1
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
2
|
Sun X, Mao C, Wang J, Wu S, Qu Y, Xie Y, Sun F, Jiang D, Song Y. Unveiling the Potential of Sulfur-Containing Gas Signaling Molecules in Acute Lung Injury: A Promising Therapeutic Avenue. Curr Issues Mol Biol 2024; 46:7147-7168. [PMID: 39057067 PMCID: PMC11275821 DOI: 10.3390/cimb46070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), are pulmonary conditions that cause significant morbidity and mortality. The common etiologies of these conditions include pneumonia, pulmonary contusion, fat embolism, smoke inhalation, sepsis, shock, and acute pancreatitis. Inflammation, oxidative stress, apoptosis, and autophagy are key pathophysiological mechanisms underlying ALI. Hydrogen sulfide (H2S) and sulfur dioxide (SO2) are sulfur-containing gas signaling molecules that can mitigate these pathogenic processes by modulating various signaling pathways, such as toll-like receptor 4 (TLR4)/nod-like receptor protein 3 (NLRP3), extracellular signal-regulating protein kinase 1/2 (ERK1/2), mitogen-activated protein kinase (MAPK), phosphatidyl inositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), thereby conferring protection against ALI. Given the limited clinical effectiveness of prevailing ALI treatments, investigation of the modulation of sulfur-containing gas signaling molecules (H2S and SO2) in ALI is imperative. This article presents an overview of the regulatory pathways of sulfur-containing gas signaling molecules in ALI animal models induced by various stimuli, such as lipopolysaccharide, gas inhalation, oleic acid, and ischemia-reperfusion. Furthermore, this study explored the therapeutic prospects of diverse H2S and SO2 donors for ALI, stemming from diverse etiologies. The aim of the present study was to establish a theoretical framework, in order to promote the new treatment of ALI.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Jiaxin Wang
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Siyu Wu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Ying Qu
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| | - Ying Xie
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Fengqi Sun
- Department of Pathology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Deyou Jiang
- Department of Synopsis Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (J.W.); (Y.X.)
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.M.); (S.W.); (Y.Q.)
| |
Collapse
|
3
|
Yang F, Zhong W, Pan S, Wang Y, Xiao Q, Gao X. Recent advances in the mechanism of hydrogen sulfide in wound healing in diabetes. Biochem Biophys Res Commun 2024; 692:149343. [PMID: 38065000 DOI: 10.1016/j.bbrc.2023.149343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Wound healing difficulties in diabetes continue to be a clinical challenge, posing a considerable burden to patients and society. Recently, exploration of the mechanism of wound healing and associated treatment options in diabetes has become topical. Of note, the positive role of hydrogen sulfide in promoting wound healing has been demonstrated in recent studies. Hydrogen sulfide is a confirmed gas transmitter in mammals, playing an essential role in pathology and physiology. This review describes the mechanism underlying the role of hydrogen sulfide in the promotion of diabetic wound healing and the potential for hydrogen sulfide supplementation as a therapeutic application.
Collapse
Affiliation(s)
- Fengze Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
4
|
Manandhar S, Chambers S, Miller A, Ishii I, Bhatia M. Pharmacological Inhibition and Genetic Deletion of Cystathionine Gamma-Lyase in Mice Protects against Organ Injury in Sepsis: A Key Role of Adhesion Molecules on Endothelial Cells. Int J Mol Sci 2023; 24:13650. [PMID: 37686458 PMCID: PMC10487872 DOI: 10.3390/ijms241713650] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Hydrogen sulfide (H2S), synthesized by cystathionine gamma-lyase (Cth), contributes to the inflammatory response observed in sepsis. This study examines the effect of Cth-derived H2S in adhesion molecules on endothelial cells of vital organs in mice in a cecal ligation puncture (CLP)-induced model of sepsis, using two different and complementary approaches: Cth gene deletion and pharmacological inhibition. Our findings revealed a decreased level of H2S-synthesizing activity (via Cth) in both Cth-/- mice and PAG-treated wild-type (WT) mice following CLP-induced sepsis. Both treatment groups had reduced MPO activity and expression of chemokines (MCP-1 and MIP-2α), adhesion molecules (ICAM-1 and VCAM-1), ERK1/2 phosphorylation, and NF-κB in the liver and lung compared with in CLP-WT mice. Additionally, we found that PAG treatment in Cth-/- mice had no additional effect on the expression of ERK1/2 phosphorylation, NF-κB, or the production of chemokines and adhesion molecules in the liver and lung compared to Cth-/- mice following CLP-induced sepsis. The WT group with sepsis had an increased immunoreactivity of adhesion molecules on endothelial cells in the liver and lung than the WT sham-operated control. The Cth-/-, PAG-treated WT, and Cth-/- groups of mice showed decreased immunoreactivity of adhesion molecules on endothelial cells in the liver and lung following sepsis. Inhibition of H2S production via both approaches reduced adhesion molecule expression on endothelial cells and reduced liver and lung injury in mice with sepsis. In conclusion, this study demonstrates that H2S has an important role in the pathogenesis of sepsis and validates PAG use as a suited tool for investigating the Cth/H2S-signalling axis in sepsis.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (S.M.); (S.C.); (A.M.)
| | - Stephen Chambers
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (S.M.); (S.C.); (A.M.)
| | - Andrew Miller
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (S.M.); (S.C.); (A.M.)
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan;
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand; (S.M.); (S.C.); (A.M.)
| |
Collapse
|
5
|
Comparison of Inflation and Ventilation with Hydrogen Sulfide during the Warm Ischemia Phase on Ischemia-Reperfusion Injury in a Rat Model of Non-Heart-Beating Donor Lung Transplantation. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3645304. [PMID: 36778057 PMCID: PMC9911243 DOI: 10.1155/2023/3645304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023]
Abstract
Donor lung ventilation and inflation during the warm ischemia could attenuate ischemia-reperfusion injury (IRI) after lung transplantation. Hydrogen sulfide (H2S), as a kind of protective gas, has demonstrated the antilung IRI effect. This study is aimed at observing the different methods of administering H2S in the setting of warm ischemia, ventilation, and inflation on the lung graft from a rat non-heart-beating donor. After 1 h of cardiac arrest, donor lungs in situ were inflated with 80 ppm H2S (FS group), ventilated with 80 ppm H2S (VS group), or deflated (control group) for 2 h. Then, the lung transplantation was performed after 3 h cold ischemia. The rats without ischemia and reperfusion were in the sham group. Pulmonary surfactant in the bronchoalveolar lavage fluid was measured in donor lung. The inflammatory response, cell apoptosis, and lung graft function were assessed at 3 h after reperfusion. The lung injury was exacerbated in the control group, which was attenuated significantly after the H2S treatment. Compared with the FS group, the pulmonary surfactant in the donor was deteriorated, the lung oxygenation function was decreased, and the inflammatory response and cell apoptosis were increased in the graft in the VS group (P < 0.05). In conclusion, H2S inflation during the warm ischemia phase improved the function of lung graft via regulating pulmonary surfactant stability and decreased the lung graft IRI via decreasing the inflammatory response and cell apoptosis.
Collapse
|
6
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
7
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
8
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
9
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
10
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
11
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
12
|
The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021; 11:biom11050682. [PMID: 34062820 PMCID: PMC8147381 DOI: 10.3390/biom11050682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.
Collapse
|
13
|
Abramavicius S, Petersen AG, Renaltan NS, Prat-Duran J, Torregrossa R, Stankevicius E, Whiteman M, Simonsen U. GYY4137 and Sodium Hydrogen Sulfide Relaxations Are Inhibited by L-Cysteine and K V7 Channel Blockers in Rat Small Mesenteric Arteries. Front Pharmacol 2021; 12:613989. [PMID: 33841145 PMCID: PMC8032876 DOI: 10.3389/fphar.2021.613989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Donors of H2S may be beneficial in treating cardiovascular diseases where the plasma levels of H2S are decreased. Therefore, we investigated the mechanisms involved in relaxation of small arteries induced by GYY4137 [(4-methoxyphenyl)-morpholin-4-yl-sulfanylidene-sulfido-λ5-phosphane;morpholin-4-ium], which is considered a slow-releasing H2S donor. Sulfides were measured by use of 5,5′-dithiobis-(2-nitro benzoic acid), and small rat mesenteric arteries with internal diameters of 200–250 µm were mounted in microvascular myographs for isometric tension recordings. GYY4137 produced similar low levels of sulfides in the absence and the presence of arteries. In U46619-contracted small mesenteric arteries, GYY4137 (10−6–10–3 M) induced concentration-dependent relaxations, while a synthetic, sulfur-free, GYY4137 did not change the vascular tone. L-cysteine (10−6–10–3 M) induced only small relaxations reaching 24 ± 6% at 10–3 M. Premixing L-cysteine (10–3 M) with Na2S and GYY4137 decreased Na2S relaxation and abolished GYY4137 relaxation, an effect prevented by an nitric oxide (NO) synthase inhibitor, L-NAME (Nω-nitro-L-arginine methyl ester). In arteries without endothelium or in the presence of L-NAME, relaxation curves for GYY4137 were rightward shifted. High extracellular K+ concentrations decreased Na2S and abolished GYY4137 relaxation suggesting potassium channel-independent mechanisms are also involved Na2S relaxation while potassium channel activation is pivotal for GYY4137 relaxation in small arteries. Blockers of large-conductance calcium-activated (BKCa) and voltage-gated type 7 (KV7) potassium channels also inhibited GYY4137 relaxations. The present findings suggest that L-cysteine by reaction with Na2S and GYY4137 and formation of sulfides, inhibits relaxations by these compounds. The low rate of release of H2S species from GYY4137 is reflected by the different sensitivity of these relaxations towards high K+ concentration and potassium channel blockers compared with Na2S. The perspective is that the rate of release of sulfides plays an important for the effects of H2S salt vs. donors in small arteries, and hence for a beneficial effect of GYY4137 for treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Silvijus Abramavicius
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark.,Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Asbjørn G Petersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Nirthika S Renaltan
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | | | - Edgaras Stankevicius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Trends in H 2S-Donors Chemistry and Their Effects in Cardiovascular Diseases. Antioxidants (Basel) 2021; 10:antiox10030429. [PMID: 33799669 PMCID: PMC8002049 DOI: 10.3390/antiox10030429] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter recently emerged as an important regulatory mediator of numerous human cell functions in health and in disease. In fact, much evidence has suggested that hydrogen sulfide plays a significant role in many physio-pathological processes, such as inflammation, oxidation, neurophysiology, ion channels regulation, cardiovascular protection, endocrine regulation, and tumor progression. Considering the plethora of physiological effects of this gasotransmitter, the protective role of H2S donors in different disease models has been extensively studied. Based on the growing interest in H2S-releasing compounds and their importance as tools for biological and pharmacological studies, this review is an exploration of currently available H2S donors, classifying them by the H2S-releasing-triggered mechanism and highlighting those potentially useful as promising drugs in the treatment of cardiovascular diseases.
Collapse
|
15
|
Zhang S, Yang G, Guan W, Li B, Feng X, Fan H. Autophagy Plays a Protective Role in Sodium Hydrosulfide-Induced Acute Lung Injury by Attenuating Oxidative Stress and Inflammation in Rats. Chem Res Toxicol 2021; 34:857-864. [PMID: 33539076 DOI: 10.1021/acs.chemrestox.0c00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sodium hydrosulfide (NaHS), as an exogenous hydrogen sulfide (H2S) donor, has been used in various pathological models. NaHS is usually considered to be primarily protective, however, the toxic effect of NaHS has not been well elucidated. The aim of this study was to investigate whether NaHS (1 mg/kg) can induce acute lung injury (ALI is a disease process characterized by diffuse inflammation of the lung parenchyma) and define the mechanism by which NaHS-induced ALI involves autophagy, oxidative stress, and inflammatory response. Wistar rats were randomly divided into three groups (control group, NaHS group, and 3-MA + NaHS group), and samples from each group were collected from 2, 6, 12, and 24 h. We found that intraperitoneal injection of NaHS (1 mg/kg) increased the pulmonary levels of H2S and oxidative stress-related indicators (reactive oxygen species, myeloperoxidase, and malondialdehyde) in a time-dependent manner. Intraperitoneal injection of NaHS (1 mg/kg) induced histopathological changes of ALI and inhibition of autophagy exacerbated the lung injury. This study demonstrates that administration of NaHS (1 mg/kg) induces ALI in rats and autophagy in response to ROS is protective in NaHS-induced ALI by attenuating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wei Guan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Li P, Mao WW, Zhang S, Zhang L, Chen ZR, Lu ZD. Sodium hydrosulfide alleviates dexamethasone-induced cell senescence and dysfunction through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells. Exp Ther Med 2021; 21:238. [PMID: 33603846 PMCID: PMC7851607 DOI: 10.3892/etm.2021.9669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
Glucocorticoid-induced osteoporosis is characterized by osteoblastic cell and microarchitecture dysfunction, as well as a loss of bone mass. Cell senescence contributes to the pathological process of osteoporosis and sodium hydrosulfide (NaHS) regulates the potent protective effects through delaying cell senescence. The aim of the present study was to investigate whether senescence could contribute to dexamethasone (Dex)-induced osteoblast impairment and to examine the effect of NaHS on Dex-induced cell senescence and damage. It was found that the levels of the senescence-associated markers, p53 and p21, were markedly increased in osteoblasts exposed to Dex. A p53 inhibitor reversed Dex-induced osteoblast injury, a process that was mitigated by NaHS administration through alleviating osteoblastic cell senescence. MicroRNA (miR)-22 blocked the impact of NaHS on Dex-induced osteoblast damage and senescence through targeting the regulation of Sirtuin 1 (sirt1) expression, as shown by the decreased cell viability and alkaline phosphatase activity, as well as an increased expression of p53 and p21. It was revealed that the sirt1 gene was the target of miR-22 in osteoblastic MC3T3-E1 cells through combining the results of dual luciferase reporter assays and reverse transcription-quantitative PCR, as well as western blot analyses. Silencing of sirt1 abolished the protective effect of NaHS against Dex-associated osteoblast senescence and injury. Taken together, the present study showed that NaHS prevents Dex-induced cell senescence and damage through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Wei-Wei Mao
- Clinical Skill Center of Yinchuan First People's Hospital, Yinchuan, Ningxia 750001, P.R. China
| | - Shuai Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Liang Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Rong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Dong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
17
|
Shrestha D, Bhat SM, Massey N, Santana Maldonado C, Rumbeiha WK, Charavaryamath C. Pre-exposure to hydrogen sulfide modulates the innate inflammatory response to organic dust. Cell Tissue Res 2021; 384:129-148. [PMID: 33409657 DOI: 10.1007/s00441-020-03333-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/29/2020] [Indexed: 01/31/2023]
Abstract
Animal production units produce and store many contaminants on-site, including organic dust (OD) and hydrogen sulfide (H2S). Workers in these settings report various respiratory disease symptoms. Both OD and H2S have shown to induce lung inflammation. However, impact of co-exposure to both H2S and OD has not been investigated. Therefore, we tested a hypothesis that pre-exposure to H2S modulates the innate inflammatory response of the lungs to organic dust. In a mouse model of H2S and organic dust extract (ODE) exposure, we assessed lung inflammation quantitatively. We exposed human airway epithelial and monocytic cells to medium or H2S alone or H2S followed by ODE and measured cell viability, oxidative stress, and other markers of inflammation. Exposure to 10 ppm H2S followed by ODE increased the lavage fluid leukocytes. However, exposure to 10 ppm H2S alone resulted in changes in tight junction proteins, an increase in mRNA levels of tlr2 and tlr4 as well as ncf1, ncf4, hif1α, and nrf2. H2S alone or H2S and ODE exposure decreased cell viability and increased reactive nitrogen species production. ODE exposure increased the transcripts of tlr2 and tlr4 in both in vitro and in vivo models, whereas increased nfkbp65 transcripts following exposure to ODE and H2S was seen only in in vitro model. H2S alone and H2S followed by ODE exposure increased the levels of IL-1β. We conclude that pre-exposure to H2S modulates lung innate inflammatory response to ODE.
Collapse
Affiliation(s)
- Denusha Shrestha
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | - Sanjana Mahadev Bhat
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA.,Immunobiology Interdepartmental Graduate Program, Iowa State University, Ames, IA, 50011, USA
| | - Nyzil Massey
- Biomedical Sciences, Iowa State University, Ames, IA, 50011, USA
| | | | - Wilson K Rumbeiha
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | |
Collapse
|
18
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
19
|
Abstract
This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.
Collapse
|
20
|
Fuschillo S, Palomba L, Capparelli R, Motta A, Maniscalco M. Nitric Oxide and Hydrogen Sulfide: A Nice Pair in the Respiratory System. Curr Med Chem 2020; 27:7136-7148. [DOI: 10.2174/0929867327666200310120550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
Abstract
Nitric Oxide (NO) is internationally regarded as a signal molecule involved in several
functions in the respiratory tract under physiological and pathogenic conditions. Hydrogen Sulfide
(H2S) has also recently been recognized as a new gasotransmitter with a diverse range of functions
similar to those of NO.
Depending on their respective concentrations, both these molecules act synergistically or antagonistically
as signals or damage promoters. Nevertheless, available evidence shows that the complex
biological connections between NO and H2S involve multiple pathways and depend on the site of
action in the respiratory tract, as well as on experimental conditions. This review will provide an
update on these two gasotransmitters in physiological and pathological processes.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, (NA), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| |
Collapse
|
21
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Singh SP, Devadoss D, Manevski M, Sheybani A, Ivanciuc T, Exil V, Agarwal H, Raizada V, Garofalo RP, Chand HS, Sopori ML. Gestational Exposure to Cigarette Smoke Suppresses the Gasotransmitter H 2S Biogenesis and the Effects Are Transmitted Transgenerationally. Front Immunol 2020; 11:1628. [PMID: 32849552 PMCID: PMC7399059 DOI: 10.3389/fimmu.2020.01628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Rationale: Gestational cigarette smoke (CS) impairs lung angiogenesis and alveolarization, promoting transgenerational development of asthma and bronchopulmonary dysplasia (BPD). Hydrogen sulfide (H2S), a proangiogenic, pro-alveolarization, and anti-asthmatic gasotransmitter is synthesized by cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), and 3-mercaptopyruvate sulfur transferase (3MST). Objective: Determine if gestational CS exposure affected the expression of H2S synthesizing enzymes in the mouse lung and human placenta. Methods: Mice were exposed throughout gestational period to secondhand CS (SS) at approximating the dose of CS received by a pregnant woman sitting in a smoking bar for 3 h/days during pregnancy. Lungs from 7-days old control and SS-exposed pups and human placenta from mothers who were either non-smokers or smokers during pregnancy were analyzed for expression of the enzymes. Measurements: Mouse lungs and human placentas were examined for the expression of CSE, CBS, and 3MST by immunohistochemical staining, qRT-PCR and/or Western blot (WB) analyses. Results: Compared to controls, mouse lung exposed gestationally to SS had significantly lower levels of CSE, CBS, and 3MST. Moreover, the SS-induced suppression of CSE and CBS in F1 lungs was transmitted to the F2 generation without significant change in the magnitude of the suppression. These changes were associated with impaired epithelial-mesenchymal transition (EMT)-a process required for normal lung angiogenesis and alveolarization. Additionally, the placentas from mothers who smoked during pregnancy, expressed significantly lower levels of CSE, CBS, and 3MST, and the effects were partially moderated by quitting smoking during the first trimester. Conclusions: Lung H2S synthesizing enzymes are downregulated by gestational CS and the effects are transmitted to F2 progeny. Smoking during pregnancy decreases H2S synthesizing enzymes is human placentas, which may correlate with the increased risk of asthma/BPD in children.
Collapse
Affiliation(s)
- Shashi P Singh
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Dinesh Devadoss
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Marko Manevski
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Aryaz Sheybani
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| | - Teodora Ivanciuc
- Department of Microbiology and Immunology, Galveston, TX, United States
| | - Vernat Exil
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Hemant Agarwal
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Veena Raizada
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | | | - Hitendra S Chand
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Mohan L Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, NM, United States
| |
Collapse
|
23
|
Ahmad A, Druzhyna N, Szabo C. Effect of 3-mercaptopyruvate Sulfurtransferase Deficiency on the Development of Multiorgan Failure, Inflammation, and Wound Healing in Mice Subjected to Burn Injury. J Burn Care Res 2020; 40:148-156. [PMID: 30649358 DOI: 10.1093/jbcr/irz007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The gaseous transmitter hydrogen sulfide (H2S) has been implicated in various forms of critical illness. Here, we have compared the outcome of scald burn injury in wild-type mice and in mice deficient in 3-mercaptopyruvate sulfurtransferase (3-MST), a mammalian H2S-generating enzyme. Outcome variables included indices of organ injury, clinical chemistry parameters, and plasma levels of inflammatory mediators. Plasma levels of H2S significantly increased in response to burn in wild-type mice, but remained unchanged in 3-MST-/- mice. The capacity of tissue homogenates to produce H2S from 3-mercaptopyruvate was unaffected by burn injury. In 3-MST-/- mice, compared to wild-type controls, there was a significant enhancement in the accumulation of polymorphonuclear cells (as assessed by the quantification of myeloperoxidase) in the liver (but not heart, lung, or skin) at 7 days postburn. Oxidative tissue damage (as assessed by malon dialdehyde content) was comparable between wild-type and 3-MST-deficient mice in all tissues studied. 3-MST-/- and wild-type mice exhibited comparable burn-induced elevations in circulating plasma levels of hepatic injury; however, 3-MST-/- mice exhibited a higher degree of renal injury (as reflected by elevated blood urea nitrogen levels) at 7 days postburn. Inflammatory mediators (eg, TNF-α, IL-1β, IL-2, IL-6, IL-10, and IL-12) increased in burn injury, but without significant differences between the 3-MST-/- and wild-type groups. The healing of the burn wound was also unaffected by 3-MST deficiency. In conclusion, the absence of the H2S-producing enzyme 3-MST slightly exacerbates the development of multiorgan dysfunction but does not affect inflammatory mediator production or wound healing in a murine model of burn injury.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston
| | - Nadiya Druzhyna
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston.,Shriners Hospital for Children, Galveston, Texas.,Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Switzerland
| |
Collapse
|
24
|
Mercel A, Tsihlis ND, Maile R, Kibbe MR. Emerging therapies for smoke inhalation injury: a review. J Transl Med 2020; 18:141. [PMID: 32228626 PMCID: PMC7104527 DOI: 10.1186/s12967-020-02300-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Smoke inhalation injury increases overall burn mortality by up to 20 times. Current therapy remains supportive with a failure to identify an optimal or targeted treatment protocol for smoke inhalation injury. The goal of this review is to describe emerging therapies that are being developed to treat the pulmonary pathology induced by smoke inhalation injury with or without concurrent burn injury. Main body A comprehensive literature search was performed using PubMed (1995–present) for therapies not approved by the U.S. Food and Drug Administration (FDA) for smoke inhalation injury with or without concurrent burn injury. Therapies were divided based on therapeutic strategy. Models included inhalation alone with or without concurrent burn injury. Specific animal model, mechanism of action of medication, route of administration, therapeutic benefit, safety, mortality benefit, and efficacy were reviewed. Multiple potential therapies for smoke inhalation injury with or without burn injury are currently under investigation. These include stem cell therapy, anticoagulation therapy, selectin inhibition, inflammatory pathway modulation, superoxide and peroxynitrite decomposition, selective nitric oxide synthase inhibition, hydrogen sulfide, HMG-CoA reductase inhibition, proton pump inhibition, and targeted nanotherapies. While each of these approaches shows a potential therapeutic benefit to treating inhalation injury in animal models, further research including mortality benefit is needed to ensure safety and efficacy in humans. Conclusions Multiple novel therapies currently under active investigation to treat smoke inhalation injury show promising results. Much research remains to be conducted before these emerging therapies can be translated to the clinical arena.
Collapse
Affiliation(s)
- Alexandra Mercel
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Rob Maile
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
25
|
Wang L, Meng J, Wang C, Yang C, Wang Y, Li Y, Li Y. Hydrogen sulfide alleviates cigarette smoke-induced COPD through inhibition of the TGF- β1/smad pathway. Exp Biol Med (Maywood) 2020; 245:190-200. [PMID: 32008357 DOI: 10.1177/1535370220904342] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Smoking has become a major cause of chronic obstructive pulmonary disease through weakening of the respiratory mucus-ciliary transport system, impairing cough reflex sensitivity, and inducing inflammation. Recent researches have indicated that hydrogen sulfide is essential in the development of various lung diseases. However, the effect and mechanism of hydrogen sulfide on cigarette smoke-induced chronic obstructive pulmonary disease have not been reported. In this study, rats were treated with cigarette smoke to create a chronic obstructive pulmonary disease model followed by treatment with a low concentration of hydrogen sulfide. Pulmonary function, histopathological appearance, lung edema, permeability, airway remodeling indicators, oxidative products/antioxidases levels, inflammatory factors in lung, cell classification in bronchoalveolar lavage fluid were measured to examine the effect of hydrogen sulfide on chronic obstructive pulmonary disease model. The results showed that hydrogen sulfide effectively improved pulmonary function and reduced histopathological changes, lung edema, and permeability. Airway remodeling, oxidative stress, and inflammation were also reduced by hydrogen sulfide treatment. To understand the mechanisms, we measured the expression of TGF-β1, TGF-βIand TGF-βII receptors and Smad7 and phosphorylation of Smad2/Smad3. The results indicated that the TGF-β1 and Smad were activated in cigarette smoke-induced chronic obstructive pulmonary disease model, but inhibited by hydrogen sulfide. In conclusion, this study showed that hydrogen sulfide treatment alleviated cigarette smoke-induced chronic obstructive pulmonary disease through inhibition of the TGF-β1/Smad pathway. Impact statement COPD has become a severe public health issue in the world and smoking has become a major cause of COPD. As a result, it is a demandingly needed to explore new potential therapy for cigarette smoke-associated COPD. The present study suggested that H2S treatment improved pulmonary function and reduced histopathological changes, lung edema, permeability, inflammation, airway remodeling and oxidative injury in a COPD model induced by cigarette smoke. Although additional studies are required to elucidate the pharmacodynamics, pharmacokinetics, and pharmacology of H2S in the cigarette smoke-associated COPD, our findings provide an experimental basis for the potential clinical application of H2S in COPD treatment.
Collapse
Affiliation(s)
- Liang Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Jing Meng
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Caicai Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Chao Yang
- Department of Gynecology, Shijiazhuang Second Hospital, Shijiazhuang 050048, China
| | - Yuan Wang
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Yamei Li
- Department of Respiratory and Critical Care, Hebei Chest Hospital, Hebei 050048, China
| | - Yujing Li
- Department of Laboratory, Hebei Chest Hospital, Hebei 050048, China
| |
Collapse
|
26
|
Guo B, Bai Y, Ma Y, Liu C, Wang S, Zhao R, Dong J, Ji HL. Preclinical and clinical studies of smoke-inhalation-induced acute lung injury: update on both pathogenesis and innovative therapy. Ther Adv Respir Dis 2019; 13:1753466619847901. [PMID: 31068086 PMCID: PMC6515845 DOI: 10.1177/1753466619847901] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Smoke-inhalation-induced acute lung injury (SI-ALI) is a leading cause of morbidity and mortality in victims of fire tragedies. SI-ALI contributes to an estimated 30% of burn-caused patient deaths, and recently, more attention has been paid to the specific interventions for this devastating respiratory illness. In the last decade, much progress has been made in the understanding of SI-ALI patho-mechanisms and in the development of new therapeutic strategies in both preclinical and clinical studies. This article reviews the recent progress in the treatment of SI-ALI, based on pathophysiology, thermal damage, airway obstruction, the nuclear-factor kappa-B signaling pathway, and oxidative stress. Preclinical therapeutic strategies include use of mesenchymal stem cells, hydrogen sulfide, peroxynitrite decomposition catalysts, and proton-pump inhibitors. Clinical interventions include high-frequency percussive ventilation, perfluorohexane, inhaled anticoagulants, and nebulized epinephrine. The animal model, dose, clinical application, and pharmacology of these medications are summarized. Future directions and further needs for developing innovative therapies are discussed.
Collapse
Affiliation(s)
- Bingxin Guo
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yichun Bai
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yana Ma
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Cong Liu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Song Wang
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jiaxing Dong
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Hong-Long Ji
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| |
Collapse
|
27
|
Ge X, Sun J, Fei A, Gao C, Pan S, Wu Z. Hydrogen sulfide treatment alleviated ventilator-induced lung injury through regulation of autophagy and endoplasmic reticulum stress. Int J Biol Sci 2019; 15:2872-2884. [PMID: 31853224 PMCID: PMC6909965 DOI: 10.7150/ijbs.38315] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022] Open
Abstract
Mechanical ventilation has significant therapeutic benefits, but it may cause or aggravate lung injury, which is called ventilator-induced lung injury (VILI). Endogenous hydrogen sulfide (H2S) has roles including regulating inflammation, and promoting vasodilatation; it also exhibits anti-oxidative stress and anti-fibrosis effects. H2S has been reported to alleviate lung injury, but the effects and mechanism of H2S on VILI remain unclear. The present study established a rat model of VILI and treated them with H2S, then measured the changes in respiratory function indicators, lung tissue histopathology, and oxidative, inflammatory, and apoptotic indicators. The effect of H2S on autophagy in the VILI model and the involvement of endoplasmic reticulum (ER) stress were also investigated. To further explore the mechanism, L2 alveolar epithelial cells were treated with cyclic strain to mimic mechanical strain along with the H2S donor NaHS, and the involvement of the NF-κB/MAPK signaling pathway was examined. The results showed that H2S significantly alleviated VILI and inhibited the inflammation and oxidative stress induced by VILI. H2S also significantly reduced autophagy and ER stress in rats. The phosphorylation of IRE1α, PERK and eIF2α and the expression of nuclear ATF4, and GADD34 in L2 cells were all significantly reduced with NaHS. Nuclear NF-κB p65, MAPK p38, JNK, and ERK were all activated by cyclic strain, but inhibited by the ER stress inhibitor 4-PBA or NaHS. Our findings revealed that H2S treatment alleviated VILI by regulating autophagy and ER stress, and the PERK/eIF2α/ATF4/GADD34 and NF-κB/MAPK pathways were involved in the underlying mechanism.
Collapse
Affiliation(s)
- Xiaoli Ge
- Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Sun
- Cardiology Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Fei
- Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengjin Gao
- Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuming Pan
- Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zengbin Wu
- Emergency Department, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Carvalho FO, Silva ÉR, Nunes PS, Felipe FA, Ramos KPP, Ferreira LAS, Lima VNB, Shanmugam S, Oliveira AS, Guterres SS, Camargo EA, Cravalho Olivera TV, de Albuquerque Júnior RLC, de Lucca Junior W, Quintans-Júnior LJ, Araújo AAS. Effects of the solid lipid nanoparticle of carvacrol on rodents with lung injury from smoke inhalation. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:445-455. [PMID: 31655855 DOI: 10.1007/s00210-019-01731-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/10/2019] [Indexed: 01/13/2023]
Abstract
The aim of this present study was to evaluate the effect of solid lipid nanoparticles (SLN) containing carvacrol over the lung damage of airway smoke inhalation. The study was conducted with 30 rats subjected to smoke inhalation and divided into 5 groups such as, normal control, negative control, oxygen group, SLN alone, and SLN+CARV group. The animals were sacrificed 24 h after the induction of inhalation injury further, the tissues of larynx, trachea, and lungs were collected for the histological, hematological, myeloperoxidase, and malondialdehyde analysis. The obtained results showed that treatment with CARV+SLN minimized the inhalation injury, since it reduced malondialdehyde significantly, when compared to the negative control group and minimized the histological changes which proves the absence of pulmonary emphysema and exudate in laryngeal and tracheal lumen in the CARV+SLN-treated group. Meanwhile, the presence of lesion with chronic characteristics was observed in the negative control and oxygen groups. It is suggested that the SLN containing carvacrol minimized oxidative stress and histological damages generated from smoke inhalation in rodents.
Collapse
Affiliation(s)
- Fernanda O Carvalho
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Érika R Silva
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Paula S Nunes
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil.
| | - Fernanda A Felipe
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Karen P P Ramos
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Luiz Augusto S Ferreira
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Viviane N B Lima
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Saravanan Shanmugam
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil.
| | - Alan Santos Oliveira
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Sílvia S Guterres
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Ipiranga Avenue 2752, Porto Alegre, RS, 90610-000, Brazil
| | - Enilton A Camargo
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | | | | | - Waldecy de Lucca Junior
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Lucindo José Quintans-Júnior
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| | - Adriano A S Araújo
- Health Sciences Post-Graduate Program, Federal University of Sergipe, Claudio Batista St s/n, Aracaju, SE, 49060-100, Brazil
| |
Collapse
|
29
|
Inhalation of sodium hydrosulfide (NaHS) alleviates NO 2-induced pulmonary function and hematological impairment in rats. Life Sci 2019; 232:116650. [PMID: 31302196 DOI: 10.1016/j.lfs.2019.116650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/29/2019] [Accepted: 07/10/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Inhalation of NO2 leads to a progressive airflow limitation and the development of emphysema-like lesions. We report on the efficacy of hydrogen sulfide (NaHS) for alleviating NO2-induced pulmonary impairment. METHODS Sprague Dawley rats were exposed to 20 ppm NO2 for 6 h over six consecutive days for 75 days. At day 75, rats who had developed NO2-induced emphysema were then divided into sodium hydrosulfide (NaHS) administrated group, placebo (NaCl) group and spontaneous recovery group for about one month (days 76-105); Pulmonary function (PF) and hematological and biochemical indices were measured at days 14, 45, 75, and 105. RESULTS NO2 exposure for 75 days was associated with a significant decrease in FEV100/FVC%, an increased in functional residual capacity (FRC), and histologic evidence of emphysema, moreover; NO2 exposure led to elevated triglyceride (TG), red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT) levels. Impaired rats treated with NaHS showed no further deterioration in PF compared to rats exposed to ambient air and elevated WBC, granulocyte and lymphocyte counts and HDL-C levels to rats given NaCl. CONCLUSIONS NO2 exposure causes emphysema and a decline in PF in rats. NaHS could alleviate the PF decline as possible indicated by an elevation of HDL-C levels and leukocyte. NaHS has therapeutic potential for emphysema caused by air pollutant NO2.
Collapse
|
30
|
Liang Y, Xu C, Liu F, Du S, Li G, Wang X. Eliminating Heat Injury of Zeolite in Hemostasis via Thermal Conductivity of Graphene Sponge. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23848-23857. [PMID: 31245992 DOI: 10.1021/acsami.9b04956] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermal release of zeolite is conducive in hemostasis, but losing control will cause serious burns. How to balance the advantages and disadvantages is a challenge. Herein, a zeolite/cross-linked graphene sponge (Z-CGS) was design to break through this challenge. The CGS managed the heat release of zeolite by thermal conduction of graphene. Infrared thermal imager demonstrated the mild exothermic process and good thermal conductivity of the optimized Z-CGS. It controlled wound temperature below 42 °C effectively, as compared to 70 °C of naked zeolite. Blood clotting index further confirmed the contribution of thermal stimulation in Z-CGS. On the synergy of thermal and charge stimulations of zeolite, as well as physical adsorption of CGS, Z-CGS achieved outstanding hemostatic performance. Bleeding was stopped within 69 s in rat artery injury model, faster than that of the Quikclot Combat Gauze. Additionally, cytotoxicity assay and pathological analysis highlighted its biocompatibility. Z-CGS, therefore, was an outstanding composite of combining advantages of zeolite and graphene, while getting rid of the shortcomings of the basic unit. The thermal conductibility of graphene renews an avenue for the safe and highly efficient use of zeolite in hemostasis.
Collapse
Affiliation(s)
- Yuping Liang
- Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Congcong Xu
- Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Fang Liu
- Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , P. R. China
| | - Shiyu Du
- Department of Gastroenterology , China-Japan Friendship Hospital , Beijing 100029 , P. R. China
| | - Guofeng Li
- Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
- Key Laboratory of Biomedical Materials of Natural Macromolecules , Beijing University of Chemical Technology, Ministry of Education , Beijing 100029 , P. R. China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
- Key Laboratory of Biomedical Materials of Natural Macromolecules , Beijing University of Chemical Technology, Ministry of Education , Beijing 100029 , P. R. China
| |
Collapse
|
31
|
Sun L, Chen L, Wang F, Zheng X, Yuan C, Niu Q, Li Z, Deng L, Zheng B, Li C, Zhou X. Exogenous hydrogen sulfide prevents lipopolysaccharide-induced inflammation by blocking the TLR4/NF-κB pathway in MAC-T cells. Gene 2019; 710:114-121. [PMID: 31153885 DOI: 10.1016/j.gene.2019.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Abstract
Mastitis impairs animal health and results in economic loss. Lipopolysaccharide (LPS) may cause immune response and inflammation in the bovine mammary gland. Hydrogen sulfide (H2S) is the third gasotransmitter that acts as an anti-inflammation regulator in many cells. Despite the importance of H2S in regulating inflammation, the effect and mechanism of exogenous H2S on LPS-induced inflammation in bovine mammary epithelial cells are unknown. In the present study, with NaHS as a donor of H2S, the bovine mammary epithelial cell line (MAC-T) was applied as an in vitro model to study the role of H2S on LPS-induced MAC-T cells. The results verified that the cell viability was diminished by LPS but restored by exogenous H2S at a physiologically relevant concentration (10 μM). Additionally, the production of H2S was mitigated in the LPS-induced MAC-T cells. Meanwhile, exogenous H2S decreased the intracellular ROS production and mRNA expression levels of the pro-inflammatory cytokines, TNF-α, IL-1β, IL-8, and IL-6. Furthermore, exogenous H2S inhibited the mRNA expression of TLR4 and activation of NF-κB signaling pathway. In summary, exogenous H2S exerts anti-inflammatory effects through attenuating oxidative stress and blocking the TLR4/NF-κB pathway in the LPS-induced bovine mammary epithelial cells. Our findings might clarify new prophylactic approaches for mastitis.
Collapse
Affiliation(s)
- Liting Sun
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Fengge Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xue Zheng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chenfeng Yuan
- College of Animal Sciences, Jilin University, Changchun, China
| | - Qiaoge Niu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Zheng Li
- College of Animal Sciences, Jilin University, Changchun, China
| | - Liang Deng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Biaobiao Zheng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China.
| |
Collapse
|
32
|
Fries CA, Lawson SD, Wang LC, Spencer JR, Roth M, Rickard RF, Gorantla VS, Davis MR. Composite Graft Pretreatment With Hydrogen Sulfide Delays the Onset of Acute Rejection. Ann Plast Surg 2019; 82:452-458. [DOI: 10.1097/sap.0000000000001693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Gas Signaling Molecules and Mitochondrial Potassium Channels. Int J Mol Sci 2018; 19:ijms19103227. [PMID: 30340432 PMCID: PMC6214077 DOI: 10.3390/ijms19103227] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022] Open
Abstract
Recently, gaseous signaling molecules, such as carbon monoxide (CO), nitric oxide (NO), and hydrogen sulfide (H2S), which were previously considered to be highly toxic, have been of increasing interest due to their beneficial effects at low concentrations. These so-called gasotransmitters affect many cellular processes, such as apoptosis, proliferation, cytoprotection, oxygen sensing, ATP synthesis, and cellular respiration. It is thought that mitochondria, specifically their respiratory complexes, constitute an important target for these gases. On the other hand, increasing evidence of a cytoprotective role for mitochondrial potassium channels provides motivation for the analysis of the role of gasotransmitters in the regulation of channel function. A number of potassium channels have been shown to exhibit activity within the inner mitochondrial membrane, including ATP-sensitive potassium channels, Ca2+-activated potassium channels, voltage-gated Kv potassium channels, and TWIK-related acid-sensitive K+ channel 3 (TASK-3). The effects of these channels include the regulation of mitochondrial respiration and membrane potential. Additionally, they may modulate the synthesis of reactive oxygen species within mitochondria. The opening of mitochondrial potassium channels is believed to induce cytoprotection, while channel inhibition may facilitate cell death. The molecular mechanisms underlying the action of gasotransmitters are complex. In this review, we focus on the molecular mechanisms underlying the action of H2S, NO, and CO on potassium channels present within mitochondria.
Collapse
|
34
|
Ding HB, Liu KX, Huang JF, Wu DW, Chen JY, Chen QS. RETRACTED: Protective effect of exogenous hydrogen sulfide on pulmonary artery endothelial cells by suppressing endoplasmic reticulum stress in a rat model of chronic obstructive pulmonary disease. Biomed Pharmacother 2018; 105:734-741. [PMID: 29908494 DOI: 10.1016/j.biopha.2018.05.131] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/24/2018] [Accepted: 05/27/2018] [Indexed: 01/08/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the Western blot data in Figure 4A, which appear to represent a distinct phenotype as found in many other publications, as detailed here: https://pubpeer.com/publications/029A84E50BD071A2088140723E3CF0; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. Independent analysis confirmed the presence of suspected image duplications between the Western blots in Figure 4A and those contained in Yan et al (2017). The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Hai-Bo Ding
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, PR China.
| | - Kai-Xiong Liu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, PR China
| | - Jie-Feng Huang
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, PR China
| | - Da-Wen Wu
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, PR China
| | - Jun-Ying Chen
- Central Lab, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, PR China
| | - Qing-Shi Chen
- Division of Respiratory and Critical Care Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian Province, PR China
| |
Collapse
|
35
|
Dunn JLM, Kartchner LB, Stepp WH, Glenn LI, Malfitano MM, Jones SW, Doerschuk CM, Maile R, Cairns BA. Blocking CXCL1-dependent neutrophil recruitment prevents immune damage and reduces pulmonary bacterial infection after inhalation injury. Am J Physiol Lung Cell Mol Physiol 2018; 314:L822-L834. [PMID: 29368547 DOI: 10.1152/ajplung.00272.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smoke inhalation associated with structural fires, wildfires, or explosions leads to lung injury, for which innovative and clinically relevant animal models are needed to develop effective therapeutics. We have previously reported that damage-associated molecular patterns (DAMPs) and anti-inflammatory cytokines correlate with infectious complications in patients diagnosed with inhalational injury. In this study, we describe a novel and translational murine model of acute inhalational injury characterized by an accumulation of protein and neutrophils in the bronchoalveolar space, as well as histological evidence of tissue damage. Mice were anesthetized, and a cannula was placed in the trachea and exposed to smoldering plywood smoke three times for 2-min intervals in a smoke chamber. Here we demonstrate that this model recapitulates clinically relevant phenotypes, including early release of double-stranded DNA (dsDNA), IL-10, monocyte chemoattractant protein (MCP)-1, and CXCL1 along with neutrophilia early after injury, accompanied by subsequent susceptibility to opportunistic infection with Pseudomonas aeruginosa. Further investigation of the model, and in turn a reanalysis of patient samples, revealed a late release of the DAMP hyaluronic acid (HA) from the lung. Using nitric oxide synthase-deficient mice, we found that Nos2 was required for increases in IL-10, MCP-1, and HA following injury but not release of dsDNA, CXCL1 expression, early neutrophilia, or susceptibility to opportunistic infection. Depletion of CXCL1 attenuated early neutrophil recruitment, leading to decreased histopathology scores and improved bacterial clearance in this model of smoke inhalation. Together, these data highlight the potential therapeutic benefit of attenuating neutrophil recruitment in the first 24 h after injury in patients.
Collapse
Affiliation(s)
- Julia L M Dunn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Laurel B Kartchner
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Wesley H Stepp
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Department of Surgery, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Lindsey I Glenn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Department of Surgery, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Madison M Malfitano
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Department of Surgery, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Samuel W Jones
- Department of Surgery, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Jaycee Burn Center, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Claire M Doerschuk
- Department of Medicine and Pathology, Center for Airway Disease, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Marsico Lung Institute, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Robert Maile
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Department of Surgery, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Jaycee Burn Center, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Bruce A Cairns
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Department of Surgery, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina.,Jaycee Burn Center, The University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
36
|
Bourque C, Zhang Y, Fu M, Racine M, Greasley A, Pei Y, Wu L, Wang R, Yang G. H 2S protects lipopolysaccharide-induced inflammation by blocking NFκB transactivation in endothelial cells. Toxicol Appl Pharmacol 2017; 338:20-29. [PMID: 29128401 DOI: 10.1016/j.taap.2017.11.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/23/2017] [Accepted: 11/07/2017] [Indexed: 01/26/2023]
Abstract
Hydrogen sulfide (H2S) is a novel gasotransmitter and acts as a multifunctional regulator in various cellular functions. Past studies have demonstrated a significant role of H2S and its generating enzyme cystathionine gamma-lyase (CSE) in the cardiovascular system. Lipopolysaccharide (LPS), a major pathogenic factor, is known to initiate the inflammatory immune response. The cross talk between LPS-induced inflammation and the CSE/H2S system in vascular cells has not yet been elucidated in detail. Here we showed that LPS decreased CSE mRNA and protein expression in human endothelial cells and blocked H2S production in mouse aorta tissues. Transfection of the cells with TLR4-specific siRNA knockdown TLR4 mRNA expression and abolished the inhibitory role of LPS on CSE expression. Higher dose of LPS (100μg/ml) decreased cell viability, which was reversed by exogenously applied H2S at physiologically relevant concentration (30μM). Lower dose of LPS (10μg/ml) had no effect on cell viability, but significantly induced inflammation gene expressions and cytokines secretion and stimulated cell hyper-permeability. H2S treatment prevented LPS-induced inflammation and hyper-permeability. Lower VE-cadherin expression in LPS-incubated cells would contribute to cell hyper-permeability, which was reversed by H2S co-incubation. In addition, H2S treatment blocked LPS-induced NFκB transactivation. We further validated that LPS-induced hyper-permeability was reversed by CSE overexpression but further deteriorated by CRISPR/Cas9-mediated knockout of CSE. In vivo, deficiency of CSE sensitized the mice to LPS-induced inflammation in vascular tissues. Take together, these data suggest that CSE/H2S system protects LPS-induced inflammation and cell hyper-permeability by blocking NFκB transactivation.
Collapse
Affiliation(s)
- Caitlyn Bourque
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yanjie Zhang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; School of Life Science, Shanxi University, Taiyuan, China
| | - Ming Fu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; School of Human Kinetics, Laurentian University, Sudbury, Canada; Department of Biology, Laurentian University, Sudbury, Canada; Health Science North Research Institute, Sudbury, Canada
| | - Mélanie Racine
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Adam Greasley
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China
| | - Lingyun Wu
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; School of Human Kinetics, Laurentian University, Sudbury, Canada; Health Science North Research Institute, Sudbury, Canada
| | - Rui Wang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada; Department of Biology, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
37
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
38
|
Li F, Zhang P, Zhang M, Liang L, Sun X, Li M, Tang Y, Bao A, Gong J, Zhang J, Adcock I, Chung KF, Zhou X. Hydrogen Sulfide Prevents and Partially Reverses Ozone-Induced Features of Lung Inflammation and Emphysema in Mice. Am J Respir Cell Mol Biol 2017; 55:72-81. [PMID: 26731380 DOI: 10.1165/rcmb.2015-0014oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S), a novel signaling gasotransmitter in the respiratory system, may have antiinflammatory properties in the lung. We examined the preventive and therapeutic effects of H2S on ozone-induced features of lung inflammation and emphysema. C57/BL6 mice were exposed to ozone or filtered air over 6 weeks. Sodium hydrogen sulfide (NaHS), an H2S donor, was administered to the mice either before ozone exposure (preventive effect) or after completion of 6 weeks of ozone exposure (therapeutic effect). The ozone-exposed mice developed emphysema, measured by micro-computed tomography and histology, airflow limitation, measured by the forced maneuver system, and increased lung inflammation with augmented IL-1β, IL-18, and matrix metalloproteinase-9 (MMP-9) gene expression. Ozone-induced changes were associated with increased Nod-like receptor pyrin domain containing 3 (NLRP3)-caspase-1 activation and p38 mitogen-activated protein kinase phosphorylation and decreased Akt phosphorylation. NaHS both prevented and reversed lung inflammation and emphysematous changes in alveolar space. In contrast, NaHS prevented, but did not reverse, ozone-induced airflow limitation and bronchial structural remodeling. In conclusion, NaHS administration prevented and partially reversed ozone-induced features of lung inflammation and emphysema via regulation of the NLRP3-caspase-1, p38 mitogen-activated protein kinase, and Akt pathways.
Collapse
Affiliation(s)
- Feng Li
- 1 Department of Respiratory Medicine and
| | | | - Min Zhang
- 1 Department of Respiratory Medicine and
| | - Li Liang
- 2 Department of Respiratory Medicine, Shanghai Third People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | - Min Li
- 3 Experimental Research Center, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yueqin Tang
- 3 Experimental Research Center, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Aihua Bao
- 1 Department of Respiratory Medicine and
| | - Jicheng Gong
- 4 Division of Environmental Sciences and Policy, Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina; and
| | - Junfeng Zhang
- 4 Division of Environmental Sciences and Policy, Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina; and
| | - Ian Adcock
- 5 Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kian Fan Chung
- 5 Airway Diseases Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Xin Zhou
- 1 Department of Respiratory Medicine and
| |
Collapse
|
39
|
Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn. Burns 2017; 43:1021-1033. [PMID: 28318752 DOI: 10.1016/j.burns.2017.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/07/2017] [Accepted: 02/19/2017] [Indexed: 01/08/2023]
Abstract
Considering the role of H2S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H2S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H2S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE-/- mice. Expression of the three H2S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H2S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE-/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn.
Collapse
|
40
|
Tang B, Ma L, Yao X, Tan G, Han P, Yu T, Liu B, Sun X. Hydrogen sulfide ameliorates acute lung injury induced by infrarenal aortic cross-clamping by inhibiting inflammation and angiopoietin 2 release. J Vasc Surg 2017; 65:501-508.e1. [DOI: 10.1016/j.jvs.2015.10.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/03/2015] [Indexed: 02/04/2023]
|
41
|
Jimenez FR, Lewis JB, Belgique ST, Milner DC, Lewis AL, Dunaway TM, Egbert KM, Winden DR, Arroyo JA, Reynolds PR. Cigarette smoke and decreased oxygen tension inhibit pulmonary claudin-6 expression. Exp Lung Res 2016; 42:440-452. [PMID: 27982694 DOI: 10.1080/01902148.2016.1261309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Chronic obstructive pulmonary disease is a condition involving perturbed barrier integrity coincident with both emphysema and inflammation of the airways, and smoking is considered a major risk factor. Claudins (Cldns) stabilize barriers and contribute to tight junctions by preventing paracellular transport of extracellular fluid constituents. METHODS To determine Cldn6 was differentially influenced by tobacco smoke, Cldn6 was evaluated in cells and tissues by q-PCR, immunoblotting, and immunohistochemistry following exposure. Cldn6 transcriptional regulation was also assessed using luciferase reporter constructs. RESULTS Q-PCR and immunoblotting revealed that Cldn6 was decreased in alveolar type II-like epithelial cells (A549) and primary small airway epithelial cells when exposed to cigarette smoke extract (CSE). Cldn6 was also markedly decreased in the lungs of mice exposed to acute tobacco smoke delivered by a nose-only automated smoke machine compared to controls. Luciferase reporter assays incorporating 0.5-kb, 1.0-kb, or 2.0-kb of the Cldn6 promoter revealed decreased transcription of Cldn6 following exposure to CSE. Cldn6 transcriptional regulation was also assessed in hypoxic conditions due to low oxygen tension observed during smoking. Hypoxia and hypoxia inducible factor-1 alpha caused decreased transcription of the Cldn6 gene via interactions with putative response elements in the proximal promoter sequence. CONCLUSIONS These data reveal that tight junctional proteins such as Cldn6 are differentially regulated by tobacco-smoke exposure and that Cldns are potentially targeted when epithelial cells respond to tobacco smoke. Further research may show that Cldns expressed in tight junctions between parenchymal cells contribute to impaired structural integrity of the lung coincident with smoking.
Collapse
Affiliation(s)
- Felix R Jimenez
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| | - Josh B Lewis
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| | - Samuel T Belgique
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| | - Dallin C Milner
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| | - Adam L Lewis
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| | - Todd M Dunaway
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| | - Kaleb M Egbert
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| | - Duane R Winden
- b College of Dental Medicine, Roseman University of Health Sciences-South Jordan Campus , South Jordan , Utah , USA
| | - Juan A Arroyo
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| | - Paul R Reynolds
- a Lung and Placenta Research Laboratory, Department of Physiology and Developmental Biology , Brigham Young University , Provo , Utah , USA
| |
Collapse
|
42
|
Ahmad A, Szabo C. Both the H 2S biosynthesis inhibitor aminooxyacetic acid and the mitochondrially targeted H 2S donor AP39 exert protective effects in a mouse model of burn injury. Pharmacol Res 2016; 113:348-355. [PMID: 27639598 DOI: 10.1016/j.phrs.2016.09.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/31/2016] [Accepted: 09/14/2016] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2S) exerts beneficial as well as deleterious effects in various models of critical illness. Here we tested the effect of two different pharmacological interventions: (a) inhibition of H2S biosynthesis using the cystathionine-beta-synthase (CBS)/cystathionine-gamma-lyase (CSE) inhibitor aminooxyacetic acid (AOAA) and the mitochondrially targeted H2S donor [10-oxo-10-[4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy]decyl]triphenyl-phosphonium (AP39). A 30% body surface area burn injury was induced in anesthetized mice; animals were treated with vehicle, AOAA (10mg/kg i.p. once or once a day for 6days), or AP39 (0.3mg/kg/day once or once a day for 6days). In two separate groups, animals were sacrificed, at 24h post-burn or on Day 7 post-burn, blood and lungs were collected and the following parameters were evaluated: myeloperoxidase (MPO) and malondialdehyde (MDA) in lung homogenates, plasma cytokines (Luminex analysis) and circulating indicators of organ dysfunction (Vetscan analysis). Lung MPO levels (an index of neutrophil infiltration) and MDA levels (an index of oxidative stress) were significantly increased in response to burn injury both at 24h and at 7days; both AOAA and AP39 attenuated these increases. From a panel of inflammatory cytokines (TNFα, IL-1β, IL-6, IL-10, MCP-1, MIP-2, VEGF and IFNγ) in the plasma, IL-6 and IL-10 levels were markedly elevated at 24h and VEGF was slightly elevated. IL-6 remained highly elevated at 7days post-burn while IL-10 levels decreased, but remained slightly elevated over baseline 7days post-burn. The changes in cytokine levels were attenuated both by AP39 and AOAA at both time points studied. The burn-induced increases in the organ injury markers ALP and ALT, amylase and creatinine were reduced by both AOAA and AP39. We conclude that both H2S biosynthesis inhibition (using AOAA) and H2S donation (using AP39) suppresses inflammatory mediator production and reduces multi-organ injury in a murine model of burn injury, both at an early time point (when systemic H2S levels are elevated) and at a later time point (at which time systemic H2S levels have returned to baseline). These findings point to the complex pathogenetic role of H2S in burns.
Collapse
Affiliation(s)
- Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA; Shriners Hospitals for Children, Galveston, TX, USA.
| |
Collapse
|
43
|
Szczesny B, Brunyánszki A, Ahmad A, Oláh G, Porter C, Toliver-Kinsky T, Sidossis L, Herndon DN, Szabo C. Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury. PLoS One 2015; 10:e0143730. [PMID: 26630679 PMCID: PMC4668069 DOI: 10.1371/journal.pone.0143730] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 11/08/2015] [Indexed: 01/11/2023] Open
Abstract
Severe thermal injury induces a pathophysiological response that affects most of the organs within the body; liver, heart, lung, skeletal muscle among others, with inflammation and hyper-metabolism as a hallmark of the post-burn damage. Oxidative stress has been implicated as a key component in development of inflammatory and metabolic responses induced by burn. The goal of the current study was to evaluate several critical mitochondrial functions in a mouse model of severe burn injury. Mitochondrial bioenergetics, measured by Extracellular Flux Analyzer, showed a time dependent, post-burn decrease in basal respiration and ATP-turnover but enhanced maximal respiratory capacity in mitochondria isolated from the liver and lung of animals subjected to burn injury. Moreover, we detected a tissue-specific degree of DNA damage, particularly of the mitochondrial DNA, with the most profound effect detected in lungs and hearts of mice subjected to burn injury. Increased mitochondrial biogenesis in lung tissue in response to burn injury was also observed. Burn injury also induced time dependent increases in oxidative stress (measured by amount of malondialdehyde) and neutrophil infiltration (measured by myeloperoxidase activity), particularly in lung and heart. Tissue mononuclear cell infiltration was also confirmed by immunohistochemistry. The amount of poly(ADP-ribose) polymers decreased in the liver, but increased in the heart in later time points after burn. All of these biochemical changes were also associated with histological alterations in all three organs studied. Finally, we detected a significant increase in mitochondrial DNA fragments circulating in the blood immediately post-burn. There was no evidence of systemic bacteremia, or the presence of bacterial DNA fragments at any time after burn injury. The majority of the measured parameters demonstrated a sustained elevation even at 20–40 days post injury suggesting a long-lasting effect of thermal injury on organ function. The current data show that there are marked time-dependent and tissue-specific alterations in mitochondrial function induced by thermal injury, and suggest that mitochondria-specific damage is one of the earliest responses to burn injury. Mitochondria may be potential therapeutic targets in the future experimental therapy of burns.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America.,Shriners Hospitals for Children, Galveston, TX, United States of America
| | - Attila Brunyánszki
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Akbar Ahmad
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Gabor Oláh
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Craig Porter
- Shriners Hospitals for Children, Galveston, TX, United States of America.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America.,Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Labros Sidossis
- Shriners Hospitals for Children, Galveston, TX, United States of America.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - David N Herndon
- Shriners Hospitals for Children, Galveston, TX, United States of America.,Department of Surgery, The University of Texas Medical Branch, Galveston, TX, United States of America
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, United States of America.,Shriners Hospitals for Children, Galveston, TX, United States of America
| |
Collapse
|
44
|
Ziogas V, Tanou G, Belghazi M, Filippou P, Fotopoulos V, Grigorios D, Molassiotis A. Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants. PLANT MOLECULAR BIOLOGY 2015; 89:433-50. [PMID: 26404728 DOI: 10.1007/s11103-015-0379-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/31/2015] [Indexed: 05/04/2023]
Abstract
Emerging evidence suggests that the gaseous molecules hydrogen sulfide (H2S) and nitric oxide (NO) enhances plant acclimation to stress; however, the underlying mechanism remains unclear. In this work, we explored if pretreatment of citrus roots with NaHS (a H2S donor) or sodium nitroprusside (SNP, a NO donor) for 2 days (d) could elicit long-lasting priming effects to subsequent exposure to PEG-associated drought stress for 21 d following a 5 d acclimation period. Detailed physiological study documented that both pretreatments primed plants against drought stress. Analysis of the level of nitrite, NOx, S-nitrosoglutahione reductase, Tyr-nitration and S-nitrosylation along with the expression of genes involved in NO-generation suggested that the nitrosative status of leaves and roots was altered by NaHS and SNP. Using a proteomic approach we characterized S-nitrosylated proteins in citrus leaves exposed to chemical treatments, including well known and novel S-nitrosylated targets. Mass spectrometry analysis also enabled the identification of 42 differentially expressed proteins in PEG alone-treated plants. Several PEG-responsive proteins were down-regulated, especially photosynthetic proteins. Finally, the identification of specific proteins that were regulated by NaHS and SNP under PEG conditions provides novel insight into long-term drought priming in plants and in a fruit crop such as citrus in particular.
Collapse
Affiliation(s)
- Vasileios Ziogas
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Georgia Tanou
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Maya Belghazi
- Faculty of Medicine, Proteomics Analysis Center (CAPM), 13916, Marseilles, France
| | - Panagiota Filippou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Vasileios Fotopoulos
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Diamantidis Grigorios
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece
| | - Athanassios Molassiotis
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloníki, Greece.
| |
Collapse
|
45
|
Zheng Y, Ji X, Ji K, Wang B. Hydrogen sulfide prodrugs-a review. Acta Pharm Sin B 2015; 5:367-77. [PMID: 26579468 PMCID: PMC4629439 DOI: 10.1016/j.apsb.2015.06.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/03/2015] [Indexed: 01/06/2023] Open
Abstract
Hydrogen sulfide (H2S) is recognized as one of three gasotransmitters together with nitric oxide (NO) and carbon monoxide (CO). As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.
Collapse
|
46
|
Sun L, Zhao X, Li D, Cai Y, An H, Wang T, Cui Z, Yang H, Han F, Ao L, Liu J, Cao J. A dynamic smoke generation and nose-only inhalation exposure system for rats: preliminary results from studies of selected transportation materials. Inhal Toxicol 2015; 26:897-907. [PMID: 25472478 DOI: 10.3109/08958378.2014.975874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Smoke inhalation injury is the main cause of fatalities for fire victims. Understanding in the pathophysiology of the injury has not been fully explored in recent years. To further explore the pathophysiological mechanism, a dynamic and controllable animal model is necessary. OBJECTIVE To develop a rat model of smoke inhalation injury to simulate human victims in air-restricted vehicle cabin fires. MATERIALS AND METHODS Smoke concentration, including CO, O2, VOCs and smoke temperature under different combustion conditions, were detected. Levels of COHb, respiratory function, lung wet-to-dry weight ratio and protein concentration in BALF and blood were measured. Pathological evaluations of lung in tissues were conducted at 1, 6, 24 and 48 h post-exposure. RESULTS Smoke concentration rose with the increase of combustion temperature and decrease of oxygen flow. Further, 215 kinds of VOCs in the smoke were detected, and the concentrations of benzene, methylbenzene, ethylbenzene, dimethylbenzene, phenylethylene and trimethylbenzene was 32.93, 402.06, 764.03, 113.73, 1006.61 and 89.28 mg/m(3), respectively. Significant hypoxemia and CO poisoning occurred in rats. The FCOHb after exposure for 14 min immediately rose to (44.2 ± 12.3) % and then gradually decrease to a normal level at 300 min post-exposure. At 24 h post-exposure, Penh increased significantly (p < 0.05), and high pulmonary vascular permeability and significant lung edema (p < 0.05) were observed in the smoke inhalation group. DISCUSSION AND CONCLUSION In summary, the novel rat model of smoke inhalation injury system used in the study is dynamic and controllable, and appropriate for use in smoke inhalation injury studies of air-restricted cabins in vehicles.
Collapse
Affiliation(s)
- Lei Sun
- Institute of Toxicology, National Experimental Teaching Demonstrating Center, Third Military Medical University , Chongqing , China and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hatziefthimiou A, Stamatiou R. Role of hydrogen sulphide in airways. World J Respirol 2015; 5:152-159. [DOI: 10.5320/wjr.v5.i2.152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/04/2015] [Accepted: 03/09/2015] [Indexed: 02/06/2023] Open
Abstract
The toxicity of hydrogen sulfide (H2S) has been known for a long time, as it is prevalent in the atmosphere. However accumulative data suggest that H2S is also endogenously produced in mammals, including man, and is the third important gas signaling molecule, besides nitric oxide and carbon monoxide. H2S can be produced via non enzymatic pathways, but is mainly synthesized from L-cysteine by the enzymes cystathionine-γ-lyase, cystathionine-β-synthetase, cysteine amino transferase and 3-mercaptopyruvate sulfurtransferase (3MTS). The formation of H2S from D-cysteine via the enzyme D-amino acid oxidase and 3MTS has also been described. Endogenous H2S not only participates in the regulation of physiological functions of the respiratory system, but also seems to contribute to the pathophysiology of airway diseases such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis, as well as in inflammation, suggesting its possible use as a biomarker for these diseases. This review summarizes the different implications of hydrogen sulfide in the physiology of airways and the pathophysiology of airway diseases.
Collapse
|
48
|
Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 2015; 50:11788-805. [PMID: 25019301 DOI: 10.1039/c4cc00968a] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a newly recognized signaling molecule with very potent cytoprotective actions. The fields of H2S physiology and pharmacology have been rapidly growing in recent years, but a number of fundamental issues must be addressed to advance our understanding of the biology and clinical potential of H2S in the future. Hydrogen sulfide releasing agents (also known as H2S donors) have been widely used in these fields. These compounds are not only useful research tools, but also potential therapeutic agents. It is therefore important to study the chemistry and pharmacology of exogenous H2S and to be aware of the limitations associated with the choice of donors used to generate H2S in vitro and in vivo. In this review we summarized the developments and limitations of currently available donors including H2S gas, sulfide salts, garlic-derived sulfur compounds, Lawesson's reagent/analogs, 1,2-dithiole-3-thiones, thiol-activated donors, photo-caged donors, and thioamino acids. Some biological applications of these donors were also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
49
|
Han ZH, Jiang YI, Duan YY, Wang XY, Huang Y, Fang TZ. Protective effects of hydrogen sulfide inhalation on oxidative stress in rats with cotton smoke inhalation-induced lung injury. Exp Ther Med 2015; 10:164-168. [PMID: 26170929 DOI: 10.3892/etm.2015.2482] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the mechanism by which hydrogen sulfide (H2S) inhalation protects against oxidative stress in rats with cotton smoke inhalation-induced lung injury. A total of 24 male Sprague-Dawley rats were separated randomly into four groups, which included the control, H2S, smoke and smoke + H2S groups. A rat model of cotton smoke inhalation-induced lung injury was established following inhalation of 30% oxygen for 6 h. In addition, H2S (80 ppm) was inhaled by the rats in the H2S and smoke + H2S groups for 6 h following smoke or sham-smoke inhalation. Enzyme-linked immunosorbent assays were performed to measure various indices in the rat lung homogenate, while the levels of nuclear factor (NF)-κBp65 in the lung tissue of the rats were determined and semiquantitatively analyzed using immunohistochemistry. In addition, quantitative fluorescence polymerase chain reaction was employed to detect the mRNA expression of inducible nitric oxide synthase (iNOS) in the rat lung tissue. The concentrations of malondialdehyde (MDA), nitric oxide (NO), inducible iNOS and NF-κBp65, as well as the sum-integrated optical density of NF-κBp65 and the relative mRNA expression of iNOS, in the rat lung tissue from the smoke + H2S group were significantly lower when compared with the smoke group. The concentrations of MDA, NO, iNOS and NF-κBp65 in the H2S group were comparable to that of the control group. Therefore, inhalation of 80 ppm H2S may reduce iNOS mRNA transcription and the production of iNOS and NO in rats by inhibiting NF-κBp65 activation, subsequently decreasing oxidative stress and cotton smoke inhalation-induced lung injury.
Collapse
Affiliation(s)
- Zhi-Hai Han
- Pulmonary and Critical Care Medicine of PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Y I Jiang
- Political Department Clinic of Shenyang Military Area Command, Shenyang, Liaoning 110032, P.R. China
| | - Yun-You Duan
- Pulmonary and Critical Care Medicine of PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Xiao-Yang Wang
- Pulmonary and Critical Care Medicine of PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Yan Huang
- Pulmonary and Critical Care Medicine of PLA Navy General Hospital, Beijing 100048, P.R. China
| | - Ting-Zheng Fang
- Pulmonary and Critical Care Medicine of PLA Navy General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
50
|
Rios ECS, Szczesny B, Soriano FG, Olah G, Szabo C. Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. Int J Mol Med 2015; 35:1741-6. [PMID: 25873160 PMCID: PMC4432924 DOI: 10.3892/ijmm.2015.2176] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 01/18/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous biological mediator, which regulates, among others, the oxidative balance of cells under normal physiological conditions, as well as in various diseases. Several previous studies have reported that H2S attenuates inflammatory mediator production. In this study, we investigated the role of H2S in chromatin modulation in an in vitro model of lipopolysaccharide (LPS)-induced inflammation and evaluated its effects on inflammatory cytokine production. Tamm-Horsfall protein 1 (THP-1) differentiated macrophages were pre-treated with sodium hydrosulfide (NaHS) (an H2S donor) at 0.01, 0.1, 0.5 or 1 mM for 30 min. To stimulate cytokine production, the cells were challenged with bacterial LPS (1 µg/ml) for 1, 4, 8 or 24 h. Histone H3 acetylation was analyzed by chromatin immunoprecipitation (ChIP), cytokine production was measured by ELISA and histone deacetylase (HDAC) activity was analyzed using a standard biochemical assay. H2S inhibited the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner; it was most effective at the two highest concentrations used. This effect was associated with a decrease in histone H3 acetylation at the IL-6 and TNF-α promoters in the cells exposed to H2S or H2S + LPS. The findings of the present study suggest that H2S suppresses histone acetylation, which, in turn, inhibits chromatin openness, leading to a decrease in the gene transcription of various pro-inflammatory cytokines. Therefore, this mechanism may contribute to the previously demonstrated anti-inflammatory effects of H2S and various H2S donors.
Collapse
Affiliation(s)
- Ester C S Rios
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Francisco G Soriano
- Department of Emergency Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|