1
|
Li Y, Wu Y, Li H, Wang M, Gao Y, Pei S, Liu S, Liu Z, Liu Z, Men L. UPLC-QTOF-MS based metabolomics unravels the modulatory effect of ginseng water extracts on rats with Qi-deficiency. J Pharm Biomed Anal 2024; 242:116019. [PMID: 38382315 DOI: 10.1016/j.jpba.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Ginseng is commonly used as a nutritional supplement and daily wellness product due to its ability to invigorate qi. As a result, individuals with Qi-deficiency often use ginseng as a health supplement. Ginsenosides and polysaccharides are the primary components of ginseng. However, the therapeutic effects and mechanisms of action of these components in Qi-deficiency remain unclear. This study aimed to determine the modulatory effects and mechanisms of ginseng water extract, ginsenosides, and ginseng polysaccharides in a rat model of Qi-deficiency using metabolomics and network analysis. The rat model of Qi-deficiency was established via swimming fatigue and a restricted diet. Oral administration of different ginseng water extracts for 30 days primarily alleviated oxidative stress and disrupted energy metabolism and immune response dysfunction caused by Qi-deficiency in rats. Ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) was used for untargeted serum metabolomic analysis. Based on the analysis results, the active constituents of ginseng significantly reversed the changes in serum biomarkers related to Qi-deficiency in rats, particularly energy, amino acid, and unsaturated fatty acid metabolism. Furthermore, analysis of the metabolite-gene network suggested that the anti-Qi-deficiency effects of the ginseng components were mainly associated with toll-like receptor (TLR) signaling and inflammatory response. Additional verification revealed that treatment with the ginseng components effectively reduced the inflammatory response and activation of the myocardial TLR4/NF-κB pathway induced by Qi-deficiency, especially the ginseng water extracts. Therefore, ginseng could be an effective preventive measure against the progression of Qi-deficiency by regulating metabolic and inflammatory responses.
Collapse
Affiliation(s)
- Yanyi Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yi Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China.
| | - Hanlin Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Meiyuan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Yang Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shuhua Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130021, PR China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Lihui Men
- College of Basic Medical Sciences, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Crocetin Prolongs Recovery Period of DSS-Induced Colitis via Altering Intestinal Microbiome and Increasing Intestinal Permeability. Int J Mol Sci 2022; 23:ijms23073832. [PMID: 35409192 PMCID: PMC8998954 DOI: 10.3390/ijms23073832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/11/2022] Open
Abstract
Crocetin is one of the major active constituents of saffron (Crocus sativus L.) which has a reputation for facilitating blood circulation and dispersing blood stasis in traditional Chinese medicine. However, there is little evidence showing the relationship between crocetin intake and the risk of gastrointestinal diseases such as colitis. In order to investigate the effect of crocetin on the regulation of intestinal barrier function and intestinal microbiota composition, mice were treated with crocetin after 3% dextran sulfate sodium (DSS) administration for one week. We found that crocetin intake at 10 mg/kg aggravated colitis in mice, showing increased weight loss and more serious histological abnormalities compared with the DSS group. The 16s rDNA sequencing analysis of the feces samples showed that mice treated with 10 mg/kg crocetin had lower species diversity and richness than those treated with DSS. At the genus level, a higher abundance of Akkermansia and Mediterraneibacter, and a lower abundance of Muribaculaceae, Dubosiella, Paramuribaculum, Parasutterella, Allobaculum, Duncaniella, Candidatus Stoquefichus, and Coriobacteriaceae UCG-002 were observed in the crocetin group. Untargeted metabolomic analyses revealed that crocetin reduced the levels of primary and secondary bile acids such as 12-ketodeoxycholic acid, 7-ketodeoxycholic acid, 3-sulfodeoxycholic acid, 6-ethylchenodeoxycholic acid, chenodeoxycholate, glycochenodeoxycholate-7-sulfate, glycocholate, and sulfolithocholic acid in the colon. In conclusion, crocetin intake disturbed intestinal homeostasis and prolonged recovery of colitis by promoting inflammation and altering gut microbiota composition and its metabolic products in mice. Our findings suggest that patients with gastrointestinal diseases such as inflammatory bowel disease should use crocetin with caution.
Collapse
|
3
|
Pérez-Torres I, Guarner-Lans V, Soria-Castro E, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, Domínguez-Cherit JG, Herrera-Bello H, Castillejos-Suastegui H, Moreno-Castañeda L, Alanís-Estrada G, Hernández F, González-Marcos O, Márquez-Velasco R, Soto ME. Alteration in the Lipid Profile and the Desaturases Activity in Patients With Severe Pneumonia by SARS-CoV-2. Front Physiol 2021; 12:667024. [PMID: 34045976 PMCID: PMC8144632 DOI: 10.3389/fphys.2021.667024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
The kidnapping of the lipid metabolism of the host's cells by severe acute respiratory syndrome (SARS-CoV-2) allows the virus to transform the cells into optimal machines for its assembly and replication. Here we evaluated changes in the fatty acid (FA) profile and the participation of the activity of the desaturases, in plasma of patients with severe pneumonia by SARS-CoV-2. We found that SARS-CoV-2 alters the FA metabolism in the cells of the host. Changes are characterized by variations in the desaturases that lead to a decrease in total fatty acid (TFA), phospholipids (PL) and non-esterified fatty acids (NEFAs). These alterations include a decrease in palmitic and stearic acids (p ≤ 0.009) which could be used for the formation of the viral membranes and for the reparation of the host's own membrane. There is also an increase in oleic acid (OA; p = 0.001) which could modulate the inflammatory process, the cytokine release, apoptosis, necrosis, oxidative stress (OS). An increase in linoleic acid (LA) in TFA (p = 0.03) and a decreased in PL (p = 0.001) was also present. They result from damage of the internal mitochondrial membrane. The arachidonic acid (AA) percentage was elevated (p = 0.02) in the TFA and this can be participated in the inflammatory process. EPA was decreased (p = 0.001) and this may decrease of pro-resolving mediators with increase in the inflammatory process. The total of NEFAs (p = 0.03), PL (p = 0.001), cholesterol, HDL and LDL were decreased, and triglycerides were increased in plasma of the COVID-19 patients. Therefore, SARS-CoV-2 alters the FA metabolism, the changes are characterized by alterations in the desaturases that lead to variations in the TFA, PL, and NEFAs profiles. These changes may favor the replication of the virus but, at the same time, they are part of the defense system provided by the host cell metabolism in its eagerness to repair damage caused by the virus to cell membranes.
Collapse
Affiliation(s)
- Israel Pérez-Torres
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Verónica Guarner-Lans
- Departament of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Elizabeth Soria-Castro
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Linaloe Manzano-Pech
- Departament of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Adrián Palacios-Chavarría
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Rafael Ricardo Valdez-Vázquez
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Jose Guillermo Domínguez-Cherit
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnológico de Monterrey EMCS, Mexico City, Mexico
| | - Hector Herrera-Bello
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Humberto Castillejos-Suastegui
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Lidia Moreno-Castañeda
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Gabriela Alanís-Estrada
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Fabián Hernández
- Critical Care Unit of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City, Mexico
- American British Cowdray Medical Center, Mexico City, Mexico
| | - Omar González-Marcos
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Tecnológico de Monterrey EMCS, Mexico City, Mexico
| | - Ricardo Márquez-Velasco
- Departament of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Elena Soto
- American British Cowdray Medical Center, Mexico City, Mexico
- Departament of Immunology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
4
|
Castrejón-Téllez V, Villegas-Romero M, Pérez-Torres I, Zarco G, Rubio-Ruiz ME, Carreón-Torres E, Díaz-Díaz E, Grimaldo OE, Guarner-Lans V. Effect of Sucrose Ingestion at the End of a Critical Window that Increases Hypertension Susceptibility on Peripheral Mechanisms Regulating Blood Pressure in Rats. Role of Sirtuins 1 and 3. Nutrients 2019; 11:nu11020309. [PMID: 30717220 PMCID: PMC6412652 DOI: 10.3390/nu11020309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Susceptibility to develop hypertension may be established during early stages of life that include the intrauterine period, infancy and childhood. We recently showed that blood pressure increased when rats reached adulthood when sucrose was ingested for a short-term critical window from postnatal day 12 to 28 in the rat, which corresponds to days around weaning. Here, we studied several factors that might participate in the increased susceptibility to hypertension when adulthood is reached by analyzing the changes produced at the end of the sucrose ingestion during this critical period. Body weight of the rats at the end of the sucrose period was decreased even if there was an increased ingestion in Kcal. We found an increase in blood pressure accompanied by a decrease in endothelial nitric oxide synthase (eNOS) expression in the aorta. When insulin was administered to rats receiving sucrose, glucose in plasma diminished later than in controls and this slight insulin resistance may reduce nitric oxide synthase action. Oleic acid that modulates eNOS expression was increased, lipoperoxidation was elevated and total non-enzymatic anti-oxidant capacity was decreased. There was also a decrease in SOD2 expression. We also studied the expression of Sirt1, which regulates eNOS expression and Sirt3, which regulates SOD2 expression as possible epigenetic targets of enzyme expression involved in the long- term programming of hypertension. Sirt3 was decreased but we did not find an alteration in Sirt1 expression. We conclude that these changes may underpin the epigenetic programming of increased susceptibility to develop hypertension in the adults when there was exposure to high sucrose levels near weaning in rats.
Collapse
Affiliation(s)
- Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Mariana Villegas-Romero
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Gabriela Zarco
- Department of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Sección XVI, Tlalpan, Mexico City 14000, Mexico.
| | - Oscar Emanuel Grimaldo
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
5
|
Villegas-Romero M, Castrejón-Téllez V, Pérez-Torres I, Rubio-Ruiz ME, Carreón-Torres E, Díaz-Díaz E, Del Valle-Mondragón L, Guarner-Lans V. Short-Term Exposure to High Sucrose Levels near Weaning Has a Similar Long-Lasting Effect on Hypertension as a Long-Term Exposure in Rats. Nutrients 2018; 10:nu10060728. [PMID: 29882756 PMCID: PMC6024587 DOI: 10.3390/nu10060728] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Adverse conditions during early developmental stages permanently modify the metabolic function of organisms through epigenetic changes. Exposure to high sugar diets during gestation and/or lactation affects susceptibility to metabolic syndrome or hypertension in adulthood. The effect of a high sugar diet for shorter time lapses remains unclear. Here we studied the effect of short-term sucrose ingestion near weaning (postnatal days 12 and 28) (STS) and its effect after long-term ingestion, for a period of seven months (LTS) in rats. Rats receiving sucrose for seven months develop metabolic syndrome (MS). The mechanisms underlying hypertension in this model and those that underlie the effects of short-term exposure have not been studied. We explore NO and endothelin-1 concentration, endothelial nitric oxide synthase (eNOS) expression, fatty acid participation and the involvement of oxidative stress (OS) after LTS and STS. Blood pressure increased to similar levels in adult rats that received sucrose during short- and long-term glucose exposure. The endothelin-1 concentration increased only in LTS rats. eNOS and SOD2 expression determined by Western blot and total antioxidant capacity were diminished in both groups. Saturated fatty acids and arachidonic acid were only decreased in LTS rats. In conclusion, a high-sugar diet during STS increases the hypertension predisposition in adulthood to as high a level as LTS, and the mechanisms involved have similarities (participation of OS and eNOS and SOD expression) and differences (fatty acids and arachidonic acid only participate in LTS and an elevated level of endothelin-1 was only found in LTS) in both conditions. Changes in the diet during short exposure times in early developmental stages have long-lasting effects in determining hypertension susceptibility.
Collapse
Affiliation(s)
- Mariana Villegas-Romero
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Elizabeth Carreón-Torres
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Vasco de Quiroga 15, Sección XVI, Tlalpan, Mexico City 14000, Mexico.
| | - Leonardo Del Valle-Mondragón
- Department of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
6
|
Soto ME, Iturriaga Hernández AV, Guarner Lans V, Zuñiga-Muñoz A, Aranda Fraustro A, Velázquez Espejel R, Pérez-Torres I. Participation of oleic acid in the formation of the aortic aneurysm in Marfan syndrome patients. Prostaglandins Other Lipid Mediat 2016; 123:46-55. [PMID: 27163200 DOI: 10.1016/j.prostaglandins.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Marfan syndrome (MFS) is associated with progressive aortic dilatation and endothelial dysfunction that lead to early acute dissection and rupture of the aorta and sudden death. Alteration in fatty acid (FA) metabolism can stimulate nitric oxide (NO) overproduction which increases the activity of the inducible form of NO synthase (iNOS) that is involved in endothelial dysfunction. We evaluated the participation of FA in the formation of thoracic aneurysms in MFS and its relation to the iNOS. Oleic acid (OA), iNOS, citrulline, nitrates and nitrites, TGF-β1, TNF-α, monounsaturated FA and NO synthase activity were significantly increased (p<0.05) in tissue from the aortas of MFS. Saturated FA, eNOS and HDL were significantly decreased (p<0.05). Arachidonic acid, delta-9 desaturase tended to increase and histological examination showed an increase in cystic necrosis, elastic fibers and collagen in MFS. The increase in OA contributes to the altered pathway of iNOS, which favors endothelial dysfunction and formation of the aortic aneurysms in MFS.
Collapse
Affiliation(s)
- María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Alejandra Valeria Iturriaga Hernández
- Department of Cardiothoracic Surgery, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Verónica Guarner Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Alejandra Zuñiga-Muñoz
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Alberto Aranda Fraustro
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Rodrigo Velázquez Espejel
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico.
| |
Collapse
|
7
|
Wauquier F, Léotoing L, Philippe C, Spilmont M, Coxam V, Wittrant Y. Pros and cons of fatty acids in bone biology. Prog Lipid Res 2015; 58:121-45. [PMID: 25835096 DOI: 10.1016/j.plipres.2015.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/06/2015] [Accepted: 03/23/2015] [Indexed: 12/12/2022]
Abstract
Despite the growing interest in deciphering the causes and consequences of obesity-related disorders, the mechanisms linking fat intake to bone behaviour remain unclear. Since bone fractures are widely associated with increased morbidity and mortality, most notably in elderly and obese people, bone health has become a major social and economic issue. Consistently, public health system guidelines have encouraged low-fat diets in order to reduce associated complications. However, from a bone point of view, mechanisms linking fat intake to bone alteration remain quite controversial. Thus, after more than a decade of dedicated studies, this timely review offers a comprehensive overview of the relationships between bone and fatty acids. Using clinical evidences as a starting-point to more complex molecular elucidation, this work highlights the complexity of the system and reveals that bone alteration that cannot be solved simply by taking ω-3 pills. Fatty acid effects on bone metabolism can be both direct and indirect and require integrated investigations. Furthermore, even at the level of a single cell, one fatty acid is able to trigger several different independent pathways (receptors, metabolites…) which may all have a say in the final cellular metabolic response.
Collapse
Affiliation(s)
- Fabien Wauquier
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Laurent Léotoing
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Claire Philippe
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Mélanie Spilmont
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Véronique Coxam
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France
| | - Yohann Wittrant
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63009 Clermont-Ferrand, France; Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, F-63000 Clermont-Ferrand, France; Equipe Alimentation, Squelette et Métabolismes, France.
| |
Collapse
|
8
|
Taranu I, Gras M, Pistol GC, Motiu M, Marin DE, Lefter N, Ropota M, Habeanu M. ω-3 PUFA rich camelina oil by-products improve the systemic metabolism and spleen cell functions in fattening pigs. PLoS One 2014; 9:e110186. [PMID: 25303320 PMCID: PMC4193896 DOI: 10.1371/journal.pone.0110186] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/08/2014] [Indexed: 12/31/2022] Open
Abstract
Camelina oil-cakes results after the extraction of oil from Camelina sativa plant. In this study, camelina oil-cakes were fed to fattening pigs for 33 days and its effect on performance, plasma biochemical analytes, pro-/anti-inflammatory mediators and antioxidant detoxifying defence in spleen was investigated in comparison with sunflower meal. 24 crossbred TOPIG pigs were randomly assigned to one of two experimental dietary treatments containing either 12% sunflower meal (treatment 1-T1), or 12.0% camelina oil-cakes, rich in polyunsaturated fatty acids ω-3 (ω-3 PUFA) (treatment 2-T2). The results showed no effect of T2 diet (camelina cakes) on feed intake, average weight gain or feed efficiency. Consumption of camelina diet resulted in a significant decrease in plasma glucose concentration (18.47%) with a trend towards also a decrease of plasma cholesterol. In spleen, T2 diet modulated cellular immune response by decreasing the protein and gene expression of pro-inflammatory markers, interleukin 1-beta (IL-1β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) and interleukin (IL-8) and cyclooxigenase 2 (COX-2) in comparison with T1 diet. By contrast, T2 diet increased (P<0.05) in spleen the mRNA expression of antioxidant enzymes, catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase 1 (GPx1) by 3.43, 2.47 and 1.83 fold change respectively, inducible nitric oxide synthase (iNOS) (4.60 fold), endothelial nitric oxide synthase (eNOS) (3.23 fold) and the total antioxidant level (9.02%) in plasma. Camelina diet increased also peroxisome-proliferator activated receptor gamma (PPAR-γ) mRNA and decreased that of mitogen-activated protein kinase 14 (p38α MAPK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB). At this level of inclusion (12%) camelina oil-cakes appears to be a potentially alternative feed source for pig which preserves a high content of ω-3 PUFA indicating antioxidant properties by the stimulation of detoxifying enzymes expression and the suppression of spleen pro-inflammatory markers.
Collapse
Affiliation(s)
- Ionelia Taranu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mihail Gras
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Gina Cecilia Pistol
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Monica Motiu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Daniela E. Marin
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Nicoleta Lefter
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mariana Ropota
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| | - Mihaela Habeanu
- INCDBNA-IBNA, National Institute of Research and development for Biology and Animal Nutrition, Balotesti, Romania
| |
Collapse
|
9
|
Abstract
SummaryThe essential polyunsaturated fatty acids (PUFAs) are divided into two classes, n-3 (ω-3) and n-6 (ω-6) and their dietary precursors are α-linolenic (ALA) and linoleic acid (LA), respectively. PUFAs are precursors of a wide range of metabolites, for example eicosanoids like prostaglandins and leukotrienes, which play critical roles in the regulation of a variety of biological processes, including bone metabolism.A large body of evidence supports an effect of PUFA on bone metabolism which may be mediated by regulation of osteoblastogenesis and osteoclast activity, change of membrane function, decrease in inflammatory cytokines, such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumour necrosis factor alpha (TNF-α), modulation of peroxisome proliferators-activated receptor γ (PPARγ) and influence in NO secretion and NO synthase.Animal studies have shown that a higher dietary omega-3/omega-6 fatty acids ratio is associated with beneficial effects on bone health. Human studies conducted in elderly subjects suggest that omega-3 instead of omega-6 has a positive effect on bone metabolism. In spite of increasing evidence, studies conducted in humans do not allow us to draw a definitive conclusion on the usefulness of PUFAs in clinical practice.
Collapse
|
10
|
Kruger M, Coetzee M, Haag M, Weiler H. Long-chain polyunsaturated fatty acids: Selected mechanisms of action on bone. Prog Lipid Res 2010; 49:438-49. [DOI: 10.1016/j.plipres.2010.06.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Indexed: 01/11/2023]
|
11
|
Shen CL, Peterson J, Tatum OL, Dunn DM. Effect of long-chain n-3 polyunsaturated fatty acid on inflammation mediators during osteoblastogenesis. J Med Food 2008; 11:105-10. [PMID: 18361745 DOI: 10.1089/jmf.2007.540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study examined the effects of eicosapentaenoic acid (EPA) and arachidonic acid (AA) on inflammation mediators during osteoblastogenesis, in terms of modulation of the cyclooxygenase (COX)-2 and the inducible nitric oxide (NO) synthase (iNOS) pathways. We hypothesized that n-3 polyunsaturated fatty acid (PUFA) would reduce the production of inflammation mediators, including prostaglandin E(2) (PGE(2)) and NO, and related mRNA gene expression during osteoblastogenesis. Mouse bone marrow stromal cells (ST-2) were treated with 40 microM ethanol (as a control), 40 microM AA, or 40 microM EPA in osteogenic medium for 7, 14, 21, or 28 days. Prior to harvest, cells were treated with respective treatments along with cytokine mixtures for an additional 24 hours, and then cells were harvested for mRNA expression. In addition, cells were also treated with respective treatments along with the same cytokine mixtures for an additional 48 hours for experiment measuring PGE(2) and NO production using conditioned culture medium and protein expression using cells. Except for 7 days of culture, AA treatment resulted in the highest value for PGE(2) production throughout 28 days of culture. AA treatment also enhanced COX-2 mRNA expression up to 21 days. AA treatment resulted in a higher value for NO production after 7 days, while EPA treatment yielded a higher value for NO production relative to those receiving AA treatment after 14 and 21 days. Our investigation has corroborated that the protective action of EPA on osteoblastogenesis was mediated by the modulation of PGE(2) and the NO pathway.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| | | | | | | |
Collapse
|
12
|
Poulsen RC, Moughan PJ, Kruger MC. Long-chain polyunsaturated fatty acids and the regulation of bone metabolism. Exp Biol Med (Maywood) 2008; 232:1275-88. [PMID: 17959840 DOI: 10.3181/0704-mr-100] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The role of prostaglandin E2 (PGE2) in the regulation of bone remodeling is well established. There is increasing evidence that various long-chain polyunsaturated fatty acids (LCPUFAs), as well as nonprostanoid LCPUFA metabolites, also have critical roles in regulating bone metabolism and may have therapeutic potential in the management of postmenopausal osteoporosis. Although only the 18-carbon precursors for the n-3 and n-6 LCPUFAs are deemed "dietary essential," the ability of the body to convert these precursor fatty acids into the more highly unsaturated 20- and 22-carbon LCPUFAs decreases with aging, menopause, and various lifestyle factors (e.g., smoking). Increasing dietary LCPUFA intake increases tissue and blood LCPUFA concentrations, as well as the concentrations of their metabolites. Modification of dietary LCPUFA content, particularly increasing the intake of n-3 LCPUFAs, has been shown to minimize the decline in bone mass caused by menopause in women and ovariectomy in animal models. This review summarizes findings from both in vivo and in vitro studies and outlines the effects of LCPUFAs and their metabolites on calcium balance, osteoblastogenesis, osteoclastogenesis, and osteoblast and osteoclast function.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Institute of Food, Nutrition and Human Health, Private Bag 11-222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
13
|
Musacchio E, Priante G, Budakovic A, Baggio B. Effects of unsaturated free fatty acids on adhesion and on gene expression of extracellular matrix macromolecules in human osteoblast-like cell cultures. Connect Tissue Res 2007; 48:34-8. [PMID: 17364665 DOI: 10.1080/03008200601056528] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate the possible role for unsaturated free fatty acids in osteoblast adhesion, the effects of two polyunsaturated fatty acids (PUFAs), arachidonic (AA) and eicosapentaenoic (EPA) acids, and of one monounsaturated fatty acid, oleic acid (OA), on adhesion to the substrate and on gene expression of three extracellular matrix macromolecules were investigated in an in vitro model system--cultured osteoblast-like human cells. AA, but neither EPA nor OA, diminished bone cell adhesion, whereas both EPA and OA, but not AA, increased gene expression of type I collagen and fibronectin via a transforming growth factor-beta-independent mechanism. These results extend previous evidence for unsaturated fatty acids in bone cell metabolism.
Collapse
Affiliation(s)
- Estella Musacchio
- Department of Medical and Surgical Sciences, University of Padua, Padova, Italy
| | | | | | | |
Collapse
|
14
|
Soldati L, Terranegra A, Baggio B, Biasion R, Arcidiacono T, Priante G, Cusi D, Vezzoli G. Arachidonic acid influences intracellular calcium handling in human osteoblasts. Prostaglandins Leukot Essent Fatty Acids 2006; 75:91-6. [PMID: 16870415 DOI: 10.1016/j.plefa.2006.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/03/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
The effect of arachidonic acid (AA) on intracellular Ca(2+) concentration ([Ca(2+)]i) in human osteoblasts MG63 was studied. AA caused a concentration-dependent increase in [Ca(2+)]i, mainly due to inward Ca(2+) transport from extracellular environment. Moreover, AA in Ca(2+) -free medium produced a small, transient increase of [Ca(2+)]i, indicating that AA may also trigger Ca(2+) release from intracellular stores. Because the [Ca(2+)]i response to AA was inhibited by the cyclooxygenase (COX) inhibitor indomethacin, we tested the effect of prostaglandins (PGs), products of COX pathway. PGs E1 and E2 caused an increase in [Ca(2+)]i, which, however, was far lower than that obtained with AA. The [Ca(2+)]i response to AA was not inhibited by nifedipine, suggesting that AA did not activate a voltage-dependent Ca(2+) channel. Our results indicate that AA could modulate [Ca(2+)]i in MG63 human osteoblasts, where it may influence Ca(2+) transport across both plasma and endoplasmic membranes. Furthermore, they suggest that osteoblast activity may be modulated by AA.
Collapse
Affiliation(s)
- Laura Soldati
- Department of Sciences and Biomedical Technologies, University of Milan, Via Fratelli Cervi 93, 20090, Segrate (Mi), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Baggio B, Budakovic A, Ferraro A, Checchetto S, Priante G, Musacchio E, Manzato E, Zaninotto M, Maresca MC. Relationship between Plasma Phospholipid Polyunsaturated Fatty Acid Composition and Bone Disease in Renal Transplantation. Transplantation 2005; 80:1349-52. [PMID: 16314806 DOI: 10.1097/01.tp.0000179152.57167.c1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the relationship between polyunsaturated fatty acid (PUFA) and bone metabolism in renal transplant patients, plasma phospholipid (PP) PUFA levels, biochemical markers of bone turnover and bone mineral density (BMD) were determined in 22 recipients of a first renal allograft at baseline and after a mean 24.4 month follow-up. A significant increase in PP n-3 PUFA content, in the [n-3 PUFA/ arachidonic acid] ratio and in BMD values was observed, as well as a close correlation between the increase in PP n-3 PUFA content and femoral neck BMD. Multivariate regression analysis showed that BMD improvement was positively related to PP n-3 PUFA variation and baseline PP eicosapentaenoic acid levels, and negatively to PP arachidonic acid modification. Tacrolimus- versus cyclosporine-treated patients demonstrated a significant increase in femoral neck BMD and PP n-3 PUFA content. This is the first longitudinal study showing a link between PP-PUFA composition and bone disease in renal transplantation.
Collapse
Affiliation(s)
- Bruno Baggio
- Department of Medical and Surgical Sciences, University of Padova, and Central Laboratory, University Hospital of Padova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|