1
|
Giri P, Yadav D, Mishra B, Gupta MK, Verma D. Robust tissue adhesion in biomedical applications: enhancing polymer stability in an injectable protein-based hydrogel. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:273-295. [PMID: 39259660 DOI: 10.1080/09205063.2024.2398888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Protein-based hydrogels are appealing materials for a variety of therapeutic uses because they are compatible, biodegradable, and adaptable to biological and chemical changes. Therefore, adherent varieties of hydrogels have received significant study; nevertheless, the majority of them show weak mechanical characteristics, transient adherence, poor biocompatibility activity, and low tensile strength. Here we are reporting, a two-component (BSA-gelatin) protein solution crosslinked with Tetrakis (hydroxymethyl) phosphonium chloride (THPC) to form a novel hydrogel. Compared with classical adhesive hydrogels, this hydrogel showed enhanced mechanical properties, was biocompatible with L929 cells, and had minimal invasive injectability. A considerable, high tensile strength of 73.33 ± 11.54 KPa and faultless compressive mechanical properties of 173 KPa at 75% strain were both demonstrated by this adhesive hydrogel. Moreover, this maximum tissue adhesion strength could reach 18.29 ± 2.22 kPa, significantly higher than fibrin glue. Cell viability was 97.09 ± 6.07%, which indicated that these hydrogels were non-toxic to L929. The fastest gelation time of the BSA-gelatin hydrogel was 1.25 ± 0.17 min at physiological pH and 37 °C. Therefore, the obtained novel work can potentially serve as a tissue adhesive hydrogel in the field of biomedical industries.
Collapse
Affiliation(s)
- Pijush Giri
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Daman Yadav
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Balaram Mishra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
2
|
Kwant AN, Es Sayed JS, Kamperman M, Burgess JK, Slebos D, Pouwels SD. Sticky Science: Using Complex Coacervate Adhesives for Biomedical Applications. Adv Healthc Mater 2025; 14:e2402340. [PMID: 39352099 PMCID: PMC11730373 DOI: 10.1002/adhm.202402340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Indexed: 01/15/2025]
Abstract
Tissue adhesives are used for various medical applications, including wound closure, bleeding control, and bone healing. Currently available options often show weak adhesion or cause adverse effects. Recently, there has been an increasing interest in complex coacervates as medical adhesives. Complex coacervates are formed by mixing oppositely charged macromolecules that associate and undergo liquid-liquid phase separation, in which the dense bottom phase is the complex coacervate. Complex coacervates are strong and often biocompatible, and show strong underwater adhesion. The properties of the resulting materials are tunable by intrinsic factors such as polymer chemistry, molecular weight, charge density, and topology of the macromolecules, as well as extrinsic factors such as temperature, pH, and salt concentration. Therefore, complex coacervates are interesting new candidates for medical adhesives. In this review, it is described how complex coacervates form and how different factors influence their behavior. Next, an overview of recent studies on complex coacervates in the context of medical adhesives is presented. The application of complex coacervates as hemostatic or embolic agents, skin or bone repair adhesives, and soft tissue sealants is discussed. Lastly, additional possibilities for utilizing these materials in the future are discussed.
Collapse
Affiliation(s)
- Ayla N. Kwant
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Julien S. Es Sayed
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
| | - Marleen Kamperman
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
| | - Janette K. Burgess
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Dirk‐Jan Slebos
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Simon D. Pouwels
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| |
Collapse
|
3
|
Jamali B, Nouri S, Amidi S. Local and Systemic Hemostatic Agents: A Comprehensive Review. Cureus 2024; 16:e72312. [PMID: 39583426 PMCID: PMC11585330 DOI: 10.7759/cureus.72312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 11/26/2024] Open
Abstract
Traumatic hemorrhage is the leading preventable cause of death worldwide. Systemic administration of hemostatic agents requires trained personnel and preparation, limiting their use in combat environments and prehospital settings. However, local administration of hemostatic agents may ameliorate these challenges. Currently available hemostatic products are limited by risk of infection, immunogenicity, tissue damage, limited usage and efficacy, high costs, short shelf life, and storage requirements under specific conditions. Future studies should be considered to overcome these limitations and develop effective, multifunctional hemostatic materials for widespread usage. In this review, we will provide an overview of the most commonly used systemic and local hemostatic agents in hemorrhage control.
Collapse
Affiliation(s)
- Bardia Jamali
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, IRN
- Research Center for Emergency and Disaster Resilience, Red Crescent Society of Islamic Republic of Iran, Tehran, IRN
| | - Saeed Nouri
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, IRN
- Research Center for Emergency and Disaster Resilience, Red Crescent Society of Islamic Republic of Iran, Tehran, IRN
| | - Salimeh Amidi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, IRN
- Research Center for Emergency and Disaster Resilience, Red Crescent Society of Islamic Republic of Iran, Tehran, IRN
| |
Collapse
|
4
|
Kortenbrede L, Heider J, Heckroth H, Leimenstoll M, Steuer H, Sütterlin J, Weise F, Hokamp T. Development and Characterization of Biodegradable Polyurethane-Urea-Based Hydrogels for the Prevention of Postoperative Peritoneal Adhesions. ACS OMEGA 2024; 9:34008-34020. [PMID: 39130550 PMCID: PMC11307292 DOI: 10.1021/acsomega.4c04577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024]
Abstract
Postoperative peritoneal adhesions occur after more than 60% of abdominal surgeries and can cause severe long-term side effects, such as chronic pain, infertility, and intestinal obstructions. However, currently available products for adhesion prophylaxis often lack efficiency or are too heavy to handle. Hydrogels are promising materials to be used for adhesion prevention as they show good mechanical stability and biocompatibility. Herein, we present a novel two-component sprayable, biodegradable, fast-curing, and shape-adaptive polyurethane urea (PUU) hydrogel system and the establishment of a full characterization approach to investigate its suitability for adhesion prophylaxis according to predefined chemical, mechanical, and biological criteria. We demonstrate that this PUU hydrogel system exhibits a fast-curing behavior, is resilient toward mechanical forces, is biocompatible, and reveals a degradation behavior within a desired time frame to reliably avoid the formation of adhesions. In addition, the PUU hydrogel system functions as an effective barrier for invading cells in vitro. Overall, we propose a guideline for the development and in vitro characterization of synthetic hydrogels for application in minimally invasive adhesion prophylaxis.
Collapse
Affiliation(s)
- Lana Kortenbrede
- Covestro
Deutschland AG, Coatings and Adhesives, Leverkusen 51365, Germany
| | - Johanna Heider
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Heike Heckroth
- Covestro
Deutschland AG, Coatings and Adhesives, Leverkusen 51365, Germany
| | - Marc Leimenstoll
- Macromolecular
Chemistry, Cologne University of Applied
Science, Campus Leverkusen,
Campusplatz 1, Leverkusen 51379, Germany
| | - Heiko Steuer
- NMI
Technology Transfer GmbH, Reutlingen 72770, Germany
| | - Jan Sütterlin
- Covestro
Deutschland AG, Coatings and Adhesives, Leverkusen 51365, Germany
| | - Frank Weise
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
| | - Tobias Hokamp
- NMI
Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- NMI
Technology Transfer GmbH, Reutlingen 72770, Germany
| |
Collapse
|
5
|
Pinezich MR, Mir M, Graney PL, Tavakol DN, Chen J, Hudock M, Gavaudan O, Chen P, Kaslow SR, Reimer JA, Van Hassel J, Guenthart BA, O’Neill JD, Bacchetta M, Kim J, Vunjak-Novakovic G. Lung-Mimetic Hydrofoam Sealant to Treat Pulmonary Air Leak. Adv Healthc Mater 2024; 13:e2303026. [PMID: 38279961 PMCID: PMC11102335 DOI: 10.1002/adhm.202303026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/22/2023] [Indexed: 01/29/2024]
Abstract
Pulmonary air leak is the most common complication of lung surgery, contributing to post-operative morbidity in up to 60% of patients; yet, there is no reliable treatment. Available surgical sealants do not match the demanding deformation mechanics of lung tissue; and therefore, fail to seal air leak. To address this therapeutic gap, a sealant with structural and mechanical similarity to subpleural lung is designed, developed, and systematically evaluated. This "lung-mimetic" sealant is a hydrofoam material that has alveolar-like porous ultrastructure, lung-like viscoelastic properties (adhesive, compressive, tensile), and lung extracellular matrix-derived signals (matrikines) to support tissue repair. In biocompatibility testing, the lung-mimetic sealant shows minimal cytotoxicity and immunogenicity in vitro. Human primary monocytes exposed to sealant matrikines in vitro upregulate key genes (MARCO, PDGFB, VEGF) known to correlate with pleural wound healing and tissue repair in vivo. In rat and swine models of pulmonary air leak, this lung-mimetic sealant rapidly seals air leak and restores baseline lung mechanics. Altogether, these data indicate that the lung-mimetic sealant can effectively seal pulmonary air leak and promote a favorable cellular response in vitro.
Collapse
Affiliation(s)
| | - Mohammad Mir
- Stevens Institute of Technology, Department of Biomedical Engineering
| | | | | | - Jiawen Chen
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Maria Hudock
- Columbia University, Department of Biomedical Engineering
| | | | - Panpan Chen
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Sarah R. Kaslow
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Jonathan A. Reimer
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | - Julie Van Hassel
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Surgery
| | | | - John D. O’Neill
- State University of New York Downstate Medical Center, Department of Cell Biology
| | - Matthew Bacchetta
- Vanderbilt University Medical Center, Department of Thoracic Surgery
- Vanderbilt University, Department of Biomedical Engineering
| | - Jinho Kim
- Stevens Institute of Technology, Department of Biomedical Engineering
| | - Gordana Vunjak-Novakovic
- Columbia University, Department of Biomedical Engineering
- Columbia University Irving Medical Center, Department of Medicine
| |
Collapse
|
6
|
Sun J, He H, Zhao K, Cheng W, Li Y, Zhang P, Wan S, Liu Y, Wang M, Li M, Wei Z, Li B, Zhang Y, Li C, Sun Y, Shen J, Li J, Wang F, Ma C, Tian Y, Su J, Chen D, Fan C, Zhang H, Liu K. Protein fibers with self-recoverable mechanical properties via dynamic imine chemistry. Nat Commun 2023; 14:5348. [PMID: 37660126 PMCID: PMC10475138 DOI: 10.1038/s41467-023-41084-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
The manipulation of internal interactions at the molecular level within biological fibers is of particular importance but challenging, severely limiting their tunability in macroscopic performances and applications. It thus becomes imperative to explore new approaches to enhance biological fibers' stability and environmental tolerance and to impart them with diverse functionalities, such as mechanical recoverability and stimulus-triggered responses. Herein, we develop a dynamic imine fiber chemistry (DIFC) approach to engineer molecular interactions to fabricate strong and tough protein fibers with recoverability and actuating behaviors. The resulting DIF fibers exhibit extraordinary mechanical performances, outperforming many recombinant silks and synthetic polymer fibers. Remarkably, impaired DIF fibers caused by fatigue or strong acid treatment are quickly recovered in water directed by the DIFC strategy. Reproducible mechanical performance is thus observed. The DIF fibers also exhibit exotic mechanical stability at extreme temperatures (e.g., -196 °C and 150 °C). When triggered by humidity, the DIFC endows the protein fibers with diverse actuation behaviors, such as self-folding, self-stretching, and self-contracting. Therefore, the established DIFC represents an alternative strategy to strengthen biological fibers and may pave the way for their high-tech applications.
Collapse
Affiliation(s)
- Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Haonan He
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kelu Zhao
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Wenhao Cheng
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Yuanxin Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Peng Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Sikang Wan
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Mengyao Wang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Ming Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Zheng Wei
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Bo Li
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yi Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Cong Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yao Sun
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jianlei Shen
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200241, China
| | - Juanjuan Su
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dong Chen
- College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, Beijing, China.
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China.
| |
Collapse
|
7
|
Della Sala F, Malle BM, Ambrosio L, Borzacchiello A. Fermentation-Derived Albumin-Based Hydrogels for Tissue Adhesion Applications. Polymers (Basel) 2023; 15:polym15112530. [PMID: 37299328 DOI: 10.3390/polym15112530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, most of the clinically available surgical glues and sealants lack elasticity, good adhesion and biocompatibility properties. Hydrogels as tissue adhesives have received extensive attention for their tissue-mimicking features. Here, a novel surgical glue hydrogel based on a fermentation-derived human albumin (rAlb) and biocompatible crosslinker for tissue-sealant applications has been developed. In order to reduce the risks of viral transmission diseases and an immune response, Animal-Free Recombinant Human Albumin from the saccharomyces yeast strain was used. A more biocompatible crosslinking agent, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), was used and compared with glutaraldehyde (GA). The design of crosslinked albumin-based adhesive gels was optimized by varying the albumin concentration, the mass ratio between albumin and the crosslinking agent as well as the crosslinker type. Tissue sealants were characterized in terms of mechanical (tensile and shear), adhesive and in vitro biocompatibility properties. The results indicated that the mechanical and adhesive properties improved as the albumin concentration increased and the mass ratio between albumin and crosslinker decreased. Moreover, the EDC-crosslinked albumin gels have better biocompatibility properties than GA-crosslinked glues.
Collapse
Affiliation(s)
- Francesca Della Sala
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | | | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
8
|
Peng W, Liu C, Lai Y, Wang Y, Liu P, Shen J. An Adhesive/Anti-Adhesive Janus Tissue Patch for Efficient Closure of Bleeding Tissue with Inhibited Postoperative Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301427. [PMID: 37173819 PMCID: PMC10375199 DOI: 10.1002/advs.202301427] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/14/2023] [Indexed: 05/15/2023]
Abstract
Most of the current bioadhesives cannot perform well on bleeding tissues while postoperative adhesion is a general but serious clinical issue. Here, a three-layer biodegradable Janus tissue patch (J-TP) that is able to simultaneously enable efficient closure of bleeding wounds with significantly promoted clotting ability and suppressed postoperative adhesion of tissues is reported. A dry adhesive hydrogel bottom layer of the J-TP can form rapid (within 15 s) and strong (tensile strength up to 98 kPa) adhesion to bleeding/wet tissues with high bursting pressure (about 312.5 mmHg on a sealed porcine skin) through hydrogen binding and covalent conjugation between the carboxyl & N-hydroxy succinimide (NHS) groups of hydrogel and the primary amine groups of tissues, while the phosphonic motifs can significantly reduce blood loss (by 81% on a rat bleeding liver model) of bleeding wounds. A thin polylactic acid (PLA) middle layer can improve the tensile strength (by 132%) of the J-TP in wet conditions while the grafted zwitterionic polymers can effectively prevent postoperative tissue adhesion and inflammatory reaction. This J-TP may be a promising tissue patch to assist the clinical treatment of injured bleeding tissues with inhibited postoperative adhesion.
Collapse
Affiliation(s)
- Wan Peng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Cheng Liu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210093, P. R. China
| | - Youjin Lai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yanting Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Pingsheng Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
9
|
Al-Attar N, Gaer J, Giordano V, Harris E, Kirk A, Loubani M, Meybohm P, Sayeed R, Stock U, Travers J, Whiteman B. Multidisciplinary paper on patient blood management in cardiothoracic surgery in the UK: perspectives on practice during COVID-19. J Cardiothorac Surg 2023; 18:96. [PMID: 37005650 PMCID: PMC10066978 DOI: 10.1186/s13019-023-02195-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/29/2023] [Indexed: 04/04/2023] Open
Abstract
The coronavirus (COVID-19) pandemic disrupted all surgical specialties significantly and exerted additional pressures on the overburdened United Kingdom (UK) National Health Service. Healthcare professionals in the UK have had to adapt their practice. In particular, surgeons have faced organisational and technical challenges treating patients who carried higher risks, were more urgent and could not wait for prehabilitation or optimisation before their intervention. Furthermore, there were implications for blood transfusion with uncertain patterns of demand, reductions in donations and loss of crucial staff because of sickness and public health restrictions. Previous guidelines have attempted to address the control of bleeding and its consequences after cardiothoracic surgery, but there have been no targeted recommendations in light of the recent COVID-19 challenges. In this context, and with a focus on the perioperative period, an expert multidisciplinary Task Force reviewed the impact of bleeding in cardiothoracic surgery, explored different aspects of patient blood management with a focus on the use of haemostats as adjuncts to conventional surgical techniques and proposed best practice recommendations in the UK.
Collapse
Affiliation(s)
- Nawwar Al-Attar
- Golden Jubilee National Hospital, University of Glasgow, Agamemnon Street, Clydebank, Glasgow, G81 4DY Scotland, UK
| | - Jullien Gaer
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Vincenzo Giordano
- Department of Cardiothoracic Surgery, Royal Infirmary Edinburgh, Edinburgh, UK
| | - Emma Harris
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Alan Kirk
- Department of Thoracic Surgery, Golden Jubilee National Hospital, Glasgow, UK
| | | | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Würzburg, Germany
| | - Rana Sayeed
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ulrich Stock
- Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Jennifer Travers
- West of Scotland Cancer Centre, Golden Jubilee National Hospital, Glasgow, UK
| | - Becky Whiteman
- Cluster Medical Manager Advanced Surgery – UKI and Nordics Worldwide Medical, Baxter Healthcare Limited, Berkshire, UK
| |
Collapse
|
10
|
Lee W, Heo E, Koo HB, Cho I, Chang JB. Strong, Chemically Stable, and Enzymatically On-Demand Detachable Hydrogel Adhesion Using Protein Crosslink. Macromol Rapid Commun 2023; 44:e2200750. [PMID: 36484110 DOI: 10.1002/marc.202200750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Achieving strong adhesion between hydrogels and diverse materials is greatly significant for emerging technologies yet remains challenging. Existing methods using non-covalent bonds have limited pH and ion stability, while those using covalent bonds typically lack on-demand detachment capability, limiting their applications. In this study, a general strategy of covalent bond-based and detachable adhesion by incorporating amine-rich proteins in various hydrogels and inducing the interfacial crosslinking of the hydrogels using a protein-crosslinking agent is demonstrated. The protein crosslink offers topological adhesion and can reach a strong adhesion energy of ≈750 J m-2 . The chemistry of the adhesion is characterized and that the inclusion of proteins inside the hydrogels does not alter the hydrogels' properties is shown. The adhesion remains intact after treating the adhered hydrogels with various pH solutions and ions, even at an elevated temperature. The detachment is triggered by treating proteinase solution at the bonding front, causing the digestion of proteins, thus breaking up the interfacial crosslink network. In addition, that this approach can be used to adhere hydrogels to diverse dry surfaces, including glass, elastomers and plastics, is shown. The stable chemistry of protein crosslinks opens the door for various applications in a wide range of chemical environments.
Collapse
Affiliation(s)
- Wonseok Lee
- Department of Chemical and Biomolecular Engineering, Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eunseok Heo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hye Been Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - In Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Byum Chang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
11
|
Panebianco CJ, Dutta P, Frost JR, Huang A, Kim OS, Iatridis JC, Vernengo AJ, Weiser JR. Teaching Tissue Repair Through an Inquiry-Based Learning Bioadhesives Module. BIOMEDICAL ENGINEERING EDUCATION 2023; 3:61-74. [PMID: 37200536 PMCID: PMC10187775 DOI: 10.1007/s43683-022-00087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/27/2022] [Indexed: 05/20/2023]
Abstract
Bioadhesives are an important class of biomaterials for wound healing, hemostasis, and tissue repair. To develop the next generation of bioadhesives, there is a societal need to teach trainees about their design, engineering, and testing. This study designed, implemented, and evaluated a hands-on, inquiry-based learning (IBL) module to teach bioadhesives to undergraduate, master's, and PhD/postdoctoral trainees. Approximately 30 trainees across three international institutions participated in this IBL bioadhesives module, which was designed to last approximately 3 h. This IBL module was designed to teach trainees about how bioadhesives are used for tissue repair, how to engineer bioadhesives for different biomedical applications, and how to assess the efficacy of bioadhesives. The IBL bioadhesives module resulted in significant learning gains for all cohorts; whereby, trainees scored an average of 45.5% on the pre-test assessment and 69.0% on the post-test assessment. The undergraduate cohort experienced the greatest learning gains of 34.2 points, which was expected since they had the least theoretical and applied knowledge about bioadhesives. Validated pre/post-survey assessments showed that trainees also experienced significant improvements in scientific literacy from completing this module. Similar to the pre/post-test, improvements in scientific literacy were most significant for the undergraduate cohort since they had the least amount of experience with scientific inquiry. Instructors can use this module, as described, to introduce undergraduate, master's, and PhD/postdoctoral trainees to principles of bioadhesives.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Poorna Dutta
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| | - Jillian R. Frost
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| | - Angela Huang
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| | - Olivia S. Kim
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea J. Vernengo
- Regenerative Orthopaedics Program, AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Jennifer R. Weiser
- Department of Chemical Engineering, The Cooper Union for the Advancement of Science and Art, 41 Cooper Square, New York, NY 10003, USA
| |
Collapse
|
12
|
Hyon W, Hyon SH, Matsumura K. Evaluation of the optimal dose for maximizing the anti-adhesion performance of a self-degradable dextran-based material. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Nagasaka K, Watanabe S, Ito S, Ichimaru H, Nishiguchi A, Otsuka H, Taguchi T. Enhanced burst strength of catechol groups-modified Alaska pollock-derived gelatin-based surgical adhesive. Colloids Surf B Biointerfaces 2022; 220:112946. [DOI: 10.1016/j.colsurfb.2022.112946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
|
14
|
Shokrani H, Shokrani A, Seidi F, Munir MT, Rabiee N, Fatahi Y, Kucinska-Lipka J, Saeb MR. Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydr Polym 2022; 295:119787. [DOI: 10.1016/j.carbpol.2022.119787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022]
|
15
|
Xu K, Wu X, Zhang X, Xing M. Bridging wounds: tissue adhesives' essential mechanisms, synthesis and characterization, bioinspired adhesives and future perspectives. BURNS & TRAUMA 2022; 10:tkac033. [PMID: 36225327 PMCID: PMC9548443 DOI: 10.1093/burnst/tkac033] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/29/2022] [Indexed: 11/05/2022]
Abstract
Bioadhesives act as a bridge in wound closure by forming an effective interface to protect against liquid and gas leakage and aid the stoppage of bleeding. To their credit, tissue adhesives have made an indelible impact on almost all wound-related surgeries. Their unique properties include minimal damage to tissues, low chance of infection, ease of use and short wound-closure time. In contrast, classic closures, like suturing and stapling, exhibit potential additional complications with long operation times and undesirable inflammatory responses. Although tremendous progress has been made in the development of tissue adhesives, they are not yet ideal. Therefore, highlighting and summarizing existing adhesive designs and synthesis, and comparing the different products will contribute to future development. This review first provides a summary of current commercial traditional tissue adhesives. Then, based on adhesion interaction mechanisms, the tissue adhesives are categorized into three main types: adhesive patches that bind molecularly with tissue, tissue-stitching adhesives based on pre-polymer or precursor solutions, and bioinspired or biomimetic tissue adhesives. Their specific adhesion mechanisms, properties and related applications are discussed. The adhesion mechanisms of commercial traditional adhesives as well as their limitations and shortcomings are also reviewed. Finally, we also discuss the future perspectives of tissue adhesives.
Collapse
Affiliation(s)
- Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xingying Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
16
|
Muñoz Taboada G, Dosta P, Edelman ER, Artzi N. Sprayable Hydrogel for Instant Sealing of Vascular Anastomosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203087. [PMID: 36029172 DOI: 10.1002/adma.202203087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/11/2022] [Indexed: 05/13/2023]
Abstract
Bleeding-related complications following vascular surgeries occur in up to half of the patients-500 000 cases annually in the United States alone. This results in additional procedures, increased mortality rate, and prolonged hospitalization, posing a burden on the healthcare system. Commercially available materials rely, in large, on forming covalent bonds between the tissue and the biomaterial to achieve adhesion. Here, it is shown that a biomaterial based on oxidized alginate and oxidized dextran together with polyamidoamine (PAMAM) dendrimer amine provides simultaneous electrostatic and covalent interactions between the biomaterial and the tissue, maximizing adhesion. This study finds that the material withstands supraphysiological pressures (≈300 mmHg) and prevents bleeding in a rabbit aortic puncture model and in a pig carotid bilateral poly(tetrafluoroethylene) graft model-achieving superior performance to commercially available materials such as Tisseel and BioGlue. Material biocompatibility is validated in comprehensive in vitro and in vivo studies in accordance with the US Food and Drug Administration (FDA) guidelines, including in vitro neutral red uptake test, subcutaneous implantation in rabbits, ames genotoxicity, and guinea pig maximization test. This material has the potential to provide with adequate seal and reduced complications following complex vascular surgeries, including hard-to-seal tissue-graft interfaces.
Collapse
Affiliation(s)
- Gonzalo Muñoz Taboada
- BioDevek Inc., Cambridge, MA, 02139, USA
- Institut Químic de Sarrià, Univeritat Ramon Llull, Barcelona, 08017, Spain
| | - Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Elazer R Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medicine, Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
17
|
Nishiguchi A, Ito S, Nagasaka K, Taguchi T. Liquid-Liquid Phase-Separated Hydrogel with Tunable Sol-Gel Transition Behavior as a Hotmelt-Adhesive Postoperative Barrier. ACS APPLIED BIO MATERIALS 2022; 5:4932-4941. [PMID: 36150218 DOI: 10.1021/acsabm.2c00640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Postoperative barriers have been widely used to prevent adhesions. However, there are currently few barriers that satisfy clinical requirements, such as tissue adhesion, operability, and biocompatibility. Inspired by the adhesion system of living organisms, we report a liquid-liquid phase-separated hydrogel as a single-syringe hotmelt-type postoperative barrier. Mixing polyethylene glycol with gelatin formed liquid-liquid phase-separated hydrogels through segregative liquid-liquid phase separation. Incorporation of a liquid-liquid phase-separated system into gelatin can enhance the sol-gel transition temperature to give a hotmelt-adhesive property to hydrogels. Hotmelt-adhesive hydrogels became a sol phase and cohered into tissue gaps when warmed and solidified at body temperature to adhere to soft tissues. The hydrogels exhibited tissue adhesion to large intestine tissues and showed improved mechanical strength, gelation time, and shear-thinning properties. In rat cecum-abdominal adhesion models, it was confirmed that the resulting hydrogels prevented abdominal adhesion and did not prevent tissue regeneration. Hotmelt-adhesive hydrogels with high tissue adhesive properties, operability, and biocompatibility have enormous potential as barriers to prevent postoperative complications.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Shima Ito
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kazuhiro Nagasaka
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsushi Taguchi
- Polymers and Biomaterials Field, Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
18
|
Nishiguchi A, Ichimaru H, Ito S, Nagasaka K, Taguchi T. Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomater 2022; 146:80-93. [PMID: 35500814 DOI: 10.1016/j.actbio.2022.04.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/21/2022] [Indexed: 11/01/2022]
Abstract
Postoperative adhesion is a serious and frequent complication, but there is currently no reliable anti-adhesive barrier available due to low tissue adhesiveness, undesirable chemical reactions, and poor operability. To overcome these problems, we report a single-syringe hotmelt tissue adhesive that dissolves upon warming over 40 °C and coheres at 37 °C as a postoperative barrier. Tendon-derived gelatin was conjugated with the ureidopyrimidinone unit to supramolecularly control the sol-gel transition behavior. This functionalization improved bulk mechanical strength, tissue-adhesive properties, and stability under physiological conditions through the augmentation of intermolecular hydrogen bonding by ureidopyrimidinone unit. This biocompatible adhesive prevented postoperative adhesion between cecum and abdominal wall in adhesion models of rats. This hotmelt tissue adhesive has enormous potential to prevent postoperative complications and may contribute to minimally invasive surgery. STATEMENT OF SIGNIFICANCE: There is a strong need to develop medical tissue adhesives with high biocompatibility, tissue adhesiveness, and operatability to prevent postoperative complications. In this report, single syringe, hotmelt-type tissue adhesive was developed by controlling sol-gel transition behavior of gelatin through supramolecular approach. The functionalization of gelatin with quadruple hydrogen bonding improved key features necessary for anti-adhesive barrier including bulk mechanical strength, tissue adhesive property, stability under physiological conditions, and anti-adhesive property. The hotmelt tissue adhesive can be used for a sealant, hemostatic reagent, and wound dressing to prevent postoperative complications including delayed bleeding, perforation, and inflammation and contribute to minimally invasive surgery.
Collapse
|
19
|
Rajan VKA, Kasturi S, Soundararajan N, Sinha P. Cerebral embolic shower secondary to BioGlue use in triple valve surgery. Indian J Thorac Cardiovasc Surg 2022; 38:426-429. [DOI: 10.1007/s12055-022-01344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 10/18/2022] Open
|
20
|
Elucidating the degradation mechanism of a self-degradable dextran-based medical adhesive. Carbohydr Polym 2022; 278:118949. [PMID: 34973767 DOI: 10.1016/j.carbpol.2021.118949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/20/2022]
Abstract
We developed a self-degradable medical adhesive, LYDEX, consisting of periodate-oxidized aldehyde-functionalized dextran (AD) and succinic anhydride-treated ε-poly-l-lysine (SAPL). After gelation and adhesion of LYDEX by Schiff base bond formation between the AD aldehyde groups and SAPL amino groups, molecular degradation associated with the Maillard reaction is initiated, but the detailed degradation mechanism remains unknown. Herein, we elucidated the degradation mechanism of LYDEX by analyzing the main degradation products under typical solution conditions in vitro. The degradation of the LYDEX gel with a sodium periodate/dextran content of 2.5/20 was observed using gel permeation chromatography and infrared and 1H NMR spectroscopy. The AD ratio in the AD-SAPL mixture increased as the molecular weight decreased with the degradation time. This discovery of LYDEX self-degradability is useful for clarifying other polysaccharide hydrogel degradation mechanisms, and valuable for the use of LYDEX in medical applications, such as hemostatic or sealant materials.
Collapse
|
21
|
Tan SZCP, Bashir M. Prevention versus cure: Is BioGlue priming the optimal strategy against E-Vita NEO graft oozing? J Card Surg 2021; 37:555-560. [PMID: 34907587 DOI: 10.1111/jocs.16179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Since the introduction of the E-Vita Open NEO aortic prosthesis in 2020, several incidences of post-anastomotic oozing from the polyester portion of the graft have emerged. The use of BioGlue to prime E-Vita Open NEO to prevent this has been suggested as a way to mitigate this worrying complication. We investigate the extent of graft oozing in E-Vita Open NEO and evaluate the use of BioGlue in preventing oozing, both experimentally and in terms of potential clinical complications. MATERIALS AND METHODS E-Vita Open NEO (in straight and branched configurations) was implanted in a perfused model. The distal stent graft and side branches were clamped, and the graft was pressurized with blood to 120 mmHg. The volume of blood (ml) oozing from the graft within 60 s was measured. Nonpressurized grafts were coated with BioGlue up to a thickness of 1, 2, and 3 mm, and the volume (mm3 ) of BioGlue required to do so was recorded. RESULTS Within 60 s, 250.0 ml of blood oozed from the grafts tested. 43.694, 87.389, and 174.778 mm3 of BioGlue were required to coat the device with 1, 2, and 3 mm of BioGlue. CONCLUSION Graft oozing from E-Vita Open NEO represents an omnipresent and worrying risk. The use of BioGlue herein is likely associated with several adverse consequences, which are an additional risk on top of that posed by graft oozing. These risks call into question the suitability of E-Vita Open NEO, especially when compared to alternative devices not affected by oozing.
Collapse
Affiliation(s)
- Sven Z C P Tan
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohamad Bashir
- Vascular and Endovascular Surgery, Velindre University NHS Trust, Health & Education Improvement, Wales, UK
| |
Collapse
|
22
|
A Novel Alaska Pollock Gelatin Sealant Shows Higher Bonding Strength and Nerve Regeneration Comparable to That of Fibrin Sealant in a Cadaveric Model and a Rat Model. Plast Reconstr Surg 2021; 148:742e-752e. [PMID: 34705777 DOI: 10.1097/prs.0000000000008489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A novel biocompatible sealant composed of Alaska pollock-derived gelatin (ApGltn) has recently shown good burst strength and biocompatibility in a porcine aorta. The purpose of this study was to investigate the bonding strength and biocompatibility of the ApGltn sealant in transected digital nerves of fresh frozen cadavers and in the sciatic nerves of a rat model. METHODS Eighty human digital nerves of fresh frozen cadavers were transected for biomechanical traction testing. They were treated with four surgical interventions: (1) suture plus ApGltn sealant; (2) suture; (3) ApGltn sealant; and (4) fibrin sealant. Forty-three sciatic nerves of male Wistar rats were used for functional and histopathologic evaluation. They were treated with six surgical interventions: (1) suture plus ApGltn sealant; (2) suture; (3) ApGltn sealant; (4) fibrin sealant; (5) resection with a 5-mm gap (10 rats per group); and (6) sham operation (three rats). Macroscopic confirmation, muscle weight measurement, and histopathologic findings including G-ratio were examined 8 weeks after the procedure. RESULTS The maximum failure load of the ApGltn sealant was significantly higher than that of a fibrin sealant (0.22 ± 0.05 N versus 0.06 ± 0.04 N). The maximum failure load of the ApGltn sealant was significantly lower that of suture plus ApGltn sealant (1.37 N) and suture (1.27 N). Functional evaluation and histologic examination showed that sciatic nerves repaired with ApGltn sealant showed similar nerve recovery compared to repair with the suture and fibrin sealant. CONCLUSION The ApGltn sealant showed higher bonding strength and equal effect of nerve regeneration when compared with the fibrin sealant.
Collapse
|
23
|
Guo C, Zeng Z, Yu S, Zhou X, Liu Q, Pei D, Lu D, Geng Z. Highly stretchable, compressible, adhesive hydrogels with double network. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02765-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractIn this work, a double network bovine serum albumin-polyacrylamide (BSA-PAM) adhesive hydrogel was fabricated, in which combination of physical interactions including hydrogen bonds and chain entanglements, and chemical covalent photo-crosslinking. The BSA-PAM hydrogel exhibited excellent mechanical and adhesive properties. The composite hydrogel not only demonstrated excellent tensile properties (maximum force elongation 1552%~2037%), but also displayed extremely high fatigue resistance even when subjected to compress strains of up to 85%. More importantly, the BSA-PAM hydrogel showed excellent adhesiveness to various substrates (90 kPa~150 kPa for glass and 9.74 kPa~35.09 kPa for pigskin). This work provided a facile way of fabricating tough, stretchable and adhesive BSA-PAM hydrogels.
Collapse
|
24
|
Delkash Y, Gouin M, Rimbeault T, Mohabatpour F, Papagerakis P, Maw S, Chen X. Bioprinting and In Vitro Characterization of an Eggwhite-Based Cell-Laden Patch for Endothelialized Tissue Engineering Applications. J Funct Biomater 2021; 12:jfb12030045. [PMID: 34449625 PMCID: PMC8395907 DOI: 10.3390/jfb12030045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/01/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an emerging fabrication technique to create 3D constructs with living cells. Notably, bioprinting bioinks are limited due to the mechanical weakness of natural biomaterials and the low bioactivity of synthetic peers. This paper presents the development of a natural bioink from chicken eggwhite and sodium alginate for bioprinting cell-laden patches to be used in endothelialized tissue engineering applications. Eggwhite was utilized for enhanced biological properties, while sodium alginate was used to improve bioink printability. The rheological properties of bioinks with varying amounts of sodium alginate were examined with the results illustrating that 2.0-3.0% (w/v) sodium alginate was suitable for printing patch constructs. The printed patches were then characterized mechanically and biologically, and the results showed that the printed patches exhibited elastic moduli close to that of natural heart tissue (20-27 kPa) and more than 94% of the vascular endothelial cells survived in the examination period of one week post 3D bioprinting. Our research also illustrated the printed patches appropriate water uptake ability (>1800%).
Collapse
Affiliation(s)
- Yasaman Delkash
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (M.G.); (T.R.); (F.M.); (P.P.)
- Correspondence: (Y.D.); (X.C.)
| | - Maxence Gouin
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (M.G.); (T.R.); (F.M.); (P.P.)
- School of Engineering, Icam Site de Paris-Sénart, 34 Points de Vue, 77127 Lieusaint, France
| | - Tanguy Rimbeault
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (M.G.); (T.R.); (F.M.); (P.P.)
- School of Engineering, Icam Site de Vendée, 28 Boulevard d’Angleterre, 85000 La Roche-sur-Yon, France
| | - Fatemeh Mohabatpour
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (M.G.); (T.R.); (F.M.); (P.P.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Petros Papagerakis
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (M.G.); (T.R.); (F.M.); (P.P.)
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Sean Maw
- Graham School of Professional Development, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada;
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (M.G.); (T.R.); (F.M.); (P.P.)
- Correspondence: (Y.D.); (X.C.)
| |
Collapse
|
25
|
Zhong Y, Hu H, Min N, Wei Y, Li X, Li X. Application and outlook of topical hemostatic materials: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:577. [PMID: 33987275 DOI: 10.21037/atm-20-7160] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bleeding complications can cause significant morbidities and mortalities in both civilian and military conditions. The formation of stable blood clots or hemostasis is essential to prevent major blood loss and death from excessive bleeding. However, the body's self-coagulation process cannot accomplish timely hemostasis without the assistance of hemostatic agents under some conditions. In the past two decades, topical hemostatic materials and devices containing platelets, fibrin, and polysaccharides have been gradually developed and introduced to induce faster or more stable blood clot formation, updating or iterating traditional hemostatic materials. Despite the various forms and functions of topical hemostatic materials that have been developed for different clinical conditions, uncontrolled hemorrhage still causes over 30% of trauma deaths across the world. Therefore, it is important to fabricate fast, efficient, safe, and ready-to-use novel hemostatic materials. It is necessary to understand the coagulation process and the hemostatic mechanism of different materials to develop novel topical hemostatic agents, such as tissue adhesives and sealants from various natural and synthetic materials. This review discusses the structural features of topical hemostatic materials related to the stimulation of hemostasis, summarizes the commercially available products and their applications, and reviews the ongoing clinical trials and recent studies concerning the development of different hemostatic materials.
Collapse
Affiliation(s)
- Yuting Zhong
- Department of General Surgery, Chinese PLA Hospital & Chinese PLA Medical School, Beijing, China
| | - Huayu Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Ningning Min
- School of Medicine, Nankai University, Tianjin, China
| | - Yufan Wei
- School of Medicine, Nankai University, Tianjin, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiru Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
26
|
Bovone G, Dudaryeva OY, Marco-Dufort B, Tibbitt MW. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomater Sci Eng 2021; 7:4048-4076. [PMID: 33792286 DOI: 10.1021/acsbiomaterials.0c01677] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel adhesion inherently relies on engineering the contact surface at soft and hydrated interfaces. Upon contact, adhesion normally occurs through the formation of chemical or physical interactions between the disparate surfaces. The ability to form these adhesion junctions is challenging for hydrogels as the interfaces are wet and deformable and often contain low densities of functional groups. In this Review, we link the design of the binding chemistries or adhesion junctions, whether covalent, dynamic covalent, supramolecular, or physical, to the emergent adhesive properties of soft and hydrated interfaces. Wet adhesion is useful for bonding to or between tissues and implants for a range of biomedical applications. We highlight several recent and emerging adhesive hydrogels for use in biomedicine in the context of efficient junction design. The main focus is on engineering hydrogel adhesion through molecular design of the junctions to tailor the adhesion strength, reversibility, stability, and response to environmental stimuli.
Collapse
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
27
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
28
|
Malik A, Rehman FU, Shah KU, Naz SS, Qaisar S. Hemostatic strategies for uncontrolled bleeding: A comprehensive update. J Biomed Mater Res B Appl Biomater 2021; 109:1465-1477. [PMID: 33511753 DOI: 10.1002/jbm.b.34806] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 11/10/2022]
Abstract
Uncontrolled bleeding remains the leading cause of morbidity and mortality across the entire macrocosm. It refers to excessive loss of blood that occurs inside of body, due to unsuccessful platelet plug formation at the injury site. It is not only limited to the battlefield, but remains the second leading cause of death amongst the civilians, as a result of traumatic injury. Startlingly, there are no effective treatments currently available, to cater the issue of internal bleeding, even though early intervention is of utmost significance in minimizing the mortality rates associated with it. The fatal issue of uncontrolled bleeding is ineffectively being dealt with the use of pressure dressings, tourniquet, and surgical procedures. This is not a practical approach in combat arenas or in emergency situations, where the traumatic injury inflicted is deep inside the body, and cannot be addressed externally, by the application of topical dressings. This review focuses on the traditional hemostatic agents that are used to augment the process of hemostasis, such as mineral zeolites, chitosan based products, biologically active agents, anti-fibrinolytics, absorbable agents, and albumin and glutaraldehyde, as well as the micro- and nano-based hemostatic agents such as synthocytes, thromboerythrocytes, thrombosomes, and the synthetic platelets.
Collapse
Affiliation(s)
- Annum Malik
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan.,Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fiza Ur Rehman
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan.,Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| | - Sara Qaisar
- Nanosciences and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
29
|
Improved outcomes utilizing a novel pectin-based pleural sealant following acute lung injury. J Trauma Acute Care Surg 2020; 89:915-919. [PMID: 33108138 DOI: 10.1097/ta.0000000000002754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Persistent air leaks after thoracic trauma are associated with significant morbidity. To evaluate a novel pectin sealant in a swine model of traumatic air leaks, we compared a pectin biopolymer with standard surgical and fibrin-based interventions. METHODS A standardized lung injury was created in male Yorkshire swine. Interventions were randomized to stapled wedge resection (n = 5), topical fibrin glue (n = 5), fibrin patch (n = 5), and a pectin sealant (n = 6). Baseline, preintervention and postintervention tidal volumes (TV) were recorded. Early success was defined as the return to near-normal TV (>95% of baseline). Late success was defined as no detectable air leak in the chest tube after chest closure. RESULTS There were no differences in injury severity between groups (mean TV loss, 62 ± 17 mL, p = 0.2). Early success was appreciated in 100% (n = 6) of the pectin interventions which was significantly better than the fibrin sealant (20%, n = 1), fibrin patch (20%, n = 1), and stapled groups (80%, n = 4, p = 0.01). The percent of return to baseline TV after sealant intervention was significantly increased in the pectin (98%) and staple arms (97%) compared with the fibrin sealant (91%) and fibrin patch arms (90%) (p = 0.02; p = 0.03). Late success was also improved with the pectin sealant: no air leak was detected in 83% of the pectin group compared with 40% in the stapled group (p = 0.008)-90% of the fibrin-based interventions resulted in continuous air leaks (p = 0.001). CONCLUSION Pectin-based bioadhesives effectively seal traumatic air leaks upon application in a porcine model. Further testing is warranted as they may provide a superior parenchymal-sparing treatment option for traumatic air leaks.
Collapse
|
30
|
Li D, Chen J, Wang X, Zhang M, Li C, Zhou J. Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Front Bioeng Biotechnol 2020; 8:926. [PMID: 32923431 PMCID: PMC7456874 DOI: 10.3389/fbioe.2020.00926] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid hemostasis and formation of stable blood clots are very important to prevent massive blood loss from the excessive bleeding for living body, but their own clotting process cannot be completed in time for effective hemostasis without the help of hemostatic materials. In general, traditionally suturing and stapling techniques for wound closure are prone to cause the additional damages to the tissues, activated inflammatory responses, short usage periods and inevitable second operations in clinical applications. Especially for the large wounds that require the urgent closure of fluids or gases, these conventional closure methods are far from enough. To address these problems, various tissue adhesives, sealants and hemostatic materials are placed great expectation. In this review, we focused on the development of two main categories of tissue adhesive materials: synthetic polymeric adhesives and naturally derived polysaccharide adhesives. Research of the high performance of hemostatic adhesives with strong adhesion, better biocompatibility, easy usability and cheap price is highly demanded for both scientists and clinicians, and this review is also intended to provide a comprehensive summarization and inspiration for pursuit of more advanced hemostatic adhesives for biological fields.
Collapse
Affiliation(s)
- Dawei Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jing Chen
- Department of Orthopedics, Aerospace Center Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Zhang
- The People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Chunlin Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin Zhou
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
31
|
Hozumi T, Sreedevi AM, Ohta S, Ito T. Nonlinear Pressure Drop Oscillations during Gelation in a Kenics Static Mixer. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuro Hozumi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Athira M Sreedevi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
32
|
Taboada GM, Yang K, Pereira MJN, Liu SS, Hu Y, Karp JM, Artzi N, Lee Y. Overcoming the translational barriers of tissue adhesives. NATURE REVIEWS MATERIALS 2020; 5:310-329. [DOI: 10.1038/s41578-019-0171-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 01/06/2025]
|
33
|
Chen Y, Wu L, Li P, Hao X, Yang X, Xi G, Liu W, Feng Y, He H, Shi C. Polysaccharide Based Hemostatic Strategy for Ultrarapid Hemostasis. Macromol Biosci 2020; 20:e1900370. [DOI: 10.1002/mabi.201900370] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Yeyi Chen
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Lei Wu
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Pengpeng Li
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
- School of Ophthalmology & OptometryEye HospitalSchool of Biomedical EngineeringWenzhou Medical University Wenzhou Zhejiang 325027 China
| | - Xiao Hao
- Cardiovascular Division 1Hebei General Hospital Shijiazhuang Hebei 050051 China
| | - Xiao Yang
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Guanghui Xi
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Wen Liu
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin 300350 China
| | - Hongchao He
- Department of UrologyShanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai 200025 China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and EngineeringWenzhou InstituteUniversity of Chinese Academy of Sciences Wenzhou Zhejiang 325011 China
| |
Collapse
|
34
|
Shoaib T, Yuh C, Wimmer MA, Schmid TM, Espinosa-Marzal RM. Nanoscale insight into the degradation mechanisms of the cartilage articulating surface preceding OA. Biomater Sci 2020; 8:3944-3955. [DOI: 10.1039/d0bm00496k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease and leading cause of disability globally. We report the a fundamental study of the mechanisms underlying deterioration of hydrated cartilage in the presence of elevated calcium content preceding OA.
Collapse
Affiliation(s)
- Tooba Shoaib
- Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
| | - Catherine Yuh
- Department of Orthopedics
- Rush University Medical Center
- Chicago
- USA
| | - Markus A. Wimmer
- Department of Orthopedics
- Rush University Medical Center
- Chicago
- USA
| | - Thomas M. Schmid
- Department of Orthopedics
- Rush University Medical Center
- Chicago
- USA
| | - Rosa M. Espinosa-Marzal
- Materials Science and Engineering
- University of Illinois at Urbana-Champaign
- Urbana
- USA
- Civil and Environmental Engineering Department
| |
Collapse
|
35
|
Hoang Thi TT, Lee Y, Le Thi P, Park KD. Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Liu L, Rodman C, Worobetz NE, Johnson J, Elmaraghy C, Chiang T. Topical biomaterials to prevent post-tonsillectomy hemorrhage. J Otolaryngol Head Neck Surg 2019; 48:45. [PMID: 31492172 PMCID: PMC6731608 DOI: 10.1186/s40463-019-0368-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022] Open
Abstract
Despite advances in surgical technique, postoperative hemorrhage remains a common cause of mortality and morbidity for patients following tonsillectomy. Application of biomaterials at the time of tonsillectomy can potentially accelerate mucosal wound healing and eliminate the risk of post-tonsillectomy hemorrhage (PTH). To understand the current state and identify possible routes for the development of the ideal biomaterials to prevent PTH, topical biomaterials for eliminating the risk of PTH were reviewed. Alternative topical biomaterials that hold the potential to reduce the risk of PTH were also summarized.
Collapse
Affiliation(s)
- Lumei Liu
- Center of Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cole Rodman
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Noah E Worobetz
- Center of Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Pediatric Otorhinolaryngology, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Charles Elmaraghy
- College of Medicine, The Ohio State University, Columbus, OH, USA.,Department of Pediatric Otorhinolaryngology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Center of Regenerative Medicine, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA. .,College of Medicine, The Ohio State University, Columbus, OH, USA. .,Department of Pediatric Otorhinolaryngology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
37
|
Jain R, Wairkar S. Recent developments and clinical applications of surgical glues: An overview. Int J Biol Macromol 2019; 137:95-106. [DOI: 10.1016/j.ijbiomac.2019.06.208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
|
38
|
Heichel DL, Burke KA. Dual-Mode Cross-Linking Enhances Adhesion of Silk Fibroin Hydrogels to Intestinal Tissue. ACS Biomater Sci Eng 2019; 5:3246-3259. [PMID: 33405568 DOI: 10.1021/acsbiomaterials.9b00786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Compared to conventional wound closure methods like sutures and staples, polymer-based tissue adhesives afford some distinct advantages, such as greater ease of deployment in spatially constrained surgical sites. One way to achieve aqueous adhesion is by introducing catechol functional groups that form coordinate and covalent bonds with a variety of substrates. This approach, inspired by marine organisms, has been applied to biopolymers and synthetic polymers, but one key challenge is that compositions that are soluble in water are often susceptible to high swelling ratios that can result in undesired compression of neighboring tissues. This work sought to synthesize aqueous adhesive gels that are capable of two modes of association: (1) adhesion and covalent cross-linking reactions arising from catechol oxidation and (2) noncovalent cross-linking arising from self-assembly of polymer backbones within the gelled adhesive. The network's self-assembly after gelation was envisioned to afford control over swelling and reinforce its strength. Bombyx mori silk fibroin was selected as the backbone of the adhesive network because it can be processed into an aqueous solution yet later be rendered insoluble in water through the assembly of its hydrophobic protein core. Distinct from a previous approach to functionalize silk directly with catechol groups, this work investigated in situ generation of catechol on silk fibroin by enzymatically modifying phenolic side chains, where it was found that this enzymatic approach led to conjugates with higher degrees of catechol functionalization and aqueous solubility. Silk fibroin was functionalized with tyramine to enrich the protein's phenolic side chains, which were subsequently oxidized into catechol groups using mushroom tyrosinase (MT). The gelation of the silk conjugates with MT was monitored by rheology, and the gels exhibited low water uptake. Phenolic enrichment increased the rate of chemical cross-linking leading to gelation but did not interrupt assembly of silk's secondary structures. Adhesion of the tyramine-silk conjugates to porcine intestine was found to be superior to fibrin sealant, and induction of β sheet secondary structures was found to further enhance adhesive strength through a second mode of cross-linking. Neither the chemical functionalization nor phenol oxidation affected the ability of intestinal epithelial cells (Caco-2) to attach and proliferate. Phenolic functionalization and oxidative cross-linking of silk fibroin was found to afford a new route to water-soluble, catechol-functionalized polymers, which were found to display excellent adhesion to mucosal tissue and whose secondary structure provides an additional mode to control strength and swelling of adhesive gels.
Collapse
Affiliation(s)
- Danielle L Heichel
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States
| | - Kelly A Burke
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States.,Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, Connecticut 06269-3247, United States
| |
Collapse
|
39
|
Cha GD, Kang D, Lee J, Kim D. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Adv Healthc Mater 2019; 8:e1801660. [PMID: 30957984 DOI: 10.1002/adhm.201801660] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Medical implants, either passive implants for structural support or implantable devices with active electronics, have been widely used for the diagnosis and treatment of various diseases and clinical issues. These implants offer various functions, including mechanical support of biological structures in orthopedic and dental applications, continuous electrophysiological monitoring and feedback of electrical stimulation in neuronal and cardiac applications, and controlled drug delivery while maintaining arterial structure in drug-eluting stents. Although these implants exhibit long-term biocompatibility, surgery for their retrieval is often required, which imposes physical, biological, and economical burdens on the patients. Therefore, as an alternative to such secondary surgeries, bioresorbable implants that disappear after a certain period of time inside the body, including bioresorbable active electronics, have been highlighted recently. This review first discusses the historical background of medical implants and briefly define related terminology. Representative examples of non-degradable medical implants for passive structural support and/or for diagnosis and therapy with active electronics are also provided. Then, recent progress in bioresorbable active implants composed of biosignal sensors, actuators for therapeutics, wireless power supply components, and their integrated systems are reviewed. Finally, clinical applications of these bioresorbable electronic implants are exemplified with brief conclusion and future outlook.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dayoung Kang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Jongha Lee
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| |
Collapse
|
40
|
Trujillo-de Santiago G, Sharifi R, Yue K, Sani ES, Kashaf SS, Alvarez MM, Leijten J, Khademhosseini A, Dana R, Annabi N. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials 2019; 197:345-367. [PMID: 30690421 PMCID: PMC6687460 DOI: 10.1016/j.biomaterials.2019.01.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/16/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
Closure of ocular wounds after an accident or surgery is typically performed by suturing, which is associated with numerous potential complications, including suture breakage, inflammation, secondary neovascularization, erosion to the surface and secondary infection, and astigmatism; for example, more than half of post-corneal transplant infections are due to suture related complications. Tissue adhesives provide promising substitutes for sutures in ophthalmic surgery. Ocular adhesives are not only intended to address the shortcomings of sutures, but also designed to be easy to use, and can potentially minimize post-operative complications. Herein, recent progress in the design, synthesis, and application of ocular adhesives, along with their advantages, limitations, and potential are discussed. This review covers two main classes of ocular adhesives: (1) synthetic adhesives based on cyanoacrylates, polyethylene glycol (PEG), and other synthetic polymers, and (2) adhesives based on naturally derived polymers, such as proteins and polysaccharides. In addition, different technologies to cover and protect ocular wounds such as contact bandage lenses, contact lenses coupled with novel technologies, and decellularized corneas are discussed. Continued advances in this area can help improve both patient satisfaction and clinical outcomes.
Collapse
Affiliation(s)
- Grissel Trujillo-de Santiago
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico
| | - Roholah Sharifi
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Kan Yue
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Ehsan Shrizaei Sani
- Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Sara Saheb Kashaf
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA
| | - Mario Moisés Alvarez
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA; Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL 64849, Mexico
| | - Jeroen Leijten
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medicine, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Ali Khademhosseini
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA; Department of Radiology, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| | - Reza Dana
- Massachusetts Eye and Ear Infirmary and Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Nasim Annabi
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139, MA, USA; Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02139, MA, USA; Chemical and Biomolecular Engineering Department, University of California - Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Scheibler AG, Götschi T, Widmer J, Holenstein C, Steffen T, Camenzind RS, Snedeker JG, Farshad M. Feasibility of the annulus fibrosus repair with in situ gelating hydrogels - A biomechanical study. PLoS One 2018; 13:e0208460. [PMID: 30521633 PMCID: PMC6283563 DOI: 10.1371/journal.pone.0208460] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/17/2018] [Indexed: 12/19/2022] Open
Abstract
The surgical standard of care for lumbar discectomy leaves the annulus fibrosus (AF) defect unrepaired, despite considerable risk for a recurrent herniation. Identification of a viable defect repair strategy has until now been elusive. The scope of this ex vivo biomechanical study was to evaluate crosslinking hydrogels as potentially promising AF defect sealants, and provide a baseline for their use in combination with collagen scaffolds that restore disc volume. This study directly compared genipin crosslinked fibrin hydrogel (FibGen) as a promising preclinical candidate against a clinically available adhesive composed of glutaraldehyde and albumin (BioGlue). Forty-two bovine coccygeal functional spine units (FSU) were randomly allocated into four groups, namely untreated (control, n = 12), repaired with either one of the tested hydrogels (BioGlue, n = 12; FibGen, n = 12), or FibGen used in combination with a collagen hydrogel scaffold (FibGen+Scaffold, n = 6). All specimens underwent a moderate mechanical testing protocol in intact, injured and repaired states. After completion of the moderate testing protocol, the samples underwent a ramp-to-failure test. Lumbar discectomy destabilized the FSU as quantified by increased torsional range of motion (28.0° (19.1, 45.1) vs. 41.39° (27.3, 84.9), p<0.001), torsional neutral zone (3.1° (1.2, 7.7) vs. 4.8° (2.1, 12.1), Z = -3.49, p < 0.001), hysteresis(24.4 J (12.8, 76.0) vs. 27.6 J (16.4, 54.4), Z = -2.61, p = 0.009), with loss of both disc height (7.0 mm (5.0, 10.5) vs 6.1 mm (4.0, 9.3), Z = -5.16, p < 0.001) and torsional stiffness (0.76 Nmdeg-1 (0.38, 1.07) vs. 0.66 Nmdeg-1 (0.38, 0.97), Z = -3.98, p < 0.001). Most FibGen repaired AF endured the entire testing procedure whereas only a minority of BioGlue repaired AF and all FibGen+Scaffold repaired AF failed (6/10 vs. 3/12 vs. 0/6 respectively, p = 0.041). Both BioGlue and FibGen+Scaffold repaired AF partially restored disc height (0.47 mm (0.07, 2.41), p = 0.048 and 1.52 mm (0.41, 2.57), p = 0.021 respectively) compared to sham treatment (0.08 mm (-0.63, 0.88)) whereas FibGen-only repaired AF had no such effect (0.04 mm (-0.73, 1.13), U = 48.0, p = 1). The AF injury model demonstrated considerable change of FSU mechanics that could be partially restored by use of an AF sealant. While inclusion of a volumetric collagen scaffold led to repair failure, use of FibGen alone demonstrated clinically relevant promise for prevention of mechanical reherniation, outperforming an FDA approved sealant in this ex vivo test series.
Collapse
Affiliation(s)
- Anne-Gita Scheibler
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Tobias Götschi
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Jonas Widmer
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Claude Holenstein
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Thomas Steffen
- Musculoskeletal Research Unit (MSRU), Center for Applied Biotechnology & Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Roland S. Camenzind
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| | - Jess G. Snedeker
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Mazda Farshad
- Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
42
|
Affiliation(s)
- Sneha Rathi
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Raju Saka
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| | - Abraham J. Domb
- School of Pharmacy-Faculty of Medicine; The Hebrew University of Jerusalem; Jerusalem 91120 Israel
| | - Wahid Khan
- Department of Pharmaceutics; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad 500037 India
| |
Collapse
|
43
|
Wang G, Liu N, Guo M. Use of Whey Protein as a Natural Polymer for Tissue Adhesive: Preliminary Formulation and Evaluation In Vitro. Polymers (Basel) 2018; 10:polym10080843. [PMID: 30960768 PMCID: PMC6403977 DOI: 10.3390/polym10080843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/26/2022] Open
Abstract
The use of sutures is still the most widely practiced solution for wound closure and tissue reconstruction; however, scarring is a common defect resulting from sutures on topical use. In some cases, the conventional sutures are unable to seal the sites where fluid and air leakage could occur. Tissue adhesives though have lower tensile strength than sutures, may make scarless surgery possible, or prevent fluid and air leakage. A product called BioGlue® (CryoLife Inc, Kennesaw, GA, USA), based on bovine serum albumin (BSA, a protein) and glutaraldehyde (GTA, crosslinker), has been approved for clinical use in the USA. Whey protein, a byproduct of cheese-making, comprised mainly of β-lactoglobulin, α-lactalbumin and BSA. Even though the molecular weight of BSA is about three times larger than the molecular of β-lactoglobulin and α-lactalbumin, all three proteins are rich in free ε-amino groups (can react with GTA) and globular proteins. This similarity make whey protein a potential candidate to replace BSA in the tissue adhesive since whey protein is abundant and much cheaper than BSA. In this study, whey protein isolate (WPI) was used as a protein polymer with GTA as a crosslinker to evaluate the feasibility of whey protein for tissue adhesive formulation. Results showed that the WPI/GTA adhesive exhibited a comparable adhesive strength to BioGlue® control.
Collapse
Affiliation(s)
- Guorong Wang
- Department of Foods Science, The Northeast Agricultural University, Harbin 150030, China.
- Department of Nutrition and Foods Sciences, The University of Vermont, Burlington, VT 05405, USA.
| | - Ning Liu
- Department of Nutrition and Foods Sciences, The University of Vermont, Burlington, VT 05405, USA.
| | - Mingruo Guo
- Department of Foods Science, The Northeast Agricultural University, Harbin 150030, China.
- Department of Nutrition and Foods Sciences, The University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
44
|
Khoynezhad A, DelaRosa J, Moon MR, Brinkman WT, Thompson RB, Desai ND, Malaisrie SC, Girardi LN, Bavaria JE, Reece TB. Facilitating Hemostasis After Proximal Aortic Surgery: Results of The PROTECT Trial. Ann Thorac Surg 2018; 105:1357-1364. [DOI: 10.1016/j.athoracsur.2017.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
|
45
|
Servais AB, Valenzuela CD, Kienzle A, Ysasi AB, Wagner WL, Tsuda A, Ackermann M, Mentzer SJ. Functional Mechanics of a Pectin-Based Pleural Sealant after Lung Injury. Tissue Eng Part A 2018; 24:695-702. [PMID: 28920559 PMCID: PMC5963544 DOI: 10.1089/ten.tea.2017.0299] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/23/2017] [Indexed: 01/08/2023] Open
Abstract
Pleural injury and associated air leaks are a major influence on patient morbidity and healthcare costs after lung surgery. Pectin, a plant-derived heteropolysaccharide, has recently demonstrated potential as an adhesive binding to the glycocalyx of visceral mesothelium. Since bioadhesion is a process likely involving the interpenetration of the pectin-based polymer with the glycocalyx, we predicted that the pectin-based polymer may also be an effective sealant for pleural injury. To explore the potential role of an equal (weight%) mixture of high-methoxyl pectin and carboxymethylcellulose as a pleural sealant, we compared the yield strength of the pectin-based polymer to commonly available surgical products. The pectin-based polymer demonstrated significantly greater adhesion to the lung pleura than the comparison products (p < 0.001). In a 25 g needle-induced lung injury model, pleural injury resulted in an air leak and a loss of airway pressures. After application of the pectin-based polymer, there was a restoration of airway pressure and no measurable air leak. Despite the application of large sheets (50 mm2) of the pectin-based polymer, multifrequency lung impedance studies demonstrated no significant increase in tissue damping (G) or hysteresivity (η)(p > 0.05). In 7-day survival experiments, the application of the pectin-based polymer after pleural injury was associated with no observable toxicity, 100% survival (N = 5), and restored lung function. We conclude that this pectin-based polymer is a strong and nontoxic bioadhesive with the potential for clinical application in the treatment of pleural injuries.
Collapse
Affiliation(s)
- Andrew B. Servais
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristian D. Valenzuela
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arne Kienzle
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alexandra B. Ysasi
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Willi L. Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Akira Tsuda
- Molecular and Integrative Physiological Sciences, Harvard School of Public Health, Boston, Massachusetts
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
46
|
Balakrishnan B, Soman D, Payanam U, Laurent A, Labarre D, Jayakrishnan A. A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomater 2017; 53:343-354. [PMID: 28131944 DOI: 10.1016/j.actbio.2017.01.065] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/06/2017] [Accepted: 01/23/2017] [Indexed: 02/02/2023]
Abstract
A surgical adhesive that can be used in different surgical situations with or without sutures is a surgeons' dream and yet none has been able to fulfill many such demanding requirements. It was therefore a major challenge to develop an adhesive biomaterial that stops bleeding and bond tissues well, which at the same time is non-toxic, biocompatible and yet biodegradable, economically viable and appealing to the surgeon in terms of the simplicity of application in complex surgical situations. With this aim, we developed an in situ setting adhesive based on biopolymers such as chitosan and dextran. Dextran was oxidized using periodate to generate aldehyde functions on the biopolymer and then reacted with chitosan hydrochloride. Gelation occurred instantaneously upon mixing these components and the resulting gel showed good tissue adhesive properties with negligible cytotoxicity and minimal swelling in phosphate buffered saline (PBS). Rheology analysis confirmed the gelation process by demonstrating storage modulus having value higher than loss modulus. Adhesive strength was in the range 200-400gf/cm2 which is about 4-5 times more than that of fibrin glue at comparable setting times. The adhesive showed burst strength in the range of 400-410mm of Hg which should make the same suitable as a sealant for controlling bleeding in many surgical situations even at high blood pressure. Efficacy of the adhesive as a hemostat was demonstrated in a rabbit liver injury model. Histological features after two weeks were comparable to that of commercially available BioGlue®. The adhesive also demonstrated its efficacy as a drug delivery vehicle. The present adhesive could function without the many toxicity and biocompatibility issues associated with such products. STATEMENT OF SIGNIFICANCE Though there are many tissue adhesives available in market, none are free of shortcomings. The newly developed surgical adhesive is a 2-component adhesive system based on time-tested, naturally occurring polysaccharides such as chitosan and dextran which are both biocompatible and biodegradable. Simple polymer modification has been carried out on both polysaccharides so that when aqueous solutions of both are mixed, the solutions gel in less than 10s and forms an adhesive that seals a variety of incisions. The strength of the adhesive is over 5-times the strength of commercially available Fibrin glue and is more tissue compliant than BioGlue®. This adhesive biomaterial showed excellent tissue bonding, was hemostatic, biocompatible and biodegradable. The significance of this work lies on the features of the developed tissue adhesive that it stops bleeding, bond the tissues well, can act as a drug delivery vehicle and would appeal to the surgeon in terms of the simplicity of application in complex surgical situations. There is no need for special delivery systems for application of this adhesive. The two-component adhesive can be applied one over the other using syringes. There is also no need for light curing with UV or visible light and the gelation between the two components spontaneously takes place on application leading to excellent tissue bonding.
Collapse
|
47
|
Bahouth Z, Moskovitz B, Halachmi S, Nativ O. Bovine serum albumin-glutaraldehyde (BioGlue ®) tissue adhesive versus standard renorrhaphy following renal mass enucleation: a retrospective comparison. Ther Adv Urol 2017; 9:67-72. [PMID: 28392835 DOI: 10.1177/1756287217697662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND To present the operative and post-operative comparison between patients who underwent tumor-bed closure with sutures compared with bovine serum albumin-glutaraldehyde (BioGlue®) tissue sealant only. METHODS We retrospectively analyzed data from our ongoing database of 507 eligible patients who underwent open NSS nephron-sparing surgery in our department between January 1995 and May 2014. Patients had tumor-bed closure with sealant adhesive (255 patients) or standard suture technique (252 patients). Demographic, clinical and perioperative data were compared between the two groups, by Chi-square test or by Fisher-Irwin exact test for categorical variables, and by t test for differences in means or by Wilcoxon rank sum test for continuous variables. A multivariate analysis was also done. RESULTS Patients' baseline characteristics showed similar distribution of the analyzed parameters among both groups, with few differences: younger age in the sealant group (65.4 versus 68.4 years, p = 0.01) and slightly larger mass size in the suture group (4.0 versus 3.9 cm, p = 0.03). Ischemia time was significantly shorter in the sealant group (21.8 versus 27.0 minutes, p = 0001). Blood loss and transfusion rate (0.8% versus 11.9%, p = 0.0001) were significantly less in the sealant group. A multivariate analysis showed date of surgery and blood loss as the major parameters affecting transfusion rate. CONCLUSIONS Closing the tumor bed with BioGlue® tissue adhesive is feasible, safe, can shorten ischemia time and potentially reduce transfusion rate.
Collapse
Affiliation(s)
- Zaher Bahouth
- Department of Urology, Bnai-Zion Medical Center, Golomb 47, Haifa, Israel
| | - Boaz Moskovitz
- Department of Urology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Sarel Halachmi
- Department of Urology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | - Ofer Nativ
- Department of Urology, Bnai-Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
48
|
Yang X, Liu W, Li N, Wang M, Liang B, Ullah I, Luis Neve A, Feng Y, Chen H, Shi C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater Sci 2017; 5:2357-2368. [DOI: 10.1039/c7bm00554g] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of stable blood clots or hemostasis is essential to prevent major blood loss and death from excessive bleeding.
Collapse
|
49
|
Bures M, Zardo P, Länger F, Zhang R. Improved application technique of albumin-glutaraldehyde glue for repair of superficial lung defects. J Cardiothorac Surg 2016; 11:149. [PMID: 27769306 PMCID: PMC5075190 DOI: 10.1186/s13019-016-0544-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/14/2016] [Indexed: 11/24/2022] Open
Abstract
Background Albumin-glutaraldehyde glue has gained widespread acceptance for treatment of alveolar air leaks (AAL) in thoracic surgery. As liquid run-off during application is detrimental to its sealing efficacy, we developed a modified technique and assessed it in vitro. Methods Caudal lobes of freshly excised swine lungs (n = 20) were intubated and ventilated. A standardized focal superficial parenchymal defect (40 × 25 mm) was created on the inflated lung. AAL was assessed under exposure to increasing inspired tidal volume (TVi). Lung lobes were randomly selected and subjected to either a standard sealing suggested by the manufacturer (control group) or a modified technique relying on placement of a square silicone frame around the lesion site (study group). AAL was subsequently assessed until burst failure occurred and the occuring lesions length was recorded on the inflated lung to evaluate elasticity of underlying tissue. Results Superficial parenchymal defects resulted in AAL increasing with ascending TVi. AAL prior to sealant application was comparable in both groups. An application error occurred once in our control group. At TVi = 400, 500, 600 and 700 ml, the albumin-glutaraldehyde glue achieved complete sealing in 10, 10, 9 and 8 lungs respectively in our study group, as opposed to 9, 7, 6 and 4 lobes in the control group. The required mean burst pressure was significantly higher in our study group (41.0 ± 1.0 vs. 37.5 ± 4.2 cmH2O, p = 0.0195), but there was no difference in expansion of covered defect between both groups (1.0 ± 0.4 vs. 1.5 ± 1.7 mm, p = 0.3772). Conclusions Our tests suggest that frame-assisted sealant application might prevent glue run-off and thus improves its sealing efficacy. We encourage further investigation of this technique in well-designed, controlled clinical trials. Electronic supplementary material The online version of this article (doi:10.1186/s13019-016-0544-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maximilian Bures
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Patrick Zardo
- Department of Cardiac and Thoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Florian Länger
- Department of Pathology, Hannover Medical School, Carl-Neuberg Str. 1, 30625, Hannover, Germany
| | - Ruoyu Zhang
- Department of Thoracic Surgery, Center for Pneumology and Thoracic Surgery, Chest Hospital Schillerhoehe, Teaching hospital of the University of Tuebingen, Gerlingen, Germany. .,Department of Thoracic Surgery, Center for Pneumology and Thoracic Surgery, Schillerhoehe Hospital, Solitudestr. 18, Gerlingen, Germany.
| |
Collapse
|
50
|
Milk Protein Polymer and Its Application in Environmentally Safe Adhesives. Polymers (Basel) 2016; 8:polym8090324. [PMID: 30974597 PMCID: PMC6432148 DOI: 10.3390/polym8090324] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 11/17/2022] Open
Abstract
Milk proteins (caseins and whey proteins) are important protein sources for human nutrition; in addition, they possess important natural polymers. These protein molecules can be modified by physical, chemical, and/or enzymatic means. Casein is one of the oldest natural polymers, used for adhesives, dating back to thousands years ago. Research on milk-protein-based adhesives is still ongoing. This article deals with the chemistry and structure of milk protein polymers, and examples of uses in environmentally-safe adhesives. These are promising routes in the exploration of the broad application of milk proteins.
Collapse
|