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 09/17/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022]
Abstract
The human-adapted organism Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection. It readily colonizes the genital, rectal and nasalpharyngeal mucosa during infection. While it is well established that N. gonorrhoeae recruits and modulates the functions of polymorphonuclear leukocytes during infection, how N. gonorrhoeae interacts with macrophages present in infected tissue is not fully defined. We studied the interactions of N. gonorrhoeae with two human monocytic cell lines, THP-1 and U937, and primary monocytes, all differentiated into macrophages. Most engulfed bacteria were killed in the phagolysosome, but a subset of bacteria was able to survive and replicate inside the macrophages suggesting that those cells may be an unexplored cellular reservoir for N. gonorrhoeae during infection. N. gonorrhoeae was able to modulate macrophage apoptosis: N. gonorrhoeae induced apoptosis in THP-1 cells whereas it inhibited induced apoptosis in U937 cells and primary human macrophages. Furthermore, N. gonorrhoeae induced expression of inflammatory cytokines in macrophages, suggesting a role for macrophages in recruiting polymorphonuclear leukocytes to the site of infection. These results indicate macrophages may serve as a significant replicative niche for N. gonorrhoeae and play an important role in gonorrheal pathogenesis.
Collapse
Affiliation(s)
- Alice Château
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
41
|
Zou J, Shankar N. The opportunistic pathogenEnterococcus faecalisresists phagosome acidification and autophagy to promote intracellular survival in macrophages. Cell Microbiol 2016; 18:831-43. [DOI: 10.1111/cmi.12556] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Jun Zou
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City OK USA
| | - Nathan Shankar
- Department of Pharmaceutical Sciences; University of Oklahoma Health Sciences Center; Oklahoma City OK USA
| |
Collapse
|
42
|
Actin-Dependent Regulation of Borrelia burgdorferi Phagocytosis by Macrophages. Curr Top Microbiol Immunol 2016; 399:133-154. [DOI: 10.1007/82_2016_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
Jung YJ, Jun HK, Choi BK. Gingipain-dependent augmentation by Porphyromonas gingivalis of phagocytosis of Tannerella forsythia. Mol Oral Microbiol 2015; 31:457-471. [PMID: 26434368 DOI: 10.1111/omi.12139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/20/2022]
Abstract
In the pathogenesis of periodontitis, Porphyromonas gingivalis plays a role as a keystone pathogen that manipulates host immune responses leading to dysbiotic oral microbial communities. Arg-gingipains (RgpA and RgpB) and Lys-gingipain (Kgp) are responsible for the majority of bacterial proteolytic activity and play essential roles in bacterial virulence. Therefore, gingipains are often considered as therapeutic targets. This study investigated the role of gingipains in the modulation by P. gingivalis of phagocytosis of Tannerella forsythia by macrophages. Phagocytosis of T. forsythia was significantly enhanced by coinfection with P. gingivalis in a multiplicity of infection-dependent and gingipain-dependent manner. Mutation of either Kgp or Rgp in the coinfecting P. gingivalis resulted in attenuated enhancement of T. forsythia phagocytosis. Inhibition of coaggregation between the two bacterial species reduced phagocytosis of T. forsythia in mixed infection, and this coaggregation was dependent on gingipains. Inhibition of gingipain protease activities in coinfecting P. gingivalis abated the coaggregation and the enhancement of T. forsythia phagocytosis. However, the direct effect of protease activities of gingipains on T. forsythia seemed to be minimal. Although most of the phagocytosed T. forsythia were cleared in infected macrophages, more T. forsythia remained in cells coinfected with gingipain-expressing P. gingivalis than in cells coinfected with the gingipain-null mutant or infected only with T. forsythia at 24 and 48 h post-infection. Collectively, these results suggest that P. gingivalis, mainly via its gingipains, alters the clearance of T. forsythia, and provide some insights into the role of P. gingivalis as a keystone pathogen.
Collapse
Affiliation(s)
- Y-J Jung
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - H-K Jun
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - B-K Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea. .,Dental Research Institute, Seoul National University, Seoul, Korea.
| |
Collapse
|
44
|
Ranjbar S, Haridas V, Jasenosky LD, Falvo JV, Goldfeld AE. A Role for IFITM Proteins in Restriction of Mycobacterium tuberculosis Infection. Cell Rep 2015; 13:874-83. [PMID: 26565900 PMCID: PMC4916766 DOI: 10.1016/j.celrep.2015.09.048] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 08/10/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
The interferon (IFN)-induced transmembrane (IFITM) proteins are critical mediators of the host antiviral response. Here, we expand the role of IFITM proteins to host defense against intracellular bacterial infection by demonstrating that they restrict Mycobacterium tuberculosis (MTb) intracellular growth. Simultaneous knockdown of IFITM1, IFITM2, and IFITM3 by RNAi significantly enhances MTb growth in human monocytic and alveolar/epithelial cells, whereas individual overexpression of each IFITM impairs MTb growth in these cell types. Furthermore, MTb infection, Toll-like receptor 2 and 4 ligands, and several proinflammatory cytokines induce IFITM1–3 gene expression in human myeloid cells. We find that IFITM3 co-localizes with early and, in particular, late MTb phagosomes, and overexpression of IFITM3 enhances endosomal acidification in MTb-infected monocytic cells. These findings provide evidence that the antiviral IFITMs participate in the restriction of mycobacterial growth, and they implicate IFITM-mediated endosomal maturation in its antimycobacterial activity.
Collapse
Affiliation(s)
- Shahin Ranjbar
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA.
| | - Viraga Haridas
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Luke D Jasenosky
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - James V Falvo
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | - Anne E Goldfeld
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA.
| |
Collapse
|
45
|
Causes of upregulation of glycolysis in lymphocytes upon stimulation. A comparison with other cell types. Biochimie 2015; 118:185-94. [PMID: 26382968 DOI: 10.1016/j.biochi.2015.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/11/2015] [Indexed: 01/24/2023]
Abstract
In this review, we revisit the metabolic shift from respiration to glycolysis in lymphocytes upon activation, which is known as the Warburg effect in tumour cells. We compare the situation in lymphocytes with those in several other cell types, such as muscle cells, Kupffer cells, microglia cells, astrocytes, stem cells, tumour cells and various unicellular organisms (e.g. yeasts). We critically discuss and compare several explanations put forward in the literature for the observation that proliferating cells adopt this apparently less efficient pathway: hypoxia, poisoning of competitors by end products, higher ATP production rate, higher precursor supply, regulatory effects, and avoiding harmful effects (e.g. by reactive oxygen species). We conclude that in the case of lymphocytes, increased ATP production rate and precursor supply are the main advantages of upregulating glycolysis.
Collapse
|
46
|
Dühring S, Germerodt S, Skerka C, Zipfel PF, Dandekar T, Schuster S. Host-pathogen interactions between the human innate immune system and Candida albicans-understanding and modeling defense and evasion strategies. Front Microbiol 2015; 6:625. [PMID: 26175718 PMCID: PMC4485224 DOI: 10.3389/fmicb.2015.00625] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/08/2015] [Indexed: 12/13/2022] Open
Abstract
The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Sebastian Germerodt
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll InstituteJena, Germany
- Friedrich-Schiller-University JenaJena, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biozentrum, Universitaet WuerzburgWuerzburg, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University JenaJena, Germany
| |
Collapse
|
47
|
Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumacher MA, Ko DC, Heitman J. Calcineurin orchestrates dimorphic transitions, antifungal drug responses and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol 2015; 97:844-65. [PMID: 26010100 DOI: 10.1111/mmi.13071] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2015] [Indexed: 01/09/2023]
Abstract
Calcineurin plays essential roles in virulence and growth of pathogenic fungi and is a target of the natural products FK506 and Cyclosporine A. In the pathogenic mucoralean fungus Mucor circinelloides, calcineurin mutation or inhibition confers a yeast-locked phenotype indicating that calcineurin governs the dimorphic transition. Genetic analysis in this study reveals that two calcineurin A catalytic subunits (out of three) are functionally diverged. Homology modeling illustrates modes of resistance resulting from amino substitutions in the interface between each calcineurin subunit and the inhibitory drugs. In addition, we show how the dimorphic transition orchestrated by calcineurin programs different outcomes during host-pathogen interactions. For example, when macrophages phagocytose Mucor yeast, subsequent phagosomal maturation occurs, indicating host cells respond appropriately to control the pathogen. On the other hand, upon phagocytosis of spores, macrophages fail to form mature phagosomes. Cytokine production from immune cells differs following exposure to yeast versus spores (which germinate into hyphae). Thus, the morphogenic transition can be targeted as an efficient treatment option against Mucor infection. In addition, genetic analysis (including gene disruption and mutational studies) further strengthens the understanding of calcineurin and provides a foundation to develop antifungal agents targeting calcineurin to deploy against Mucor and other pathogenic fungi.
Collapse
Affiliation(s)
- Soo Chan Lee
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Alicia Li
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Silvia Calo
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Makoto Inoue
- Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nam K Tonthat
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Judith M Bain
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Johanna Louw
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Mari L Shinohara
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Immunology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lars P Erwig
- Division of Applied Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK.,Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Human Genome Variation, Duke University Medical Center, Durham, NC, 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
48
|
Kasper L, Seider K, Hube B. Intracellular survival of Candida glabrata in macrophages: immune evasion and persistence. FEMS Yeast Res 2015; 15:fov042. [PMID: 26066553 DOI: 10.1093/femsyr/fov042] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
Candida glabrata is a successful human opportunistic pathogen which causes superficial but also life-threatening systemic infections. During infection, C. glabrata has to cope with cells of the innate immune system such as macrophages, which belong to the first line of defense against invading pathogens. Candida glabrata is able to survive and even replicate inside macrophages while causing surprisingly low damage and cytokine release. Here, we present an overview of recent studies dealing with the interaction of C. glabrata with macrophages, from phagocytosis to intracellular growth and escape. We review the strategies of C. glabrata that permit intracellular survival and replication, including poor host cell activation, modification of phagosome maturation and phagosome pH, adaptation to antimicrobial activities, and mechanisms to overcome the nutrient limitations within the phagosome. In summary, these studies suggest that survival within macrophages may be an immune evasion and persistence strategy of C. glabrata during infection.
Collapse
Affiliation(s)
- Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | - Katja Seider
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, 07745 Jena, Germany Integrated Research and Treatment Center, Sepsis und Sepsisfolgen, Center for Sepsis Control and Care (CSCC), University Hospital, 07747 Jena, Germany Friedrich Schiller University, 07743 Jena, Germany
| |
Collapse
|
49
|
Smith LM, Dixon EF, May RC. The fungal pathogenCryptococcus neoformansmanipulates macrophage phagosome maturation. Cell Microbiol 2014; 17:702-13. [DOI: 10.1111/cmi.12394] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/23/2014] [Accepted: 11/10/2014] [Indexed: 01/05/2023]
Affiliation(s)
- Leanne M. Smith
- Institute of Microbiology and Infection and School of Biosciences; University of Birmingham; Birmingham UK
| | - Emily F. Dixon
- Institute of Microbiology and Infection and School of Biosciences; University of Birmingham; Birmingham UK
| | - Robin C. May
- Institute of Microbiology and Infection and School of Biosciences; University of Birmingham; Birmingham UK
- National Institute of Health Research Surgical Reconstruction and Microbiology Research Centre; Queen Elizabeth Hospital Birmingham; Birmingham UK
| |
Collapse
|
50
|
Gilbert AS, Wheeler RT, May RC. Fungal Pathogens: Survival and Replication within Macrophages. Cold Spring Harb Perspect Med 2014; 5:a019661. [PMID: 25384769 DOI: 10.1101/cshperspect.a019661] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The innate immune system is a critical line of defense against pathogenic fungi. Macrophages act at an early stage of infection, detecting and phagocytizing infectious propagules. To avoid killing at this stage, fungal pathogens use diverse strategies ranging from evasion of uptake to intracellular parasitism. This article will discuss five of the most important human fungal pathogens (Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, Coccidiodes immitis, and Histoplasma capsulatum) and consider the strategies and virulence factors adopted by each to survive and replicate within macrophages.
Collapse
Affiliation(s)
- Andrew S Gilbert
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine 04469 Graduate School of Biomedical Sciences and Engineering, University Hospitals of Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2TG, United Kingdom
| | - Robin C May
- Institute of Microbiology and Infection & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals of Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2TG, United Kingdom
| |
Collapse
|