1
|
Lange Y, Steck TL. How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis. Prog Lipid Res 2024; 96:101304. [PMID: 39491591 DOI: 10.1016/j.plipres.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
How do cells coordinate the diverse elements that regulate their cholesterol homeostasis? Our model postulates that membrane cholesterol forms simple complexes with bilayer phospholipids. The phospholipids in the plasma membrane are of high affinity; consequently, they are fully complexed with the sterol. This sets the resting level of plasma membrane cholesterol. Cholesterol in excess of the stoichiometric equivalence point of these complexes has high chemical activity; we refer to it as active cholesterol. It equilibrates with the low affinity phospholipids in the intracellular membranes where it serves as a negative feedback signal to a manifold of regulatory proteins that rein in ongoing cholesterol accretion. We tested the model with a review of the literature regarding fourteen homeostatic proteins in enterocytes. It provided strong albeit indirect support for the following hypothesis. Active cholesterol inhibits cholesterol uptake and biosynthesis by suppressing both the expression and the activity of the gene products activated by SREBP-2; namely, HMGCR, LDLR and NPC1L1. It also reduces free cell cholesterol by serving as the substrate for its esterification by ACAT and for the synthesis of side-chain oxysterols, 27-hydroxycholesterol in particular. The oxysterols drive cholesterol depletion by promoting the destruction of HMGCR and stimulating sterol esterification as well as the activation of LXR. The latter fosters the expression of multiple homeostatic proteins, including four transporters for which active cholesterol is the likely substrate. By nulling active cholesterol, the manifold maintains the cellular sterol at its physiologic set point.
Collapse
Affiliation(s)
- Yvonne Lange
- Department of Pathology, Rush University Medical Center, Chicago, IL 60612, United States of America.
| | - Theodore L Steck
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
2
|
Borsato G, Carnio F, Lunardon S, Moletta M, Pavan G, Terrin F, Scarso A, Plotegher N, Fabris F. A β-Glucosyl Sterol Probe for in situ Fluorescent Labelling in Neuronal Cells to Investigate Neurodegenerative Diseases. Chemistry 2024; 30:e202400778. [PMID: 38770991 DOI: 10.1002/chem.202400778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
A β-glucosyl sterol probe bearing a terminal alkyne moiety for fluorescent tagging enables the investigation of the neuronal and intracellular localization of this class of compounds involved in neurodegenerative diseases. The compound showed localization in the neuronal cells, with marked differences in the uptake and metabolism leading to enhanced persistence with respect to the un-glycosylated sterol analogue. In addition, a different impact was observed towards lysosomes, with the simple sterol probe showing the enlargement of the lysosome structures, while the β-glucosyl sterol was less capable to alter the morphology of this specific organelle.
Collapse
Affiliation(s)
- Giuseppe Borsato
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Francesco Carnio
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Sara Lunardon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Mattia Moletta
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Giulio Pavan
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Francesca Terrin
- Dipartimento di Biologia, Università degli Studi di Padova, viale G. Colombo 3, 35131, Padova, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| | - Nicoletta Plotegher
- Dipartimento di Biologia, Università degli Studi di Padova, viale G. Colombo 3, 35131, Padova, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, via Torino 155, 30172, Mestre Venezia, Italy
| |
Collapse
|
3
|
Fazliyeva R, Makhov P, Uzzo RG, Kolenko VM. Targeting NPC1 in Renal Cell Carcinoma. Cancers (Basel) 2024; 16:517. [PMID: 38339268 PMCID: PMC10854724 DOI: 10.3390/cancers16030517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Rapidly proliferating cancer cells have a greater requirement for cholesterol than normal cells. Tumor cells are largely dependent on exogenous lipids given that their growth requirements are not fully met by endogenous pathways. Our current study shows that ccRCC cells have redundant mechanisms of cholesterol acquisition. We demonstrate that all major lipoproteins (i.e., LDL, HDL, and VLDL) have a comparable ability to support the growth of ccRCC cells and are equally effective in counteracting the antitumor activities of TKIs. The intracellular trafficking of exogenous lipoprotein-derived cholesterol appears to be distinct from the movement of endogenously synthesized cholesterol. De novo synthetized cholesterol is transported from the endoplasmic reticulum directly to the plasma membrane and to the acyl-CoA: cholesterol acyltransferase, whereas lipoprotein-derived cholesterol is distributed through the NPC1-dependent endosomal trafficking system. Expression of NPC1 is increased in ccRCC at mRNA and protein levels, and high expression of NPC1 is associated with poor prognosis. Our current findings show that ccRCC cells are particularly sensitive to the inhibition of endolysosomal cholesterol export and underline the therapeutic potential of targeting NPC1 in ccRCC.
Collapse
Affiliation(s)
- Rushaniya Fazliyeva
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Peter Makhov
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Robert G. Uzzo
- Department of Urology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| | - Vladimir M. Kolenko
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA;
| |
Collapse
|
4
|
Kumar R, Chhillar N, Gupta DS, Kaur G, Singhal S, Chauhan T. Cholesterol Homeostasis, Mechanisms of Molecular Pathways, and Cardiac Health: A Current Outlook. Curr Probl Cardiol 2024; 49:102081. [PMID: 37716543 DOI: 10.1016/j.cpcardiol.2023.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The metabolism of lipoproteins, which regulate the transit of the lipid to and from tissues, is crucial to maintaining cholesterol homeostasis. Cardiac remodeling is referred to as a set of molecular, cellular, and interstitial changes that, following injury, affect the size, shape, function, mass, and geometry of the heart. Acetyl coenzyme A (acetyl CoA), which can be made from glucose, amino acids, or fatty acids, is the precursor for the synthesis of cholesterol. In this article, the authors explain concepts behind cardiac remodeling, its clinical ramifications, and the pathophysiological roles played by numerous various components, such as cell death, neurohormonal activation, oxidative stress, contractile proteins, energy metabolism, collagen, calcium transport, inflammation, and geometry. The levels of cholesterol are traditionally regulated by 2 biological mechanisms at the transcriptional stage. First, the SREBP transcription factor family regulates the transcription of crucial rate-limiting cholesterogenic and lipogenic proteins, which in turn limits cholesterol production. Immune cells become activated, differentiated, and divided, during an immune response with the objective of eradicating the danger signal. In addition to creating ATP, which is used as energy, this process relies on metabolic reprogramming of both catabolic and anabolic pathways to create metabolites that play a crucial role in regulating the response. Because of changes in signal transduction, malfunction of the sarcoplasmic reticulum and sarcolemma, impairment of calcium handling, increases in cardiac fibrosis, and progressive loss of cardiomyocytes, oxidative stress appears to be the primary mechanism that causes the transition from cardiac hypertrophy to heart failure. De novo cholesterol production, intestinal cholesterol absorption, and biliary cholesterol output are consequently crucial processes in cholesterol homeostasis. In the article's final section, the pharmacological management of cardiac remodeling is explored. The route of treatment is explained in different steps: including, promising, and potential strategies. This chapter offers a brief overview of the history of the study of cholesterol absorption as well as the different potential therapeutic targets.
Collapse
Affiliation(s)
| | - Neelam Chhillar
- Deparetment of Biochemistry, School of Medicine, DY Patil University, Navi Mumbai, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Shailey Singhal
- Cluster of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Tanya Chauhan
- Division of Forensic Biology, National Forensic Sciences University, Delhi Campus (LNJN NICFS) Delhi, India
| |
Collapse
|
5
|
Fuenzalida B, Albrecht C. Assessing Cholesterol Efflux on Primary Human Trophoblast Cells. Methods Mol Biol 2024; 2728:123-129. [PMID: 38019396 DOI: 10.1007/978-1-0716-3495-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Cholesterol transport across the placenta must be tightly regulated to avoid a deficiency or an oversupply of cholesterol which is transferred from the mother to the fetus. In trophoblasts, the transport of cholesterol across the cell membrane is mainly mediated by the ATP-binding transporters, ABCA1 and ABCG1. The localization of the transporters at the apical and basal sides of syncytiotrophoblasts has been described. A frequently used method to quantify the amount of cholesterol that cells are capable of exporting is the cholesterol efflux assay. The principle of this assay is that when exogenous [3H]-labeled cholesterol is provided to cultured cells, the efflux of the radioactive cholesterol toward different acceptors in the culture medium is evaluated. Then, the percentage of cholesterol efflux from the cells to the acceptors is calculated. The present work gives an overview on the principle of this assay and a detailed protocol of this technique performed in primary trophoblasts isolated from human term placentas.
Collapse
Affiliation(s)
- Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.
- Swiss National Center of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
6
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
7
|
Depta L, Whitmarsh-Everiss T, Laraia L. Structure, function and small molecule modulation of intracellular sterol transport proteins. Bioorg Med Chem 2022; 68:116856. [PMID: 35716590 DOI: 10.1016/j.bmc.2022.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Intracellular sterol transport proteins (STPs) are crucial for maintaining cellular lipid homeostasis by regulating local sterol pools. Despite structural similarities in their sterol binding domains, STPs have different substrate specificities, intracellular localisation and biological functions. In this review, we highlight recent advances in the determination of STP structures and how this regulates their lipid specificities. Furthermore, we cover the important discoveries relating to the intracellular localisation of STPs, and the organelles between which lipid transport is carried out, giving rise to specific functions in health and disease. Finally, serendipitous and targeted efforts to identify small molecule modulators of STPs, as well as their ability to act as tool compounds and potential therapeutics, will be discussed.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
8
|
Zhao B, Gan L, Graubard BI, Männistö S, Albanes D, Huang J. Associations of Dietary Cholesterol, Serum Cholesterol, and Egg Consumption With Overall and Cause-Specific Mortality: Systematic Review and Updated Meta-Analysis. Circulation 2022; 145:1506-1520. [PMID: 35360933 PMCID: PMC9134263 DOI: 10.1161/circulationaha.121.057642] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Despite substantial research highlighting the importance of exogenous dietary cholesterol intake and endogenous serum cholesterol level in human health, a thorough evaluation of the associations is lacking. Our study objective was to examine overall and cause-specific mortality in relation to dietary and serum cholesterol, as well as egg consumption, and conduct an updated meta-regression analysis of cohort studies. METHODS We conducted a prospective analysis of 27 078 men in the ATBC Study (Alpha-Tocopherol, Beta-Carotene Cancer Prevention). Multivariable-controlled cause-specific Cox proportional hazards regression models were used to calculate hazard ratios and 31-year absolute mortality risk differences. A systematic review and meta-analysis of cohort studies was also performed (PROSPERO [URL: https://www.crd.york.ac.uk/prospero/; Unique identifier: CRD42021272756]). RESULTS Based on 482 316 person-years of follow-up, we identified 22 035 deaths, including 9110 deaths from cardiovascular disease (CVD). Greater dietary cholesterol and egg consumption were associated with increased risk of overall and CVD-related mortality. Hazard ratios for each additional 300 mg cholesterol intake per day were 1.10 and 1.13 for overall and CVD-related mortality, respectively; for each additional 50-g egg consumed daily, hazard ratios were 1.06 and 1.09, respectively, for overall and CVD-related mortality (all P values<0.0001). After multivariable adjustment, higher serum total cholesterol concentrations were associated with increased risk of CVD-related mortality (hazard ratios per 1 SD increment, 1.14; P<0.0001). The observed associations were generally similar across cohort subgroups. The updated meta-analysis of cohort studies on the basis of 49 risk estimates, 3 601 401 participants, and 255 479 events showed consumption of 1 additional 50-g egg daily was associated with significantly increased CVD risk (pooled relative risk, 1.04 [95% CI, 1.00-1.08]; I2=80.1%). In the subgroup analysis of geographic regions (Pinteraction=0.02), an increase of 50-g egg consumed daily was associated with a higher risk of CVD in US cohorts (pooled relative risk, 1.08 [95% CI, 1.02-1.14]) and appeared related to a higher CVD risk in European cohorts with borderline significance (pooled relative risk, 1.05), but was not associated with CVD risk in Asian cohorts. CONCLUSIONS In this prospective cohort study and updated meta-analysis, greater dietary cholesterol and egg consumption were associated with increased risk of overall and CVD-related mortality. Our findings support restricted consumption of dietary cholesterol as a means to improve long-term health and longevity.
Collapse
Affiliation(s)
- Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Lu Gan
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Barry I. Graubard
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Satu Männistö
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Jiaqi Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China,Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
9
|
Induction of microRNA hsa-let-7d-5p, and repression of HMGA2, contribute protection against lipid accumulation in macrophage 'foam' cells. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159005. [PMID: 34274506 DOI: 10.1016/j.bbalip.2021.159005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
Accumulation of excess cholesterol and cholesteryl ester in macrophage 'foam' cells within the arterial intima characterises early 'fatty streak' atherosclerotic lesions, and is accompanied by epigenetic changes, including altered expression of microRNA sequences which determine of gene and protein expression. This study established that exposure to lipoproteins, including acetylated LDL, induced macrophage expression of microRNA hsa-let-7d-5p, a sequence previously linked with tumour suppression, and repressed expression of one of its target genes, high mobility group AT hook 2 (HMGA2). A let-7d-5p mimic repressed expression of HMGA2 (18%; p < 0.05) while a marked increase (2.9-fold; p < 0.05) in expression of HMGA2 was noted in the presence of let-7d-5p inhibitor. Under these conditions, let-7d-5p mimic significantly (p < 0.05) decreased total (10%), free (8%) and cholesteryl ester (21%) mass, while the inhibitor significantly (p < 0.05) increased total (29%) and free cholesterol (29%) mass, compared with the relevant controls. Let-7d-5p inhibition significantly (p < 0.05) increased endogenous biosynthesis of cholesterol (38%) and cholesteryl ester (39%) pools in macrophage 'foam' cells, without altering the cholesterol efflux pathway, or esterification of exogenous radiolabelled oleate. Let-7d-5p inhibition in sterol-loaded cells increased the level of HMGA2 protein (32%; p < 0.05), while SiRNA knockdown of this protein (29%; p < 0.05) resulted in a (21%, p < 0.05) reduction in free cholesterol mass. Thus, induction of let-7d-5p, and repression of its target HMGA2, in macrophages is a protective response to the challenge of increased cholesterol influx into these cells; dysregulation of this response may contribute to atherosclerosis and other disorders such as cancer.
Collapse
|
10
|
Lee KH, Hwang HJ, Cho JY. Long Non-Coding RNA Associated with Cholesterol Homeostasis and Its Involvement in Metabolic Diseases. Int J Mol Sci 2020; 21:E8337. [PMID: 33172104 PMCID: PMC7664438 DOI: 10.3390/ijms21218337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol is an essential cell component that functions to create and maintain all kinds of cell membranes and lipoprotein particles. It is crucial to maintain the proper amount of cholesterol at both the cellular and systemic level. Recently, the importance of cholesterol has been reported not only in various cell development processes but also in the development of diseases. Furthermore, the involvement of long non-coding RNAs (lncRNAs), which are regarded as important epigenetic regulators in gene expression, has also been reported in cholesterol homeostasis. It is thus necessary to summarize the research on lncRNAs related to cholesterol with increased interest. This review organized the role of lncRNAs according to the major issues in cholesterol homeostasis: efflux, metabolism and synthesis, and disease process.
Collapse
Affiliation(s)
| | | | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (K.-H.L.); (H.-J.H.)
| |
Collapse
|
11
|
Chen G, Wu K, Zhao T, Ling S, Liu W, Luo Z. miR-144 Mediates High Fat-Induced Changes of Cholesterol Metabolism via Direct Regulation of C/EBPα in the Liver and Isolated Hepatocytes of Yellow Catfish. J Nutr 2020; 150:464-474. [PMID: 31724712 DOI: 10.1093/jn/nxz282] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/11/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) post-transcriptionally regulate gene expression and act as important modulators of cholesterol homeostasis. OBJECTIVE The study explores the mechanism by which miRNAs mediate high fat-induced changes of cholesterol metabolism in yellow catfish. METHODS Yellow catfish (weight: 3.79 ± 0.16 g, 3 mo old, mixed sex) were fed 2 diets containing lipids at 11.3% [control (CON)] or 15.4% [high-fat diet (HFD)] (by weight) for 8 wk. Cholesterol content was measured; hematoxylin-eosin (H&E) staining, qPCR assays, and small RNA sequencing were conducted in the liver. Hepatocytes were isolated from separate, untreated fish and incubated for 24 h in control solution or palmitic acid (PA; 0.25 mM)/oleic acid (OA; 0.5 mM) after 4 h pretreatment with or without miR-144 inhibitor/mimic (40 nM). Cholesterol content was measured; qPCR assays and Western blotting were conducted in the hepatocytes. HEK293T cells were co-transfected with plasmids to validate miR-144 target genes. The promoter activities of miR-144 were analyzed in HEK293T cells with PA (0.25 mM) or OA (0.25 or 0.5 mM) treatment for 24 h. Luciferase activity assays, electrophoretic mobility shift assay, and Western blotting were conducted in HEK293T cells. RESULTS Compared with CON, HFD induced hepatic cholesterol accumulation (31.5%), and upregulated miR-144 expression (8.40-fold, P < 0.05). miR-144 directly targeted hydroxymethylglutaryl-CoA reductase (hmgcr), cholesterol 7α-monooxygenase A1 (cyp7a1), and adenosine triphosphate binding cassette transporter A1 (abca1) in HEK293T cells. In the hepatocytes of yellow catfish, miR-144 inversely regulated the expression of hmgcr, cyp7a1, and abca1 (30.3-78.5%, P < 0.05); loss of miR-144 function alleviated PA- or OA-induced cholesterol accumulation (19.5-61.1%, P < 0.05). We also characterized the C/EBPα binding site in the miR-144 promoter, and found that C/EBPα positively regulated miR-144 expression through binding to the miR-144 promoter. CONCLUSIONS miR-144 mediated HFD-induced changes in the liver and hepatocytes of yellow catfish, suggesting a possible mechanism for HFD-induced dysfunction in cholesterol metabolism.
Collapse
Affiliation(s)
- Guanghui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Tao Zhao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Shicheng Ling
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China
| | - Wei Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Boutry M, Pierga A, Matusiak R, Branchu J, Houllegatte M, Ibrahim Y, Balse E, El Hachimi KH, Brice A, Stevanin G, Darios F. Loss of spatacsin impairs cholesterol trafficking and calcium homeostasis. Commun Biol 2019; 2:380. [PMID: 31637311 PMCID: PMC6797781 DOI: 10.1038/s42003-019-0615-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in SPG11, leading to loss of spatacsin function, impair the formation of membrane tubules in lysosomes and cause lysosomal lipid accumulation. However, the full nature of lipids accumulating in lysosomes and the physiological consequences of such accumulation are unknown. Here we show that loss of spatacsin inhibits the formation of tubules on lysosomes and prevents the clearance of cholesterol from this subcellular compartment. Accumulation of cholesterol in lysosomes decreases cholesterol levels in the plasma membrane, enhancing the entry of extracellular calcium by store-operated calcium entry and increasing resting cytosolic calcium levels. Higher cytosolic calcium levels promote the nuclear translocation of the master regulator of lysosomes TFEB, preventing the formation of tubules and the clearance of cholesterol from lysosomes. Our work reveals a homeostatic balance between cholesterol trafficking and cytosolic calcium levels and shows that loss of spatacsin impairs this homeostatic equilibrium.
Collapse
Affiliation(s)
- Maxime Boutry
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
- Present Address: Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON Canada
| | - Alexandre Pierga
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Raphaël Matusiak
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Julien Branchu
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Marc Houllegatte
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Yoan Ibrahim
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Elise Balse
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1166, F-75013 Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Alexis Brice
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Frédéric Darios
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| |
Collapse
|
13
|
Insights into the Molecular Mechanisms of Cholesterol Binding to the NPC1 and NPC2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1135:139-160. [PMID: 31098815 DOI: 10.1007/978-3-030-14265-0_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, a growing number of studies have implicated the coordinated action of NPC1 and NPC2 in intralysosomal transport and efflux of cholesterol. Our current understanding of this process developed with just over two decades of research. Since the cloning of the genes encoding the NPC1 and NPC2 proteins, studies of the biochemical defects observed when either gene is mutated along with computational and structural studies have unraveled key steps in the underlying mechanism. Here, we summarize the major contributions to our understanding of the proposed cholesterol transport controlled by NPC1 and NPC2, and briefly discuss recent findings of cholesterol binding and transport proteins beyond NPC1 and NPC2. We conclude with key questions and major challenges for future research on cholesterol transport by the NPC1 and NPC2 proteins.
Collapse
|
14
|
Olvera-Sánchez S, Esparza-Perusquía M, Flores-Herrera O, Urban-Sosa VA, Martínez F. Aspectos generales del transporte de colesterol en la esteroidogénesis de la placenta humana. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
La placenta humana requiere de colesterol para sintetizar la progesterona que mantiene la relación entre el feto y la madre, lo que le permite concluir de manera exitosa el embarazo. La placenta incorpora el colesterol principalmente a través de las lipoproteínas de baja densidad (LDL) que se obtienen del torrente circulatorio materno por un mecanismo de endocitosis. A los endosomas que se generan en este proceso se les unen varias proteínas conformando los endosomas tardíos, que degradan las LDL y liberan el colesterol a las mitocondrias del sinciciotrofoblasto que lo transforman en pregnenolona y posteriormente en progesterona. Las proteínas de fusión de membranas denominados complejos SNARE participan en la liberación del colesterol en sitios de contacto específicos en donde se localizan las proteínas mitocondriales responsables de la esteroidogénesis.
Collapse
|
15
|
Wang Q, Lin C, Zhang C, Wang H, Lu Y, Yao J, Wei Q, Xing G, Cao X. 25-hydroxycholesterol down-regulates oxysterol binding protein like 2 (OSBPL2) via the p53/SREBF2/NFYA signaling pathway. J Steroid Biochem Mol Biol 2019; 187:17-26. [PMID: 30391516 DOI: 10.1016/j.jsbmb.2018.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022]
Abstract
Oxysterol Binding Protein Like 2 (OSBPL2) is a lipid-binding protein implicated in various cellular processes. Previous studies have shown that depression of OSBPL2 significantly increases the level of cellular 25-hydroxycholesterol (25-OHC) which regulates the expression of lipid-metabolism-related genes. However, whether 25-OHC can regulate the expression of OSBPL2 remains unanswered. This study aimed to explore the molecular mechanism of 25-OHC regulating the expression of OSBPL2. Using dual-luciferase reporter assay, we found a decrease of nuclear transcription factor Y subunit alpha (NFYA) bound with OSBPL2 promoter when HeLa cells were treated with 25-OHC. Furthermore, transcriptome sequencing and RNA interference results revealed that the p53/sterol regulatory element binding transcription factor 2 (SREBF2) signaling pathway was involved in the NFYA-dependent transcription of OSBPL2 induced by 25-OHC. Based on these results, we concluded that pleomorphic adenoma gene 1 (PLAG1) and NFYA participated in the basal transcription of OSBPL2 and that 25-OHC decreased the transcription of OSBPL2 via the p53/SREBF2/NFYA signaling pathway. 25-OHC will accumulate over time in OSBPL2 knockdown cells. These results may provide a new insight into the deafness caused by OSBPL2 mutation.
Collapse
Affiliation(s)
- Quan Wang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Cui Zhang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; The Laboratory Center for Basic Medical Sciences, School of Basic Medicinal Sciences, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
16
|
Qiu S, Zeng B. Advances in understanding of the oxysterol-binding protein homologous in yeast and filamentous fungi. Int Microbiol 2019; 22:169-179. [PMID: 30810998 DOI: 10.1007/s10123-019-00056-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/14/2023]
Abstract
Oxysterol-binding protein is an important non-vesicular trafficking protein involved in the transportation of lipids in eukaryotic cells. Oxysterol-binding protein is identified as oxysterol-binding protein-related proteins (ORPs) in mammals and oxysterol-binding protein homologue (Osh) in yeast. Research has described the function and structure of oxysterol-binding protein in mammals and yeast, but little information about the protein's structure and function in filamentous fungi has been reported. This article focuses on recent advances in the research of Osh proteins in yeast and filamentous fungi, such as Aspergillus oryzae, Aspergillus nidulans, and Candida albicans. Furthermore, we point out some problems in the field, summarizing the membrane contact sites (MCS) of Osh proteins in yeast, and consider the future of Osh protein development.
Collapse
Affiliation(s)
- Shangkun Qiu
- Jiangxi Province Key Laboratory Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Bin Zeng
- Jiangxi Province Key Laboratory Bioprocess Engineering, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
17
|
Sánchez-Aguilera P, Diaz-Vegas A, Campos C, Quinteros-Waltemath O, Cerda-Kohler H, Barrientos G, Contreras-Ferrat A, Llanos P. Role of ABCA1 on membrane cholesterol content, insulin-dependent Akt phosphorylation and glucose uptake in adult skeletal muscle fibers from mice. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1469-1477. [PMID: 30254016 DOI: 10.1016/j.bbalip.2018.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/23/2018] [Accepted: 09/17/2018] [Indexed: 02/07/2023]
Abstract
The ATP-binding cassette transporter A1 (ABCA1) promotes cellular cholesterol efflux, leading to cholesterol binding to the extracellular lipid-free apolipoprotein A-I. ABCA1 regulates lipid content, glucose tolerance and insulin sensitivity in adipose tissue. In skeletal muscle, most GLUT4-mediated glucose transport occurs in the transverse tubule, a system composed by specialized cholesterol-enriched invaginations of the plasma membrane. We have reported that insulin resistant mice have higher cholesterol levels in transverse tubule from adult skeletal muscle. These high levels correlate with decreased GLUT4 trafficking and glucose uptake; however, the role of ABCA1 on skeletal muscle insulin-dependent glucose metabolism remains largely unexplored. Here, we evaluated the functional role of the ABCA1 on insulin-dependent signaling pathways, glucose uptake and cellular cholesterol content in adult skeletal muscle. Male mice were fed for 8 weeks with normal chow diet (NCD) or high fat diet (HFD). Compared to NCD-fed mice, ABCA1 mRNA levels and protein content were lower in muscle homogenates from HFD-fed mice. In Flexor digitorum brevis muscle from NCD-fed mice, shABCA1-RFP in vivo electroporation resulted in 65% reduction of ABCA1 protein content, 1.6-fold increased fiber cholesterol levels, 74% reduction in insulin-dependent Akt (Ser473) phosphorylation, total suppression of insulin-dependent GLUT4 translocation and decreased 2-NBDG uptake compared to fibers electroporated with the scrambled plasmid. Pre-incubation with methyl-β cyclodextrin reestablished both GLUT4 translocation and 2-NBDG transport. Based on the present results, we suggest that decreased ABCA1 contributes to the anomalous cholesterol accumulation and decreased glucose transport displayed by skeletal muscle membranes in the insulin resistant condition.
Collapse
Affiliation(s)
- Pablo Sánchez-Aguilera
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile
| | - Alexis Diaz-Vegas
- Departamento Ciencias Biológicas, Facultad Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | | | | | - Hugo Cerda-Kohler
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile
| | | | - Ariel Contreras-Ferrat
- ACCDiS, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Chile; CEMC, Facultad de Medicina, Universidad de Chile, Chile.
| |
Collapse
|
18
|
Chatuphonprasert W, Jarukamjorn K, Ellinger I. Physiology and Pathophysiology of Steroid Biosynthesis, Transport and Metabolism in the Human Placenta. Front Pharmacol 2018; 9:1027. [PMID: 30258364 PMCID: PMC6144938 DOI: 10.3389/fphar.2018.01027] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The steroid hormones progestagens, estrogens, androgens, and glucocorticoids as well as their precursor cholesterol are required for successful establishment and maintenance of pregnancy and proper development of the fetus. The human placenta forms at the interface of maternal and fetal circulation. It participates in biosynthesis and metabolism of steroids as well as their regulated exchange between maternal and fetal compartment. This review outlines the mechanisms of human placental handling of steroid compounds. Cholesterol is transported from mother to offspring involving lipoprotein receptors such as low-density lipoprotein receptor (LDLR) and scavenger receptor class B type I (SRB1) as well as ATP-binding cassette (ABC)-transporters, ABCA1 and ABCG1. Additionally, cholesterol is also a precursor for placental progesterone and estrogen synthesis. Hormone synthesis is predominantly performed by members of the cytochrome P-450 (CYP) enzyme family including CYP11A1 or CYP19A1 and hydroxysteroid dehydrogenases (HSDs) such as 3β-HSD and 17β-HSD. Placental estrogen synthesis requires delivery of sulfate-conjugated precursor molecules from fetal and maternal serum. Placental uptake of these precursors is mediated by members of the solute carrier (SLC) family including sodium-dependent organic anion transporter (SOAT), organic anion transporter 4 (OAT4), and organic anion transporting polypeptide 2B1 (OATP2B1). Maternal-fetal glucocorticoid transport has to be tightly regulated in order to ensure healthy fetal growth and development. For that purpose, the placenta expresses the enzymes 11β-HSD 1 and 2 as well as the transporter ABCB1. This article also summarizes the impact of diverse compounds and diseases on the expression level and activity of the involved transporters, receptors, and metabolizing enzymes and concludes that the regulatory mechanisms changing the physiological to a pathophysiological state are barely explored. The structure and the cellular composition of the human placental barrier are introduced. While steroid production, metabolism and transport in the placental syncytiotrophoblast have been explored for decades, few information is available for the role of placental-fetal endothelial cells in these processes. With regard to placental structure and function, significant differences exist between species. To further decipher physiologic pathways and their pathologic alterations in placental steroid handling, proper model systems are mandatory.
Collapse
Affiliation(s)
- Waranya Chatuphonprasert
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Isabella Ellinger
- Pathophysiology of the Placenta, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Girotti AW, Korytowski W. Cholesterol Peroxidation as a Special Type of Lipid Oxidation in Photodynamic Systems. Photochem Photobiol 2018; 95:73-82. [PMID: 29962109 DOI: 10.1111/php.12969] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023]
Abstract
Like other unsaturated lipids in cell membranes and lipoproteins, cholesterol (Ch) is susceptible to oxidative modification, including photodynamic oxidation. There is a sustained interest in the pathogenic properties of Ch oxides such as those generated by photooxidation. Singlet oxygen (1 O2 )-mediated Ch photooxidation (Type II mechanism) gives rise to three hydroperoxide (ChOOH) isomers: 5α-OOH, 6α-OOH and 6β-OOH, the 5α-OOH yield far exceeding that of the others. 5α-OOH detection is relatively straightforward and serves as a definitive indicator of 1 O2 involvement in a reaction, photochemical or otherwise. Like all lipid hydroperoxides (LOOHs), ChOOHs can disrupt membrane or lipoprotein structure/function on their own, but subsequent light-independent reactions may either intensify or attenuate such effects. Such reactions include (1) one-electron reduction to redox-active free radical intermediates, (2) two-electron reduction to redox-silent alcohols and (3) translocation to other lipid compartments, where (1) or (2) may take place. In addition to these effects, ChOOHs may act as signaling molecules in reactions that affect cell fates. Although processes a-c have been well studied for ChOOHs, signaling activity is still poorly understood compared with that of hydrogen peroxide. This review focuses on these various aspects Ch photoperoxidation and its biological consequences.
Collapse
Affiliation(s)
- Albert W Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
20
|
Piccinato CA, Malvezzi H, Gibson DA, Saunders PTK. SULFATION PATHWAYS: Contribution of intracrine oestrogens to the aetiology of endometriosis. J Mol Endocrinol 2018; 61:T253-T270. [PMID: 30030390 DOI: 10.1530/jme-17-0297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
Endometriosis is an incurable hormone-dependent inflammatory disease that causes chronic pelvic pain and infertility characterized by implantation and growth of endometrial tissue outside the uterine cavity. Symptoms have a major impact on the quality of life of patients resulting in socioeconomic, physical and psychological burdens. Although the immune system and environmental factors may play a role in the aetiology of endometriosis, oestrogen dependency is still considered a hallmark of the disorder. The impact of oestrogens such as oestrone and particularly, oestradiol, on the endometrium or endometriotic lesions may be mediated by steroids originating from ovarian steroidogenesis or local intra-tissue production (intracrinology) dependent upon the expression and activity of enzymes that regulate oestrogen biosynthesis and metabolism. Two key pathways have been implicated: while there is contradictory data on the participation of the aromatase enzyme (encoded by CYP19A1), there is increasing evidence that the steroid sulphatase pathway plays a role in both the aetiology and pathology of endometriosis. In this review, we consider the evidence related to the pathways leading to oestrogen accumulation in endometriotic lesions and how this might inform the development of new therapeutic strategies to treat endometriosis without causing the undesirable side effects of current regimes that suppress ovarian hormone production.
Collapse
Affiliation(s)
| | - Helena Malvezzi
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Douglas A Gibson
- MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
21
|
van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, Dammeier S, Meester-Smoor M, Pool FM, de Jong EK, Delcourt C, Rodrigez-Bocanegra E, Biarnés M, Luthert PJ, Ueffing M, Klaver CCW, Nogoceke E, den Hollander AI, Lengyel I. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res 2018; 67:56-86. [PMID: 29729972 DOI: 10.1016/j.preteyeres.2018.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022]
Abstract
There is an urgency to find new treatment strategies that could prevent or delay the onset or progression of AMD. Different classes of lipids and lipoproteins metabolism genes have been associated with AMD in a multiple ways, but despite the ever-increasing knowledge base, we still do not understand fully how circulating lipids or local lipid metabolism contribute to AMD. It is essential to clarify whether dietary lipids, systemic or local lipoprotein metabolismtrafficking of lipids in the retina should be targeted in the disease. In this article, we critically evaluate what has been reported in the literature and identify new directions needed to bring about a significant advance in our understanding of the role for lipids in AMD. This may help to develop potential new treatment strategies through targeting the lipid homeostasis.
Collapse
Affiliation(s)
- Elisabeth M van Leeuwen
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eszter Emri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Benedicte M J Merle
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Johanna M Colijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Eveline Kersten
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Audrey Cougnard-Gregoire
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | - Sascha Dammeier
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Magda Meester-Smoor
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Eiko K de Jong
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Cécile Delcourt
- Univ. Bordeaux, Inserm, Bordeaux Population Health Research Center, Team LEHA, UMR 1219, F-33000, Bordeaux, France
| | | | | | | | - Marius Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Germany
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands
| | - Everson Nogoceke
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anneke I den Hollander
- Department of Ophthalmology, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, The Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Imre Lengyel
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
22
|
Tian S, Ohta A, Horiuchi H, Fukuda R. Oxysterol-binding protein homologs mediate sterol transport from the endoplasmic reticulum to mitochondria in yeast. J Biol Chem 2018; 293:5636-5648. [PMID: 29487131 DOI: 10.1074/jbc.ra117.000596] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/09/2018] [Indexed: 11/06/2022] Open
Abstract
Sterols are present in eukaryotic membranes and significantly affect membrane fluidity, permeability, and microdomain formation. They are synthesized in the endoplasmic reticulum (ER) and transported to other organelles and the plasma membrane. Sterols play important roles in the biogenesis and maintenance of mitochondrial membranes. However, the mechanisms underlying ER-to-mitochondrion sterol transport remain to be identified. Here, using purified yeast membrane fractions enriched in ER and mitochondria, we show that the oxysterol-binding protein homologs encoded by the OSH genes in the yeast Saccharomyces cerevisiae mediate sterol transport from the ER to mitochondria. Combined depletion of all seven Osh proteins impaired sterol transport from the ER to mitochondria in vitro; however, sterol transport was recovered at different levels upon adding one of the Osh proteins. Of note, the sterol content in the mitochondrial fraction was significantly decreased in vivo after Osh4 inactivation in a genetic background in which all the other OSH genes were deleted. We also found that Osh5-Osh7 bind cholesterol in vitro We propose a model in which Osh proteins share a common function to transport sterols between membranes, with varying contributions by these proteins, depending on the target membranes. In summary, we have developed an in vitro system to examine intracellular sterol transport and provide evidence for involvement of Osh proteins in sterol transport from the ER to mitochondria in yeast.
Collapse
Affiliation(s)
- Siqi Tian
- From the Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan and
| | - Akinori Ohta
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hiroyuki Horiuchi
- From the Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan and
| | - Ryouichi Fukuda
- From the Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan and
| |
Collapse
|
23
|
Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites. Proc Natl Acad Sci U S A 2018; 115:E856-E865. [PMID: 29339490 DOI: 10.1073/pnas.1719709115] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.
Collapse
|
24
|
Implication of STARD5 and cholesterol homeostasis disturbance in the endoplasmic reticulum stress-related response induced by pro-apoptotic aminosteroid RM-133. Pharmacol Res 2017; 128:52-60. [PMID: 29287690 DOI: 10.1016/j.phrs.2017.12.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 01/13/2023]
Abstract
The aminosteroid derivative RM-133 is an effective anticancer molecule for which proof of concept has been achieved in several mouse xenograph models (HL-60, MCF-7, PANC-1 and OVCAR-3). To promote this new family of molecules toward a clinical phase 1 trial, the mechanism of action governing the anticancer properties of the representative candidate RM-133 needs to be characterized. In vitro experiments were first used to determine that RM-133 causes apoptosis in cancer cells. Then, using proteomic and transcriptomic experiments, RM-133 cytotoxicity was proven to be achieved via the endoplasmic reticulum (ER)-related apoptosis, which characterizes RM-133 as an endoplasmic reticulum stress aggravator (ERSA) anticancer drug. Furthermore, an shRNA-genome-wide screening has permitted to identify the steroidogenic acute regulator-related lipid transfer protein 5 (STARD5) as a major player in the RM-133 ER-related apoptosis mechanism, which was validated by an in vitro binding experiment. Altogether, the results presented herein suggest that RM-133 provokes a disturbance of cholesterol homeostasis via the implication of STARD5, which delivers an ERSA molecule to the ER. These results will be a springboard for RM-133 in its path toward clinical use.
Collapse
|
25
|
Arenas F, Garcia-Ruiz C, Fernandez-Checa JC. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration. Front Mol Neurosci 2017; 10:382. [PMID: 29204109 PMCID: PMC5698305 DOI: 10.3389/fnmol.2017.00382] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD), however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.
Collapse
Affiliation(s)
- Fabian Arenas
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
| | - Carmen Garcia-Ruiz
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
- Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| | - Jose C. Fernandez-Checa
- Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- Liver Unit and Hospital Clinic I Provincial, IDIBAPS, Barcelona, Spain
- Centro de Investigación Biomédica en Red, CIBEREHD, Barcelona, Spain
- Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States
| |
Collapse
|
26
|
Jiang M, Li X. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI. Biochem Biophys Res Commun 2017; 482:849-856. [DOI: 10.1016/j.bbrc.2016.11.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
|