1
|
Ren W, Huang Y, Meng S, Cao Z, Qin N, Zhao J, Huang T, Guo X, Chen X, Zhou Z, Zhu Y, Yu L, Wang H. Salidroside treatment decreases the susceptibility of atrial fibrillation in diabetic mice by reducing mTOR-STAT3-MCP-1 signaling and atrial inflammation. Int Immunopharmacol 2024; 142:113196. [PMID: 39306893 DOI: 10.1016/j.intimp.2024.113196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in clinic, and type 2 diabetes mellitus (T2DM) is an independent risk factor for AF. Salidroside (Sal), the active ingredient of the Rhodiola rosea, has hypoglycemic, anti-inflammatory, anti-fibrotic and anti-arrhythmic effects. The aim of this study is to investigate the effects and underlying molecular mechanisms of Sal on T2DM associated atrial inflammation and the pathogenesis of AF. In the in vivo study, T2DM mice model was established by high-fat diet and intraperitoneal injection of streptozotocin (STZ). Sal (25 mg/kg/d, 50 mg/kg/d, and 100 mg/kg/d) was administered orally for 4 weeks. T2DM caused atrial electrical and structural remodeling and significantly increased the susceptibility of AF. Meanwhile, mTOR-STAT3-MCP-1 signaling and inflammatory markers were also significantly enhanced in diabetic atria. However, Sal dose-dependently ameliorated cardiac dysfunction, mitigated atrial structural and electrical remodeling, and reduced atrial inflammation. Moreover, Sal-treated group exhibited remarkably down-regulated activity of mTOR-STAT3-MCP-1 pathway, and decreased atrial monocyte/macrophage infiltration. In palmitic acid (PA)-challenged HL-1 cells, Sal attenuated cytotoxicity, downregulated the expressions of TNF-α, IL-6, MCP-1, and inhibited the activation of mTOR-STAT3 signaling. However, co-treatment with MHY1485 (a mTOR agonist) reversed these effects. Taken together, the present study demonstrates that Sal treatment decreases the susceptibility of AF in diabetic mice by reducing mTOR-STAT3-MCP-1 signaling and atrial monocyte/macrophage infiltration. Sal treatment may represent a novel preventive therapy for cardiac arrhythmia and atrial fibrillation in diabetic patients.
Collapse
Affiliation(s)
- Wenpu Ren
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Nana Qin
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaodong Guo
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xin Chen
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yan Zhu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
2
|
Aimaitijiang M, Gulisitan A, Zhai Z, Atawula A, Jiang C. The predictive value of monocyte-related inflammatory factors for recurrence of atrial fibrillation after cryoablation. Cryobiology 2024; 116:104945. [PMID: 39053755 DOI: 10.1016/j.cryobiol.2024.104945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Our objective was to investigate the predictive value of monocyte-related inflammatory factors, including monocyte to high-density lipoprotein cholesterol ratio (MHR) and monocyte to lymphocyte ratio (MLR), for the recurrence of atrial fibrillation (AF) after cryoablation in AF patients. The 570 patients who underwent cryoablation were divided into AF recurrence group and non-recurrence group based on follow-up results. The multivariable logistic regression analysis was used to evaluate the effect of MHR and MLR on AF patients. The AF-free survival status of patients was tested by Kaplan-Meier method. ROC analysis was performed to assess the predictive value of MHR and MLR for post-ablation recurrence of AF. A total of 113 (19.8 %) patients relapsed, while 457 patients (80.2 %) had no AF recurrence during follow up. Patients with AF recurrence had higher MHR values (0.37 ± 0.14 vs. 0.33 ± 0.14; P = 0.004) and higher MLR values (0.49 ± 0.32 vs. 0.18 ± 0.07; P < 0.001) compared to those without AF recurrence. MHR≥0.34 combined with MLR≥0.24 (HR = 9.979, 95 % CI: 6.070-16.407, P < 0.001) was an independent factor for predicting AF recurrence after cryoablation in patients by logistic regression analysis. The ROC analysis showed that the AUC for the combination of the MHR and MLR variables was 0.974 (95 % CI: 0.962-0.985) and had the highest diagnostic sensitivity (97.4 %). Elevated baseline values of the monocyte-related inflammatory factors, MHR and MLR, have a certain predictive value for increased AF recurrence after cryoablation.
Collapse
Affiliation(s)
- Maimaiti Aimaitijiang
- Department of Cardiology, The Second People's Hospital of Kashgar District, No.1 Health Road, Kashi City, China
| | - Aisikaer Gulisitan
- Xinjiang Medical University, 137 South Liyushan Road, Urumqi City, China
| | - Zhengyan Zhai
- Department of Cardiology, Dangshan County People's Hospital, 1078 Dangyang Road, Suzhou City, China
| | - Aili Atawula
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai City, China
| | - Chunying Jiang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai City, China.
| |
Collapse
|
3
|
Wang C, Wang J, Guan W, Fei B. Impact the impact of gut microbiota on gastric cancer via immune cells: a comprehensive Mendelian randomization study and mediation analysis. Discov Oncol 2024; 15:389. [PMID: 39215888 PMCID: PMC11365895 DOI: 10.1007/s12672-024-01285-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Recent observational studies have highlighted the role of altered gut microbiota (GM) in the activation of the host immune system and the resulting of gastric cancer (GC). However, the exact causal relationship and mechanisms of action are still not fully understood. MATERIALS AND METHODS Genetic data from published genome-wide association studies (GWASs) were employed to determine the causal effects of 207 taxa and 205 bacterial pathways on GC via two-sample Mendelian randomization (MR) and two-step mediation MR analysis. In this study, 731 immune cell traits served as potential mediators. An inverse variance-weighted (IVW) estimation, augmented by a range of alternative estimators, notably the Bayesian-weighted MR method, was employed as the primary methodological approach. RESULTS Four taxa and five bacterial pathways were found to be negatively correlated with GC, whereas one taxon and two bacterial pathways were a positively correlated with GC. Reverse causality was not found in the reverse MR analysis. Additional validation was performed using a sensitivity analysis. Mediation MR analyses revealed that the GM influences GC through various phenotypes of 16 immune cells that act as mediators. For example, s_Alistipes_sp_AP11 was found to inhibit GC through NKT %T cell (total effect: -0.3234, mediation effect: 0.0212). This mediating effect further highlights the complex relationship among GMs, immune cell traits, and their combined effects on GC. CONCLUSIONS Our findings highlight the genetic connection between specific GMs and GC, emphasizing the potential role of immune cells as mediators, and offering valuable perspectives on potential therapeutic strategies that manipulating the GM to address GC.
Collapse
Affiliation(s)
- Chao Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jia Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenxian Guan
- Division of Gastric Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Bojian Fei
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
4
|
Wen J, Guan Y, Niu H, Dang Y, Guan J. Targeting cardiac resident CCR2+ macrophage-secreted MCP-1 to attenuate inflammation after myocardial infarction. Acta Biomater 2024:S1742-7061(24)00469-0. [PMID: 39182804 DOI: 10.1016/j.actbio.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
After myocardial infarction (MI), cardiac resident CCR2+ macrophages release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in recruiting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. We hypothesized that neutralizing the MCP-1 secreted by cardiac resident CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes and their differentiation into macrophages. In this work, we developed nanoparticles that target the infarcted heart, specifically accumulating in the damaged area after intravenous (IV) administration, and docking onto CCR2+ macrophages. These nanoparticles were designed to slowly release an MCP-1 binding peptide, HSWRHFHTLGGG (HSW), which neutralizes the upregulated MCP-1. We showed that the HSW reduced monocyte migration, inhibited pro-inflammatory cytokine upregulation, and suppressed myofibroblast differentiation in vitro. After IV delivery, the released HSW significantly decreased monocyte recruitment and pro-inflammatory macrophage density, increased cardiac cell survival, attenuated cardiac fibrosis, and improved cardiac function. Taken together, our findings support the strategy of MCP-1 neutralization at the acute phase of MI as a promising way to alleviate post-MI inflammation. STATEMENT OF SIGNIFICANCE: After a myocardial infarction (MI), CCR2+ macrophages resident in the heart release various cytokines and chemokines, notably monocyte chemoattractant protein-1 (MCP-1). MCP-1 is instrumental in attracting CCR2+ monocytes to the damaged region. The excessive arrival of these monocytes, which then become macrophages, perpetuates inflammation at the site of injury. This continuous inflammation leads to adverse tissue remodeling and compromises cardiac function over time. In this work, we tested the hypothesis that neutralizing the MCP-1 secreted by cardiac CCR2+ macrophages can mitigate post-MI inflammation by curtailing the recruitment of monocytes.
Collapse
Affiliation(s)
- Jiaxing Wen
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Ya Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Yu Dang
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA
| | - Jianjun Guan
- Institute of Materials Science and Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Mechanical Engineering and Materials Science, Washington University in St. Louis. St. Louis, MO 63130, USA; Department of Biomedical Engineering, Washington University in St. Louis. St. Louis, MO 63130, USA.
| |
Collapse
|
5
|
Bahabayi A, Alimu X, Wang G, Gao Y, Chen Y, Zhao J, Lian X, Li Q, Xiong Z, Zhang Z, Wang P, Liu C. VNN2-expressing circulating monocytes exhibit unique functional characteristics and are decreased in patients with primary Sjögren's syndrome. J Autoimmun 2024; 147:103275. [PMID: 38936146 DOI: 10.1016/j.jaut.2024.103275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/09/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE This study aims to elucidate the significance of VNN2 expression in peripheral blood monocytes and its clinical relevance in primary Sjögren's syndrome (pSS). METHODS We investigated VNN2 expression by analyzing single-cell RNA sequencing (scRNA-seq) data from peripheral blood mononuclear cells. Flow cytometry was used to detect and compare VNN2 expression in total monocytes, classical monocytes (cMo), intermediate monocytes (iMo) and non-classical monocytes (ncMo). Additionally, we examined the expression of HLA, ICAM1, CD62L, ITGAM, S100A8, S100A9, CCR2, CCR6, CX3CR1 and CXCR3 in VNN2+ and VNN2- cells. We analyzed the correlation between VNN2 expression and clinical indicators and assessed the clinical utility of VNN2+ monocytes in pSS diagnosis using receiver operating characteristic curves. RESULTS We observed high VNN2 expression in monocytes, with significantly higher levels in CD14++ monocytes compared to ncMo. VNN2+ monocytes exhibited decreased expression of HLA and CD62L and increased expression of ICAM1, ITGAM, S100A8, S100A9, CCR2, CCR6, CX3CR1 and CXCR3 compared to VNN2- monocytes. Although scRNA-seq data showed that VNN2 mRNA was upregulated, cell surface expression of VNN2 was decreased in monocytes from pSS patients compared to healthy controls. The reduced levels of VNN2+ monocyte subpopulations in pSS patients were negatively correlated with anti-ribosome antibody levels and positively correlated with complement 4 levels. Detection of VNN2 expression in monocytes can aid in the auxiliary diagnosis of pSS. CONCLUSION Monocytes expressing cell surface VNN2 are significantly reduced in pSS patients. This suggests a potential role for VNN2 in pSS development and its potential use as a diagnostic marker for pSS.
Collapse
Affiliation(s)
- Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiayidan Alimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Guochong Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiming Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yang Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Junjie Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xinran Lian
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China.
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
6
|
Zhao Y, Li H, Ma X, Meng X, Tang Q. Identification of biomarkers related to angiogenesis in myocardial ischemia-reperfusion injury and prediction of potential drugs. PLoS One 2024; 19:e0300790. [PMID: 38935597 PMCID: PMC11210787 DOI: 10.1371/journal.pone.0300790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/05/2024] [Indexed: 06/29/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) refers to the secondary damage to myocardial tissue that occurs when blood perfusion is rapidly restored following myocardial ischemia. This process often exacerbates the injury to myocardial fiber structure and function. The activation mechanism of angiogenesis is closely related to MIRI and plays a significant role in the occurrence and progression of ischemic injury. In this study, we utilized sequencing data from the GEO database and employed WGCNA, Mfuzz cluster analysis, and protein interaction network to identify Stat3, Rela, and Ubb as hub genes involved in MIRI-angiogenesis. Additionally, the GO and KEGG analysis of differentially expressed genes highlighted their broad participation in inflammatory responses and associated signaling pathways. Moreover, the analysis of sequencing data and hub genes revealed a notable increase in the infiltration ratio of monocytes and activated mast cells. By establishing key cell ROC curves, using independent datasets, and validating the expression of hub genes, we demonstrated their high diagnostic value. Moreover, by scrutinizing single-cell sequencing data alongside trajectory analysis, it has come to light that Stat3 and Rela exhibit predominant expression within Dendritic cells. In contrast, Ubb demonstrates expression across multiple cell types, with all three genes being expressed at distinct stages of cellular development. Lastly, leveraging the CMap database, we predicted potential small molecule compounds for the identified hub genes and validated their binding activity through molecular docking. Ultimately, our research provides valuable evidence and references for the early diagnosis and treatment of MIRI from the perspective of angiogenesis.
Collapse
Affiliation(s)
- Yaowei Zhao
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiyuan Ma
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xianghong Meng
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Zhu L, Zhong Y, Yan M, Ni S, Zhao X, Wu S, Wang G, Zhang K, Chi Q, Qin X, Li C, Huang X, Wu W. Macrophage Membrane-Encapsulated Dopamine-Modified Poly Cyclodextrin Multifunctional Biomimetic Nanoparticles for Atherosclerosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32027-32044. [PMID: 38867426 DOI: 10.1021/acsami.4c04431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. β-Cyclodextrin (β-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. β-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Sheng Ni
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Xiong Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing 401329, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Chuanwei Li
- Department of Cardiology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400042, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing 401329, China
| |
Collapse
|
8
|
Costa Lemos da Silva AG, da Silva Ribeiro KD, Alves de Araújo GE, da Silva Oliveira L, de Oliveira Lyra C. Vitamin E and cardiovascular diseases: an interest to public health? Nutr Res Rev 2024; 37:131-140. [PMID: 37382196 DOI: 10.1017/s0954422423000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide. From this perspective, the role of vitamin E and its metabolites in preventing CVD has been studied, being supported by the findings that low vitamin E concentrations are associated with an increased risk of cardiovascular events. Despite this, no studies have analysed the co-existence of vitamin E deficiency (VED) and CVD on the basis of population studies. Facing that, this study summarises information on the relationship between vitamin E status and CVD, providing a basis for understanding the determining and protective factors for its development. VED may be a public health problem since it has been observed to vary from 0·6% to 55·5% worldwide, with higher percentages in Asia and Europe, where CVD mortality rates stand out. Intervention studies with α-tocopherol supplementation do not confirm cardioprotective action of vitamin E, which may reflect that α-tocopherol alone does not provide cardiovascular protection to individuals, but the consumption of all isomers found in food. Considering that low concentrations of α-tocopherol can lead to a higher susceptibility to diseases involving oxidative stress in the population, in addition to the high and growing prevalence of CVD and VED, it is essential to investigate or reinterpret the mechanisms of action of vitamin E and its metabolites in the cardiovascular process to better understand the co-existence of CVD and VED. It is also important to implement public health policies and programmes aimed at promoting the consumption of natural food sources of vitamin E and healthy fats.
Collapse
Affiliation(s)
| | | | | | - Letícia da Silva Oliveira
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Clélia de Oliveira Lyra
- Graduate Program in Public Health, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
9
|
Martínez-Falguera D, Aranyó J, Teis A, Ferrer-Curriu G, Monguió-Tortajada M, Fadeuilhe E, Rodríguez-Leor O, Díaz-Güemes I, Roura S, Villuendas R, Sarrias A, Bazan V, Delgado V, Bayes-Genis A, Bisbal F, Gálvez-Montón C. Antiarrhythmic and Anti-Inflammatory Effects of Sacubitril/Valsartan on Post-Myocardial Infarction Scar. Circ Arrhythm Electrophysiol 2024; 17:e012517. [PMID: 38666379 DOI: 10.1161/circep.123.012517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/23/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Sacubitril/valsartan (Sac/Val) is superior to angiotensin-converting enzyme inhibitors in reducing the risk of heart failure hospitalization and cardiovascular death, but its mechanistic data on myocardial scar after myocardial infarction (MI) are lacking. The objective of this work was to assess the effects of Sac/Val on inflammation, fibrosis, electrophysiological properties, and ventricular tachycardia inducibility in post-MI scar remodeling in swine. METHODS After MI, 22 pigs were randomized to receive β-blocker (BB; control, n=8) or BB+Sac/Val (Sac/Val, n=9). The systemic immune response was monitored. Cardiac magnetic resonance data were acquired at 2-day and 29-day post MI to assess ventricular remodeling. Programmed electrical stimulation and high-density mapping were performed at 30-day post MI to assess ventricular tachycardia inducibility. Myocardial samples were collected for histological analysis. RESULTS Compared with BB, BB+Sac/Val reduced acute circulating leukocytes (P=0.009) and interleukin-12 levels (P=0.024) at 2-day post MI, decreased C-C chemokine receptor type 2 expression in monocytes (P=0.047) at 15-day post MI, and reduced scar mass (P=0.046) and border zone mass (P=0.043). It also lowered the number and mass of border zone corridors (P=0.009 and P=0.026, respectively), scar collagen I content (P=0.049), and collagen I/III ratio (P=0.040). Sac/Val reduced ventricular tachycardia inducibility (P=0.034) and the number of deceleration zones (P=0.016). CONCLUSIONS After MI, compared with BB, BB+Sac/Val was associated with reduced acute systemic inflammatory markers, reduced total scar and border zone mass on late gadolinium-enhanced magnetic resonance imaging, and lower ventricular tachycardia inducibility.
Collapse
Affiliation(s)
- Daina Martínez-Falguera
- ICREC Research Program, Germans Trias i Pujol Research Institute, Barcelona, Spain (D.M.-F., G.F.-C., M.M.-T., I.D.-G., S.R., A.B.-G., C.G.-M.)
- Faculty of Medicine, University of Barcelona, Spain (D.M.-F.)
| | - Júlia Aranyó
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
- Department of Medicine, Autonomous University of Barcelona, Spain (J.A., A.B.-G.)
| | - Albert Teis
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
| | - Gemma Ferrer-Curriu
- ICREC Research Program, Germans Trias i Pujol Research Institute, Barcelona, Spain (D.M.-F., G.F.-C., M.M.-T., I.D.-G., S.R., A.B.-G., C.G.-M.)
| | - Marta Monguió-Tortajada
- ICREC Research Program, Germans Trias i Pujol Research Institute, Barcelona, Spain (D.M.-F., G.F.-C., M.M.-T., I.D.-G., S.R., A.B.-G., C.G.-M.)
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland (M.M.-T.)
| | - Edgar Fadeuilhe
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
| | - Oriol Rodríguez-Leor
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain (O.R.-L., S.R., R.V., A.B-G., F.B., C.G.-M.)
| | - Idoia Díaz-Güemes
- ICREC Research Program, Germans Trias i Pujol Research Institute, Barcelona, Spain (D.M.-F., G.F.-C., M.M.-T., I.D.-G., S.R., A.B.-G., C.G.-M.)
| | - Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Research Institute, Barcelona, Spain (D.M.-F., G.F.-C., M.M.-T., I.D.-G., S.R., A.B.-G., C.G.-M.)
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain (O.R.-L., S.R., R.V., A.B-G., F.B., C.G.-M.)
- Faculty of Medicine, University of Vic-Central University of Catalonia, Barcelona, Spain (S.R.)
| | - Roger Villuendas
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain (O.R.-L., S.R., R.V., A.B-G., F.B., C.G.-M.)
| | - Axel Sarrias
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
| | - Victor Bazan
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
| | - Victoria Delgado
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
| | - Antoni Bayes-Genis
- ICREC Research Program, Germans Trias i Pujol Research Institute, Barcelona, Spain (D.M.-F., G.F.-C., M.M.-T., I.D.-G., S.R., A.B.-G., C.G.-M.)
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
- Department of Medicine, Autonomous University of Barcelona, Spain (J.A., A.B.-G.)
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain (O.R.-L., S.R., R.V., A.B-G., F.B., C.G.-M.)
| | - Felipe Bisbal
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain (O.R.-L., S.R., R.V., A.B-G., F.B., C.G.-M.)
| | - Carolina Gálvez-Montón
- ICREC Research Program, Germans Trias i Pujol Research Institute, Barcelona, Spain (D.M.-F., G.F.-C., M.M.-T., I.D.-G., S.R., A.B.-G., C.G.-M.)
- Heart Institute (iCOR), Germans Trias i Pujol University Hospital, Barcelona, Spain (J.A., A.T., E.F., O.R.-L., S.R., R.V., A.S., V.B., V.D., A.B.-G., F.B., C.G.-M.)
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain (O.R.-L., S.R., R.V., A.B-G., F.B., C.G.-M.)
| |
Collapse
|
10
|
Liu N, He Y, Chen X, Qiu G, Wu Y, Shen Y. Changes in cuproptosis-related gene expression in periodontitis: An integrated bioinformatic analysis. Life Sci 2024; 338:122388. [PMID: 38181851 DOI: 10.1016/j.lfs.2023.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/07/2024]
Abstract
Periodontitis causes inflammatory destruction of tooth-supporting tissues; however, the complex mechanism underlying its etiology remains unclear. Cuproptosis is a type of cell death caused by an imbalance in intracellular copper homeostasis that leads to excess copper. However, changes in the expression and biological function of cuproptosis-related genes (CRGs) in periodontitis are not yet fully understood. This study investigated the comprehensive effects of differentially expressed CRGs (DE-CRGs) on periodontitis via bioinformatic analysis. Nine DE-CRGs were discovered using normal and periodontitis gingival samples, and single-cell RNA sequencing data were analyzed to identify them changes in diverse cell clusters. We then detected the correlation between DE-CRGs and immune infiltration, immune factors, mitochondrial dysfunction, diagnostic efficacy, and predicted drugs. Moreover, changes of DE-CRG in whole periodontitis tissue and a human gingival fibroblast cell line (HGF-1) were confirmed and copper content changes in HGF-1 cells were investigated. Most DE-CRG expression trends were reversed between the periodontal tissues and cell clusters, which may be related to the proportion of cell clusters changes caused periodontitis. Furthermore, most DE-CRG trends in periodontitis cell clusters were inconsistent with the effects of cuproptosis. In HGF-1 cells treated with Porphyromonas gingivalis lipopolysaccharide (Pg-LPS), the intracellular copper content increased by more than threefold, indicating that although some periodontitis cells had excess copper, the amount may not have been sufficient to trigger cuproptosis. Additionally, DE-CRGs were closely associated with multiple biological functions, antibiotic drugs, and natural herbal medicines. Our findings may provide an overview of DE-CRGs in the pathogenesis and treatment of periodontitis.
Collapse
Affiliation(s)
- Na Liu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yeqing He
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Xiaomin Chen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Guopeng Qiu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Ying Wu
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China.
| |
Collapse
|
11
|
Wiche Salinas TR, Zhang Y, Gosselin A, Rosario NF, El-Far M, Filali-Mouhim A, Routy JP, Chartrand-Lefebvre C, Landay AL, Durand M, Tremblay CL, Ancuta P. Alterations in Th17 Cells and Non-Classical Monocytes as a Signature of Subclinical Coronary Artery Atherosclerosis during ART-Treated HIV-1 Infection. Cells 2024; 13:157. [PMID: 38247848 PMCID: PMC10813976 DOI: 10.3390/cells13020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Cardiovascular disease (CVD) remains an important comorbidity in people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Our previous studies performed in the Canadian HIV/Aging Cohort Study (CHACS) (>40 years-old; Framingham Risk Score (FRS) > 5%) revealed a 2-3-fold increase in non-calcified coronary artery atherosclerosis (CAA) plaque burden, measured by computed tomography angiography scan (CTAScan) as the total (TPV) and low attenuated plaque volume (LAPV), in ART-treated PLWH (HIV+) versus uninfected controls (HIV-). In an effort to identify novel correlates of subclinical CAA, markers of intestinal damage (sCD14, LBP, FABP2); cell trafficking/inflammation (CCL20, CX3CL1, MIF, CCL25); subsets of Th17-polarized and regulatory (Tregs) CD4+ T-cells, classical/intermediate/non-classical monocytes, and myeloid/plasmacytoid dendritic cells were studied in relationship with HIV and TPV/LAPV status. The TPV detection/values coincided with higher plasma sCD14, FABP2, CCL20, MIF, CX3CL1, and triglyceride levels; lower Th17/Treg ratios; and classical monocyte expansion. Among HIV+, TPV+ versus TPV- exhibited lower Th17 frequencies, reduced Th17/Treg ratios, higher frequencies of non-classical CCR9lowHLADRhigh monocytes, and increased plasma fibrinogen levels. Finally, Th17/Treg ratios and non-classical CCR9lowHLADRhigh monocyte frequencies remained associated with TPV/LAPV after adjusting for FRS and HIV/ART duration in a logistic regression model. These findings point to Th17 paucity and non-classical monocyte abundance as novel immunological correlates of subclinical CAA that may fuel the CVD risk in ART-treated PLWH.
Collapse
Affiliation(s)
- Tomas Raul Wiche Salinas
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Yuwei Zhang
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Annie Gosselin
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Natalia Fonseca Rosario
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Mohamed El-Far
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Ali Filali-Mouhim
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada;
| | - Carl Chartrand-Lefebvre
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada
| | | | - Madeleine Durand
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
- Département de Médecine, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada
| | - Cécile L. Tremblay
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| | - Petronela Ancuta
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal (UdeM), Montreal, QC H2X 0A9, Canada; (T.R.W.S.); (Y.Z.); (C.L.T.)
- CRCHUM, Montreal, QC H2X 0A2, Canada; (A.G.); (N.F.R.); (M.E.-F.); (A.F.-M.); (C.C.-L.); (M.D.)
| |
Collapse
|
12
|
Alvarez-Cirerol FJ, Galván-Moroyoqui JM, Rodríguez-León E, Candía-Plata C, Rodríguez-Beas C, López-Soto LF, Rodríguez-Vázquez BE, Bustos-Arriaga J, Soto-Guzmán A, Larios-Rodríguez E, Martínez-Soto JM, Martinez-Higuera A, Iñiguez-Palomares RA. Monocyte (THP-1) Response to Silver Nanoparticles Synthesized with Rumex hymenosepalus Root Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:106. [PMID: 38202561 PMCID: PMC10780692 DOI: 10.3390/nano14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
The study, synthesis, and application of nanomaterials in medicine have grown exponentially in recent years. An example of this is the understanding of how nanomaterials activate or regulate the immune system, particularly macrophages. In this work, nanoparticles were synthesized using Rumex hymenosepalus as a reducing agent (AgRhNPs). According to thermogravimetric analysis, the metal content of nanoparticles is 55.5% by weight. The size of the particles ranges from 5-26 nm, with an average of 11 nm, and they possess an fcc crystalline structure. The presence of extract molecules on the nanomaterial was confirmed by UV-Vis and FTIR. It was found by UPLC-qTOF that the most abundant compounds in Rh extract are flavonols, flavones, isoflavones, chalcones, and anthocyanidins. The viability and apoptosis of the THP-1 cell line were evaluated for AgRhNPs, commercial nanoparticles (AgCNPs), and Rh extract. The results indicate a minimal cytotoxic and apoptotic effect at a concentration of 12.5 μg/mL for both nanoparticles and 25 μg/mL for Rh extract. The interaction of the THP-1 cell line and treatments was used to evaluate the polarization of monocyte subsets in conjunction with an evaluation of CCR2, Tie-2, and Arg-1 expression. The AgRhNPs nanoparticles and Rh extract neither exhibited cytotoxicity in the THP-1 monocyte cell line. Additionally, the treatments mentioned above exhibited anti-inflammatory effects by maintaining the classical monocyte phenotype CD14++CD16, reducing pro-inflammatory interleukin IL-6 production, and increasing IL-4 production.
Collapse
Affiliation(s)
| | - José Manuel Galván-Moroyoqui
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Ericka Rodríguez-León
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Carmen Candía-Plata
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - César Rodríguez-Beas
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| | - Luis Fernando López-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - José Bustos-Arriaga
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Adriana Soto-Guzmán
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | - Eduardo Larios-Rodríguez
- Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Juan M. Martínez-Soto
- Departamento de Medicina y Ciencias de la Salud, Universidad de Sonora, Hermosillo 83000, Mexico; (C.C.-P.); (L.F.L.-S.); (A.S.-G.); (J.M.M.-S.)
| | | | - Ramón A. Iñiguez-Palomares
- Departamento de Física, Universidad de Sonora, Hermosillo 83000, Mexico; (E.R.-L.); (C.R.-B.); (B.E.R.-V.)
| |
Collapse
|
13
|
Wiche Salinas TR, Zhang Y, Gosselin A, Do Rosario NF, El-Far M, Filali-Mouhim A, Routy JP, Chartrand-Lefebvre C, Landay AL, Durand M, Tremblay CL, Ancuta P. A Blood Immunological Signature of Subclinical Coronary Artery Atherosclerosis in People Living with HIV-1 Receiving Antiretroviral Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571922. [PMID: 38187644 PMCID: PMC10769180 DOI: 10.1101/2023.12.15.571922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Cardiovascular disease (CVD) remains an important co-morbidity in people living with HIV-1 (PLWH) receiving antiretroviral therapy (ART). Our previous studies performed on the Canadian HIV/Aging Cohort Study (CHACS) (>40 years-old; Framingham Risk Score (FRS) >5%), revealed a 2-3-fold increase in non-calcified coronary artery atherosclerosis (CAA) plaque burden, measured by Computed tomography angiography scan (CTAScan) as total (TPV) and low attenuated plaque volume (LAPV) in ART-treated PLWH (HIV+) versus uninfected controls (HIV-). In an effort to identify novel correlates of subclinical CAA, markers of intestinal damage (sCD14, LBP, FABP2); cell trafficking/inflammation (CCL20, CX3CL1, MIF, CCL25); subsets of Th17-polarized and regulatory (Tregs) CD4 + T-cells, classical/intermediate/non-classical monocytes, and myeloid/plasmacytoid dendritic cells, were studied in relationship with HIV and TPV/LAPV status. The TPV detection/values coincided with higher plasma sCD14, FABP2, CCL20, MIF, CX3CL1 and triglyceride levels, lower Th17/Treg ratios, and classical monocyte expansion. Among HIV + , TPV + versus TPV - exhibited lower Th17 frequencies, reduced Th17/Treg ratios, higher frequencies of non-classical CCR9 low HLADR high monocyte, and increased plasma fibrinogen levels. Finally, Th17/Treg ratios and non-classical CCR9 low HLADR high monocyte frequencies remained associated with TPV/LAPV after adjusting for FRS and HIV/ART duration in a logistic regression model. These findings point to Th17 paucity and non-classical monocyte abundance as novel immunological correlates of subclinical CAA that may fuel the CVD risk in ART-treated PLWH.
Collapse
|
14
|
Chang WW, Zhang L, Wen LY, Tao YJ, Xiong JJ, Tong X, Jin YL, Su H. Association between the MCP-1 -2518 A > G (rs1024611) polymorphism and susceptibility to type 2 diabetes mellitus and diabetic nephropathy: a meta-analysis. BMC Endocr Disord 2023; 23:267. [PMID: 38049786 PMCID: PMC10694925 DOI: 10.1186/s12902-023-01514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Studies evaluating the association between monocyte chemoattractant protein-1 (MCP-1) -2518 A > G (rs1024611) polymorphism and type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) are contradictory. The present study aims to provide a comprehensive assessment and more reliable estimation of the relationship between the MCP-1 rs1024611 polymorphism and T2DM and DN risk. METHODS Eligible articles were retrieved from the PubMed, Web of Science, EMBASE, Cochrane, and China National Knowledge Infrastructure databases. The effect summary odds ratios (ORs) and 95% confidence intervals (CIs) were obtained to calculate the summary effect size. Heterogeneity was analyzed by subgroup analysis and meta-regression. Publication bias was tested using funnel plots and Egger's test. RESULTS In total, sixteen studies were included. Thirteen studies involving 2,363 patients with T2DM and 4,650 healthy controls found no significant association between the MCP-1 rs1024611 polymorphism and T2DM in the overall population. Ethnicity stratification found an association between the GG + GA genotype and decreased T2DM risk in Caucasians (OR = 0.79, 95% CI: 0.66-0.93, P = 0.006; PQ = 0.372). No significant risks were found in the Asian population for any genetic models. Seven studies found an association between the GG + GA genotype and DN risk in the Asian population (OR = 1.37, 95% CI: 1.11-1.71, P = 0.004, PQ = 0.222). No significant risks were found in the Caucasian population with any genetic models. There were no statistically significant differences in genotype distribution between patients with T2DM and DN in Asians or Caucasians. Meta-regression revealed that genotyping method was a major driver of heterogeneity in five genetic models (GG + GA vs. AA: P = 0.032; GG vs. GA + AA: P = 0.028; GG vs. AA: P = 0.035; GG vs. GA: P = 0.041; G vs. A: P = 0.041). CONCLUSION The MCP-1 rs1024611 polymorphism is associated with susceptibility to T2DM in Caucasians and DN in Asians. Larger, well-designed cohort studies are needed in the future to verify this association.
Collapse
Affiliation(s)
- Wei-Wei Chang
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Liu Zhang
- Department of Hospital Infection Management Office, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui, 241000, China
| | - Li-Ying Wen
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yu-Jing Tao
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Jia-Jie Xiong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Xin Tong
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Yue-Long Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Wannan Medical College, Wuhu, Anhui, 241002, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, No.81 Meishan road, Shushan District, Hefei, Anhui, 230031, China.
| |
Collapse
|
15
|
Morrison D, Pinpin C, Lee A, Sison C, Chory A, Gregersen PK, Forrest G, Kirshblum S, Harkema SJ, Boakye M, Harrop JS, Bryce TN, Schwab JM, Kwon BK, Stein AB, Bank MA, Bloom O. Profiling Immunological Phenotypes in Individuals During the First Year After Traumatic Spinal Cord Injury: A Longitudinal Analysis. J Neurotrauma 2023; 40:2621-2637. [PMID: 37221869 PMCID: PMC10722895 DOI: 10.1089/neu.2022.0500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023] Open
Abstract
Abstract Individuals with SCI are severely affected by immune system changes, resulting in increased risk of infections and persistent systemic inflammation. While recent data support that immunological changes after SCI differ in the acute and chronic phases of living with SCI, only limited immunological phenotyping in humans is available. To characterize dynamic molecular and cellular immune phenotypes over the first year, we assess RNA (bulk-RNA sequencing), protein, and flow cytometry (FACS) profiles of blood samples from 12 individuals with SCI at 0-3 days and at 3, 6, and 12 months post injury (MPI) compared to 23 uninjured individuals (controls). We identified 967 differentially expressed (DE) genes in individuals with SCI (FDR <0.001) compared to controls. Within the first 6 MPI we detected a reduced expression of NK cell genes, consistent with reduced frequencies of CD56bright, CD56dim NK cells present at 12 MPI. Over 6MPI, we observed increased and prolonged expression of genes associated with inflammation (e.g. HMGB1, Toll-like receptor signaling) and expanded frequencies of monocytes acutely. Canonical T-cell related DE genes (e.g. FOXP3, TCF7, CD4) were upregulated during the first 6 MPI and increased frequencies of activated T cells at 3-12 MPI. Neurological injury severity was reflected in distinct whole blood gene expression profiles at any time after SCI, verifying a persistent 'neurogenic' imprint. Overall, 2876 DE genes emerge when comparing motor complete to motor incomplete SCI (ANOVA, FDR <0.05), including those related to neutrophils, inflammation, and infection. In summary, we identify a dynamic immunological phenotype in humans, including molecular and cellular changes which may provide potential targets to reduce inflammation, improve immunity, or serve as candidate biomarkers of injury severity.
Collapse
Affiliation(s)
- Debra Morrison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Camille Pinpin
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Annette Lee
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Cristina Sison
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Ashley Chory
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Peter K. Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Gail Forrest
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Steven Kirshblum
- Tim and Caroline Reynolds Center for Spinal Stimulation, Center for Mobility and Human Engineering Research, West Orange, New Jersey, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Kessler Institute for Rehabilitation. West Orange, New Jersey, USA
| | - Susan J. Harkema
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Injury Research Center, School of Medicine, University of Louisville, Louisville, Kentucky, USA
- Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - James S. Harrop
- Department of Neurosurgery, Thomas Jefferson University Hospitals, Philadelphia, Pennsylvania, USA
| | - Thomas N. Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | - Jan M. Schwab
- The Belford Center for Spinal Cord Injury, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
- Department of Neurology, Spinal Cord Division, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adam B. Stein
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| | - Matthew A. Bank
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
- North Shore University Hospital, Manhasset, New York, USA
| | - Ona Bloom
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Donald and Barbara Zucker School of Medicine at Hofstra Northwell, Hempstead, New York, USA
| |
Collapse
|
16
|
Alves JM, Germano DB, Kim YJ, Fonseca FAH, Izar MC, Tuleta ID, Nagai R, Novo NF, Juliano Y, Neves LM, Pallos D, França CN. Modulation of monocyte subtypes in diabetes after non-surgical periodontal treatment. Clin Oral Investig 2023; 27:6847-6854. [PMID: 37843636 DOI: 10.1007/s00784-023-05299-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES The current study aims to evaluate the effect of non-surgical periodontal treatment on the modulation of monocyte phenotype, in the presence or absence of diabetes. MATERIALS AND METHODS The identification, quantification, and phenotypic characterization of monocyte subtypes (classical, intermediate, and non-classical) were performed by flow cytometry, at baseline and 1 month after the end of non-surgical periodontal treatment, in patients with periodontitis, associated or not with diabetes. RESULTS There was an increase in non-classical monocytes after treatment and a reduction in intermediate monocytes, without differences for the classical subtype, regardless of the diabetes status. Furthermore, there was a reduction in intermediate monocytes and an increase in non-classical and classical monocytes after treatment in the diabetes group, while no significant differences were observed for classical, intermediate, and non-classical monocytes in the group without diabetes. Comparisons between the two groups showed significant differences for classical, intermediate, and non-classical monocytes at baseline; these differences were not found one month after treatment. CONCLUSIONS Non-surgical periodontal treatment leads to modulation of monocytes to a less inflammatory phenotype, especially in individuals with diabetes. CLINICAL RELEVANCE A better understanding of the role of these biomarkers in the periodontitis contex may constitute a new strategic target for a better treatment of patiens with diabetes associated to periodontitis. CLINICAL TRIAL REGISTRATION Brazilian Registry of Clinical Trials-RBR-35szwc. Jhefferson Miranda Alves and Danielle Borges Germano contributed equality to this study and should be considered first authors.
Collapse
Affiliation(s)
- Jhefferson Miranda Alves
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Danielle Borges Germano
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Yeon Jung Kim
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | | | - Maria Cristina Izar
- Department of Medicine, Federal University of Sao Paulo, Cardiology Division, Sao Paulo, Brazil
| | | | - Rogério Nagai
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Lucas Melo Neves
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil
| | - Débora Pallos
- Post Graduation Program in Odontology, Santo Amaro University, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Professor Eneas de Siqueira Neto Street, 340, Jardim das Imbuias, Sao Paulo, SP, 04829-300, Brazil.
| |
Collapse
|
17
|
Deprez J, Verbeke R, Meulewaeter S, Aernout I, Dewitte H, Decruy T, Coudenys J, Van Duyse J, Van Isterdael G, Peer D, van der Meel R, De Smedt SC, Jacques P, Elewaut D, Lentacker I. Transport by circulating myeloid cells drives liposomal accumulation in inflamed synovium. NATURE NANOTECHNOLOGY 2023; 18:1341-1350. [PMID: 37430039 DOI: 10.1038/s41565-023-01444-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
The therapeutic potential of liposomes to deliver drugs into inflamed tissue is well documented. Liposomes are believed to largely transport drugs into inflamed joints by selective extravasation through endothelial gaps at the inflammatory sites, known as the enhanced permeation and retention effect. However, the potential of blood-circulating myeloid cells for the uptake and delivery of liposomes has been largely overlooked. Here we show that myeloid cells can transport liposomes to inflammatory sites in a collagen-induced arthritis model. It is shown that the selective depletion of the circulating myeloid cells reduces the accumulation of liposomes up to 50-60%, suggesting that myeloid-cell-mediated transport accounts for more than half of liposomal accumulation in inflamed regions. Although it is widely believed that PEGylation inhibits premature liposome clearance by the mononuclear phagocytic system, our data show that the long blood circulation times of PEGylated liposomes rather favours uptake by myeloid cells. This challenges the prevailing theory that synovial liposomal accumulation is primarily due to the enhanced permeation and retention effect and highlights the potential for other pathways of delivery in inflammatory diseases.
Collapse
Affiliation(s)
- Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Rein Verbeke
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sofie Meulewaeter
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ilke Aernout
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Heleen Dewitte
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Tine Decruy
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Julie Coudenys
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Julie Van Duyse
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- VIB Flow Core, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Dan Peer
- Laboratory of Precision Nanomedicine, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Peggy Jacques
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
| | - Dirk Elewaut
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Unit Molecular Immunology and Inflammation, VIB Centre for Inflammation Research, Ghent University and Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
18
|
Chen Q, Jiang H, Ding R, Zhong J, Li L, Wan J, Feng X, Peng L, Yang X, Chen H, Wang A, Jiao J, Yang Q, Chen X, Li X, Shi L, Zhang G, Wang M, Yang H, Li Q. Cell-type-specific molecular characterization of cells from circulation and kidney in IgA nephropathy with nephrotic syndrome. Front Immunol 2023; 14:1231937. [PMID: 37908345 PMCID: PMC10613708 DOI: 10.3389/fimmu.2023.1231937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Nephrotic syndrome (NS) is a relatively rare and serious presentation of IgA nephropathy (IgAN) (NS-IgAN). Previous research has suggested that the pathogenesis of NS-IgAN may involve circulating immune imbalance and kidney injury; however, this has yet to be fully elucidated. To investigate the cellular and molecular status of NS-IgAN, we performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) and kidney cells from pediatric patients diagnosed with NS-IgAN by renal biopsy. Consistently, the proportion of intermediate monocytes (IMs) in NS-IgAN patients was higher than in healthy controls. Furthermore, flow cytometry confirmed that IMs were significantly increased in pediatric patients with NS. The characteristic expression of VSIG4 and MHC class II molecules and an increase in oxidative phosphorylation may be important features of IMs in NS-IgAN. Notably, we found that the expression level of CCR2 was significantly increased in the CMs, IMs, and NCMs of patients with NS-IgAN. This may be related to kidney injury. Regulatory T cells (Tregs) are classified into two subsets of cells: Treg1 (CCR7 high, TCF7 high, and HLA-DR low) and Treg2 (CCR7 low, TCF7 low, and HLA-DR high). We found that the levels of Treg2 cells expressed significant levels of CCR4 and GATA3, which may be related to the recovery of kidney injury. The state of NS in patients was closely related to podocyte injury. The expression levels of CCL2, PRSS23, and genes related to epithelial-mesenchymal transition were significantly increased in podocytes from NS-IgAN patients. These represent key features of podocyte injury. Our analysis suggests that PTGDS is significantly downregulated following injury and may represent a new marker for podocytes. In this study, we systematically analyzed molecular events in the circulatory system and kidney tissue of pediatric patients with NS-IgAN, which provides new insights for targeted therapy in the future.
Collapse
Affiliation(s)
- Qilin Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Huimin Jiang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Rong Ding
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, Jiangsu, China
| | - Jinjie Zhong
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Longfei Li
- Nanjing Jiangbei New Area Biopharmaceutical Public Service Platform Co. Ltd, Nanjing, Jiangsu, China
| | - Junli Wan
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xiaoqian Feng
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Liping Peng
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xia Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Han Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Anshuo Wang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jia Jiao
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qin Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xuelan Chen
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xiaoqin Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Lin Shi
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Gaofu Zhang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Mo Wang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Haiping Yang
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qiu Li
- Department of Nephrology, Children’s Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
19
|
Ruder AV, Wetzels SMW, Temmerman L, Biessen EAL, Goossens P. Monocyte heterogeneity in cardiovascular disease. Cardiovasc Res 2023; 119:2033-2045. [PMID: 37161473 PMCID: PMC10478755 DOI: 10.1093/cvr/cvad069] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 05/11/2023] Open
Abstract
Monocytes circulate the vasculature at steady state and are recruited to sites of inflammation where they differentiate into macrophages (MФ) to replenish tissue-resident MФ populations and engage in the development of cardiovascular disease (CVD). Monocytes display considerable heterogeneity, currently reflected by a nomenclature based on their expression of cluster of differentiation (CD) 14 and CD16, distinguishing CD14++CD16- classical (cMo), CD14++CD16+ intermediate (intMo) and CD14+CD16++ non-classical (ncMo) monocytes. Several reports point to shifted subset distributions in the context of CVD, with significant association of intMo numbers with atherosclerosis, myocardial infarction, and heart failure. However, clear indications of their causal involvement as well as their predictive value for CVD are lacking. As recent high-parameter cytometry and single-cell RNA sequencing (scRNA-Seq) studies suggest an even higher degree of heterogeneity, better understanding of the functionalities of these subsets is pivotal. Considering their high heterogeneity, surprisingly little is known about functional differences between MФ originating from monocytes belonging to different subsets, and implications thereof for CVD pathogenesis. This paper provides an overview of recent findings on monocyte heterogeneity in the context of homeostasis and disease as well as functional differences between the subsets and their potential to differentiate into MФ, focusing on their role in vessels and the heart. The emerging paradigm of monocyte heterogeneity transcending the current tripartite subset division argues for an updated nomenclature and functional studies to substantiate marker-based subdivision and to clarify subset-specific implications for CVD.
Collapse
Affiliation(s)
- Adele V Ruder
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Suzan M W Wetzels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
20
|
Liu T, Zhuang XX, Gao JR. Identifying Aging-Related Biomarkers and Immune Infiltration Features in Diabetic Nephropathy Using Integrative Bioinformatics Approaches and Machine-Learning Strategies. Biomedicines 2023; 11:2454. [PMID: 37760894 PMCID: PMC10525809 DOI: 10.3390/biomedicines11092454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Aging plays an essential role in the development of diabetic nephropathy (DN). This study aimed to identify and verify potential aging-related genes associated with DN using bioinformatics analysis. METHODS To begin with, we combined the datasets from GEO microarrays (GSE104954 and GSE30528) to find the genes that were differentially expressed (DEGs) across samples from DN and healthy patient populations. By overlapping DEGs, weighted co-expression network analysis (WGCNA), and 1357 aging-related genes (ARGs), differentially expressed ARGs (DEARGs) were discovered. We next performed functional analysis to determine DEARGs' possible roles. Moreover, protein-protein interactions were examined using STRING. The hub DEARGs were identified using the CytoHubba, MCODE, and LASSO algorithms. We next used two validation datasets and Receiver Operating Characteristic (ROC) curves to determine the diagnostic significance of the hub DEARGs. RT-qPCR, meanwhile, was used to confirm the hub DEARGs' expression levels in vitro. In addition, we investigated the relationships between immune cells and hub DEARGs. Next, Gene Set Enrichment Analysis (GSEA) was used to identify each biomarker's biological role. The hub DEARGs' subcellular location and cell subpopulations were both identified and predicted using the HPA and COMPARTMENTS databases, respectively. Finally, drug-protein interactions were predicted and validated using STITCH and AutoDock Vina. RESULTS A total of 57 DEARGs were identified, and functional analysis reveals that they play a major role in inflammatory processes and immunomodulation in DN. In particular, aging and the AGE-RAGE signaling pathway in diabetic complications are significantly enriched. Four hub DEARGs (CCR2, VCAM1, CSF1R, and ITGAM) were further screened using the interaction network, CytoHubba, MCODE, and LASSO algorithms. The results above were further supported by validation sets, ROC curves, and RT-qPCR. According to an evaluation of immune infiltration, DN had significantly more resting mast cells and delta gamma T cells but fewer regulatory T cells and active mast cells. Four DEARGs have statistical correlations with them as well. Further investigation revealed that four DEARGs were implicated in immune cell abnormalities and regulated a wide range of immunological and inflammatory responses. Furthermore, the drug-protein interactions included four possible therapeutic medicines that target four DEARGs, and molecular docking could make this association practical. CONCLUSIONS This study identified four DEARGs (CCR2, VCAM1, CSF1R, and ITGAM) associated with DN, which might play a key role in the development of DN and could be potential biomarkers in DN.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, China;
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| | - Xing-Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China;
| | - Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, China;
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011, China
| |
Collapse
|
21
|
da Silva LS, Germano DB, Fonseca FAH, Shio MT, da Silva Nali LH, Tuleta ID, Juliano Y, de Oliveira Izar MC, Ribeiro AP, Kato JT, do Amaral JB, França CN. Persistence of a proinflammatory status after treatment of the acute myocardial infarction. Geriatr Gerontol Int 2023; 23:700-707. [PMID: 37522226 DOI: 10.1111/ggi.14649] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
AIM To evaluate the lipid-lowering and antiplatelet combined strategies on the expression of the receptors CCR2, CCR5, and CX3CR1 and the percentage of CCR2, CCR5, and CX3CR1 cells in monocyte subtypes after acute myocardial infarction. METHODS Prospective, randomized, open-label study, with blinded analyses of endpoints (PROBE, ClinicalTrials.gov Identifier: NCT02428374, registration date: April 28, 2015). Participants were treated with rosuvastatin 20 mg or simvastatin 40 mg plus ezetimibe 10 mg, as well as ticagrelor 90 mg or clopidogrel 75 mg. The chemokine receptors CCR2, CCR5, and CX3CR1 were analyzed by real-time polymerase chain reaction as well as the percentages of CCR2, CCR5, and CX3CR1 cells in the monocyte subtypes (classical, intermediate, and non-classical), which were quantified by flow cytometry, at baseline, and after 1 and 6 months of treatment. RESULTS After comparisons between the three visits, regardless of the treatment arm, there was an increase in CCR2 expression after treatment, as well as an increase in intermediate monocytes CCR2+ and a reduction in non-classical monocytes CCR2+ at the end of treatment. There was also a lower expression of CCR5 after treatment and an increase in classical and non-classical monocytes CCR5+. Concerning CX3CR1, there were no differences in the expression after treatment; however, there were reductions in the percentage of intermediate and non-classical monocytes CX3CR1+ at the end of treatment. CONCLUSIONS The results suggest the persistence of the inflammatory phenotype, known as trained immunity, even with the highly-effective lipid-lowering and antiplatelet therapies. Geriatr Gerontol Int 2023; 23: 700-707.
Collapse
Affiliation(s)
| | | | | | - Marina Tiemi Shio
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Ana Paula Ribeiro
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Juliana Tieko Kato
- Medicine Department, Cardiology Division, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology-Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| |
Collapse
|
22
|
Li R, Wu X, Peng S, Shen J, Cheng Y, Chu Q. CCR2 antagonist represses fibroblast-like synoviocyte-mediated inflammation in patients with rheumatoid arthritis. Int Immunopharmacol 2023; 122:110570. [PMID: 37390649 DOI: 10.1016/j.intimp.2023.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease with a global incidence of approximately 1%. Its complex pathogenesis makes the development of RA-related therapeutics very difficult. Existing drugs for RA have many side effects and are prone to drug resistance. One potential target for RA drugs includes C-Cchemokinereceptortype2 (CCR2), which belongs to the G protein-coupled receptor family. A series of RA drugs targeting CCR2 have been developed; however, the pre-clinical and clinical research results for CCR2 antagonists are inconsistent. We found that CCR2 was also expressed in primary Fibroblast-like synoviocyte (FLS) from patients with RA. CCR2 antagonists can inhibit inflammatory cytokines and matrix metalloproteinases released by RA-FLS but do not affect the proliferation and migration ability of RA-FLS. In addition, CCR2 antagonist-treated RA-FLS indirectly repressed macrophage-mediated inflammation and rescued the viability of chondrocytes. Finally, a CCR2 antagonist ameliorated the collagen-induced arthritic (CIA). CCR2 antagonists may exert anti-inflammatory effects on RA-FLS by inhibiting the JAK-STAT pathway. In summary, a CCR2 antagonist can exert anti-inflammatory effects by acting on RA-FLS. This study provides a new experimental basis for the use of CCR2 antagonists in the development of RA drugs.
Collapse
Affiliation(s)
- Ruilin Li
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei, China; Hefei First People's Hospital, Hefei, China.
| | - Xuming Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Song Peng
- Hefei First People's Hospital, Hefei, China; Department of General Practice, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juan Shen
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei, China; Hefei First People's Hospital, Hefei, China
| | - Yahui Cheng
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei, China; Hefei First People's Hospital, Hefei, China
| | - Qiangqiang Chu
- Hefei First People's Hospital, Hefei, China; Department of General Practice, The Third Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
23
|
Zhu L, Li H, Li J, Zhong Y, Wu S, Yan M, Ni S, Zhang K, Wang G, Qu K, Yang D, Qin X, Wu W. Biomimetic nanoparticles to enhance the reverse cholesterol transport for selectively inhibiting development into foam cell in atherosclerosis. J Nanobiotechnology 2023; 21:307. [PMID: 37644442 PMCID: PMC10463892 DOI: 10.1186/s12951-023-02040-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
A disorder of cholesterol homeostasis is one of the main initiating factors in the progression of atherosclerosis (AS). Metabolism and removal of excess cholesterol facilitates the prevention of foam cell formation. However, the failure of treatment with drugs (e.g. methotrexate, MTX) to effectively regulate progression of disease may be related to the limited drug bioavailability and rapid clearance by immune system. Thus, based on the inflammatory lesion "recruitment" properties of macrophages, MTX nanoparticles (MTX NPs) camouflaged with macrophage membranes (MM@MTX NPs) were constructed for the target to AS plaques. MM@MTX NPs exhibited a uniform hydrodynamic size around ~ 360 nm and controlled drug release properties (~ 72% at 12 h). After the macrophage membranes (MM) functionalized "homing" target delivery to AS plaques, MM@MTX NPs improved the solubility of cholesterol by the functionalized β-cyclodextrin (β-CD) component and significantly elevate cholesterol efflux by the loaded MTX mediated the increased expression levels of ABCA1, SR-B1, CYP27A1, resulting in efficiently inhibiting the formation of foam cells. Furthermore, MM@MTX NPs could significantly reduce the area of plaque, aortic plaque and cholesterol crystals deposition in ApoE-/- mice and exhibited biocompatibility. It is suggested that MM@MTX NPs were a safe and efficient therapeutic platform for AS.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Hongjiao Li
- School and Hospital of Stomatology, Chongqing Medical University, Chongqing, 404100, China
| | - Jiyu Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Sheng Ni
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Chongqing University, Three Gorges Hospital, Chongqing, 404000, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- Jin Feng Laboratory, Chongqing, 401329, China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
- Chongqing University, Three Gorges Hospital, Chongqing, 404000, China.
| | - Deqin Yang
- School and Hospital of Stomatology, Chongqing Medical University, Chongqing, 404100, China.
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
- Chongqing University, Three Gorges Hospital, Chongqing, 404000, China.
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
- Jin Feng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
24
|
Gao ZR, Zhou YH, Zhao YQ, Zhao J, Ye Q, Zhang SH, Feng Y, Tan L, Liu Q, Chen Y, Ouyang ZY, Hu J, Dusenge MA, Feng YZ, Guo Y. Kangfuxin Accelerates Extraction Socket Healing by Promoting Angiogenesis Via Upregulation of CCL2 in Stem Cells. J Bone Miner Res 2023; 38:1208-1221. [PMID: 37221128 DOI: 10.1002/jbmr.4860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 05/25/2023]
Abstract
Kangfuxin (KFX) shows potential in wound healing, but its role in socket healing is unclear. This research finds increased bone mass, mineralization, and collagen deposition in KFX-treated mice. Mouse bone marrow mesenchymal stem cells, human periodontal ligament stem cells (hPDLSCs), and human dental pulp stem cells (hDPSCs) are treated with KFX under osteogenic induction. RNA-sequencing reveals upregulated chemokine-related genes, with a threefold increase in chemokine (C-C motif) ligand 2 (Ccl2). The conditioned medium (CM) of hPDLSCs and hDPSCs treated with KFX promotes endothelial cell migration and angiogenesis. Ccl2 knockdown abolishes CM-induced endothelial cell migration and angiogenesis, which can be reversed by recombinant CCL2 treatment. KFX-treated mice showed increased vasculature. In conclusion, KFX increases the expression of CCL2 in stem cells, promoting bone formation and mineralization in the extraction socket by inducing endothelial cell angiogenesis. © 2023 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Zheng-Rong Gao
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying-Hui Zhou
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ya-Qiong Zhao
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhao
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Ye
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Shao-Hui Zhang
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yao Feng
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Tan
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiong Liu
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun Chen
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ze-Yue Ouyang
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Hu
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Marie Aimee Dusenge
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yun-Zhi Feng
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yue Guo
- Department of Stomatology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Baumer Y, Pita MA, Turner BS, Baez AS, Ortiz-Whittingham LR, Gutierrez-Huerta CA, Neally SJ, Farmer N, Mitchell VM, Collins BS, Powell-Wiley TM. Neighborhood socioeconomic deprivation and individual-level socioeconomic status are associated with dopamine-mediated changes to monocyte subset CCR2 expression via a cAMP-dependent pathway. Brain Behav Immun Health 2023; 30:100640. [PMID: 37251548 PMCID: PMC10220312 DOI: 10.1016/j.bbih.2023.100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Social determinants of health (SDoH) include socioeconomic, environmental, and psychological factors that impact health. Neighborhood socioeconomic deprivation (NSD) and low individual-level socioeconomic status (SES) are SDoH that associate with incident heart failure, stroke, and cardiovascular mortality, but the underlying biological mechanisms are not well understood. Previous research has demonstrated an association between NSD, in particular, and key components of the neural-hematopoietic-axis including amygdala activity as a marker of chronic stress, bone marrow activity, and arterial inflammation. Our study further characterizes the role of NSD and SES as potential sources of chronic stress related to downstream immunological factors in this stress-associated biologic pathway. We investigated how NSD, SES, and catecholamine levels (as proxy for sympathetic nervous system activation) may influence monocytes which are known to play a significant role in atherogenesis. First, in an ex vivo approach, we treated healthy donor monocytes with biobanked serum from a community cohort of African Americans at risk for CVD. Subsequently, the treated monocytes were subjected to flow cytometry for characterization of monocyte subsets and receptor expression. We determined that NSD and serum catecholamines (namely dopamine [DA] and norepinephrine [NE]) associated with monocyte C-C chemokine receptor type 2 (CCR2) expression (p < 0.05), a receptor known to facilitate recruitment of monocytes towards arterial plaques. Additionally, NSD associated with catecholamine levels, especially DA in individuals of low SES. To further explore the potential role of NSD and the effects of catecholamines on monocytes, monocytes were treated in vitro with epinephrine [EPI], NE, or DA. Only DA increased CCR2 expression in a dose-dependent manner (p < 0.01), especially on non-classical monocytes (NCM). Furthermore, linear regression analysis between D2-like receptor surface expression and surface CCR2 expression suggested D2-like receptor signaling in NCM. Indicative of D2-signaling, cAMP levels were found to be lower in DA-treated monocytes compared to untreated controls (control 29.78 pmol/ml vs DA 22.97 pmol/ml; p = 0.038) and the impact of DA on NCM CCR2 expression was abrogated by co-treatment with 8-CPT, a cAMP analog. Furthermore, Filamin A (FLNA), a prominent actin-crosslinking protein, that is known to regulate CCR2 recycling, significantly decreased in DA-treated NCM (p < 0.05), indicating a reduction of CCR2 recycling. Overall, we provide a novel immunological mechanism, driven by DA signaling and CCR2, for how NSD may contribute to atherogenesis. Future studies should investigate the importance of DA in CVD development and progression in populations disproportionately experiencing chronic stress due to SDoH.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Briana S. Turner
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cristhian A. Gutierrez-Huerta
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sam J. Neally
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Farmer
- Translational Biobehavioral and Health Disparities Branch, National Institutes of Health, Clinical Center, Bethesda, MD, USA
| | - Valerie M. Mitchell
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Billy S. Collins
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
26
|
Filatova AY, Afanasieva OI, Arefieva TI, Potekhina AV, Tyurina AV, Klesareva EA, Razova OA, Ezhov MV, Pokrovsky SN. The Concentration of PCSK9-Lp(a) Complexes and the Level of Blood Monocytes in Males with Coronary Atherosclerosis. J Pers Med 2023; 13:1077. [PMID: 37511689 PMCID: PMC10381556 DOI: 10.3390/jpm13071077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
In this study we analyzed the concentration of lipoprotein(a) (Lp(a)), PCSK9-Lp(a) complexes and the circulating monocyte subsets in coronary atherosclerosis. For this study, 257 patients with coronary atherosclerosis and 68 patients without stenotic atherosclerosis in the coronary, carotid and lower extremity arteries (control group) were enrolled. The monocyte subpopulations (classical CD14++CD16-, intermediate CD14++CD16+ and non-classical CD14+CD16++) were analyzed by direct immunofluorescence and flow cytometry. The Lp(a) and PCSK9-Lp(a) complexes in the serum were detected by ELISA. The concentration of Lp(a) was higher in the coronary atherosclerosis group compared with the controls (23.0 (9.1; 73.3) mg/dL versus 10.7 (4.7; 25.0) mg/dL, p < 0.05). No correlations between the level of Lp(a) and the concentration of the PCSK9-Lp(a) complexes, nor between the level of Lp(a) or PCSK9 and the total number of monocytes, were observed in either group. A slight positive correlation between the concentration of PCSK9-Lp(a) complexes and the absolute level of monocytes was obtained (r = 0.20, p = 0.002) in the patients with atherosclerosis due to the intermediate monocyte subsets (r = 0.33, p = 0.04). According to regression analysis, both the PCSK9-Lp(a) complexes concentration and BMI were related to the absolute number of blood monocytes in patients with atherosclerosis. Further studies are required to determine the pathogenetic contribution of PCSK9-Lp(a) complexes to the development of atherosclerosis.
Collapse
Affiliation(s)
- Anastasiia Yu Filatova
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Olga I Afanasieva
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Tatiana I Arefieva
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Alexandra V Potekhina
- A.L. Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Alexandra V Tyurina
- A.L. Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Elena A Klesareva
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Oksana A Razova
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Marat V Ezhov
- A.L. Myasnikov Institute of Clinical Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| | - Sergey N Pokrovsky
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Ministry of Health of the Russian Federation, 121552 Moscow, Russia
| |
Collapse
|
27
|
Cheng C, Li H, Liu J, Wu L, Fang Z, Xu G. MCP-1-Loaded Poly(l-lactide- co-caprolactone) Fibrous Films Modulate Macrophage Polarization toward an Anti-inflammatory Phenotype and Improve Angiogenesis. ACS Biomater Sci Eng 2023. [PMID: 37367696 DOI: 10.1021/acsbiomaterials.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering approaches such as the electrospinning technique can fabricate nanofibrous scaffolds which are widely used for small-diameter vascular grafting. However, foreign body reaction (FBR) and lack of endothelial coverage are still the main cause of graft failure after the implantation of nanofibrous scaffolds. Macrophage-targeting therapeutic strategies have the potential to address these issues. Here, we fabricate a monocyte chemotactic protein-1 (MCP-1)-loaded coaxial fibrous film with poly(l-lactide-co-ε-caprolactone) (PLCL/MCP-1). The PLCL/MCP-1 fibrous film can polarize macrophages toward anti-inflammatory M2 macrophages through the sustained release of MCP-1. Meanwhile, these specific functional polarization macrophages can mitigate FBR and promote angiogenesis during the remodeling of implanted fibrous films. These studies indicate that MCP-1-loaded PLCL fibers have a higher potential to modulate macrophage polarity, which provides a new strategy for small-diameter vascular graft designing.
Collapse
Affiliation(s)
- Can Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei, Anhui 230001, P. R. China
| | - Jingwen Liu
- Anhui Provincial Hospital Health Management Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Liang Wu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Zhengdong Fang
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Geliang Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| |
Collapse
|
28
|
Nguyen TV, Yamanaka K, Tomita K, Zubcevic J, Gouraud SSS, Waki H. Impact of exercise on brain-bone marrow interactions in chronic stress: potential mechanisms preventing stress-induced hypertension. Physiol Genomics 2023; 55:222-234. [PMID: 36939204 PMCID: PMC10151049 DOI: 10.1152/physiolgenomics.00168.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023] Open
Abstract
We examined the effect of chronic restraint stress and the counteractive effects of daily exercise on the molecular basis of the brain-bone marrow (BM) interactions, by especially focusing on the paraventricular nucleus (PVN) of the hypothalamus. Male Wistar rats were assigned into control, restraint stress, and stress + daily spontaneous exercise (SE) groups. BM and hypothalamic gene expression profiles were examined through the undertaking of RT-PCR and microarrays, respectively. The inflammatory blood cell population was investigated through flow cytometry. Through the use of immunohistochemistry, we examined the presence of BM-derived C-C chemokine receptor type 2 (CCR2)-expressing microglial cells in the rat PVN. The gene expression levels of BM inflammatory factors such as those of interleukin 1 beta and CCR2, and the inflammatory blood cell population were found to be significantly higher in both restrained groups compared with control group. Interestingly, chronic restraint stress alone activated the recruitment of BM-derived CCR2-expressing microglial cells into the PVN, whereas daily spontaneous exercise prevented it. A notable finding was that restraint stress upregulated relative gene expression of hypothalamic matrix metalloproteinase 3 (MMP3), which increases the permeability of the blood-brain barrier (BBB), and that exercise managed to normalize it. Moreover, relative expression of some hypothalamic genes directly involved in the facilitation of cell migration was downregulated by daily exercise. Our findings suggest that daily spontaneous exercise can reduce the numbers of BM-derived CCR2-expressing microglial cells into the PVN through the prevention of stress-induced changes in the hypothalamic gene expression.NEW & NOTEWORTHY Chronic restraint stress can upregulate MMP3 gene expression in the rat hypothalamus, whereas daily spontaneous exercise can prevent this stress-induced effect. Stress-induced BM-derived inflammatory cell recruitment into the rat PVN can be prevented by daily spontaneous exercise. Stress-induced increase of hypothalamic MMP3 gene expression may be responsible for BBB injury, thereby allowing for BM-derived inflammatory cells to be recruited and to accumulate in the rat PVN, and to be subsequently involved in the onset of stress-induced hypertension.
Collapse
Affiliation(s)
- Thu Van Nguyen
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Military Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Keisuke Tomita
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, United States
| | - Sabine S S Gouraud
- College of Liberal Arts, International Christian University, Tokyo, Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| |
Collapse
|
29
|
Xie L, Chen J, Wang Y, Jin C, Xie Y, Ma H, Xiang M. Emerging roles of macrophages in heart failure and associated treatment approaches. Ther Adv Chronic Dis 2023; 14:20406223231168755. [PMID: 37152348 PMCID: PMC10155014 DOI: 10.1177/20406223231168755] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 05/09/2023] Open
Abstract
Heart failure is typically caused by different cardiovascular conditions and has a poor prognosis. Despite the advances in treatment in recent decades, heart failure has remained a major cause of morbidity and mortality worldwide. As revealed by in vivo and in vitro experiments, inflammation plays a crucial role in adverse cardiac remodeling, ultimately leading to heart failure. Macrophages are central to the innate immune system, and they are the most indispensable cell type for all cardiac injuries and remodeling stages. The immediate microenvironment regulates their polarization and secretion. In this review, we summarize the phenotypic heterogeneity and governing roles of macrophages in the infarcted, inflamed, and aging heart and assess their significance as potential therapeutic targets in heart failure. We also highlight the current missing links and major challenges in the field that remain to be addressed before macrophages can be exploited for therapeutic applications.
Collapse
Affiliation(s)
- Lan Xie
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Wang
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengjiang Jin
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009,
China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated
Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou 310009,
China
| |
Collapse
|
30
|
Germano DB, Oliveira SB, Bachi ALL, Juliano Y, Novo NF, Bussador do Amaral J, França CN. Monocyte chemokine receptors as therapeutic targets in cardiovascular diseases. Immunol Lett 2023; 256-257:1-8. [PMID: 36893859 DOI: 10.1016/j.imlet.2023.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Chemokine receptors are fundamental in many processes related to cardiovascular diseases, such as monocyte migration to vessel walls, cell adhesion, and angiogenesis, among others. Even though many experimental studies have shown the utility of blocking these receptors or their ligands in the treatment of atherosclerosis, the findings in clinical research are still poor. Thus, in the current review we aimed to describe some promising results concerning the blockade of chemokine receptors as therapeutic targets in the treatment of cardiovascular diseases and also to discuss some challenges that need to be overcome before using these strategies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yára Juliano
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Neil Ferreira Novo
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology -Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil.
| |
Collapse
|
31
|
de Carvalho DC, Fonseca FAH, Izar MCDO, Silveira ALPA, Tuleta ID, do Amaral JB, Neves LM, Bachi ALL, França CN. Monocytes presenting a pro-inflammatory profile persist in patients submitted to a long-term pharmacological treatment after acute myocardial infarction. Front Physiol 2023; 13:1056466. [PMID: 36741809 PMCID: PMC9895791 DOI: 10.3389/fphys.2022.1056466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
Introduction: Although it is broadly known that monocyte recruitment is involved in atherosclerosis development and that, in accordance with the microenvironment, these cells can be modulated into three well-known subpopulations: Classical (CD14++CD16-), intermediate (CD14++CD16+), and non-classical (CD14+CD16++), the effects of treatment with different pharmacological strategies (based on lipid-lowering and antiplatelets) after acute myocardial infarction upon the monocytes modulation and the role of the chemokine receptors CCR2, CCR5 and CX3CR1 in this context, are poorly understood. Methods: In this study, patients [n = 148, both men (n = 105, 71%) and women (n = 43, 29%)] submitted to treatment with a 2×2 factorial design, in which they received rosuvastatin 20 mg or simvastatin 40 mg plus ezetimibe 10 mg, as well as ticagrelor 90 mg or clopidogrel 75 mg were enrolled. Monocyte subsets were analyzed by flow cytometry at baseline (BL), and after one (1-M) and 6 months (6-M) of treatment. Results: Firstly, our results showed that, regardless of the treatment received, higher percentages of classical monocytes and lower of non-classical monocytes were found at the 6-M time point than BL values, whilst the percentage of intermediate monocytes was higher in all time points assessed than the other subsets. There were reductions in the CCR2 expression by non-classical and intermediate monocytes, without differences for the classical subtype. Concerning the CCR5 expression, there were reductions in the three monocyte subtypes, whereas the CX3CR1 expression increased both in intermediate and classical monocytes, without differences for non-classical monocytes. In relation to the treatment received, a higher percentage of intermediate monocytes at the 6-M time point than the values BL was observed in the group treated with simvastatin + ezetimibe + clopidogrel. No significant differences were found concerning non-classical, intermediate, and classical monocytes, for CCR2, CCR5, and CX3CR1 in the four treatment arms. Conclusion: Taken together, our results demonstrated that even under lipid-lowering and antiplatelet therapy for 6 months, the inflammatory phenotype of monocytes still persisted in the patients enrolled in this study.
Collapse
Affiliation(s)
| | | | | | | | - Izabela Dorota Tuleta
- Department of Medicine-Cardiology, Albert Einstein College of Medicine, New York, NY, United States
| | - Jônatas Bussador do Amaral
- ENT Research Laboratory, Otorhinolaryngology-Head and Neck Surgery Department, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Lucas Melo Neves
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil
| | | | - Carolina Nunes França
- Post Graduation Program in Health Sciences, Santo Amaro University, Sao Paulo, Brazil,*Correspondence: Carolina Nunes França,
| |
Collapse
|
32
|
Wang J, Bian L, Du Y, Wang D, Jiang R, Lu J, Zhao X. The roles of chemokines following intracerebral hemorrhage in animal models and humans. Front Mol Neurosci 2023; 15:1091498. [PMID: 36704330 PMCID: PMC9871786 DOI: 10.3389/fnmol.2022.1091498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is one common yet devastating stroke subtype, imposing considerable burdens on families and society. Current guidelines are limited to symptomatic treatments after ICH, and the death rate remains significant in the acute stage. Thus, it is crucial to promote research to develop new targets on brain injury after ICH. In response to hematoma formation, amounts of chemokines are released in the brain, triggering the infiltration of resident immune cells in the brain and the chemotaxis of peripheral immune cells via the broken blood-brain barrier. During the past decades, mounting studies have focused on the roles of chemokines and their receptors in ICH injury. This review summarizes the latest advances in the study of chemokine functions in the ICH. First, we provide an overview of ICH epidemiology and underlying injury mechanisms in the pathogenesis of ICH. Second, we introduce the biology of chemokines and their receptors in brief. Third, we outline the roles of chemokines in ICH according to subgroups, including CCL2, CCL3, CCL5, CCL12, CCL17, CXCL8, CXCL12, and CX3CL1. Finally, we summarize current drug usage targeting chemokines in ICH and other cardio-cerebrovascular diseases. This review discusses the expressions of these chemokines and receptors under normal or hemorrhagic conditions and cell-specific sources. Above all, we highlight the related data of these chemokines in the progression and outcomes of the ICH disease in preclinical and clinical studies and point to therapeutic opportunities targeting chemokines productions and interactions in treating ICH, such as accelerating hematoma absorption and alleviating brain edema.
Collapse
Affiliation(s)
- Jinjin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liheng Bian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dandan Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ruixuan Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jingjing Lu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,*Correspondence: Jingjing Lu, ✉
| | - Xingquan Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China,Xingquan Zhao, ✉
| |
Collapse
|
33
|
Circulating Monocytes Serve as Novel Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma Patients. Cancers (Basel) 2023; 15:cancers15020363. [PMID: 36672313 PMCID: PMC9856871 DOI: 10.3390/cancers15020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) ranks among the most fatal cancer diseases, widely accepted to have the most dismal prognoses. Although immunotherapy has broadly revolutionized cancer treatment, its value in PDAC appears to be relatively low. Exhibiting protumoral effects, monocytes have recently been proposed as potential targets of such immunotherapeutic regimens. However, to date, the body of evidence on monocytes’ role in PDAC is scarce. Therefore, we analyzed monocytes in the peripheral blood of 58 PDAC patients prior to surgery and compared them to healthy individuals. PDAC patients showed increased levels of monocytes when compared to healthy controls In addition, patients with perineural infiltration demonstrated a higher percentage of monocytes compared to non-infiltrating tumors and PDAC G3 was associated with higher monocyte levels than PDAC G2. Patients with monocyte levels > 5% were found to have an 8.9-fold increased risk for a G3 and perineural infiltrated PDAC resulting in poorer survival compared to patients with <5% monocyte levels. Furthermore, PDAC patients showed increased expressions of CD86 and CD11c and decreased expressions of PD-L1 on monocytes compared to healthy individuals. Finally, levels of monocytes correlated positively with concentrations of IL-6 and TNF-α in plasma of PDAC patients. Based on our findings, we propose monocytes as a novel prognostic biomarker. Large-scale studies are needed to further decipher the role of monocytes in PDAC and investigate their potential as therapeutic targets.
Collapse
|
34
|
Tian Y, Liu S, Zhang Y, Yang J, Guo P, Zhang H, Yu X, Zou T. Immune infiltration and immunophenotyping in atrial fibrillation. Aging (Albany NY) 2023; 15:213-229. [PMID: 36602538 PMCID: PMC9876632 DOI: 10.18632/aging.204470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Atrial fibrillation (AF) is a relatively common arrhythmia in clinical practice. Although significant progress has been achieved in the treatment of AF and its associated complications, research on AF prevention lags behind, mainly due to the lack of a deep understanding of AF pathogenesis. In recent years, as our knowledge has grown, the role of the inflammatory/immune response in the occurrence and progression of AF has gradually gained attention. In this paper, based on existing gene expression data in the Gene Expression Omnibus database, a detailed description of immune infiltration status in AF is presented using a series of analytical methods, including differential analysis, Gene Ontology categorization, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and weighted gene coexpression network analysis, and analysis tools such as CIBERSORTx and Cytoscape. Several new AF/immune infiltrations-related signature genes were identified, and the AF/immune infiltration pathology was classified based on these immune signature genes, thus providing novel insights into the pathogenesis of AF based on the inflammatory response.
Collapse
Affiliation(s)
- Yuqing Tian
- Department of Cardiology, Affiliated Hospital of Panzhihua University, Panzhihua 617000, Sichuan, P.R. China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shiying Liu
- Department of Plastic Surgery, Affiliated Hospital of Panzhihua University, Panzhihua 617000, Sichuan, P.R. China
| | - Yanan Zhang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, P.R. China
| | - Jiefu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Peiyao Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing 100730, P.R. China
| | - Hongchao Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Tong Zou
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
35
|
Intermediate monocytes expansion and homing markers expression in COVID-19 patients associate with kidney dysfunction. Clin Exp Med 2022:10.1007/s10238-022-00927-9. [PMID: 36372857 PMCID: PMC9660192 DOI: 10.1007/s10238-022-00927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/14/2022] [Indexed: 11/14/2022]
Abstract
Patients with severe SARS-CoV-2 infection have an overwhelming inflammatory response characterized by remarkable organs monocyte infiltration. We performed an immunophenotypic analysis on circulating monocytes in 19 COVID-19 patients in comparison with 11 naïve HIV-1 patients and 10 healthy subjects. Reduced frequency of classical monocytes and increased frequency of intermediate monocytes characterized COVID-19 patients with respect to both HIV naïve patients and healthy subjects. Intensity of C-C motif chemokine receptor 2 (CCR2) monocyte expression highly correlated with parameters of kidney dysfunction. Our data indicate that highly activated monocytes of COVID-19 patients may be pathogenically associated with the development of renal disease.
Collapse
|
36
|
He W, Chen P, Chen Q, Cai Z, Zhang P. Cytokine storm: behind the scenes of the collateral circulation after acute myocardial infarction. Inflamm Res 2022; 71:1143-1158. [PMID: 35876879 PMCID: PMC9309601 DOI: 10.1007/s00011-022-01611-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
At least 17 million people die from acute myocardial infarction (AMI) every year, ranking it first among causes of death of human beings, and its incidence is gradually increasing. Typical characteristics of AMI include acute onset and poor prognosis. At present, there is no satisfactory treatment, but development of coronary collateral circulation (CCC) can be key to improving prognosis. Recent research indicates that the levels of cytokines, including those related to promoting inflammatory responses and angiogenesis, increase after the onset of AMI. In the early phase of AMI, cytokines play a vital role in inducing development of collateral circulation. However, when myocardial infarction is decompensated, cytokine secretion increases greatly, which may induce a cytokine storm and worsen prognosis. Cytokines can regulate the activation of a variety of signal pathways and form a complex network, which may promote or inhibit the establishment of collateral circulation. We searched for published articles in PubMed and Google Scholar, employing the keyword "acute myocardial infarction", "coronary collateral circulation" and "cytokine storm", to clarify the relationship between AMI and a cytokine storm, and how a cytokine storm affects the growth of collateral circulation after AMI, so as to explore treatment methods based on cytokine agents or inhibitors used to improve prognosis of AMI.
Collapse
Affiliation(s)
- Weixin He
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Peixian Chen
- Zhujiang Hospital, Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Qingquan Chen
- Nanfang Hospital, Southern Medical University/The First School of Clinical Medicine, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zongtong Cai
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China
| | - Peidong Zhang
- Department of Cardiology, Heart Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, Guangdong, People's Republic of China.
| |
Collapse
|
37
|
Selleri V, Mattioli M, Lo Tartaro D, Paolini A, Zanini G, De Gaetano A, D’Alisera R, Roli L, Melegari A, Maietta P, Tripi F, Guerra E, Chester J, Savino G, Trenti T, Cossarizza A, Mattioli AV, Pinti M, Nasi M. Innate immunity changes in soccer players after whole-body cryotherapy. BMC Sports Sci Med Rehabil 2022; 14:185. [PMID: 36284345 PMCID: PMC9594892 DOI: 10.1186/s13102-022-00578-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
Whole-body cryotherapy (WBC) consists of short exposure (up to 2–3 min) to dry air at cryogenic temperatures (up to -190 °C) and has recently been applied for muscle recovery after injury to reduce the inflammation process. We aimed to determine the impact of cryotherapy on immunological, hormonal, and metabolic responses in non-professional soccer players (NPSPs). Nine male NPSPs (age: 20 ± 2 years) who trained regularly over 5 consecutive days, immediately before and after each training session, were subjected to WBC treatment (WBC-t). Blood samples were collected for the evaluation of fifty analytes including hematologic parameters, serum chemistry, and hormone profiles. Monocytes phenotyping (Mo) was performed and plasmatic markers, usually increased during inflammation [CCL2, IL-18, free mitochondrial (mt)DNA] or with anti-inflammatory effects (IL2RA, IL1RN), were quantified. After WBC-t, we observed reduced levels of ferritin, mean corpuscular hemoglobin, mean platelet volume, testosterone, and estradiol, which however remain within the normal ranges. The percentage of the total, intermediates and non-classical Mo increased, while classical Mo decreased. CXCR4 expression decreased in each Mo subset. Plasma IL18 and IL2RA levels decreased, while IL1RN only exhibited a tendency to decrease and CCL2 showed a tendency to increase. Circulating mtDNA levels were not altered following WBC-t. The differences observed in monocyte subsets after WBC-t may be attributable to their redistribution into the surrounding tissue. Moreover, the decrease of CXCR4 in Mo subpopulations could be coherent with their differentiation process. Thus, WBC through yet unknown mechanisms could promote their differentiation having a role in tissue repair.
Collapse
Affiliation(s)
- Valentina Selleri
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy ,grid.493113.dNational Institute for Cardiovascular Research - INRC, 40126 Bologna, Italy
| | - Marco Mattioli
- grid.7548.e0000000121697570Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Domenico Lo Tartaro
- grid.7548.e0000000121697570Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Annamaria Paolini
- grid.7548.e0000000121697570Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giada Zanini
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Anna De Gaetano
- grid.493113.dNational Institute for Cardiovascular Research - INRC, 40126 Bologna, Italy
| | - Roberta D’Alisera
- grid.476047.60000 0004 1756 2640Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, 41121 Modena, Italy
| | - Laura Roli
- grid.476047.60000 0004 1756 2640Department of Laboratory Medicine and Pathology, Azienda USL of Modena, 41121 Modena, Italy
| | - Alessandra Melegari
- grid.476047.60000 0004 1756 2640Department of Laboratory Medicine and Pathology, Azienda USL of Modena, 41121 Modena, Italy
| | - Pasqualino Maietta
- Department of Quality of Life, “Alma Mater Studiorum”, 40126 Bologna, Italy
| | - Ferdinando Tripi
- “La Fratellanza 1874” Not-for-profit sport Association, 41126 Modena, Italy
| | - Emanuele Guerra
- grid.476047.60000 0004 1756 2640Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, 41121 Modena, Italy
| | - Johanna Chester
- grid.7548.e0000000121697570Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Gustavo Savino
- grid.476047.60000 0004 1756 2640Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, 41121 Modena, Italy
| | - Tommaso Trenti
- grid.476047.60000 0004 1756 2640Department of Laboratory Medicine and Pathology, Azienda USL of Modena, 41121 Modena, Italy
| | - Andrea Cossarizza
- grid.493113.dNational Institute for Cardiovascular Research - INRC, 40126 Bologna, Italy ,grid.7548.e0000000121697570Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna Vittoria Mattioli
- grid.493113.dNational Institute for Cardiovascular Research - INRC, 40126 Bologna, Italy ,grid.7548.e0000000121697570Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marcello Pinti
- grid.7548.e0000000121697570Department of Life Sciences, University of Modena and Reggio Emilia, via Campi, 287, 41125 Modena, Italy
| | - Milena Nasi
- grid.7548.e0000000121697570Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
38
|
Rusconi G, Cusumano G, Mariotta L, Canevascini R, Gola M, Gornati R, Soldati G. Upgrading Monocytes Therapy for Critical Limb Ischemia Patient Treatment: Pre-Clinical and GMP-Validation Aspects. Int J Mol Sci 2022; 23:ijms232012669. [PMID: 36293525 PMCID: PMC9604444 DOI: 10.3390/ijms232012669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Advanced cell therapy medicinal products (ATMP) are at the forefront of a new range of biopharmaceuticals. The use of ATMP has evolved and increased in the last decades, representing a new approach to treating diseases that are not effectively managed with conventional treatments. The standard worldwide recognized for drug production is the Good Manufacturing Practices (GMP), widely used in the pharma production of synthesized drugs but applying also to ATMP. GMP guidelines are worldwide recognized standards to manufacture medicinal products to guarantee high quality, safety, and efficacy. In this report, we describe the pre-clinical and the GMP upgrade of peripheral blood mononuclear cell (PBMC) preparation, starting from peripheral blood and ending up with a GMP-grade clinical product ready to be used in patients with critical limb ischemia (CLI). We also evaluated production in hypoxic conditions to increase PBMC functional activity and angiogenic potential. Furthermore, we extensively analyzed the storage and transport conditions of the final product as required by the regulatory body for ATMPs. Altogether, results suggest that the whole manufacturing process can be performed for clinical application. Peripheral blood collected by a physician should be transported at room temperature, and PBMCs should be isolated in a clean room within 8 h of venipuncture. Frozen cells can be stored in nitrogen vapors and thawed for up to 12 months. PBMCs resuspended in 5% human albumin solution should be stored and transported at 4 °C before injection in patients within 24 h to thawing. Hypoxic conditioning of PBMCs should be implemented for clinical application, as it showed a significant enhancement of PBMC functional activity, in particular with increased adhesion, migration, and oxidative stress resistance. We demonstrated the feasibility and the quality of a GMP-enriched suspension of monocytes as an ATMP, tested in a clean room facility for all aspects related to production in respect of all the GMP criteria that allow its use as an ATMP. We think that these results could ease the way to the clinical application of ATMPs.
Collapse
Affiliation(s)
| | | | - Luca Mariotta
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland
| | - Reto Canevascini
- Department of Surgery, Service of Angiology, Lugano Regional Hospital, 6900 Lugano, Switzerland
| | - Mauro Gola
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Gianni Soldati
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland
- Correspondence:
| |
Collapse
|
39
|
Garcés-Hernández MJ, Pedraza-Escudero K, Garibay-Nieto N, Hernández-Ruiz J, Prieto-Chávez JL, Arriaga-Pizano LA, Villanueva-Ortega E, Escobedo G, Manjarrez-Reyna AN, López-Alvarenga JC, Pérez-Hernández JL, Queipo-García G. The CCR2 + Monocyte Subsets Increase in Obese Boys but Not Girls with Abnormally High Carotid Intima-Media Thickness: A Pilot Study. J Cardiovasc Dev Dis 2022; 9:330. [PMID: 36286282 PMCID: PMC9604509 DOI: 10.3390/jcdd9100330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The differential contribution of monocyte subsets expressing the C-C chemokine receptor 2 (CCR2) to subclinical atherosclerosis in girls and boys is unclear. In this pilot study, we compared classical, intermediate, and nonclassical monocyte subsets expressing CCR2 in 33 obese children of both sexes aged 8 to 16 divided by carotid intima-media thickness (IMT), considering values above the 75th percentile (p75) as abnormally high IMT. Obesity was defined as body mass index above the 95th percentile according to age and sex. Flow cytometry analyses revealed that boys but not girls with IMT ≥ p75 displayed increased CCR2+ cell percentage and CCR2 expression in the three monocyte subsets, compared to boys with IMT < p75. The CCR2+ cell percentage and CCR2 expression in the three monocyte subsets significantly correlated with increased IMT and insulin resistance in boys but not girls, where the CCR2+ nonclassical monocyte percentage had the strongest associations (r = 0.73 and r = 0.72, respectively). The role of CCR2+ monocyte subpopulations in identifying an abnormally high IMT shows a marked sexual dimorphism, where boys seem to be at higher subclinical atherosclerosis risk than girls.
Collapse
Affiliation(s)
| | - Karen Pedraza-Escudero
- Childhood Obesity Clinic, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México 06720, Mexico
| | - Nayely Garibay-Nieto
- Childhood Obesity Clinic, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México 06720, Mexico
| | - Joselin Hernández-Ruiz
- Clinical Pharmacology Unit, Hospital General de México Dr. Eduardo Liceaga, Dr. Balmis 148, Doctores, Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Jessica Lakshmi Prieto-Chávez
- Flow Cytometry Laboratory, Instrumental Center, Health Investigation Coordination, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Lourdes Andrea Arriaga-Pizano
- Flow Cytometry Laboratory, Instrumental Center, Health Investigation Coordination, Hospital de Especialidades del Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México 06720, Mexico
| | - Eréndira Villanueva-Ortega
- Childhood Obesity Clinic, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México 06720, Mexico
| | - Galileo Escobedo
- Laboratory of Immunometabolism, Research Division, General Hospital of México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico
| | - Aaron Noe Manjarrez-Reyna
- Laboratory of Immunometabolism, Research Division, General Hospital of México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico
| | - Juan Carlos López-Alvarenga
- Population Health and Biostatistics, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Research Department, Universidad México-Americana del Norte, Reynosa 88640, Mexico
| | - José Luis Pérez-Hernández
- Gastroenterology and Hepatology Department, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico
| | - Gloria Queipo-García
- Department of Human Genetics, Hospital General de México “Dr. Eduardo Liceaga”, Ciudad de México 06720, Mexico
| |
Collapse
|
40
|
Cincotta AH, Cersosimo E, Alatrach M, Ezrokhi M, Agyin C, Adams J, Chilton R, Triplitt C, Chamarthi B, Cominos N, DeFronzo RA. Bromocriptine-QR Therapy Reduces Sympathetic Tone and Ameliorates a Pro-Oxidative/Pro-Inflammatory Phenotype in Peripheral Blood Mononuclear Cells and Plasma of Type 2 Diabetes Subjects. Int J Mol Sci 2022; 23:ijms23168851. [PMID: 36012132 PMCID: PMC9407769 DOI: 10.3390/ijms23168851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Bromocriptine-QR is a sympatholytic dopamine D2 agonist for the treatment of type 2 diabetes that has demonstrated rapid (within 1 year) substantial reductions in adverse cardiovascular events in this population by as yet incompletely delineated mechanisms. However, a chronic state of elevated sympathetic nervous system activity and central hypodopaminergic function has been demonstrated to potentiate an immune system pro-oxidative/pro-inflammatory condition and this immune phenotype is known to contribute significantly to the advancement of cardiovascular disease (CVD). Therefore, the possibility exists that bromocriptine-QR therapy may reduce adverse cardiovascular events in type 2 diabetes subjects via attenuation of this underlying chronic pro-oxidative/pro-inflammatory state. The present study was undertaken to assess the impact of bromocriptine-QR on a wide range of immune pro-oxidative/pro-inflammatory biochemical pathways and genes known to be operative in the genesis and progression of CVD. Inflammatory peripheral blood mononuclear cell biology is both a significant contributor to cardiovascular disease and also a marker of the body’s systemic pro-inflammatory status. Therefore, this study investigated the effects of 4-month circadian-timed (within 2 h of waking in the morning) bromocriptine-QR therapy (3.2 mg/day) in type 2 diabetes subjects whose glycemia was not optimally controlled on the glucagon-like peptide 1 receptor agonist on (i) gene expression status (via qPCR) of a wide array of mononuclear cell pro-oxidative/pro-inflammatory genes known to participate in the genesis and progression of CVD (OXR1, NRF2, NQO1, SOD1, SOD2, CAT, GSR, GPX1, GPX4, GCH1, HMOX1, BiP, EIF2α, ATF4, PERK, XBP1, ATF6, CHOP, GSK3β, NFkB, TXNIP, PIN1, BECN1, TLR2, TLR4, TLR10, MAPK8, NLRP3, CCR2, GCR, L-selectin, VCAM1, ICAM1) and (ii) humoral measures of sympathetic tone (norepinephrine and normetanephrine), whole-body oxidative stress (nitrotyrosine, TBARS), and pro-inflammatory factors (IL-1β, IL-6, IL-18, MCP-1, prolactin, C-reactive protein [CRP]). Relative to pre-treatment status, 4 months of bromocriptine-QR therapy resulted in significant reductions of mRNA levels in PBMC endoplasmic reticulum stress-unfolded protein response effectors [GRP78/BiP (34%), EIF2α (32%), ATF4 (29%), XBP1 (25%), PIN1 (14%), BECN1 (23%)], oxidative stress response proteins [OXR1 (31%), NRF2 (32%), NQO1 (39%), SOD1 (52%), CAT (26%), GPX1 (33%), GPX4 (31%), GCH1 (30%), HMOX1 (40%)], mRNA levels of TLR pro-inflammatory pathway proteins [TLR2 (46%), TLR4 (20%), GSK3β (19%), NFkB (33%), TXNIP (18%), NLRP3 (32%), CCR2 (24%), GCR (28%)], mRNA levels of pro-inflammatory cellular receptor proteins CCR2 and GCR by 24% and 28%, and adhesion molecule proteins L-selectin (35%) and VCAM1 (24%). Relative to baseline, bromocriptine-QR therapy also significantly reduced plasma levels of norepinephrine and normetanephrine by 33% and 22%, respectively, plasma pro-oxidative markers nitrotyrosine and TBARS by 13% and 10%, respectively, and pro-inflammatory factors IL-18, MCP1, IL-1β, prolactin, and CRP by 21%,13%, 12%, 42%, and 45%, respectively. These findings suggest a unique role for circadian-timed bromocriptine-QR sympatholytic dopamine agonist therapy in reducing systemic low-grade sterile inflammation to thereby reduce cardiovascular disease risk.
Collapse
Affiliation(s)
- Anthony H. Cincotta
- VeroScience LLC, Tiverton, RI 02878, USA
- Correspondence: ; Tel.: +1-401-816-0525
| | - Eugenio Cersosimo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Mariam Alatrach
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - Christina Agyin
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - John Adams
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert Chilton
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Curtis Triplitt
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | - Ralph A. DeFronzo
- Texas Diabetes Institute, University Health System, San Antonio, TX 78207, USA
- Division of Diabetes, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
41
|
Watanabe R, Hashimoto M. Pathogenic role of monocytes/macrophages in large vessel vasculitis. Front Immunol 2022; 13:859502. [PMID: 35967455 PMCID: PMC9372263 DOI: 10.3389/fimmu.2022.859502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Vasculitis is an autoimmune vascular inflammation with an unknown etiology and causes vessel wall destruction. Depending on the size of the blood vessels, it is classified as large, medium, and small vessel vasculitis. A wide variety of immune cells are involved in the pathogenesis of vasculitis. Among these immune cells, monocytes and macrophages are functionally characterized by their capacity for phagocytosis, antigen presentation, and cytokine/chemokine production. After a long debate, recent technological advances have revealed the cellular origin of tissue macrophages in the vessel wall. Tissue macrophages are mainly derived from embryonic progenitor cells under homeostatic conditions, whereas bone marrow-derived circulating monocytes are recruited under inflammatory conditions, and then differentiate into macrophages in the arterial wall. Such macrophages infiltrate into an otherwise immunoprotected vascular site, digest tissue matrix with abundant proteolytic enzymes, and further recruit inflammatory cells through cytokine/chemokine production. In this way, macrophages amplify the inflammatory cascade and eventually cause tissue destruction. Recent studies have also demonstrated that monocytes/macrophages can be divided into several subpopulations based on the cell surface markers and gene expression. In this review, the subpopulations of circulating monocytes and the ontogeny of tissue macrophages in the artery are discussed. We also update the immunopathology of large vessel vasculitis, with a special focus on giant cell arteritis, and outline how monocytes/macrophages participate in the disease process of vascular inflammation. Finally, we discuss limitations of the current research and provide future research perspectives, particularly in humans. Through these processes, we explore the possibility of therapeutic strategies targeting monocytes/macrophages in vasculitis.
Collapse
|
42
|
Lu Y, Ma S, Ding W, Sun P, Zhou Q, Duan Y, Sartorius K. Resident Immune Cells of the Liver in the Tumor Microenvironment. Front Oncol 2022; 12:931995. [PMID: 35965506 PMCID: PMC9365660 DOI: 10.3389/fonc.2022.931995] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
The liver is a central immunomodulator that ensures a homeostatic balance between protection and immunotolerance. A hallmark of hepatocellular carcinoma (HCC) is the deregulation of this tightly controlled immunological network. Immune response in the liver involves a complex interplay between resident innate, innate, and adaptive immune cells. The immune response in the liver is modulated by its continuous exposure to toxic molecules and microorganisms that requires a degree of immune tolerance to protect normal tissue from damage. In HCC pathogenesis, immune cells must balance a dual role that includes the elimination of malignant cells, as well as the repair of damaged liver tissue to maintain homeostasis. Immune response in the innate and adaptive immune systems extends to the cross-talk and interaction involving immune-regulating non-hematopoietic cells, myeloid immune cells, and lymphoid immune cells. In this review, we discuss the different immune responses of resident immune cells in the tumor microenvironment. Current FDA-approved targeted therapies, including immunotherapy options, have produced modest results to date for the treatment of advanced HCC. Although immunotherapy therapy to date has demonstrated its potential efficacy, immune cell pathways need to be better understood. In this review article, we summarize the roles of specific resident immune cell subsets and their cross-talk subversion in HCC pathogenesis, with a view to identifying potential new biomarkers and therapy options.
Collapse
Affiliation(s)
- Yunjie Lu
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Shiying Ma
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Wei Ding
- Department of General Surgery, Wujin Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Pengcheng Sun
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
| | - Qi Zhou
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| | - Yunfei Duan
- The Third Affiliated Hospital of Soochow University, Chanozhou, China
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| | - Kurt Sartorius
- Hepatitis Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- University of Kwazulu-Natal Gastrointestinal Cancer Research Unit (UKZN/GICRC), Durban, South Africa
- *Correspondence: Qi Zhou, ; Yunfei Duan, ; Kurt Sartorius,
| |
Collapse
|
43
|
Chu Y, Yu F, Wu Y, Yang J, Shi J, Ye T, Han D, Wang X. Identification of genes and key pathways underlying the pathophysiological association between nonalcoholic fatty liver disease and atrial fibrillation. BMC Med Genomics 2022; 15:150. [PMID: 35790963 PMCID: PMC9258143 DOI: 10.1186/s12920-022-01300-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Atrial fibrillation (AF) is one of the most prevalent sustained cardiac arrhythmias. The latest studies have revealed a tight correlation between nonalcoholic fatty liver disease (NAFLD) and AF. However, the exact molecular mechanisms underlying the association between NAFLD and AF remain unclear. The current research aimed to expound the genes and signaling pathways that are related to the mechanisms underlying the association between these two diseases. Materials and methods NAFLD- and AF- related differentially expressed genes (DEGs) were identified via bioinformatic analysis of the Gene Expression Omnibus (GEO) datasets GSE63067 and GSE79768, respectively. Further enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), the construction of a protein–protein interaction (PPI) network, the identification of significant hub genes, and receiver operator characteristic curve analysis were conducted. The gene-disease interactions were analyzed using the Comparative Toxicogenomics Database. In addition, the hub genes were validated by quantitative Real-Time PCR (qRT-PCR) in NAFLD cell model. Results A total of 45 co-expressed differentially expressed genes (co-DEGs) were identified between the NAFLD/AF and healthy control individuals. GO and KEGG pathway analyses revealed that the co-DEGs were mostly enriched in neutrophil activation involved in the immune response and cytokine-cytokine receptor interactions. Moreover, eight hub genes were selected owing to their high degree of connectivity and upregulation in both the NAFLD and AF datasets. These genes included CCR2, PTPRC, CXCR2, MNDA, S100A9, NCF2, S100A12, and S100A8. Conclusions In summary, we conducted the gene differential expression analysis, functional enrichment analysis, and PPI analysis of DEGs in AF and NAFLD, which provides novel insights into the identification of potential biomarkers and valuable therapeutic leads for AF and NAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01300-1.
Collapse
|
44
|
Liu P, Gao Y, Luo P, Yu H, Guo S, Liu F, Gao J, Xu J, Wang S, Zhang C. Glucocorticoid-induced expansion of classical monocytes contributes to bone loss. Exp Mol Med 2022; 54:765-776. [PMID: 35672449 PMCID: PMC9256622 DOI: 10.1038/s12276-022-00764-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Classical monocytes are commonly involved in the innate inflammatory response and are the progenitors of osteoclasts. Excess endogenous glucocorticoids (GCs) can increase the levels of classical monocytes in blood and bone marrow. The role of this cell population in high-dose exogenous GC-induced osteoporosis (GIOP) remains to be elucidated. In this study, GIOP was established in rats and mice by daily methylprednisolone injection, and monocyte subsets were analyzed by flow cytometry. We demonstrated that classical monocytes accumulate in bone marrow during GIOP. Similarly, the monocyte proportion among bone marrow nucleated cells was also increased in patients with steroid treatment history. We sorted classical monocytes and analyzed their transcriptional profile in response to GCs by RNA sequencing. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that classical monocytes isolated from GC-treated rats exhibited osteoclast differentiation potential. Deletion of classical monocytes by clodronate liposome treatment prevented GIOP via inhibition of osteoclastogenesis and restoration of CD31HiendomucinHi vessels. Regarding the molecular mechanism, classical monocytes express high levels of glucocorticoid receptors. In vitro treatment with GCs increased both the percentage and absolute number of monocytes and promoted their proliferation. In summary, classical monocytes mediated GC-induced bone loss and are a potential target for therapeutic intervention in GIOP treatment.
Collapse
Affiliation(s)
- Pei Liu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Pengbo Luo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Hongping Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Shang Guo
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Fuyun Liu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Jianzhong Xu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Shengdian Wang
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| |
Collapse
|
45
|
Gao Y, Mei C, Chen P, Chen X. The contribution of neuro-immune crosstalk to pain in the peripheral nervous system and the spinal cord. Int Immunopharmacol 2022; 107:108700. [DOI: 10.1016/j.intimp.2022.108700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
|
46
|
Fu L, Wasiak S, Tsujikawa LM, Rakai BD, Stotz SC, Wong NCW, Johansson JO, Sweeney M, Mohan CM, Khan A, Kulikowski E. Inhibition of epigenetic reader proteins by apabetalone counters inflammation in activated innate immune cells from Fabry disease patients receiving enzyme replacement therapy. Pharmacol Res Perspect 2022; 10:e00949. [PMID: 35417091 PMCID: PMC9007222 DOI: 10.1002/prp2.949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Fabry disease (FD) is a rare X‐linked disorder of lipid metabolism, characterized by the accumulation of globotriaosylceramide (Gb3) due to defective the lysosomal enzyme, α‐galactosidase. Gb3 deposits activate immune‐mediated systemic inflammation, ultimately leading to life‐threatening consequences in multiple organs such as the heart and kidneys. Enzyme replacement therapy (ERT), the standard of care, is less effective with advanced tissue injury and inflammation in patients with FD. Here, we showed that MCP‐1 and TNF‐α cytokine levels were almost doubled in plasma from ERT‐treated FD patients. Chemokine receptor CCR2 surface expression was increased by twofold on monocytes from patients with low eGFR. We also observed an increase in IL12B transcripts in unstimulated peripheral blood mononuclear cells (PBMCs) over a 2‐year period of continuous ERT. Apabetalone is a clinical‐stage oral bromodomain and extra terminal protein inhibitor (BETi), which has beneficial effects on cardiovascular and kidney disease related pathways including inflammation. Here, we demonstrate that apabetalone, a BD2‐selective BETi, dose dependently reduced the production of MCP‐1 and IL‐12 in stimulated PBMCs through transcriptional regulation of their encoding genes. Reactive oxygen species production was diminished by up to 80% in stimulated neutrophils following apabetalone treatment, corresponding with inhibition of NOX2 transcription. This study elucidates that inhibition of BET proteins by BD2‐selective apabetalone alleviates inflammatory processes and oxidative stress in innate immune cells in general and in FD. These results suggest potential benefit of BD2‐selective apabetalone in controlling inflammation and oxidative stress in FD, which will be further investigated in clinical trials.
Collapse
Affiliation(s)
- Li Fu
- Resverlogix Corp, Calgary, AB, Canada
| | | | | | | | | | | | | | | | - Connie M Mohan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Metabolics and Genetics in Calgary (M.A.G.I.C.) Clinic Ltd., Calgary, AB, Canada
| | | |
Collapse
|
47
|
Han K, Xia Y, Shi D, Yang L, Xie M, Wang Z, Gao F, Shao Q, Ma X, Zhou Y. Relation of Monocyte Number to Progression of Aortic Stenosis. Am J Cardiol 2022; 171:122-126. [PMID: 35341577 DOI: 10.1016/j.amjcard.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 11/15/2022]
Abstract
Rapid progression of aortic stenosis (AS) is associated with poor prognosis. However, the relation between monocyte number and AS progression is unknown. Here, we detected the relation between monocyte number and AS progression. We retrospectively analyzed 220 patients with AS with at least 2 echocardiograms with the maximal interval ≥180 days from January 2016 to June 2021. AS severity was categorized by aortic jet velocity (Vmax) and mean pressure gradient. Rapid progression of AS was defined when Vmax increased ≥0.3 m/s/year. Patients were divided into low and high monocyte groups according to the cut-off value of the receiver-operating characteristic curve. AS progression was compared between the 2 groups. Various models of binary logistic regression were used to reveal the association between monocyte number and rapid progression. During a median of 601 days of echocardiographic follow-up (interquartile range 353 to 909), 52.7% of the population was in rapid progression. Patients in the high monocyte group had more rapid progression in both Vmax and mean pressure gradient (p = 0.020 and p = 0.030, respectively). The percentage of patients with severe AS was increased by 5.4% in the low monocyte group and 16.9% in the high monocyte group. Different models of binary logistic regression showed that the monocyte number was positively associated with the rapid progression. In conclusion, a higher monocyte number was associated with the rapid progression of AS.
Collapse
Affiliation(s)
- Kangning Han
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
| | - Yihua Xia
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
| | - Dongmei Shi
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
| | - Lixia Yang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
| | - Meng Xie
- Department of Echocardiogram, Beijing Anzhen Hospital, Capital Medical University
| | - Zhijian Wang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
| | - Fei Gao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
| | - Qiaoyu Shao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
| | - Xiaoteng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University..
| | - Yujie Zhou
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University..
| |
Collapse
|
48
|
Georgakis MK, Bernhagen J, Heitman LH, Weber C, Dichgans M. Targeting the CCL2-CCR2 axis for atheroprotection. Eur Heart J 2022; 43:1799-1808. [PMID: 35567558 DOI: 10.1093/eurheartj/ehac094] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Decades of research have established atherosclerosis as an inflammatory disease. Only recently though, clinical trials provided proof-of-concept evidence for the efficacy of anti-inflammatory strategies with respect to cardiovascular events, thus offering a new paradigm for lowering residual vascular risk. Efforts to target the inflammasome-interleukin-1β-interleukin-6 pathway have been highly successful, but inter-individual variations in drug response, a lack of reduction in all-cause mortality, and a higher rate of infections also highlight the need for a second generation of anti-inflammatory agents targeting atherosclerosis-specific immune mechanisms while minimizing systemic side effects. CC-motif chemokine ligand 2/monocyte-chemoattractant protein-1 (CCL2/MCP-1) orchestrates inflammatory monocyte trafficking between the bone marrow, circulation, and atherosclerotic plaques by binding to its cognate receptor CCR2. Adding to a strong body of data from experimental atherosclerosis models, a coherent series of recent large-scale genetic and observational epidemiological studies along with data from human atherosclerotic plaques highlight the relevance and therapeutic potential of the CCL2-CCR2 axis in human atherosclerosis. Here, we summarize experimental and human data pinpointing the CCL2-CCR2 pathway as an emerging drug target in cardiovascular disease. Furthermore, we contextualize previous efforts to interfere with this pathway, scrutinize approaches of ligand targeting vs. receptor targeting, and discuss possible pathway-intrinsic opportunities and challenges related to pharmacological targeting of the CCL2-CCR2 axis in human atherosclerotic disease.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Center of Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Christian Weber
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
49
|
Müller MB, Hübner M, Li L, Tomasi S, Ließke V, Effinger D, Hirschberger S, Pogoda K, Sperandio M, Kreth S. Cell-Crossing Functional Network Driven by microRNA-125a Regulates Endothelial Permeability and Monocyte Trafficking in Acute Inflammation. Front Immunol 2022; 13:826047. [PMID: 35401562 PMCID: PMC8986987 DOI: 10.3389/fimmu.2022.826047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Opening of the endothelial barrier and targeted infiltration of leukocytes into the affected tissue are hallmarks of the inflammatory response. The molecular mechanisms regulating these processes are still widely elusive. In this study, we elucidate a novel regulatory network, in which miR-125a acts as a central hub that regulates and synchronizes both endothelial barrier permeability and monocyte migration. We found that inflammatory stimulation of endothelial cells induces miR-125a expression, which consecutively inhibits a regulatory network consisting of the two adhesion molecules VE-Cadherin (CDH5) and Claudin-5 (CLDN5), two regulatory tyrosine phosphatases (PTPN1, PPP1CA) and the transcription factor ETS1 eventually leading to the opening of the endothelial barrier. Moreover, under the influence of miR-125a, endothelial expression of the chemokine CCL2, the most predominant ligand for the monocytic chemokine receptor CCR2, was strongly enhanced. In monocytes, on the other hand, we detected markedly repressed expression levels of miR-125a upon inflammatory stimulation. This induced a forced expression of its direct target gene CCR2, entailing a strongly enhanced monocyte chemotaxis. Collectively, cell-type-specific differential expression of miR-125a forms a synergistic functional network controlling monocyte trafficking across the endothelial barrier towards the site of inflammation. In addition to the known mechanism of miRNAs being shuttled between cells via extracellular vesicles, our study uncovers a novel dimension of miRNA function: One miRNA, although disparately regulated in the cells involved, directs a biologic process in a synergistic and mutually reinforcing manner. These findings provide important new insights into the regulation of the inflammatory cascade and may be of great use for future clinical applications.
Collapse
Affiliation(s)
- Martin Bernhard Müller
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
| | - Max Hübner
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
| | - Lei Li
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
| | - Stephanie Tomasi
- Department of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, Ludwig Maximilians University München Ludwig Maximilians University (LMU): Munich, Munich, Germany
| | - Valena Ließke
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
| | - David Effinger
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
| | - Simon Hirschberger
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
| | - Kristin Pogoda
- Physiology, Institute for Theoretical Medicine, University of Augsburg, Augsburg, Germany
| | - Markus Sperandio
- Biomedical Center (BMC), Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine (WBex), Ludwig Maximilians University München, Faculty of Medicine, Munich, Germany
| | - Simone Kreth
- Walter Brendel Center of Experimental Medicine (WBex), Ludwig Maximilians University München (LMU), Munich, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Research Unit Molecular Medicine, LMU University Hospital, Ludwig Maximilians University München (LMU), Munich, Germany
- *Correspondence: Simone Kreth,
| |
Collapse
|
50
|
Jiang M, Yang J, Zou H, Li M, Sun W, Kong X. Monocyte-to-high-density lipoprotein-cholesterol ratio (MHR) and the risk of all-cause and cardiovascular mortality: a nationwide cohort study in the United States. Lipids Health Dis 2022; 21:30. [PMID: 35300686 PMCID: PMC8931976 DOI: 10.1186/s12944-022-01638-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/17/2022] [Indexed: 12/26/2022] Open
Abstract
Background Elevated monocyte-to-high-density lipoprotein-cholesterol ratio (MHR) is relevant to higher all-cause and cardiovascular mortality in patients with coronary artery disease and other comorbidities. However, the predictive values of MHR for mortality in the general population have been underutilized. This study investigated the association of MHR with all-cause and cardiovascular mortality in the adult population of the United States. Methods This study included 34,335 participants (≥20 years) from the National Health and Nutrition Examination Survey 1999–2014 that were grouped according to MHR tertiles. Kaplan-Meier plots and long-rank tests were employed to investigate differences in survival among the groups. Moreover, the relationship of MHR with all-cause and cardiovascular mortality was further explored using multivariate Cox regression and restricted cubic spline analysis. Results During the average follow-up of 93.5 ± 56 months, 4310 (12.6%) participants died, with 754 (2.2%) deaths attributed to cardiovascular diseases. Kaplan-Meier analysis revealed statistically obvious differences in all-cause and cardiovascular mortality among the MHR tertiles (log-rank test: all P < 0.001). In multi-adjusted models, participants in the highest tertile of MHR had an increased risk of all-cause (hazard ratio [HR] = 1.19, 95% confidence interval [CI] 1.10–1.29) and cardiovascular mortality (HR = 1.44, 95% CI 1.17–1.77), compared to those in the lowest tertile. Furthermore, the restricted cubic spline curve indicated that MHR had a non-linear association with all-cause mortality (P < 0.001), and the inflection point of MHR was 0.006. Each 2-fold change in MHR exhibited a 32% decrease (HR = 0.68, 95%CI 0.58–0.82) and a 20% increase (HR = 1.20, 95%CI 1.13–1.27) in the risk of all-cause mortality on the left and right flanks of the inflection point, respectively. Additionally, the risk of cardiovascular mortality increased by 21% per 2-fold change in MHR (HR = 1.21, 95%CI 1.07–1.36) in a linear manner. Conclusions MHR was significantly related to all-cause and cardiovascular mortality in the general population independent of established risk factors.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaming Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huayiyang Zou
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Menghuan Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Gusu School, Nanjing Medical University, Suzhou, China.
| |
Collapse
|