1
|
Guo Q, Yang YX, Li DX, Ji XJ, Wu N, Wang YT, Ye C, Shi TQ. Advances in multi-enzyme co-localization strategies for the construction of microbial cell factory. Biotechnol Adv 2024; 77:108453. [PMID: 39278372 DOI: 10.1016/j.biotechadv.2024.108453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Biomanufacturing, driven by technologies such as synthetic biology, offers significant potential to advance the bioeconomy and promote sustainable development. It is anticipated to transform traditional manufacturing and become a key industry in future strategies. Cell factories are the core of biomanufacturing. The advancement of synthetic biology and growing market demand have led to the production of a greater variety of natural products and increasingly complex metabolic pathways. However, this progress also presents challenges, notably the conflict between natural product production and chassis cell growth. This conflict results in low productivity and yield, adverse side effects, metabolic imbalances, and growth retardation. Enzyme co-localization strategies have emerged as a promising solution. This article reviews recent progress and applications of these strategies in constructing cell factories for efficient natural product production. It comprehensively describes the applications of enzyme-based compartmentalization, metabolic pathway-based compartmentalization, and synthetic organelle-based compartmentalization in improving product titers. The article also explores future research directions and the prospects of combining multiple strategies with advanced technologies.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Na Wu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China.
| |
Collapse
|
2
|
Kleinsasser B, Garreis F, Musialik M, Zahn I, Kral B, Kutlu Z, Sahin A, Paulsen F, Schicht M. Molecular detection of lacrimal apparatus and ocular surface - related ABC transporter genes. Ann Anat 2024; 255:152272. [PMID: 38697581 DOI: 10.1016/j.aanat.2024.152272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
The ocular system is in constant interaction with the environment and with numerous pathogens. The ATP-binding cassette (ABC) transporters represent one of the largest groups among the transmembrane proteins. Their relevance has been demonstrated for their defense function against biotic and abiotic stress factors, for metabolic processes in tumors and for their importance in the development of resistance to drugs. The aim of this study was to analyze which ABC transporters are expressed at the ocular surface and in the human lacrimal apparatus. Using RT-PCR, all ABC transporters known to date in humans were examined in tissue samples from human cornea, conjunctiva, meibomian glands and lacrimal glands. The RT-PCR analyses revealed the presence of all ABC transporters in the samples examined, although the results for some of the 48 transporters known in human and analyzed were different in the various tissues. The present results provide information on the expression of ABC transporters at the mRNA level on the ocular surface and in the lacrimal system. Their detection forms the basis for follow-up studies at the protein level, which will provide more information about their physiological significance at the ocular surface and in the lacrimal system and which may explain pathological effects such as drug resistance.
Collapse
Affiliation(s)
- Benedikt Kleinsasser
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Fabian Garreis
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Musialik
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ingrid Zahn
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Barbara Kral
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Zeynep Kutlu
- Koc University School of Medicine, Rumelifeneri Yolu, Istanbul 34450, Turkey
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Martin Schicht
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
3
|
Bao X, Jia H, Zhang X, Tian S, Zhao Y, Li X, Lin P, Ma C, Wang P, Song CP, Zhu X. Mapping of cytosol-facing organelle outer membrane proximity proteome by proximity-dependent biotinylation in living Arabidopsis cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:7-23. [PMID: 38261530 DOI: 10.1111/tpj.16641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The cytosol-facing outer membrane (OM) of organelles communicates with other cellular compartments to exchange proteins, metabolites, and signaling molecules. Cellular surveillance systems also target OM-resident proteins to control organellar homeostasis and ensure cell survival under stress. However, the OM proximity proteomes have never been mapped in plant cells since using traditional approaches to discover OM proteins and identify their dynamically interacting partners remains challenging. In this study, we developed an OM proximity labeling (OMPL) system using biotin ligase-mediated proximity biotinylation to identify the proximity proteins of the OMs of mitochondria, chloroplasts, and peroxisomes in living Arabidopsis (Arabidopsis thaliana) cells. Using this approach, we mapped the OM proximity proteome of these three organelles under normal conditions and examined the effects of the ultraviolet-B (UV-B) or high light (HL) stress on the abundances of OM proximity proteins. We demonstrate the power of this system with the discovery of cytosolic factors and OM receptor candidates potentially involved in local protein translation and translocation. The candidate proteins that are involved in mitochondrion-peroxisome, mitochondrion-chloroplast, or peroxisome-chloroplast contacts, and in the organellar quality control system are also proposed based on OMPL analysis. OMPL-generated OM proximity proteomes are valuable sources of candidates for functional validation and suggest directions for further investigation of important questions in cell biology.
Collapse
Affiliation(s)
- Xinyue Bao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Huifang Jia
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaoyan Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sang Tian
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yanming Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiangyun Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Ping Lin
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chongyang Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Pengcheng Wang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
4
|
Wang-Heaton H, Wingard MC, Dalal S, Shook PL, Connelly BA, Johnson P, Nichols PL, Singh M, Singh K. ATM deficiency differentially affects expression of proteins related to fatty acid oxidation and oxidative stress in a sex-specific manner in response to Western-type diet prior to and following myocardial infarction. Life Sci 2024; 342:122541. [PMID: 38428572 PMCID: PMC10949412 DOI: 10.1016/j.lfs.2024.122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
AIMS Published work has shown that ataxia-telangiectasia mutated kinase (ATM) deficiency is associated with cardioprotective effects in Western-type diet (WD)-fed female mice. This study assessed the expression of proteins related to fatty acid oxidation (FAO) and oxidative stress in WD-fed male and female mouse hearts, and investigated if sex-specific cardioprotective effects in WD-fed female ATM-deficient mice are maintained following myocardial infarction (MI). MAIN METHODS Wild-type (WT) and ATM-deficient (hKO) mice (both sexes) were placed on WD for 14 weeks. Myocardial tissue from a subset of mice was used for western blot analyses, while another subset of WD-fed mice underwent MI. Heart function was analyzed by echocardiography prior to and 1 day post-MI. KEY FINDINGS CPT1B (mitochondrial FAO enzyme) expression was lower in male hKO-WD, while it was higher in female hKO-WD vs WT-WD. WD-mediated decrease in ACOX1 (peroxisomal FAO enzyme) expression was only observed in male WT-WD. PMP70 (transports fatty acyl-CoA across peroxisomal membrane) expression was lower in male hKO-WD vs WT-WD. Catalase (antioxidant enzyme) expression was higher, while Nox4 (pro-oxidant enzyme) expression was lower in female hKO-WD vs WT-WD. Heart function was better in female hKO-WD vs WT-WD. However, post-MI heart function was not significantly different among all MI groups. Post-MI, CPT1B and catalase expression was higher in male hKO-WD-MI vs WT-WD-MI, while Nox4 expression was higher in female hKO-WD-MI vs WT-WD-MI. SIGNIFICANCE Increased mitochondrial FAO and decreased oxidative stress contribute towards ATM deficiency-mediated cardioprotective effects in WD-fed female mice which are abolished post-MI with increased Nox4 expression.
Collapse
Affiliation(s)
- Hui Wang-Heaton
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mary C Wingard
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Suman Dalal
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Paige L Shook
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Barbara A Connelly
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Patrick Johnson
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Phillip L Nichols
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA; Center for Cardiovascular Risk Research, East Tennessee State University, Johnson City, TN, USA; James H Quillen Veterans Affairs Medical Center, Mountain Home, TN, USA.
| |
Collapse
|
5
|
Luo D, Shi L, Sun Z, Qi F, Liu H, Xue L, Li X, Liu H, Qu P, Zhao H, Dai X, Dong W, Zheng Z, Huang B, Fu L, Zhang X. Genome-Wide Association Studies of Embryogenic Callus Induction Rate in Peanut ( Arachis hypogaea L.). Genes (Basel) 2024; 15:160. [PMID: 38397150 PMCID: PMC10887910 DOI: 10.3390/genes15020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The capability of embryogenic callus induction is a prerequisite for in vitro plant regeneration. However, embryogenic callus induction is strongly genotype-dependent, thus hindering the development of in vitro plant genetic engineering technology. In this study, to examine the genetic variation in embryogenic callus induction rate (CIR) in peanut (Arachis hypogaea L.) at the seventh, eighth, and ninth subcultures (T7, T8, and T9, respectively), we performed genome-wide association studies (GWAS) for CIR in a population of 353 peanut accessions. The coefficient of variation of CIR among the genotypes was high in the T7, T8, and T9 subcultures (33.06%, 34.18%, and 35.54%, respectively), and the average CIR ranged from 1.58 to 1.66. A total of 53 significant single-nucleotide polymorphisms (SNPs) were detected (based on the threshold value -log10(p) = 4.5). Among these SNPs, SNPB03-83801701 showed high phenotypic variance and neared a gene that encodes a peroxisomal ABC transporter 1. SNPA05-94095749, representing a nonsynonymous mutation, was located in the Arahy.MIX90M locus (encoding an auxin response factor 19 protein) at T8, which was associated with callus formation. These results provide guidance for future elucidation of the regulatory mechanism of embryogenic callus induction in peanut.
Collapse
Affiliation(s)
- Dandan Luo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lei Shi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Ziqi Sun
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Feiyan Qi
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
| | - Hongfei Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lulu Xue
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaona Li
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Han Liu
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Pengyu Qu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Huanhuan Zhao
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiaodong Dai
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Wenzhao Dong
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Zheng Zheng
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Bingyan Huang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
| | - Liuyang Fu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyou Zhang
- Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture, Zhengzhou 450002, China
- Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- National Innovation Center for Bio-Breeding Industry, Xinxiang 453500, China
| |
Collapse
|
6
|
Wang Z, Su C, Zhang Y, Shangguan S, Wang R, Su J. Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: a review. Front Microbiol 2024; 14:1294182. [PMID: 38274755 PMCID: PMC10808364 DOI: 10.3389/fmicb.2023.1294182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Saccharomyces cerevisiae is a eukaryotic organism with a clear genetic background and mature gene operating system; in addition, it exhibits environmental tolerance. Therefore, S. cerevisiae is one of the most commonly used organisms for the synthesis of biological chemicals. The investigation of fatty acid catabolism in S. cerevisiae is crucial for the synthesis and accumulation of fatty acids and their derivatives, with β-oxidation being the predominant pathway responsible for fatty acid metabolism in this organism, occurring primarily within peroxisomes. The latest research has revealed distinct variations in β-oxidation among different fatty acids, primarily attributed to substrate preferences and disparities in the metabolic regulation of key enzymes involved in the S. cerevisiae fatty acid metabolic pathway. The synthesis of lipids, on the other hand, represents another crucial metabolic pathway for fatty acids. The present paper provides a comprehensive review of recent research on the key factors influencing the efficiency of fatty acid utilization, encompassing β-oxidation and lipid synthesis pathways. Additionally, we discuss various approaches for modifying β-oxidation to enhance the synthesis of fatty acids and their derivatives in S. cerevisiae, aiming to offer theoretical support and serve as a valuable reference for future studies.
Collapse
Affiliation(s)
- Zhaoyun Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Chunli Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Sifan Shangguan
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Key Laboratory of Shandong Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| |
Collapse
|
7
|
Park J, Kim H, Alabdalla L, Mishra S, Mchaourab H. Generation and characterization of a zebrafish knockout model of abcb4, a homolog of the human multidrug efflux transporter P-glycoprotein. Hum Genomics 2023; 17:84. [PMID: 37674192 PMCID: PMC10481557 DOI: 10.1186/s40246-023-00530-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
The ATP-binding cassette subfamily B member 1 (ABCB1), encoding a multidrug transporter referred to as P-glycoprotein (Pgp), plays a critical role in the efflux of xenobiotics in humans and is implicated in cancer resistance to chemotherapy. Therefore, developing high-throughput animal models to screen for Pgp function and bioavailability of substrates and inhibitors is paramount. Here, we generated and validated a zebrafish knockout line of abcb4, a human Pgp transporter homolog. CRISPR/Cas9 genome editing technology was deployed to generate a frameshift mutation in exon 4 of zebrafish abcb4. The zebrafish abcb4 homozygous mutant exhibited elevated accumulation of fluorescent rhodamine 123, a substrate of human Pgp, in the intestine and brain area of embryos. Moreover, abcb4 knockout embryos were sensitized toward toxic compounds such as doxorubicin and vinblastine compared to the WT zebrafish. Immunostaining for zebrafish Abcb4 colocalized in the endothelial brain cells of adult zebrafish. Transcriptome profiling using Gene Set Enrichment Analysis uncovered that the 'cell cycle process,' 'mitotic cell cycles,' and 'microtubule-based process' were significantly downregulated in the abcb4 knockout brain with age. This study establishes and validates the abcb4 knockout zebrafish as an animal model to study Pgp function in vivo. Unexpectedly it reveals a potentially novel role for zebrafish abcb4 in age-related changes in the brain. The zebrafish lines generated here will provide a platform to aid in the discovery of modulators of Pgp function as well as the characterization of human mutants thereof.
Collapse
Affiliation(s)
- Jinhee Park
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Leen Alabdalla
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA
| | - Hassane Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2215 Garland Ave, Nashville, TN, 37240, USA.
| |
Collapse
|
8
|
Park J, Kim H, Alabdalla L, Mishra S, Mchaourab H. Generation and characterization of a zebrafish knockout model of abcb4, a homolog of the human multidrug efflux transporter P-glycoprotein. RESEARCH SQUARE 2023:rs.3.rs-3192988. [PMID: 37546821 PMCID: PMC10402247 DOI: 10.21203/rs.3.rs-3192988/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The ATP-binding cassette subfamily B member 1 (ABCB1), encoding a multidrug transporter referred to as P-glycoprotein (Pgp), plays a critical role in the efflux of xenobiotics in humans and is implicated in cancer resistance to chemotherapy. Therefore, developing high throughput animal models to screen for Pgp function and bioavailability of substrates and inhibitors is paramount. Here, we generated and validated a zebrafish knockout line of abcb4 , a human Pgp transporter homolog. CRISPR/Cas9 genome editing technology was deployed to generate a frameshift mutation in exon 4 of zebrafish abcb4 . The zebrafish abcb4 homozygous mutant exhibited elevated accumulation of fluorescent rhodamine 123, a substrate of human Pgp, in the intestine and brain area of embryos. Moreover, abcb4 knockout embryos were sensitized toward toxic compounds such as doxorubicin and vinblastine compared to the WT zebrafish. Immuno-staining for zebrafish Abcb4 colocalized in the endothelial brain cells of adult zebrafish. Transcriptome profiling using Gene Set Enrichment Analysis (GSEA) uncovered that the 'cell cycle process,' 'mitotic cell cycles,' and 'microtubule-based process' were significantly downregulated in the abcb4 knockout brain with age. This study establishes and validates the a bcb4 knockout zebrafish as an animal model to study Pgp function in vivo. Unexpectedly it reveals a potentially novel role for zebrafish abcb4 in age-related changes in the brain. The zebrafish lines generated here will provide a platform to aid in the discovery of modulators of Pgp function as well as the characterization of human mutants thereof.
Collapse
|
9
|
Kuna RS, Kumar A, Wessendorf-Rodriguez KA, Galvez H, Green CR, McGregor GH, Cordes T, Shaw RJ, Svensson RU, Metallo CM. Inter-organelle cross-talk supports acetyl-coenzyme A homeostasis and lipogenesis under metabolic stress. SCIENCE ADVANCES 2023; 9:eadf0138. [PMID: 37134162 PMCID: PMC10156121 DOI: 10.1126/sciadv.adf0138] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/03/2023] [Indexed: 05/05/2023]
Abstract
Proliferating cells rely on acetyl-CoA to support membrane biogenesis and acetylation. Several organelle-specific pathways are available for provision of acetyl-CoA as nutrient availability fluctuates, so understanding how cells maintain acetyl-CoA homeostasis under such stresses is critically important. To this end, we applied 13C isotope tracing cell lines deficient in these mitochondrial [ATP-citrate lyase (ACLY)]-, cytosolic [acetyl-CoA synthetase (ACSS2)]-, and peroxisomal [peroxisomal biogenesis factor 5 (PEX5)]-dependent pathways. ACLY knockout in multiple cell lines reduced fatty acid synthesis and increased reliance on extracellular lipids or acetate. Knockout of both ACLY and ACSS2 (DKO) severely stunted but did not entirely block proliferation, suggesting that alternate pathways can support acetyl-CoA homeostasis. Metabolic tracing and PEX5 knockout studies link peroxisomal oxidation of exogenous lipids as a major source of acetyl-CoA for lipogenesis and histone acetylation in cells lacking ACLY, highlighting a role for inter-organelle cross-talk in supporting cell survival in response to nutrient fluctuations.
Collapse
Affiliation(s)
- Ramya S. Kuna
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Avi Kumar
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karl A. Wessendorf-Rodriguez
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hector Galvez
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Courtney R. Green
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Grace H. McGregor
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thekla Cordes
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Reuben J. Shaw
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Christian M. Metallo
- Department of Molecular and Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Hsu J, Fatuzzo N, Weng N, Michno W, Dong W, Kienle M, Dai Y, Pasca A, Abu-Remaileh M, Rasgon N, Bigio B, Nasca C, Khosla C. Carnitine octanoyltransferase is important for the assimilation of exogenous acetyl-L-carnitine into acetyl-CoA in mammalian cells. J Biol Chem 2023; 299:102848. [PMID: 36587768 PMCID: PMC9898754 DOI: 10.1016/j.jbc.2022.102848] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
In eukaryotes, carnitine is best known for its ability to shuttle esterified fatty acids across mitochondrial membranes for β-oxidation. It also returns to the cytoplasm, in the form of acetyl-L-carnitine (LAC), some of the resulting acetyl groups for posttranslational protein modification and lipid biosynthesis. While dietary LAC supplementation has been clinically investigated, its effects on cellular metabolism are not well understood. To explain how exogenous LAC influences mammalian cell metabolism, we synthesized isotope-labeled forms of LAC and its analogs. In cultures of glucose-limited U87MG glioma cells, exogenous LAC contributed more robustly to intracellular acetyl-CoA pools than did β-hydroxybutyrate, the predominant circulating ketone body in mammals. The fact that most LAC-derived acetyl-CoA is cytosolic is evident from strong labeling of fatty acids in U87MG cells by exogenous 13C2-acetyl-L-carnitine. We found that the addition of d3-acetyl-L-carnitine increases the supply of acetyl-CoA for cytosolic posttranslational modifications due to its strong kinetic isotope effect on acetyl-CoA carboxylase, the first committed step in fatty acid biosynthesis. Surprisingly, whereas cytosolic carnitine acetyltransferase is believed to catalyze acetyl group transfer from LAC to coenzyme A, CRAT-/- U87MG cells were unimpaired in their ability to assimilate exogenous LAC into acetyl-CoA. We identified carnitine octanoyltransferase as the key enzyme in this process, implicating a role for peroxisomes in efficient LAC utilization. Our work has opened the door to further biochemical investigations of a new pathway for supplying acetyl-CoA to certain glucose-starved cells.
Collapse
Affiliation(s)
- Jake Hsu
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| | - Nina Fatuzzo
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Nielson Weng
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Wojciech Michno
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, California, USA; Department of Genetics, Stanford University, Stanford, California, USA
| | - Maryline Kienle
- Department of Chemistry, Stanford University, Stanford, California, USA
| | - Yuqin Dai
- Sarafan ChEM-H, Stanford, California, USA
| | - Anca Pasca
- Division of Neonatology, Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, California, USA; Department of Genetics, Stanford University, Stanford, California, USA; Sarafan ChEM-H, Stanford, California, USA
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Benedetta Bigio
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, New York, USA
| | - Carla Nasca
- Department of Psychiatry, Grossman School of Medicine, New York University, New York, New York, USA; Department of Neuroscience and Physiology, New York University Neuroscience Institute, Grossman School of Medicine, New York University, New York, New York, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California, USA; Department of Chemistry, Stanford University, Stanford, California, USA; Sarafan ChEM-H, Stanford, California, USA.
| |
Collapse
|
11
|
Tan Y, Liu X, Yang Y, Li B, Yu F, Zhao W, Fu C, Yu X, Han Z, Cheng M. Metabolomics analysis reveals serum biomarkers in patients with diabetic sarcopenia. Front Endocrinol (Lausanne) 2023; 14:1119782. [PMID: 37033246 PMCID: PMC10073735 DOI: 10.3389/fendo.2023.1119782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
INTRODUCTION Diabetic sarcopenia (DS) is characterized by muscle atrophy, slower nerve conduction, reduced maximum tension generated by skeletal muscle contraction, and slower contraction rate. Hence, DS can cause limb movement degeneration, slow movement, reduced balance, reduced metabolic rate, falls, fractures, etc. Moreover, the relevant early biological metabolites and their pathophysiological mechanism have yet to be characterized. METHOD The current cross-sectional study employed serum metabolomics analysis to screen potential noninvasive biomarkers in patients with diabetic sarcopenia. A total of 280 diabetic patients were enrolled in the study (n = 39 sarcopenia [DS], n = 241 without sarcopenia [DM]). Ten patients were randomly selected from both groups. Non-targeted metabolomic analysis was performed by ultra-high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. RESULTS A total of 632 differential metabolites were identified, including 82 that were significantly differentially abundant (P < 0.05, VIP > 1, FC > 1.2 or FC < 0.8). Compared with the DM group, the contents of pentadecanoic acid, 5'-methylthioadenosine (5'-MTA), N,N-dimethylarginine (asymmetric dimethylarginine, ADMA), and glutamine in the DS group were significantly increased, while that of isoxanthohumol was decreased. DISCUSSION Based on receiver operating characteristic curve analysis, pentadecanoic acid, 5'-MTA, ADMA, and glutamine may serve as potential biomarkers of DS. Moreover, ATP-binding cassette (ABC) transporters and the mammalian target of the rapamycin signaling pathway were found to potentially have important regulatory roles in the occurrence and development of DS (P < 0.05). Collectively, the differential metabolites identified in this study provide new insights into the underlying pathophysiology of DS and serve as a basis for therapeutic interventions.
Collapse
Affiliation(s)
- Yuwei Tan
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xiaosong Liu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Yinping Yang
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Baoying Li
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Aixinzhuoer Medical Laboratory, Jinan, China
| | - Fei Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Wenqian Zhao
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Chunli Fu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Xin Yu
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Zhenxia Han
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
| | - Mei Cheng
- Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Proteomics of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Jinan Clinical Research Center for Geriatric Medicine (202132001), Jinan, China
- *Correspondence: Mei Cheng,
| |
Collapse
|
12
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Anteghini M, Haja A, Martins dos Santos VA, Schomaker L, Saccenti E. OrganelX web server for sub-peroxisomal and sub-mitochondrial protein localization and peroxisomal target signal detection. Comput Struct Biotechnol J 2022; 21:128-133. [PMID: 36544474 PMCID: PMC9747352 DOI: 10.1016/j.csbj.2022.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
We present the OrganelX e-Science Web Server that provides a user-friendly implementation of the In-Pero and In-Mito classifiers for sub-peroxisomal and sub-mitochondrial localization of peroxisomal and mitochondrial proteins and the Is-PTS1 algorithm for detecting and validating potential peroxisomal proteins carrying a PTS1 signal sequence. The OrganelX e-Science Web Server is available at https://organelx.hpc.rug.nl/fasta/.
Collapse
Affiliation(s)
- Marco Anteghini
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
- LifeGlimmer GmbH, Berlin, Germany
| | - Asmaa Haja
- Bernoulli Institute, University of Groningen, Groningen, The Netherlands
| | - Vitor A.P. Martins dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Bioprocess Engineering, Wageningen University & Research, Wageningen, The Netherlands
| | - Lambert Schomaker
- Bernoulli Institute, University of Groningen, Groningen, The Netherlands
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Ye ZH, Zhong R. Outstanding questions on xylan biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111476. [PMID: 36174800 DOI: 10.1016/j.plantsci.2022.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Xylan is the second most abundant polysaccharide in plant biomass. It is a crucial component of cell wall structure as well as a significant factor contributing to biomass recalcitrance. Xylan consists of a linear chain of β-1,4-linked xylosyl residues that are often substituted with glycosyl side chains, such as glucuronosyl/methylglucuronosyl and arabinofuranosyl residues, and acetylated at O-2 and/or O-3. Xylan from gymnosperms and dicots contains a unique reducing end tetrasaccharide sequence that is not detected in xylan from grasses, bryophytes and seedless vascular plants. Grass xylan is heavily decorated at O-3 with arabinofuranosyl residues that are frequently esterified with hydroxycinnamates. Genetic and biochemical studies have uncovered a number of genes involved in xylan backbone elongation and acetylation, xylan glycosyl substitutions and their modifications, and the synthesis of the unique xylan reducing end tetrasaccharide sequence, but some outstanding issues on the biosynthesis of xylan still remain unanswered. Here, we provide a brief overview of xylan structure and focus on discussion of the current understanding and open questions on xylan biosynthesis. Further elucidation of the biochemical mechanisms underlying xylan biosynthesis will not only shed new insights into cell wall biology but also provide molecular tools for genetic modification of biomass composition tailored for diverse end uses.
Collapse
Affiliation(s)
- Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Simonetti S, Zupo V, Gambi MC, Luckenbach T, Corsi I. Unraveling cellular and molecular mechanisms of acid stress tolerance and resistance in marine species: New frontiers in the study of adaptation to ocean acidification. MARINE POLLUTION BULLETIN 2022; 185:114365. [PMID: 36435021 DOI: 10.1016/j.marpolbul.2022.114365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Since the industrial revolution, fossil fuel combustion has led to a 30 %-increase of the atmospheric CO2 concentration, also increasing the ocean partial CO2 pressure. The consequent lowered surface seawater pH is termed ocean acidification (OA) and severely affects marine life on a global scale. Cellular and molecular responses of marine species to lowered seawater pH have been studied but information on the mechanisms driving the tolerance of adapted species to comparatively low seawater pH is limited. Such information may be obtained from species inhabiting sites with naturally low water pH that have evolved remarkable abilities to tolerate such conditions. This review gathers information on current knowledge about species naturally facing low water pH conditions and on cellular and molecular adaptive mechanisms enabling the species to survive under, and even benefit from, adverse pH conditions. Evidences derived from case studies on naturally acidified systems and on resistance mechanisms will guide predictions on the consequences of future adverse OA scenarios for marine biodiversity.
Collapse
Affiliation(s)
- Silvia Simonetti
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy; Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | - Valerio Zupo
- Stazione Zoologica Anton Dohrn, National Institute of Marine Biology, Ecology and Biotechnology, Dep.t of BluBioTech, Napoli, Italy.
| | | | - Till Luckenbach
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| |
Collapse
|
16
|
Mani S, Aiyegoro OA, Adeleke MA. Association between host genetics of sheep and the rumen microbial composition. Trop Anim Health Prod 2022; 54:109. [PMID: 35192073 DOI: 10.1007/s11250-022-03057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
A synergy between the rumen microbiota and the host genetics has created a symbiotic relationship, beneficial to the host's health. In this study, the association between the host genetics and rumen microbiome of Damara and Meatmaster sheep was investigated. The composition of rumen microbiota was estimated through the analysis of the V3-V4 region of the 16S rRNA gene, while the sheep blood DNA was genotyped with Illumina OvineSNP50 BeadChip and the genome-wide association (GWA) was analyzed. Sixty significant SNPs dispersed in 21 regions across the Ovis aries genome were found to be associated with the relative abundance of seven genera: Acinetobacter, Bacillus, Clostridium, Flavobacterium, Prevotella, Pseudomonas, and Streptobacillus. A total of eighty-four candidate genes were identified, and their functional annotations were mainly associated with immunity responses and function, metabolism, and signal transduction. Our results propose that those candidate genes identified in the study may be modulating the composition of rumen microbiota and further indicating the significance of comprehending the interactions between the host and rumen microbiota to gain better insight into the health of sheep.
Collapse
Affiliation(s)
- Sinalo Mani
- GI Microbiology and Biotechnology Unit, Agricultural Research Council- Animal Production, Private Bag X02, Irene, 0062, South Africa.,Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban, 4000, South Africa
| | - Olayinka Ayobami Aiyegoro
- GI Microbiology and Biotechnology Unit, Agricultural Research Council- Animal Production, Private Bag X02, Irene, 0062, South Africa. .,Research Unit for Environmental Sciences and Management, North West University, Potchefstroom, 2520, South Africa.
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban, 4000, South Africa
| |
Collapse
|
17
|
Bieczynski F, Painefilú JC, Venturino A, Luquet CM. Expression and Function of ABC Proteins in Fish Intestine. Front Physiol 2021; 12:791834. [PMID: 34955897 PMCID: PMC8696203 DOI: 10.3389/fphys.2021.791834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
In fish, the intestine is fundamental for digestion, nutrient absorption, and other functions like osmoregulation, acid-base balance, and excretion of some metabolic products. These functions require a large exchange surface area, which, in turn, favors the absorption of natural and anthropogenic foreign substances (xenobiotics) either dissolved in water or contained in the food. According to their chemical nature, nutrients, ions, and water may cross the intestine epithelium cells' apical and basolateral membranes by passive diffusion or through a wide array of transport proteins and also through endocytosis and exocytosis. In the same way, xenobiotics can cross this barrier by passive diffusion or taking advantage of proteins that transport physiological substrates. The entry of toxic substances is counterbalanced by an active efflux transport mediated by diverse membrane proteins, including the ATP binding cassette (ABC) proteins. Recent advances in structure, molecular properties, and functional studies have shed light on the importance of these proteins in cellular and organismal homeostasis. There is abundant literature on mammalian ABC proteins, while the studies on ABC functions in fish have mainly focused on the liver and, to a minor degree, on the kidney and other organs. Despite their critical importance in normal physiology and as a barrier to prevent xenobiotics incorporation, fish intestine's ABC transporters have received much less attention. All the ABC subfamilies are present in the fish intestine, although their functionality is still scarcely studied. For example, there are few studies of ABC-mediated transport made with polarized intestinal preparations. Thus, only a few works discriminate apical from basolateral transport activity. We briefly describe the main functions of each ABC subfamily reported for mammals and other fish organs to help understand their roles in the fish intestine. Our study considers immunohistochemical, histological, biochemical, molecular, physiological, and toxicological aspects of fish intestinal ABC proteins. We focus on the most extensively studied fish ABC proteins (subfamilies ABCB, ABCC, and ABCG), considering their apical or basolateral location and distribution along the intestine. We also discuss the implication of fish intestinal ABC proteins in the transport of physiological substrates and aquatic pollutants, such as pesticides, cyanotoxins, metals, hydrocarbons, and pharmaceutical products.
Collapse
Affiliation(s)
- Flavia Bieczynski
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Julio C. Painefilú
- Instituto Patagónico de Tecnologías Biológicas y Geoambientales, Consejo Nacional de Investigaciones Científicas y Técnicas – Universidad Nacional del Comahue, Bariloche, Argentina
| | - Andrés Venturino
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue – Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Carlos M. Luquet
- Laboratorio de Ecotoxicología Acuática, Subsede INIBIOMA-CEAN (CONICET – UNCo), Junín de los Andes, Argentina
| |
Collapse
|
18
|
Lotz-Havla AS, Woidy M, Guder P, Friedel CC, Klingbeil JM, Bulau AM, Schultze A, Dahmen I, Noll-Puchta H, Kemp S, Erdmann R, Zimmer R, Muntau AC, Gersting SW. iBRET Screen of the ABCD1 Peroxisomal Network and Mutation-Induced Network Perturbations. J Proteome Res 2021; 20:4366-4380. [PMID: 34383492 DOI: 10.1021/acs.jproteome.1c00330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mapping the network of proteins provides a powerful means to investigate the function of disease genes and to unravel the molecular basis of phenotypes. We present an automated informatics-aided and bioluminescence resonance energy transfer-based approach (iBRET) enabling high-confidence detection of protein-protein interactions in living mammalian cells. A screen of the ABCD1 protein, which is affected in X-linked adrenoleukodystrophy (X-ALD), against an organelle library of peroxisomal proteins demonstrated applicability of iBRET for large-scale experiments. We identified novel protein-protein interactions for ABCD1 (with ALDH3A2, DAO, ECI2, FAR1, PEX10, PEX13, PEX5, PXMP2, and PIPOX), mapped its position within the peroxisomal protein-protein interaction network, and determined that pathogenic missense variants in ABCD1 alter the interaction with selected binding partners. These findings provide mechanistic insights into pathophysiology of X-ALD and may foster the identification of new disease modifiers.
Collapse
Affiliation(s)
- Amelie S Lotz-Havla
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Mathias Woidy
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Philipp Guder
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80538 Munich, Germany
| | - Julian M Klingbeil
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Ana-Maria Bulau
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Anja Schultze
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Ilona Dahmen
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Heidi Noll-Puchta
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Stephan Kemp
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, University of Amsterdam, 1105 WX Amsterdam, The Netherlands
| | - Ralf Erdmann
- Systems Biochemistry, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ralf Zimmer
- Institute of Informatics, Ludwig-Maximilians-Universität München, 80538 Munich, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
19
|
Anteghini M, Martins dos Santos V, Saccenti E. In-Pero: Exploiting Deep Learning Embeddings of Protein Sequences to Predict the Localisation of Peroxisomal Proteins. Int J Mol Sci 2021; 22:6409. [PMID: 34203866 PMCID: PMC8232616 DOI: 10.3390/ijms22126409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 01/28/2023] Open
Abstract
Peroxisomes are ubiquitous membrane-bound organelles, and aberrant localisation of peroxisomal proteins contributes to the pathogenesis of several disorders. Many computational methods focus on assigning protein sequences to subcellular compartments, but there are no specific tools tailored for the sub-localisation (matrix vs. membrane) of peroxisome proteins. We present here In-Pero, a new method for predicting protein sub-peroxisomal cellular localisation. In-Pero combines standard machine learning approaches with recently proposed multi-dimensional deep-learning representations of the protein amino-acid sequence. It showed a classification accuracy above 0.9 in predicting peroxisomal matrix and membrane proteins. The method is trained and tested using a double cross-validation approach on a curated data set comprising 160 peroxisomal proteins with experimental evidence for sub-peroxisomal localisation. We further show that the proposed approach can be easily adapted (In-Mito) to the prediction of mitochondrial protein localisation obtaining performances for certain classes of proteins (matrix and inner-membrane) superior to existing tools.
Collapse
Affiliation(s)
- Marco Anteghini
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- LifeGlimmer GmbH, 12163 Berlin, Germany
| | - Vitor Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- LifeGlimmer GmbH, 12163 Berlin, Germany
| | - Edoardo Saccenti
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| |
Collapse
|
20
|
Peroxisomal ABC Transporters: An Update. Int J Mol Sci 2021; 22:ijms22116093. [PMID: 34198763 PMCID: PMC8201181 DOI: 10.3390/ijms22116093] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of conserved proteins from bacteria to mammals. In humans, three members of this family are expressed in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP), and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but they are thought to exist primarily as tetramers. They possess overlapping but specific substrate specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell signaling and cell control, particularly in cancer. This review presents an overview of the knowledge on the structure, function, and mechanisms involving these proteins and their link to pathologies. We summarize the different in vitro and in vivo models existing across the species to study peroxisomal ABC transporters and the consequences of their defects. Finally, an overview of the known and possible interactome involving these proteins, which reveal putative and unexpected new functions, is shown and discussed.
Collapse
|
21
|
Singh P, Preu L, Beuerle T, Kaufholdt D, Hänsch R, Beerhues L, Gaid M. A promiscuous coenzyme A ligase provides benzoyl-coenzyme A for xanthone biosynthesis in Hypericum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1472-1490. [PMID: 33031578 DOI: 10.1111/tpj.15012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 05/09/2023]
Abstract
Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-β-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.
Collapse
Affiliation(s)
- Poonam Singh
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
| | - Lutz Preu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstraße 55, Braunschweig, 38106, Germany
| | - Till Beuerle
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
| | - David Kaufholdt
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, Braunschweig, 38106, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstraße 1, Braunschweig, 38106, Germany
- Center of Molecular Ecophysiology (CMEP) - College of Resources and Environment, Southwest University No. 2, Tiansheng Road, Chongqing, 400715, P.R. China
| | - Ludger Beerhues
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
- Centre of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, Braunschweig, 38106, Germany
| | - Mariam Gaid
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Mendelssohnstraße 1, Braunschweig, 38106, Germany
- Centre of Pharmaceutical Engineering, Technische Universität Braunschweig, Franz-Liszt-Straße 35 A, Braunschweig, 38106, Germany
| |
Collapse
|
22
|
Czumaj A, Szrok-Jurga S, Hebanowska A, Turyn J, Swierczynski J, Sledzinski T, Stelmanska E. The Pathophysiological Role of CoA. Int J Mol Sci 2020; 21:ijms21239057. [PMID: 33260564 PMCID: PMC7731229 DOI: 10.3390/ijms21239057] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
The importance of coenzyme A (CoA) as a carrier of acyl residues in cell metabolism is well understood. Coenzyme A participates in more than 100 different catabolic and anabolic reactions, including those involved in the metabolism of lipids, carbohydrates, proteins, ethanol, bile acids, and xenobiotics. However, much less is known about the importance of the concentration of this cofactor in various cell compartments and the role of altered CoA concentration in various pathologies. Despite continuous research on these issues, the molecular mechanisms in the regulation of the intracellular level of CoA under pathological conditions are still not well understood. This review summarizes the current knowledge of (a) CoA subcellular concentrations; (b) the roles of CoA synthesis and degradation processes; and (c) protein modification by reversible CoA binding to proteins (CoAlation). Particular attention is paid to (a) the roles of changes in the level of CoA under pathological conditions, such as in neurodegenerative diseases, cancer, myopathies, and infectious diseases; and (b) the beneficial effect of CoA and pantethine (which like CoA is finally converted to Pan and cysteamine), used at pharmacological doses for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
| | - Julian Swierczynski
- State School of Higher Vocational Education in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdańsk, Poland;
- Correspondence: (T.S.); (E.S.); Tel.: +48-(0)-583-491-479 (T.S.)
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (A.H.); (J.T.)
- Correspondence: (T.S.); (E.S.); Tel.: +48-(0)-583-491-479 (T.S.)
| |
Collapse
|
23
|
Cerebellar and hepatic alterations in ACBD5-deficient mice are associated with unexpected, distinct alterations in cellular lipid homeostasis. Commun Biol 2020; 3:713. [PMID: 33244184 PMCID: PMC7691522 DOI: 10.1038/s42003-020-01442-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 10/31/2020] [Indexed: 11/27/2022] Open
Abstract
ACBD5 deficiency is a novel peroxisome disorder with a largely uncharacterized pathology. ACBD5 was recently identified in a tethering complex mediating membrane contacts between peroxisomes and the endoplasmic reticulum (ER). An ACBD5-deficient mouse was analyzed to correlate ACBD5 tethering functions with the disease phenotype. ACBD5-deficient mice exhibit elevated very long-chain fatty acid levels and a progressive cerebellar pathology. Liver did not exhibit pathologic changes but increased peroxisome abundance and drastically reduced peroxisome-ER contacts. Lipidomics of liver and cerebellum revealed tissue-specific alterations in distinct lipid classes and subspecies. In line with the neurological pathology, unusual ultra-long chain fatty acids (C > 32) were elevated in phosphocholines from cerebelli but not liver indicating an organ-specific imbalance in fatty acid degradation and elongation pathways. By contrast, ether lipid formation was perturbed in liver towards an accumulation of alkyldiacylglycerols. The alterations in several lipid classes suggest that ACBD5, in addition to its acyl-CoA binding function, might maintain peroxisome-ER contacts in order to contribute to the regulation of anabolic and catabolic cellular lipid pathways. Darwisch, von Spangenberg et al. show that ACBD5‐deficient mice exhibit elevated levels of very long‐chain fatty acids and a progressive cerebellar pathology. A complex metabolic phenotype suggests that ACBD5 with its acyl‐CoA binding and peroxisome‐ER tethering functions might contribute to the regulation of anabolic and catabolic cellular lipid pathways.
Collapse
|
24
|
Xu CJ, Zhao ML, Chen MS, Xu ZF. Silencing of the Ortholog of DEFECTIVE IN ANTHER DEHISCENCE 1 Gene in the Woody Perennial Jatropha curcas Alters Flower and Fruit Development. Int J Mol Sci 2020; 21:ijms21238923. [PMID: 33255510 PMCID: PMC7727821 DOI: 10.3390/ijms21238923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/12/2023] Open
Abstract
DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1), a phospholipase A1, utilizes galactolipids (18:3) to generate α-linolenic acid (ALA) in the initial step of jasmonic acid (JA) biosynthesis in Arabidopsis thaliana. In this study, we isolated the JcDAD1 gene, an ortholog of Arabidopsis DAD1 in Jatropha curcas, and found that it is mainly expressed in the stems, roots, and male flowers of Jatropha. JcDAD1-RNAi transgenic plants with low endogenous jasmonate levels in inflorescences exhibited more and larger flowers, as well as a few abortive female flowers, although anther and pollen development were normal. In addition, fruit number was increased and the seed size, weight, and oil contents were reduced in the transgenic Jatropha plants. These results indicate that JcDAD1 regulates the development of flowers and fruits through the JA biosynthesis pathway, but does not alter androecium development in Jatropha. These findings strengthen our understanding of the roles of JA and DAD1 in the regulation of floral development in woody perennial plants.
Collapse
Affiliation(s)
- Chuan-Jia Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: (M.-S.C.); (Z.-F.X.)
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Innovative Academy for Seed Design, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China; (C.-J.X.); (M.-L.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla 666303, Yunnan, China
- Correspondence: (M.-S.C.); (Z.-F.X.)
| |
Collapse
|
25
|
van Roermund CWT, IJlst L, Baker A, Wanders RJA, Theodoulou FL, Waterham HR. The Saccharomyces cerevisiae ABC subfamily D transporter Pxa1/Pxa2p co-imports CoASH into the peroxisome. FEBS Lett 2020; 595:763-772. [PMID: 33112423 DOI: 10.1002/1873-3468.13974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/16/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
ATP-binding cassette (ABC) subfamily D transporters are important for the uptake of fatty acids and other beta-oxidation substrates into peroxisomes. Genetic and biochemical evidence indicates that the transporters accept fatty acyl-coenzyme A that is cleaved during the transport cycle and then re-esterified in the peroxisomal lumen. However, it is not known whether free coenzyme A (CoA) is released inside or outside the peroxisome. Here we have used Saccharomyces cerevisiae and isolated peroxisomes to demonstrate that free CoA is released in the peroxisomal lumen. Thus, ABC subfamily D transporter provide an import pathway for free CoA that controls peroxisomal CoA homeostasis and tunes metabolism according to the cell's demands.
Collapse
Affiliation(s)
- Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Alison Baker
- Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, UK
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| | | | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
26
|
Peroxisomal Cofactor Transport. Biomolecules 2020; 10:biom10081174. [PMID: 32806597 PMCID: PMC7463629 DOI: 10.3390/biom10081174] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum (ER), mitochondria, and plastids. Peroxisomes, in common with all other cellular organelles are dependent on a wide range of cofactors, such as adenosine 5′-triphosphate (ATP), Coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD). The availability of the peroxisomal cofactor pool controls peroxisome function. The levels of these cofactors available for peroxisomal metabolism is determined by the balance between synthesis, import, export, binding, and degradation. Since the final steps of cofactor synthesis are thought to be located in the cytosol, cofactors must be imported into peroxisomes. This review gives an overview about our current knowledge of the permeability of the peroxisomal membrane with the focus on ATP, CoA, and NAD. Several members of the mitochondrial carrier family are located in peroxisomes, catalyzing the transfer of these organic cofactors across the peroxisomal membrane. Most of the functions of these peroxisomal cofactor transporters are known from studies in yeast, humans, and plants. Parallels and differences between the transporters in the different organisms are discussed here.
Collapse
|
27
|
Yu Q, Xiao H, Jedrychowski MP, Schweppe DK, Navarrete-Perea J, Knott J, Rogers J, Chouchani ET, Gygi SP. Sample multiplexing for targeted pathway proteomics in aging mice. Proc Natl Acad Sci U S A 2020; 117:9723-9732. [PMID: 32332170 PMCID: PMC7211924 DOI: 10.1073/pnas.1919410117] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pathway proteomics strategies measure protein expression changes in specific cellular processes that carry out related functions. Using targeted tandem mass tags-based sample multiplexing, hundreds of proteins can be quantified across 10 or more samples simultaneously. To facilitate these highly complex experiments, we introduce a strategy that provides complete control over targeted sample multiplexing experiments, termed Tomahto, and present its implementation on the Orbitrap Tribrid mass spectrometer platform. Importantly, this software monitors via the external desktop computer to the data stream and inserts optimized MS2 and MS3 scans in real time based on an application programming interface with the mass spectrometer. Hundreds of proteins of interest from diverse biological samples can be targeted and accurately quantified in a sensitive and high-throughput fashion. It achieves sensitivity comparable to, if not better than, deep fractionation and requires minimal total sample input (∼10 µg). As a proof-of-principle experiment, we selected four pathways important in metabolism- and inflammation-related processes (260 proteins/520 peptides) and measured their abundance across 90 samples (nine tissues from five old and five young mice) to explore effects of aging. Tissue-specific aging is presented here and we highlight the role of inflammation- and metabolism-related processes in white adipose tissue. We validated our approach through comparison with a global proteome survey across the tissues, work that we also provide as a general resource for the community.
Collapse
Affiliation(s)
- Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Haopeng Xiao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Mark P Jedrychowski
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Devin K Schweppe
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | | | - John Rogers
- Thermo Fisher Scientific, Rockford, IL 61101
| | - Edward T Chouchani
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
28
|
Naquet P, Kerr EW, Vickers SD, Leonardi R. Regulation of coenzyme A levels by degradation: the 'Ins and Outs'. Prog Lipid Res 2020; 78:101028. [PMID: 32234503 DOI: 10.1016/j.plipres.2020.101028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/09/2020] [Accepted: 02/22/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme A (CoA) is the predominant acyl carrier in mammalian cells and a cofactor that plays a key role in energy and lipid metabolism. CoA and its thioesters (acyl-CoAs) regulate a multitude of metabolic processes at different levels: as substrates, allosteric modulators, and via post-translational modification of histones and other non-histone proteins. Evidence is emerging that synthesis and degradation of CoA are regulated in a manner that enables metabolic flexibility in different subcellular compartments. Degradation of CoA occurs through distinct intra- and extracellular pathways that rely on the activity of specific hydrolases. The pantetheinase enzymes specifically hydrolyze pantetheine to cysteamine and pantothenate, the last step in the extracellular degradation pathway for CoA. This reaction releases pantothenate in the bloodstream, making this CoA precursor available for cellular uptake and de novo CoA synthesis. Intracellular degradation of CoA depends on specific mitochondrial and peroxisomal Nudix hydrolases. These enzymes are also active against a subset of acyl-CoAs and play a key role in the regulation of subcellular (acyl-)CoA pools and CoA-dependent metabolic reactions. The evidence currently available indicates that the extracellular and intracellular (acyl-)CoA degradation pathways are regulated in a coordinated and opposite manner by the nutritional state and maximize the changes in the total intracellular CoA levels that support the metabolic switch between fed and fasted states in organs like the liver. The objective of this review is to update the contribution of these pathways to the regulation of metabolism, physiology and pathology and to highlight the many questions that remain open.
Collapse
Affiliation(s)
- Philippe Naquet
- Aix Marseille Univ, INSERM, CNRS, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
| | - Evan W Kerr
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Schuyler D Vickers
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America
| | - Roberta Leonardi
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia 26506, United States of America.
| |
Collapse
|
29
|
Ischebeck T, Krawczyk HE, Mullen RT, Dyer JM, Chapman KD. Lipid droplets in plants and algae: Distribution, formation, turnover and function. Semin Cell Dev Biol 2020; 108:82-93. [PMID: 32147380 DOI: 10.1016/j.semcdb.2020.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/28/2020] [Accepted: 02/29/2020] [Indexed: 01/02/2023]
Abstract
Plant oils represent an energy-rich and carbon-dense group of hydrophobic compounds. These oils are not only of economic interest, but also play important, fundamental roles in plant and algal growth and development. The subcellular storage compartments of plant lipids, referred to as lipid droplets (LDs), have long been considered relatively inert oil vessels. However, research in the last decade has revealed that LDs play far more dynamic roles in plant biology than previously appreciated, including transient neutral lipid storage, membrane remodeling, lipid signaling, and stress responses. Here we discuss recent developments in the understanding of LD formation, turnover and function in land plants and algae.
Collapse
Affiliation(s)
- Till Ischebeck
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany.
| | - Hannah E Krawczyk
- University of Göttingen, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, 37077, Göttingen, Germany
| | - Robert T Mullen
- University of Guelph, Department of Molecular Cell Biology, Guelph, Ontario, N1G 2W1, Canada
| | - John M Dyer
- United States Department of Agriculture, Agriculture Research Service, US Arid-Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Kent D Chapman
- University of North Texas, BioDiscovery Institute, Department of Biological Sciences, Denton, TX, 76203, USA
| |
Collapse
|
30
|
Zhang T, Trauger SA, Vidoudez C, Doane KP, Pluimer BR, Peterson RT. Parallel Reaction Monitoring reveals structure-specific ceramide alterations in the zebrafish. Sci Rep 2019; 9:19939. [PMID: 31882772 PMCID: PMC6934720 DOI: 10.1038/s41598-019-56466-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Extensive characterisations of the zebrafish genome and proteome have established a foundation for the use of the zebrafish as a model organism; however, characterisation of the zebrafish lipidome has not been as comprehensive. In an effort to expand current knowledge of the zebrafish sphingolipidome, a Parallel Reaction Monitoring (PRM)-based liquid chromatography-mass spectrometry (LC-MS) method was developed to comprehensively quantify zebrafish ceramides. Comparison between zebrafish and a human cell line demonstrated remarkable overlap in ceramide composition, but also revealed a surprising lack of most sphingadiene-containing ceramides in the zebrafish. PRM analysis of zebrafish embryogenesis identified developmental stage-specific ceramide changes based on long chain base (LCB) length. A CRISPR-Cas9-generated zebrafish model of Farber disease exhibited reduced size, early mortality, and severe ceramide accumulation where the amplitude of ceramide change depended on both acyl chain and LCB lengths. Our method adds an additional level of detail to current understanding of the zebrafish lipidome, and could aid in the elucidation of structure-function associations in the context of lipid-related diseases.
Collapse
Affiliation(s)
- Tejia Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Sunia A Trauger
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry, Harvard University, Cambridge, Massachusetts, USA
| | - Kim P Doane
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Brock R Pluimer
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
31
|
Identification of candidate ATP-binding cassette transporter gene family members in Diaphorina citri (Hemiptera: Psyllidae) via adult tissues transcriptome analysis. Sci Rep 2019; 9:15842. [PMID: 31676883 PMCID: PMC6825165 DOI: 10.1038/s41598-019-52402-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
The ATP-binding cassette (ABC) transporters exist in all living organisms and play major roles in various biological functions by transporting a wide variety of substrates across membranes. The functions of ABC transporters in drug resistance have been extensively studied in vertebrates; however, they are rarely characterized in agricultural pests. The Asian citrus psyllid, Diaphorina citri, is one of the most damaging pests of the Citrus genus because of its transmission of Huanglongbing, also known as Yellow Dragon disease. In this study, the next-generation sequencing technique was applied to research the ABC transporters of D. citri. Fifty-three ABC transporter genes were found in the RNA-Seq data, and among these ABC transporters, 4, 4, 5, 2, 1, 4, 18 and 15 ABC proteins belonged to the ABCA-ABCH subfamilies, respectively. Different expression profiles of 52 genes between imidacloprid-resistant and imidacloprid-susceptible strains were studied by qRT-PCR; 5 ABCGs and 4 ABCHs were significantly upregulated in the imidacloprid-resistant strain. In addition, five of the nine upregulated genes were widely expressed in adult tissues in spatial expression analysis. The results suggest that these genes may play key roles in this phenotype. In general, this study contributed to our current understanding of D. citri resistance to insecticides.
Collapse
|
32
|
Moreno A, Banerjee A, Prasad R, Falson P. PDR-like ABC systems in pathogenic fungi. Res Microbiol 2019; 170:417-425. [PMID: 31562919 DOI: 10.1016/j.resmic.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
ABC transporters of the Pleiotropic Drug Resistance (PDR) family are the main actors of antifungal resistance in pathogenic fungi. While their involvement in clinical resistant strains has been proven, their transport mechanism remains unclear. Notably, one hallmark of PDR transporters is their asymmetry, with one canonical nucleotide-binding site capable of ATP hydrolysis while the other site is not. Recent publications reviewed here show that the so-called "deviant" site is of crucial importance for drug transport and is a step towards alleviating the mystery around the existence of non-catalytic binding sites.
Collapse
Affiliation(s)
- Alexis Moreno
- Drug Resistance & Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University Research Lab n° 5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| | - Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University Research Lab n° 5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| |
Collapse
|
33
|
Kamilari M, Jørgensen A, Schiøtt M, Møbjerg N. Comparative transcriptomics suggest unique molecular adaptations within tardigrade lineages. BMC Genomics 2019; 20:607. [PMID: 31340759 PMCID: PMC6652013 DOI: 10.1186/s12864-019-5912-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 06/17/2019] [Indexed: 12/19/2022] Open
Abstract
Background Tardigrades are renowned for their ability to enter cryptobiosis (latent life) and endure extreme stress, including desiccation and freezing. Increased focus is on revealing molecular mechanisms underlying this tolerance. Here, we provide the first transcriptomes from the heterotardigrade Echiniscoides cf. sigismundi and the eutardigrade Richtersius cf. coronifer, and compare these with data from other tardigrades and six eukaryote models. Investigating 107 genes/gene families, our study provides a thorough analysis of tardigrade gene content with focus on stress tolerance. Results E. cf. sigismundi, a strong cryptobiont, apparently lacks expression of a number of stress related genes. Most conspicuous is the lack of transcripts from genes involved in classical Non-Homologous End Joining. Our analyses suggest that post-cryptobiotic survival in tardigrades could rely on high fidelity transcription-coupled DNA repair. Tardigrades seem to lack many peroxins, but they all have a comprehensive number of genes encoding proteins involved in antioxidant defense. The “tardigrade unique proteins” (CAHS, SAHS, MAHS, RvLEAM), seem to be missing in the heterotardigrade lineage, revealing that cryptobiosis in general cannot be attributed solely to these proteins. Our investigation further reveals a unique and highly expressed cold shock domain. We hypothesize that the cold shock protein acts as a RNA-chaperone involved in regulation of translation following freezing. Conclusions Our results show common gene family contractions and expansions within stress related gene pathways in tardigrades, but also indicate that evolutionary lineages have a high degree of divergence. Different taxa and lineages may exhibit unique physiological adaptations towards stress conditions involving possible unknown functional homologues and/or novel physiological and biochemical mechanisms. To further substantiate the current results genome assemblies coupled with transcriptome data and experimental investigations are needed from tardigrades belonging to different evolutionary lineages. Electronic supplementary material The online version of this article (10.1186/s12864-019-5912-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Kamilari
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Aslak Jørgensen
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark
| | - Morten Schiøtt
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark
| | - Nadja Møbjerg
- Section for Cell Biology and Physiology, Department of Biology, August Krogh Building, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark.
| |
Collapse
|
34
|
Mutagenesis separates ATPase and thioesterase activities of the peroxisomal ABC transporter, Comatose. Sci Rep 2019; 9:10502. [PMID: 31324846 PMCID: PMC6642094 DOI: 10.1038/s41598-019-46685-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/27/2019] [Indexed: 01/11/2023] Open
Abstract
The peroxisomal ABC transporter, Comatose (CTS), a full length transporter from Arabidopsis has intrinsic acyl-CoA thioesterase (ACOT) activity, important for physiological function. We used molecular modelling, mutagenesis and biochemical analysis to identify amino acid residues important for ACOT activity. D863, Q864 and T867 lie within transmembrane helix 9. These residues are orientated such that they might plausibly contribute to a catalytic triad similar to type II Hotdog fold thioesterases. When expressed in Saccharomyces cerevisiae, mutation of these residues to alanine resulted in defective of β-oxidation. All CTS mutants were expressed and targeted to peroxisomes and retained substrate-stimulated ATPase activity. When expressed in insect cell membranes, Q864A and S810N had similar ATPase activity to wild type but greatly reduced ACOT activity, whereas the Walker A mutant K487A had greatly reduced ATPase and no ATP-dependent ACOT activity. In wild type CTS, ATPase but not ACOT was stimulated by non-cleavable C14 ether-CoA. ACOT activity was stimulated by ATP but not by non-hydrolysable AMPPNP. Thus, ACOT activity depends on functional ATPase activity but not vice versa, and these two activities can be separated by mutagenesis. Whether D863, Q864 and T867 have a catalytic role or play a more indirect role in NBD-TMD communication is discussed.
Collapse
|
35
|
Charton L, Plett A, Linka N. Plant peroxisomal solute transporter proteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:817-835. [PMID: 30761734 PMCID: PMC6767901 DOI: 10.1111/jipb.12790] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Plant peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways, including fatty acid β-oxidation, photorespiration, and degradation of reactive oxygen species. The compartmentalization of metabolic pathways into peroxisomes is a strategy for organizing the metabolic network and improving pathway efficiency. An important prerequisite, however, is the exchange of metabolites between peroxisomes and other cell compartments. Since the first studies in the 1970s scientists contributed to understanding how solutes enter or leave this organelle. This review gives an overview about our current knowledge of the solute permeability of peroxisomal membranes described in plants, yeast, mammals and other eukaryotes. In general, peroxisomes contain in their bilayer membrane specific transporters for hydrophobic fatty acids (ABC transporter) and large cofactor molecules (carrier for ATP, NAD and CoA). Smaller solutes with molecular masses below 300-400 Da, like the organic acids malate, oxaloacetate, and 2-oxoglutarate, are shuttled via non-selective channels across the peroxisomal membrane. In comparison to yeast, human, mammals and other eukaryotes, the function of these known peroxisomal transporters and channels in plants are discussed in this review.
Collapse
Affiliation(s)
- Lennart Charton
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Anastasija Plett
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| | - Nicole Linka
- Institute for Plant Biochemistry and Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityUniversitätsstrasse 140225 DüsseldorfGermany
| |
Collapse
|
36
|
Loss of abcd4 in zebrafish leads to vitamin B12-deficiency anemia. Biochem Biophys Res Commun 2019; 514:1264-1269. [DOI: 10.1016/j.bbrc.2019.05.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 11/24/2022]
|
37
|
Transcriptomic Analysis Reveals the High-Oleic Acid Feedback Regulating the Homologous Gene Expression of Stearoyl-ACP Desaturase 2 ( SAD2) in Peanuts. Int J Mol Sci 2019; 20:ijms20123091. [PMID: 31242553 PMCID: PMC6628111 DOI: 10.3390/ijms20123091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 01/28/2023] Open
Abstract
Peanuts with high oleic acid content are usually considered to be beneficial for human health and edible oil storage. In breeding practice, peanut lines with high monounsaturated fatty acids are selected using fatty acid desaturase 2 (FAD2), which is responsible for the conversion of oleic acid (C18:1) to linoleic acid (C18:2). Here, comparative transcriptomics were used to analyze the global gene expression profile of high- and normal-oleic peanut cultivars at six time points during seed development. First, the mutant type of FAD2 was determined in the high-oleic peanut (H176). The result suggested that early translation termination occurred simultaneously in the coding sequence of FAD2-A and FAD2-B, and the cultivar H176 is capable of utilizing a potential germplasm resource for future high-oleic peanut breeding. Furthermore, transcriptomic analysis identified 74 differentially expressed genes (DEGs) involved in lipid metabolism in high-oleic peanut seed, of which five DEGs encoded the fatty acid desaturase. Aradu.XM2MR belonged to the homologous gene of stearoyl-ACP (acyl carrier protein) desaturase 2 (SAD2) that converted the C18:0 into C18:1. Further subcellular localization studies indicated that FAD2 was located at the endoplasmic reticulum (ER), and Aradu.XM2MR was targeted to the plastid in Arabidopsis protoplast cells. To examine the dynamic mechanism of this finding, we focused on the peroxidase (POD)-mediated fatty acid (FA) degradation pathway. The fad2 mutant significantly increased the POD activity and H2O2 concentration at the early stage of seed development, implying that redox signaling likely acted as a messenger to connect the signaling transduction between the high-oleic content and Aradu.XM2MR transcription level. Taken together, transcriptome analysis revealed the feedback mechanism of SAD2 (Aradu.XM2MR) associated with FAD2 mutation during the seed developmental stage, which could provide a potential peanut breeding strategy based on identified candidate genes to improve the content of oleic acid.
Collapse
|
38
|
Kataya ARA, Muench DG, Moorhead GB. A Framework to Investigate Peroxisomal Protein Phosphorylation in Arabidopsis. TRENDS IN PLANT SCIENCE 2019; 24:366-381. [PMID: 30683463 DOI: 10.1016/j.tplants.2018.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Peroxisomes perform essential roles in a range of cellular processes, highlighted by lipid metabolism, reactive species detoxification, and response to a variety of stimuli. The ability of peroxisomes to grow, divide, respond to changing cellular needs, interact with other organelles, and adjust their proteome as required, suggest that, like other organelles, their specialized roles are highly regulated. Similar to most other cellular processes, there is an emerging role for protein phosphorylation to regulate these events. In this review, we establish a knowledge framework of key players that control protein phosphorylation events in the plant peroxisome (i.e., the protein kinases and phosphatases), and highlight a vastly expanded set of (phospho)substrates.
Collapse
Affiliation(s)
- Amr R A Kataya
- Department of Chemistry, Bioscience, and Environmental Engineering, University of Stavanger, Stavanger, 4036, Norway; Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada; www.katayaproject.com.
| | - Douglas G Muench
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| | - Greg B Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4, Canada
| |
Collapse
|
39
|
Violante S, Achetib N, van Roermund CWT, Hagen J, Dodatko T, Vaz FM, Waterham HR, Chen H, Baes M, Yu C, Argmann CA, Houten SM. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J 2018; 33:4355-4364. [PMID: 30540494 DOI: 10.1096/fj.201801498r] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Peroxisomes are essential organelles for the specialized oxidation of a wide variety of fatty acids, but they are also able to degrade fatty acids that are typically handled by mitochondria. Using a combination of pharmacological inhibition and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 genome editing technology to simultaneously manipulate peroxisomal and mitochondrial fatty acid β-oxidation (FAO) in HEK-293 cells, we identified essential players in the metabolic crosstalk between these organelles. Depletion of carnitine palmitoyltransferase (CPT)2 activity through pharmacological inhibition or knockout (KO) uncovered a significant residual peroxisomal oxidation of lauric and palmitic acid, leading to the production of peroxisomal acylcarnitine intermediates. Generation and analysis of additional single- and double-KO cell lines revealed that the D-bifunctional protein (HSD17B4) and the peroxisomal ABC transporter ABCD3 are essential in peroxisomal oxidation of lauric and palmitic acid. Our results indicate that peroxisomes not only accept acyl-CoAs but can also oxidize acylcarnitines in a similar biochemical pathway. By using an Hsd17b4 KO mouse model, we demonstrated that peroxisomes contribute to the plasma acylcarnitine profile after acute inhibition of CPT2, proving in vivo relevance of this pathway. We summarize that peroxisomal FAO is important when mitochondrial FAO is defective or overloaded.-Violante, S., Achetib, N., van Roermund, C. W. T., Hagen, J., Dodatko, T., Vaz, F. M., Waterham, H. R., Chen, H., Baes, M., Yu, C., Argmann, C. A., Houten, S. M. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.
Collapse
Affiliation(s)
- Sara Violante
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Genomics, Incorporated, New York, New York, USA
| | - Nihad Achetib
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlo W T van Roermund
- Department of Clinical Chemistry, Amsterdam, The Netherlands.,Department of Pediatrics, Amsterdam, The Netherlands.,Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and
| | - Jacob Hagen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Frédéric M Vaz
- Department of Clinical Chemistry, Amsterdam, The Netherlands.,Department of Pediatrics, Amsterdam, The Netherlands.,Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and
| | - Hans R Waterham
- Department of Clinical Chemistry, Amsterdam, The Netherlands.,Department of Pediatrics, Amsterdam, The Netherlands.,Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands; and
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Genomics, Incorporated, New York, New York, USA
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven-University of Leuven, Leuven, Belgium
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Mount Sinai Genomics, Incorporated, New York, New York, USA
| | - Carmen A Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
40
|
Codon-pair usage pattern and cluster analysis of the ABC gene family in silkworm, Bombyx mori. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Park S, Oh J, Kim YI, Choe SK, Chun CH, Jin EJ. Suppression of ABCD2 dysregulates lipid metabolism via dysregulation of miR-141:ACSL4 in human osteoarthritis. Cell Biochem Funct 2018; 36:366-376. [DOI: 10.1002/cbf.3356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/29/2018] [Accepted: 08/11/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Sujeong Park
- Department of Biological Sciences, College of Natural Sciences; Wonkwang University; Iksan South Korea
| | - Jinjoo Oh
- Department of Biological Sciences, College of Natural Sciences; Wonkwang University; Iksan South Korea
| | - Yong-Il Kim
- Department of Microbiology; Wonkwang University School of Medicine; Iksan South Korea
| | - Seong-Kyu Choe
- Department of Microbiology; Wonkwang University School of Medicine; Iksan South Korea
| | - Churl-Hong Chun
- Department of Orthopedic Surgery; Wonkwang University School of Medicine; Iksan South Korea
| | - Eun-Jung Jin
- Department of Biological Sciences, College of Natural Sciences; Wonkwang University; Iksan South Korea
| |
Collapse
|
42
|
Architecture of polymorphisms in the human genome reveals functionally important and positively selected variants in immune response and drug transporter genes. Hum Genomics 2018; 12:43. [PMID: 30219098 PMCID: PMC6139121 DOI: 10.1186/s40246-018-0175-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Genetic polymorphisms can contribute to phenotypic differences amongst individuals, including disease risk and drug response. Characterization of genetic polymorphisms that modulate gene expression and/or protein function may facilitate the identification of the causal variants. Here, we present the architecture of genetic polymorphisms in the human genome focusing on those predicted to be potentially functional/under natural selection and the pathways that they reside. Results In the human genome, polymorphisms that directly affect protein sequences and potentially affect function are the most constrained variants with the lowest single-nucleotide variant (SNV) density, least population differentiation and most significant enrichment of rare alleles. SNVs which potentially alter various regulatory sites, e.g. splicing regulatory elements, are also generally under negative selection. Interestingly, genes that regulate the expression of transcription/splicing factors and histones are conserved as a higher proportion of these genes is non-polymorphic, contain ultra-conserved elements (UCEs) and/or has no non-synonymous SNVs (nsSNVs)/coding INDELs. On the other hand, major histocompatibility complex (MHC) genes are the most polymorphic with SNVs potentially affecting the binding of transcription/splicing factors and microRNAs (miRNA) exhibiting recent positive selection (RPS). The drug transporter genes carry the most number of potentially deleterious nsSNVs and exhibit signatures of RPS and/or population differentiation. These observations suggest that genes that interact with the environment are highly polymorphic and targeted by RPS. Conclusions In conclusion, selective constraints are observed in coding regions, master regulator genes, and potentially functional SNVs. In contrast, genes that modulate response to the environment are highly polymorphic and under positive selection. Electronic supplementary material The online version of this article (10.1186/s40246-018-0175-1) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Al Feteisi H, Al-Majdoub ZM, Achour B, Couto N, Rostami-Hodjegan A, Barber J. Identification and quantification of blood-brain barrier transporters in isolated rat brain microvessels. J Neurochem 2018; 146:670-685. [PMID: 29675872 DOI: 10.1111/jnc.14446] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis by tightly regulating the exchange of molecules with systemic circulation. It consists primarily of microvascular endothelial cells surrounded by astrocytic endfeet, pericytes, and microglia. Understanding the make-up of transporters in rat BBB is essential to the translation of pharmacological and toxicological observations into humans. In this study, experimental workflows are presented in which the optimization of (a) isolation of rat brain microvessels (b) enrichment of endothelial cells, and (c) extraction and digestion of proteins were evaluated, followed by identification and quantification of BBB proteins. Optimization of microvessel isolation was indicated by 15-fold enrichment of endothelial cell marker Glut1 mRNA, whereas markers for other cell types were not enriched. Filter-aided sample preparation was shown to be superior to in-solution sample preparation (10251 peptides vs. 7533 peptides). Label-free proteomics was used to identify nearly 2000 proteins and quantify 1276 proteins in isolated microvessels. A combination of targeted and global proteomics was adopted to measure protein abundance of 6 ATP-binding cassette and 27 solute carrier transporters. Data analysis using proprietary Progenesis and open access MaxQuant software showed overall agreement; however, Abcb9 and Slc22a8 were quantified only by MaxQuant, whereas Abcc9 and Abcd3 were quantified only by Progenesis. Agreement between targeted and untargeted quantification was demonstrated for Abcb1 (19.7 ± 1.4 vs. 17.8 ± 2.3) and Abcc4 (2.2 ± 0.7 vs. 2.1 ± 0.4), respectively. Rigorous quantification of BBB proteins, as reported in this study, should assist with translational modeling efforts involving brain disposition of xenobiotics.
Collapse
Affiliation(s)
- Hajar Al Feteisi
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| | - Narciso Couto
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK.,Simcyp Limited (a Certara Company), Sheffield, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research (CAPKR), University of Manchester, Manchester, UK
| |
Collapse
|
44
|
Truckenbrodt S, Maidorn M, Crzan D, Wildhagen H, Kabatas S, Rizzoli SO. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep 2018; 19:embr.201845836. [PMID: 29987134 PMCID: PMC6123658 DOI: 10.15252/embr.201845836] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
Expansion microscopy is a recently introduced imaging technique that achieves super‐resolution through physically expanding the specimen by ~4×, after embedding into a swellable gel. The resolution attained is, correspondingly, approximately fourfold better than the diffraction limit, or ~70 nm. This is a major improvement over conventional microscopy, but still lags behind modern STED or STORM setups, whose resolution can reach 20–30 nm. We addressed this issue here by introducing an improved gel recipe that enables an expansion factor of ~10× in each dimension, which corresponds to an expansion of the sample volume by more than 1,000‐fold. Our protocol, which we termed X10 microscopy, achieves a resolution of 25–30 nm on conventional epifluorescence microscopes. X10 provides multi‐color images similar or even superior to those produced with more challenging methods, such as STED, STORM, and iterative expansion microscopy (iExM). X10 is therefore the cheapest and easiest option for high‐quality super‐resolution imaging currently available. X10 should be usable in any laboratory, irrespective of the machinery owned or of the technical knowledge.
Collapse
Affiliation(s)
- Sven Truckenbrodt
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany .,International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Manuel Maidorn
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.,International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Dagmar Crzan
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Hanna Wildhagen
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Selda Kabatas
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, Center for Biostructural Imaging of Neurodegeneration, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
45
|
Smith RT, Gilmour DJ. The influence of exogenous organic carbon assimilation and photoperiod on the carbon and lipid metabolism of Chlamydomonas reinhardtii. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Pignatelli P, Ingham VA, Balabanidou V, Vontas J, Lycett G, Ranson H. The Anopheles gambiae ATP-binding cassette transporter family: phylogenetic analysis and tissue localization provide clues on function and role in insecticide resistance. INSECT MOLECULAR BIOLOGY 2018; 27:110-122. [PMID: 29068552 DOI: 10.1111/imb.12351] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The role of ATP-binding cassette (ABC) transporters in conferring insecticide resistance has received much attention recently. Here we identify ABC transporters differentially expressed in insecticide-resistant populations of the malaria vector, Anopheles gambiae. Although we found little evidence that the orthologues of the multidrug resistance proteins described in other species are associated with resistance in An. gambiae we did identify a subset of ABC proteins consistently differentially expressed in pyrethroid-resistant populations from across Africa. We present information on the phylogenetic relationship, primary sites of expression and potential role of ABC transporters in mediating the mosquito's response to insecticides. Furthermore we demonstrate that a paralogous group of eight ABCG transporters, clustered on chromosome 3R, are highly enriched in the legs of An. gambiae mosquitoes, consistent with a proposed role for this ABC subfamily in transport of lipids to the outer surface of the cuticle. Finally, antibodies raised against one of the most highly expressed ABC transporters in adult females, ABCG7 (AGAP009850), localized this transporter to the pericardial cells. These data will help prioritize members of this gene family for further localization and functional validation studies to identify the in vivo function of these transporters in the mosquito and determine whether elevated expression of members of this family contribute to insecticide resistance.
Collapse
Affiliation(s)
- P Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - V A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - V Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Faculty of Crop Science, Pesticide Science Lab, Agricultural University of Athens, Athens, Greece
| | - G Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - H Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
47
|
Corpas FJ, Barroso JB. Peroxisomal plant metabolism - an update on nitric oxide, Ca 2+ and the NADPH recycling network. J Cell Sci 2018; 131:jcs.202978. [PMID: 28775155 DOI: 10.1242/jcs.202978] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plant peroxisomes are recognized organelles that - with their capacity to generate greater amounts of H2O2 than other subcellular compartments - have a remarkable oxidative metabolism. However, over the last 15 years, new information has shown that plant peroxisomes contain other important molecules and enzymes, including nitric oxide (NO), peroxynitrite, a NADPH-recycling system, Ca2+ and lipid-derived signals, such as jasmonic acid (JA) and nitro-fatty acid (NO2-FA). This highlights the potential for complex interactions within the peroxisomal nitro-oxidative metabolism, which also affects the status of the cell and consequently its physiological processes. In this review, we provide an update on the peroxisomal interactions between all these molecules. Particular emphasis will be placed on the generation of the free-radical NO, which requires the presence of Ca2+, calmodulin and NADPH redox power. Peroxisomes possess several NADPH regeneration mechanisms, such as those mediated by glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) proteins, which are involved in the oxidative phase of the pentose phosphate pathway, as well as that mediated by NADP-isocitrate dehydrogenase (ICDH). The generated NADPH is also an essential cofactor across other peroxisomal pathways, including the antioxidant ascorbate-glutathione cycle and unsaturated fatty acid β-oxidation, the latter being a source of powerful signaling molecules such as JA and NO2-FA.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, E-18008 Granada, Spain
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, Faculty of Experimental Sciences, Campus Universitario "Las Lagunillas" s/n, University of Jaén, E-23071, Jaén, Spain
| |
Collapse
|
48
|
Shimada TL, Hayashi M, Hara-Nishimura I. Membrane Dynamics and Multiple Functions of Oil Bodies in Seeds and Leaves. PLANT PHYSIOLOGY 2018; 176:199-207. [PMID: 29203559 PMCID: PMC5761825 DOI: 10.1104/pp.17.01522] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 05/04/2023]
Abstract
Oil bodies have multiple functions: oleosin-mediated freezing tolerance of seeds, direct interaction with glyoxysomes for lipid degradation in seedlings, and antifungal compound production in leaves.
Collapse
Affiliation(s)
- Takashi L Shimada
- Graduate School of Horticulture, Chiba University, Chiba 263-8522, Japan
| | - Makoto Hayashi
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan
| | | |
Collapse
|
49
|
Li-Beisson Y, Neunzig J, Lee Y, Philippar K. Plant membrane-protein mediated intracellular traffic of fatty acids and acyl lipids. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:138-146. [PMID: 28985576 DOI: 10.1016/j.pbi.2017.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 05/24/2023]
Abstract
In plants, de novo synthesis of fatty acids (FAs) occurs in plastids, whereas assembly and modification of acyl lipids is accomplished in the endoplasmic reticulum (ER) and plastids as well as in mitochondria. Subsequently, lipophilic compounds are distributed within the cell and delivered to their destination site. Thus, constant acyl-exchanges between subcellular compartments exist. These can occur via several modes of transport and plant membrane-intrinsic proteins for FA/lipid transfer have been shown to play an essential role in delivery and distribution. Lately, substantial progress has been made in identification and characterization of transport proteins for lipid compounds in plant organelle membranes. In this review, we focus on our current understanding of protein mediated lipid traffic between organelles of land plants.
Collapse
Affiliation(s)
- Yonghua Li-Beisson
- CEA, CNRS and Aix-Marseille Université, Institut de Biosciences et Biotechnologies d'Aix-Marseille, UMR 7265, CEA Cadarache, Saint-Paul-lez Durance F-13108, France
| | - Jens Neunzig
- Saarland University, Center for Human- and Molecular Biology - Plant Biology, Campus A 2.4, D-66123 Saarbrücken, Germany
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang 37673, Republic of Korea
| | - Katrin Philippar
- Saarland University, Center for Human- and Molecular Biology - Plant Biology, Campus A 2.4, D-66123 Saarbrücken, Germany.
| |
Collapse
|
50
|
Park J, Lee Y, Martinoia E, Geisler M. Plant hormone transporters: what we know and what we would like to know. BMC Biol 2017; 15:93. [PMID: 29070024 PMCID: PMC5655956 DOI: 10.1186/s12915-017-0443-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hormone transporters are crucial for plant hormone action, which is underlined by severe developmental and physiological impacts caused by their loss-of-function mutations. Here, we summarize recent knowledge on the individual roles of plant hormone transporters in local and long-distance transport. Our inventory reveals that many hormones are transported by members of distinct transporter classes, with an apparent dominance of the ATP-binding cassette (ABC) family and of the Nitrate transport1/Peptide transporter family (NPF). The current need to explore further hormone transporter regulation, their functional interaction, transport directionalities, and substrate specificities is briefly reviewed.
Collapse
Affiliation(s)
- Jiyoung Park
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0116, USA.
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Institute for Plant Biology, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - Markus Geisler
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|