1
|
Prabaharan C, Figiel M, Szczepanowski RH, Skowronek K, Zajko W, Thangaraj V, Chamera S, Nowak E, Nowotny M. Structural and biochemical characterization of cauliflower mosaic virus reverse transcriptase. J Biol Chem 2024; 300:107555. [PMID: 39002684 PMCID: PMC11363490 DOI: 10.1016/j.jbc.2024.107555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/15/2024] Open
Abstract
Reverse transcriptases (RTs) are enzymes with DNA polymerase and RNase H activities. They convert ssRNA into dsDNA and are key enzymes for the replication of retroviruses and retroelements. Caulimoviridae is a major family of plant-infecting viruses. Caulimoviruses have a circular dsDNA genome that is replicated by reverse transcription, but in contrast to retroviruses, they lack integrase. Caulimoviruses are related to Ty3 retroelements. Ty3 RT has been extensively studied structurally and biochemically, but corresponding information for caulimoviral RTs is unavailable. In the present study, we report the first crystal structure of cauliflower mosaic virus (CaMV) RT in complex with a duplex made of RNA and DNA strands (RNA/DNA hybrid). CaMV RT forms a monomeric complex with the hybrid, unlike Ty3 RT, which does so as a dimer. Results of the RNA-dependent DNA polymerase and DNA-dependent DNA polymerase activity assays showed that individual CaMV RT molecules are able to perform full polymerase functions. However, our analyses showed that an additional CaMV RT molecule needs to transiently associate with a polymerase-competent RT molecule to execute RNase H cuts of the RNA strand. Collectively, our results provide details into the structure and function of CaMV RT and describe how the enzyme compares to other related RTs.
Collapse
Affiliation(s)
- Chandrasekaran Prabaharan
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Roman H Szczepanowski
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics and Bioanalytics Facility, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Weronika Zajko
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Vinuchakkaravarthy Thangaraj
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Sebastian Chamera
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Nowak
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Obonyo D, Ouma G, Ikawa R, Odeny DA. Meta-transcriptomic identification of groundnut RNA viruses in western Kenya and the novel detection of groundnut as a host for Cauliflower mosaic virus. Virology 2024; 593:110011. [PMID: 38367474 DOI: 10.1016/j.virol.2024.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Groundnut (Arachis hypogaea L.) is the 13th most important global crop grown throughout the tropical and subtropical regions of the world. One of the major constraints to groundnut production is viruses, which are also the most economically important and most abundant pathogens among cultivated legumes. Only a few studies have reported the characterization of RNA viruses in cultivated groundnuts in western Kenya, most of which deployed classical methods of detecting known viruses. METHODS We sampled twenty-one symptomatic and three asymptomatic groundnut leaf samples from farmers' fields in western Kenya. Total RNA was extracted from the samples followed by First-strand cDNA synthesis and sequencing on the Illumina HiSeq 2500 platform. After removing host and rRNA sequences, high-quality viral RNA sequences were de novo assembled and viral genomes annotated using the publicly available NCBI virus database. Multiple sequence alignment and phylogenetic analysis were done using MEGA X. RESULTS Bioinformatics analyses using as low as ∼3.5 million reads yielded complete and partial genomes for Cauliflower mosaic virus (CaMV), Cowpea polerovirus 2 (CPPV2), Groundnut rosette assistor virus (GRAV), Groundnut rosette virus (GRV), Groundnut rosette virus satellite RNA (satRNA) and Peanut mottle virus (PeMoV) falling within the species demarcation criteria. This is the first report of CaMV and the second report of CPPV2 on groundnut hosts in the world. Confirmation of the detected viruses was further verified through phylogenetic analyses alongside reported publicly available highly similar viruses. PeMoV was the only seed-borne virus reported. CONCLUSION Our findings demonstrate the power of Next Generation Sequencing in the discovery and identification of novel viruses in groundnuts. The detection of the new viruses indicates the complexity of virus diseases in groundnuts and would require more focus in future studies to establish the effect of the viruses as sole or mixed infections on the crop. The detection of PeMoV with potential origin from Malawi indicates the importance of seed certification and cross-boundary seed health testing.
Collapse
Affiliation(s)
- Dennis Obonyo
- Department of Biotechnology, University of Eldoret, Kenya, P.O Box 1125-30100, Eldoret, Kenya; Centre for Biotechnology and Bioinformatics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - George Ouma
- Institute for Climate Change and Adaptation, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Rachel Ikawa
- Centre for Biotechnology and Bioinformatics, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics, Eastern and Southern Africa, P.O Box 39063-00623, Nairobi, Kenya.
| |
Collapse
|
3
|
Pouresmaeil M, Azizi-Dargahlou S. Investigation of CaMV-host co-evolution through synonymous codon pattern. J Basic Microbiol 2024; 64:e2300664. [PMID: 38436477 DOI: 10.1002/jobm.202300664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
Cauliflower mosaic virus (CaMV) has a double-stranded DNA genome and is globally distributed. The phylogeny tree of 121 CaMV isolates was categorized into two primary groups, with Iranian isolates showing the greatest genetic variations. Nucleotide A demonstrated the highest percentage (36.95%) in the CaMV genome and the dinucleotide odds ratio analysis revealed that TC dinucleotide (1.34 ≥ 1.23) and CG dinucleotide (0.63 ≤ 0.78) are overrepresented and underrepresented, respectively. Relative synonymous codon usage (RSCU) analysis confirmed codon usage bias in CaMV and its hosts. Brassica oleracea and Brassica rapa, among the susceptible hosts of CaMV, showed a codon adaptation index (CAI) value above 0.8. Additionally, relative codon deoptimization index (RCDI) results exhibited the highest degree of deoptimization in Raphanus sativus. These findings suggest that the genes of CaMV underwent codon adaptation with its hosts. Among the CaMV open reading frames (ORFs), genes that produce reverse transcriptase and virus coat proteins showed the highest CAI value of 0.83. These genes are crucial for the creation of new virion particles. The results confirm that CaMV co-evolved with its host to ensure the optimal expression of its genes in the hosts, allowing for easy infection and effective spread. To detect the force behind codon usage bias, an effective number of codons (ENC)-plot and neutrality plot were conducted. The results indicated that natural selection is the primary factor influencing CaMV codon usage bias.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Seed and Plant Certification and Registration Institute, Ardabil Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
4
|
Abstract
Cacao swollen shoot virus causes cacao swollen shoot disease of Theobroma cacao (cacao) plants. At least six cacao-infecting Badnavirus species-Cacao swollen shoot Togo A virus, Cacao swollen shoot Togo B virus (previously known as Cacao swollen shoot virus), Cacao swollen shoot CE virus, Cacao swollen shoot Ghana M virus, Cacao swollen shoot Ghana N virus, and Cacao swollen shoot Ghana Q virus-are responsible for the swollen shoot disease of cacao in Ghana. Each of these species consists of a multiplicity of strains. The New Juaben strain, the most virulent cacao swollen shoot virus strain in Ghana, belongs to the Cacao swollen shoot Togo B virus species, and is a commonly used strain in laboratory transmission assays. Infection of cacao trees with multiple strains of the virus is common and new evidence suggests that these coinfections may have resulted in the emergence of recombinant strains of the virus. The impact of these emerging recombinant strains on disease severity is uncertain. This review focuses largely on the discovery of cacao swollen shoot virus in Ghana, diversity of the virus strains, molecular characterization, propagation of virus infection in cacao plants, emergence of recombinant virus strains, vector-mediated transmission of the virus, and the management of the cacao swollen shoot disease in Ghana. It also contains sections on the botany and origin of the cacao tree, its introduction to Ghana, the role of cacao swollen shoot disease in facilitating Ghana's independence from Britain, and a brief history of chocolate.
Collapse
Affiliation(s)
| | - Owusu Domfeh
- Plant Pathology Division, Cocoa Research Institute of Ghana, New Tafo, Akim, Ghana
| | - George Akumfi Ameyaw
- Plant Pathology Division, Cocoa Research Institute of Ghana, New Tafo, Akim, Ghana
| |
Collapse
|
5
|
Pouresmaeil M, Dall'Ara M, Salvato M, Turri V, Ratti C. Cauliflower mosaic virus: Virus-host interactions and its uses in biotechnology and medicine. Virology 2023; 580:112-119. [PMID: 36812696 DOI: 10.1016/j.virol.2023.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Cauliflower mosaic virus (CaMV) was the first discovered plant virus with genomic DNA that uses reverse transcriptase for replication. The CaMV 35S promoter is a constitutive promoter and thus, an attractive driver of gene expression in plant biotechnology. It is used in most transgenic crops to activate foreign genes which have been artificially inserted into the host plant. In the last century, producing food for the world's population while preserving the environment and human health is the main topic of agriculture. The damage caused by viral diseases has a significant negative economic impact on agriculture, and disease control is based on two strategies: immunization and prevention to contain virus spread, so correct identification of plant viruses is important for disease management. Here, we discuss CaMV from different aspects: taxonomy, structure and genome, host plants and symptoms, transmission and pathogenicity, prevention, control and application in biotechnology as well as in medicine. Also, we calculated the CAI index for three ORFs IV, V, and VI of the CaMV virus in host plants, the results of which can be used in the discussion of gene transfer or antibody production to identify the CaMV.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Department of Biotechnology, Faculty of Agriculture, Azarbijan Shahid Madani University, Tabriz, Iran.
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| | - Maria Salvato
- University of Maryland, Department of Veterinary Medicine, College Park, MD, 20742, USA
| | - Valentina Turri
- Healthcare Direction, Istituto Scientifico Romagnolo per Lo Studio e La Cura Dei Tumori, IRCCS, 47014, Meldola, FC, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, School of Agriculture and Veterinary Medicine, University of Bologna, 40127, Bologna, Italy
| |
Collapse
|
6
|
Geering ADW, McTaggart AR, Teycheney PY. Untangling the taxonomy of dahlia mosaic virus. Arch Virol 2022; 167:2325-2329. [PMID: 35969294 PMCID: PMC9556396 DOI: 10.1007/s00705-022-05567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
In this brief note, we review the taxonomic history of dahlia mosaic virus (DMV) and related viruses. DMV is the only officially recognized caulimovirus known to infect dahlia (Dahlia variabilis) plants, although this virus appears to be relatively rare as a pathogen compared to a more recently described but unclassified caulimovirus called dahlia common mosaic virus (DCMV). We have undertaken a new set of analyses to test the hypothesis that DCMV represents a new caulimovirus species whose members infect dahlia, but we ultimately reject this hypothesis. A probable sequencing error was identified in the reference genome sequence of DMV, and consequently, we recommend that an alternative virus isolate be nominated as the exemplar for this species. In accordance with the new binomial nomenclatural system, it is proposed that the virus species be called "Caulimovirus dahliae".
Collapse
Affiliation(s)
- Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Alistair R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | | |
Collapse
|
7
|
Tajwar R, Bradley DP, Ponzar NL, Tavis JE. Predicted structure of the hepatitis B virus polymerase reveals an ancient conserved protein fold. Protein Sci 2022; 31:e4421. [PMID: 36173165 PMCID: PMC9601786 DOI: 10.1002/pro.4421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022]
Abstract
Hepatitis B virus (HBV) chronically infects >250 million people. It replicates by a unique protein-primed reverse transcription mechanism, and the primary anti-HBV drugs are nucleos(t)ide analogs targeting the viral polymerase (P). P has four domains compared to only two in most reverse transcriptases: the terminal protein (TP) that primes DNA synthesis, a spacer, the reverse transcriptase (RT), and the ribonuclease H (RNase H). Despite being a major drug target and catalyzing a reverse transcription pathway very different from the retroviruses, HBV P has resisted structural analysis for decades. Here, we exploited computational advances to model P. The TP wrapped around the RT domain rather than forming the anticipated globular domain, with the priming tyrosine poised over the RT active site. The orientation of the RT and RNase H domains resembled that of the retroviral enzymes despite the lack of sequences analogous to the retroviral linker region. The model was validated by mapping residues with known surface exposures, docking nucleic acids, mechanistically interpreting mutations with strong phenotypes, and docking inhibitors into the RT and RNase H active sites. The HBV P fold, including the orientation of the TP domain, was conserved among hepadnaviruses infecting rodent to fish hosts and a nackednavirus, but not in other non-retroviral RTs. Therefore, this protein fold has persisted since the hepadnaviruses diverged from nackednaviruses >400 million years ago. This model will advance mechanistic analyses into the poorly understood enzymology of HBV reverse transcription and will enable drug development against non-active site targets for the first time.
Collapse
Affiliation(s)
- Razia Tajwar
- Department of Molecular Microbiology and Immunology, School of Medicine and Institute for Drug and Biotherapeutic InnovationSaint Louis UniversitySaint LouisMissouriUSA
| | - Daniel P. Bradley
- Department of Molecular Microbiology and Immunology, School of Medicine and Institute for Drug and Biotherapeutic InnovationSaint Louis UniversitySaint LouisMissouriUSA
| | - Nathan L. Ponzar
- Department of Molecular Microbiology and Immunology, School of Medicine and Institute for Drug and Biotherapeutic InnovationSaint Louis UniversitySaint LouisMissouriUSA
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, School of Medicine and Institute for Drug and Biotherapeutic InnovationSaint Louis UniversitySaint LouisMissouriUSA
| |
Collapse
|
8
|
Somssich M. The Dawn of Plant Molecular Biology: How Three Key Methodologies Paved the Way. Curr Protoc 2022; 2:e417. [PMID: 35441802 DOI: 10.1002/cpz1.417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The adoption of Arabidopsis thaliana in the 1980s as a universal plant model finally enabled researchers to adopt and take full advantage of the molecular biology tools and methods developed in the bacterial and animal fields since the early 1970s. It further brought the plant sciences up to speed with other research fields, which had been employing widely accepted model organisms for decades. In parallel with this major development, the concurrent establishment of the plant transformation methodology and the description of the cauliflower mosaic virus (CaMV) 35S promoter enabled scientists to create robust transgenic plant lines for the first time, thereby providing a valuable tool for studying gene function. The ability to create transgenic plants launched the plant biotechnology sector, with Monsanto and Plant Genetic Systems developing the first herbicide- and pest-tolerant plants, initiating a revolution in the agricultural industry. Here I review the major developments over a less than 10-year span and demonstrate how they complemented each other to trigger a revolution in plant molecular biology and launch an era of unprecedented progress for the whole plant field. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Marc Somssich
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Li S, Lyu S, Liu Y, Luo M, Shi S, Deng S. Cauliflower mosaic virus P6 Dysfunctions Histone Deacetylase HD2C to Promote Virus Infection. Cells 2021; 10:2278. [PMID: 34571927 PMCID: PMC8464784 DOI: 10.3390/cells10092278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.
Collapse
Affiliation(s)
- Shun Li
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
| | - Yujuan Liu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- National Engineering Research Center of Navel Orange, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
10
|
Kubina J, Geldreich A, Gales JP, Baumberger N, Bouton C, Ryabova LA, Grasser KD, Keller M, Dimitrova M. Nuclear export of plant pararetrovirus mRNAs involves the TREX complex, two viral proteins and the highly structured 5' leader region. Nucleic Acids Res 2021; 49:8900-8922. [PMID: 34370034 PMCID: PMC8421220 DOI: 10.1093/nar/gkab653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, the major nuclear export pathway for mature mRNAs uses the dimeric receptor TAP/p15, which is recruited to mRNAs via the multisubunit TREX complex, comprising the THO core and different export adaptors. Viruses that replicate in the nucleus adopt different strategies to hijack cellular export factors and achieve cytoplasmic translation of their mRNAs. No export receptors are known in plants, but Arabidopsis TREX resembles the mammalian complex, with a conserved hexameric THO core associated with ALY and UIEF proteins, as well as UAP56 and MOS11. The latter protein is an orthologue of mammalian CIP29. The nuclear export mechanism for viral mRNAs has not been described in plants. To understand this process, we investigated the export of mRNAs of the pararetrovirus CaMV in Arabidopsis and demonstrated that it is inhibited in plants deficient in ALY, MOS11 and/or TEX1. Deficiency for these factors renders plants partially resistant to CaMV infection. Two CaMV proteins, the coat protein P4 and reverse transcriptase P5, are important for nuclear export. P4 and P5 interact and co-localise in the nucleus with the cellular export factor MOS11. The highly structured 5′ leader region of 35S RNAs was identified as an export enhancing element that interacts with ALY1, ALY3 and MOS11 in vitro.
Collapse
Affiliation(s)
- Julie Kubina
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jón Pol Gales
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Nicolas Baumberger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Clément Bouton
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, D-93053 Regensburg, Germany
| | - Mario Keller
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Then C, Bak A, Morisset A, Dáder B, Ducousso M, Macia JL, Drucker M. The N-terminus of the cauliflower mosaic virus aphid transmission protein P2 is involved in transmission body formation and microtubule interaction. Virus Res 2021; 297:198356. [PMID: 33667624 DOI: 10.1016/j.virusres.2021.198356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 01/01/2023]
Abstract
Cauliflower mosaic virus (CaMV) is transmitted by aphids using the non-circulative transmission mode: when the insects feed on infected leaves, virus particles from infected cells attach rapidly to their stylets and are transmitted to a new host when the aphids change plants. Mandatory for CaMV transmission, the viral helper protein P2 mediates as a molecular linker binding of the virus particles to the aphid stylets. P2 is available in infected plant cells in a viral inclusion that is specialized for transmission and named the transmission body (TB). When puncturing an infected leaf cell, the aphid triggers an ultra-rapid viral response, necessary for virus acquisition and called transmission activation: The TB disrupts and P2 is redistributed onto cortical microtubules, together with virus particles that are simultaneously set free from virus factories and join P2 on the microtubules to form the so-called mixed networks (MNs). The MNs are the predominant structure from which CaMV is acquired by aphids. However, the P2 domains involved in microtubule interaction are not known. To identify P2 regions involved in its functions, we generated a set of P2 mutants by alanine scanning and analyzed them in the viral context for their capacity to form a TB, to interact with microtubules and to transmit CaMV. Our results show that contrary to the previously characterized P2-P2 and P2-virion binding sites in its C-terminus, the microtubule binding site is contained in the N-terminal half of P2. Further, this region is important for TB formation since some P2 mutant proteins did not accumulate in TBs but were retained in the viral factories where P2 is translated. Taken together, the N-terminus of P2 is not only involved in vector interaction as previously reported, but also in interaction with microtubules and in formation of TBs.
Collapse
Affiliation(s)
| | - Aurélie Bak
- INRAE Centre Occitanie - Montpellier, France
| | | | | | | | | | - Martin Drucker
- INRAE Centre Occitanie - Montpellier, France; INRAE Centre Grand Est - Colmar, France.
| |
Collapse
|
12
|
Alers-Velazquez R, Jacques S, Muller C, Boldt J, Schoelz J, Leisner S. Cauliflower mosaic virus P6 inclusion body formation: A dynamic and intricate process. Virology 2021; 553:9-22. [PMID: 33197754 DOI: 10.1016/j.virol.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 11/17/2022]
Abstract
During an infection, Cauliflower mosaic virus (CaMV) forms inclusion bodies (IBs) mainly composed of viral protein P6, where viral activities occur. Because viral processes occur in IBs, understanding the mechanisms by which they are formed is crucial. FL-P6 expressed in N. benthamiana leaves formed IBs of a variety of shapes and sizes. Small IBs were dynamic, undergoing fusion/dissociation events. Co-expression of actin-binding polypeptides with FL-P6 altered IB size distribution and inhibited movement. This suggests that IB movement is required for fusion and growth. A P6 deletion mutant was discovered that formed a single large IB per cell, which suggests it exhibited altered fusion/dissociation dynamics. Myosin-inhibiting drugs did not affect small IB movement, while those inhibiting actin polymerization did. Large IBs colocalized with components of the aggresome pathway, while small ones generally did not. This suggests a possible involvement of the aggresome pathway in large IB formation.
Collapse
Affiliation(s)
- Roberto Alers-Velazquez
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Sarah Jacques
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Clare Muller
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA
| | - Jennifer Boldt
- USDA-Agricultural Research Service, Application Technology Research Unit, 2801 West Bancroft Street, Mail Stop 604, Toledo, OH, 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Mail Stop 601, Toledo, OH, 43606, USA.
| |
Collapse
|
13
|
Efficient Confirmation of Plant Viral Proteins and Identification of Specific Viral Strains by nanoLC-ESI-Q-TOF Using Single-Leaf-Tissue Samples. Pathogens 2020; 9:pathogens9110966. [PMID: 33228257 PMCID: PMC7699591 DOI: 10.3390/pathogens9110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/03/2022] Open
Abstract
Plant viruses are important pathogens that cause significant crop losses. A plant protein extraction protocol that combines crushing the tissue by a pestle in liquid nitrogen with subsequent crushing by a roller-ball crusher in urea solution, followed by RuBisCO depletion, reduction, alkylation, protein digestion, and ZipTip purification allowed us to substantially simplify the sample preparation by removing any other precipitation steps and to detect viral proteins from samples, even with less than 0.2 g of leaf tissue, by a medium resolution nanoLC-ESI-Q-TOF. The presence of capsid proteins or polyproteins of fourteen important viruses from seven different families (Geminiviridae, Luteoviridae, Bromoviridae, Caulimoviridae, Virgaviridae, Potyviridae, and Secoviridae) isolated from ten different economically important plant hosts was confirmed through many identified pathogen-specific peptides from a protein database of host proteins and potential pathogen proteins assembled separately for each host and based on existing online plant virus pathogen databases. The presented extraction protocol, combined with a medium resolution LC-MS/MS, represents a cost-efficient virus protein confirmation method that proved to be effective at identifying virus strains (as demonstrated for PPV, WDV) and distinct disease species of BYDV, as well as putative new viral protein sequences from single-plant-leaf tissue samples. Data are available via ProteomeXchange with identifier PXD022456.
Collapse
|
14
|
Leon K, Ott M. An 'Arms Race' between the Nonsense-mediated mRNA Decay Pathway and Viral Infections. Semin Cell Dev Biol 2020; 111:101-107. [PMID: 32553580 PMCID: PMC7295464 DOI: 10.1016/j.semcdb.2020.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
The Nonsense-mediated mRNA Decay (NMD) pathway is an RNA quality control pathway conserved among eukaryotic cells. While historically thought to predominantly recognize transcripts with premature termination codons, it is now known that the NMD pathway plays a variety of roles, from homeostatic events to control of viral pathogens. In this review we highlight the reciprocal interactions between the host NMD pathway and viral pathogens, which have shaped both the host antiviral defense and viral pathogenesis.
Collapse
Affiliation(s)
- Kristoffer Leon
- J. David Gladstone Institutes, United States; Department of Medicine, University of California, San Francisco, United States
| | - Melanie Ott
- J. David Gladstone Institutes, United States; Department of Medicine, University of California, San Francisco, United States.
| |
Collapse
|
15
|
Omae N, Suzuki M, Ugaki M. The genome of the Cauliflower mosaic virus, a plant pararetrovirus, is highly methylated in the nucleus. FEBS Lett 2020; 594:1974-1988. [PMID: 32492176 DOI: 10.1002/1873-3468.13852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 11/07/2022]
Abstract
Cytosine methylation is an important defense against invasive DNAs. Here, cytosine methylation profiles of a plant pararetrovirus, Cauliflower mosaic virus (CaMV), were investigated. Nuclear CaMV DNA is highly methylated throughout the genome including at transcription regulatory regions, but the virion DNA is unmethylated. In vitro CG methylation of the viral 35S promoter reduces transcription from the downstream gene. Although nuclear CaMV DNA is highly methylated, its transcripts are accumulated in the nucleus. The data suggest that a small population of unmethylated viral genomes produced through reverse transcription are constantly delivered back to the nucleus. Small RNA profiles suggest that methylation of the CaMV DNA may be due to de novo methylation through 21-, 22-, and 24-nt small RNAs with adenines at their 5' terminus.
Collapse
Affiliation(s)
- Natsuki Omae
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masashi Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Masashi Ugaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
16
|
Bergès SE, Vasseur F, Bediée A, Rolland G, Masclef D, Dauzat M, van Munster M, Vile D. Natural variation of Arabidopsis thaliana responses to Cauliflower mosaic virus infection upon water deficit. PLoS Pathog 2020; 16:e1008557. [PMID: 32413076 PMCID: PMC7255604 DOI: 10.1371/journal.ppat.1008557] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.
Collapse
Affiliation(s)
- Sandy E. Bergès
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - François Vasseur
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
- CEFE, CNRS, EPHE, IRD, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Alexis Bediée
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Gaëlle Rolland
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Diane Masclef
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | - Myriam Dauzat
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
17
|
Bak A, Emerson JB. Cauliflower mosaic virus (CaMV) Biology, Management, and Relevance to GM Plant Detection for Sustainable Organic Agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Li S, Hu Y, Jiang L, Rui P, Zhao Q, Feng J, Zuo D, Zhou X, Jiang T. Strawberry Vein Banding Virus P6 Protein Is a Translation Trans-Activator and Its Activity Can be Suppressed by FveIF3g. Viruses 2018; 10:E717. [PMID: 30558257 PMCID: PMC6316418 DOI: 10.3390/v10120717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/06/2018] [Accepted: 12/13/2018] [Indexed: 01/25/2023] Open
Abstract
The strawberry vein banding virus (SVBV) open reading frame (ORF) VI encodes a P6 protein known as the RNA silencing suppressor. This protein is known to form inclusion like granules of various sizes and accumulate in both the nuclei and the cytoplasm of SVBV-infected plant cells. In this study, we have determined that the P6 protein is the only trans-activator (TAV) encoded by SVBV, and can efficiently trans-activate the translation of downstream gfp mRNA in a bicistron derived from the SVBV. Furthermore, the P6 protein can trans-activate the expression of different bicistrons expressed by different caulimovirus promoters. The P6 protein encoded by SVBV from an infectious clone can also trans-activate the expression of bicistron. Through protein-protein interaction assays, we determined that the P6 protein could interact with the cell translation initiation factor FveIF3g of Fragaria vesca and co-localize with it in the nuclei of Nicotiana benthamiana cells. This interaction reduced the formation of P6 granules in cells and its trans-activation activity on translation.
Collapse
Affiliation(s)
- Shuai Li
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Yahui Hu
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Penghuan Rui
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Qingqing Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Jiying Feng
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Dengpan Zuo
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| | - Xueping Zhou
- State Key Laboratory for Plant Disease and Insect Pest, Institute of Plant protection, China Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Chen S, Saito N, Encabo JR, Yamada K, Choi IR, Kishima Y. Ancient Endogenous Pararetroviruses in Oryza Genomes Provide Insights into the Heterogeneity of Viral Gene Macroevolution. Genome Biol Evol 2018; 10:2686-2696. [PMID: 30239708 PMCID: PMC6179347 DOI: 10.1093/gbe/evy207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2018] [Indexed: 12/13/2022] Open
Abstract
Endogenous viral sequences in eukaryotic genomes, such as those derived from plant pararetroviruses (PRVs), can serve as genomic fossils to study viral macroevolution. Many aspects of viral evolutionary rates are heterogeneous, including substitution rate differences between genes. However, the evolutionary dynamics of this viral gene rate heterogeneity (GRH) have been rarely examined. Characterizing such GRH may help to elucidate viral adaptive evolution. In this study, based on robust phylogenetic analysis, we determined an ancient endogenous PRV group in Oryza genomes in the range of being 2.41-15.00 Myr old. We subsequently used this ancient endogenous PRV group and three younger groups to estimate the GRH of PRVs. Long-term substitution rates for the most conserved gene and a divergent gene were 2.69 × 10-8 to 8.07 × 10-8 and 4.72 × 10-8 to 1.42 × 10-7 substitutions/site/year, respectively. On the basis of a direct comparison, a long-term GRH of 1.83-fold was identified between these two genes, which is unexpectedly low and lower than the short-term GRH (>3.40-fold) of PRVs calculated using published data. The lower long-term GRH of PRVs was due to the slightly faster rate decay of divergent genes than of conserved genes during evolution. To the best of our knowledge, we quantified for the first time the long-term GRH of viral genes using paleovirological analyses, and proposed that the GRH of PRVs might be heterogeneous on time scales (time-dependent GRH). Our findings provide special insights into viral gene macroevolution and should encourage a more detailed examination of the viral GRH.
Collapse
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Nozomi Saito
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jaymee R Encabo
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Kanae Yamada
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
20
|
Improved detection and quantification of cauliflower mosaic virus in food crops: assessing false positives in GMO screening based on the 35S promoter. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3099-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Shukla A, Pagán I, García‐Arenal F. Effective tolerance based on resource reallocation is a virus-specific defence in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2018; 19:1454-1465. [PMID: 29027740 PMCID: PMC6638070 DOI: 10.1111/mpp.12629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 05/27/2023]
Abstract
Plant viruses often harm their hosts, which have developed mechanisms to prevent or minimize the effects of virus infection. Resistance and tolerance are the two main plant defences to pathogens. Although resistance to plant viruses has been studied extensively, tolerance has received much less attention. Theory predicts that tolerance to low-virulent parasites would be achieved through resource reallocation from growth to reproduction, whereas tolerance to high-virulent parasites would be attained through shortening of the pre-reproductive period. We have shown previously that the tolerance of Arabidopsis thaliana to Cucumber mosaic virus (CMV), a relatively low-virulent virus in this host, accords to these predictions. However, whether other viruses trigger the same response, and how A. thaliana copes with highly virulent virus infections remains unexplored. To address these questions, we challenged six A. thaliana wild genotypes with five viruses with different genomic structures, life histories and transmission modes. In these plants, we quantified virus multiplication, virulence, and the effects of infection on plant growth and reproduction, and on the developmental schedule. Our results indicate that virus multiplication varies according to the virus × host genotype interaction. Conversely, effective tolerance is observed only on CMV infection, and is associated with resource reallocation from growth to reproduction. Tolerance to the other viruses is observed only in specific host-virus combinations and, at odds with theoretical predictions, is linked to longer pre-reproductive periods. These findings only partially agree with theoretical predictions, and contribute to a better understanding of pathogenic processes in plant-virus interactions.
Collapse
Affiliation(s)
- Aayushi Shukla
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA, E.T.S.I. Agronómica, Agroalimentaria y de Biosistemas, Campus de MontegancedoUniversidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid) 28223Spain
| |
Collapse
|
22
|
Geldreich A, Haas G, Kubina J, Bouton C, Tanguy M, Erhardt M, Keller M, Ryabova L, Dimitrova M. Formation of large viroplasms and virulence of Cauliflower mosaic virus in turnip plants depend on the N-terminal EKI sequence of viral protein TAV. PLoS One 2017; 12:e0189062. [PMID: 29253877 PMCID: PMC5734791 DOI: 10.1371/journal.pone.0189062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) TAV protein (TransActivator/Viroplasmin) plays a pivotal role during the infection cycle since it activates translation reinitiation of viral polycistronic RNAs and suppresses RNA silencing. It is also the major component of cytoplasmic electron-dense inclusion bodies (EDIBs) called viroplasms that are particularly evident in cells infected by the virulent CaMV Cabb B-JI isolate. These EDIBs are considered as virion factories, vehicles for CaMV intracellular movement and reservoirs for CaMV transmission by aphids. In this study, focused on different TAV mutants in vivo, we demonstrate that three physically separated domains collectively participate to the formation of large EDIBs: the N-terminal EKI motif, a sequence of the MAV domain involved in translation reinitiation and a C-terminal region encompassing the zinc finger. Surprisingly, EKI mutant TAVm3, corresponding to a substitution of the EKI motif at amino acids 11-13 by three alanines (AAA), which completely abolished the formation of large viroplasms, was not lethal for CaMV but highly reduced its virulence without affecting the rate of systemic infection. Expression of TAVm3 in a viral context led to formation of small irregularly shaped inclusion bodies, mild symptoms and low levels of viral DNA and particles accumulation, despite the production of significant amounts of mature capsid proteins. Unexpectedly, for CaMV-TAVm3 the formation of viral P2-containing electron-light inclusion body (ELIB), which is essential for CaMV aphid transmission, was also altered, thus suggesting an indirect role of the EKI tripeptide in CaMV plant-to-plant propagation. This important functional contribution of the EKI motif in CaMV biology can explain the strict conservation of this motif in the TAV sequences of all CaMV isolates.
Collapse
Affiliation(s)
- Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Gabrielle Haas
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Clément Bouton
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mélanie Tanguy
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Lyubov Ryabova
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357, Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
23
|
Schoelz JE, Leisner S. Setting Up Shop: The Formation and Function of the Viral Factories of Cauliflower mosaic virus. FRONTIERS IN PLANT SCIENCE 2017; 8:1832. [PMID: 29163571 PMCID: PMC5670102 DOI: 10.3389/fpls.2017.01832] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/10/2017] [Indexed: 05/23/2023]
Abstract
Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs), viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV). CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors) and P6 (required for viral intra-and inter-cellular infection), respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.
Collapse
Affiliation(s)
- James E. Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO, United States
| | - Scott Leisner
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
24
|
Abstract
Background: A mechanism of innate antiviral immunity operating against viruses infecting mammalian cells has been described during the last decade. Host cytidine deaminases (
e.g., APOBEC3 proteins) edit viral genomes, giving rise to hypermutated nonfunctional viruses; consequently, viral fitness is reduced through lethal mutagenesis. By contrast, sub-lethal hypermutagenesis may contribute to virus evolvability by increasing population diversity. To prevent genome editing, some viruses have evolved proteins that mediate APOBEC3 degradation. The model plant
Arabidopsis thaliana genome encodes nine cytidine deaminases (
AtCDAs), raising the question of whether deamination is an antiviral mechanism in plants as well. Methods: Here we tested the effects of expression of
AtCDAs on the pararetrovirus Cauliflower mosaic virus (CaMV). Two different experiments were carried out. First, we transiently overexpressed each one of the nine
A. thalianaAtCDA genes in
Nicotianabigelovii plants infected with CaMV, and characterized the resulting mutational spectra, comparing them with those generated under normal conditions. Secondly, we created
A. thaliana transgenic plants expressing an artificial microRNA designed to knock-out the expression of up to six
AtCDA genes. This and control plants were then infected with CaMV. Virus accumulation and mutational spectra where characterized in both types of plants. Results: We have shown that the
A. thalianaAtCDA1 gene product exerts a mutagenic activity, significantly increasing the number of G to A mutations
in vivo, with a concomitant reduction in the amount of CaMV genomes accumulated. Furthermore, the magnitude of this mutagenic effect on CaMV accumulation is positively correlated with the level of
AtCDA1 mRNA expression in the plant. Conclusions: Our results suggest that deamination of viral genomes may also work as an antiviral mechanism in plants.
Collapse
Affiliation(s)
- Susana Martín
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain
| | - José M Cuevas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain.,Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", CSIC-Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain.,Área de Genética, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universidad Politécnica de València, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain.,Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UV, Catedrático Agustín Escardino 9, 46980 Paterna, València, Spain.,The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
25
|
Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci U S A 2017; 114:E2026-E2035. [PMID: 28223514 DOI: 10.1073/pnas.1610687114] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Autophagy plays a paramount role in mammalian antiviral immunity including direct targeting of viruses and their individual components, and many viruses have evolved measures to antagonize or even exploit autophagy mechanisms for the benefit of infection. In plants, however, the functions of autophagy in host immunity and viral pathogenesis are poorly understood. In this study, we have identified both anti- and proviral roles of autophagy in the compatible interaction of cauliflower mosaic virus (CaMV), a double-stranded DNA pararetrovirus, with the model plant Arabidopsis thaliana We show that the autophagy cargo receptor NEIGHBOR OF BRCA1 (NBR1) targets nonassembled and virus particle-forming capsid proteins to mediate their autophagy-dependent degradation, thereby restricting the establishment of CaMV infection. Intriguingly, the CaMV-induced virus factory inclusions seem to protect against autophagic destruction by sequestering capsid proteins and coordinating particle assembly and storage. In addition, we found that virus-triggered autophagy prevents extensive senescence and tissue death of infected plants in a largely NBR1-independent manner. This survival function significantly extends the timespan of virus production, thereby increasing the chances for virus particle acquisition by aphid vectors and CaMV transmission. Together, our results provide evidence for the integration of selective autophagy into plant immunity against viruses and reveal potential viral strategies to evade and adapt autophagic processes for successful pathogenesis.
Collapse
|
26
|
Menéndez-Arias L, Sebastián-Martín A, Álvarez M. Viral reverse transcriptases. Virus Res 2016; 234:153-176. [PMID: 28043823 DOI: 10.1016/j.virusres.2016.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/19/2016] [Accepted: 12/24/2016] [Indexed: 12/11/2022]
Abstract
Reverse transcriptases (RTs) play a major role in the replication of Retroviridae, Metaviridae, Pseudoviridae, Hepadnaviridae and Caulimoviridae. RTs are enzymes that are able to synthesize DNA using RNA or DNA as templates (DNA polymerase activity), and degrade RNA when forming RNA/DNA hybrids (ribonuclease H activity). In retroviruses and LTR retrotransposons (Metaviridae and Pseudoviridae), the coordinated action of both enzymatic activities converts single-stranded RNA into a double-stranded DNA that is flanked by identical sequences known as long terminal repeats (LTRs). RTs of retroviruses and LTR retrotransposons are active as monomers (e.g. murine leukemia virus RT), homodimers (e.g. Ty3 RT) or heterodimers (e.g. human immunodeficiency virus type 1 (HIV-1) RT). RTs lack proofreading activity and display high intrinsic error rates. Besides, high recombination rates observed in retroviruses are promoted by poor processivity that causes template switching, a hallmark of reverse transcription. HIV-1 RT inhibitors acting on its polymerase activity constitute the backbone of current antiretroviral therapies, although novel drugs, including ribonuclease H inhibitors, are still necessary to fight HIV infections. In Hepadnaviridae and Caulimoviridae, reverse transcription leads to the formation of nicked circular DNAs that will be converted into episomal DNA in the host cell nucleus. Structural and biochemical information on their polymerases is limited, although several drugs inhibiting HIV-1 RT are known to be effective against the human hepatitis B virus polymerase. In this review, we summarize current knowledge on reverse transcription in the five virus families and discuss available biochemical and structural information on RTs, including their biosynthesis, enzymatic activities, and potential inhibition.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Alba Sebastián-Martín
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Mar Álvarez
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
27
|
Feng M, Zhang H, Pan Y, Hu Y, Chen J, Zuo D, Jiang T. Complete nucleotide sequence of strawberry vein banding virus Chinese isolate and infectivity of its full-length DNA clone. Virol J 2016; 13:164. [PMID: 27716385 PMCID: PMC5052798 DOI: 10.1186/s12985-016-0624-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Strawberry vein banding virus (SVBV) is a double-stranded DNA plant virus, which has been found in North America, Australia, Brazil, Japan, Europe and several provinces of China. Infected strawberry plants exhibit mild vein-banding symptoms and chlorosis along the veins. It is one of the most economically important diseases in Asiatic, European and North American strawberry-growing areas. FINDINGS The complete genome of an SVBV Chinese isolate (SVBV-CN) was isolated and cloned from a naturally infected strawberry (Fragaria × ananassa cv. Sachinoka) sample found in Shenyang city of Liaoning province. Sequence analysis revealed a complete genome of 7864 nucleotides (nts) that indicated SVBV-CN was most closely related to SVBV from the United States (SVBV-US) with a sequence similarity of 85.8 %. Two major clades were identified based on phylogenetic analysis of the complete genome sequences of caulimoviruses. SVBV-CN clustered together with SVBV-US, whereas other caulimoviruses formed a separate branch. Agrobacterium-mediated inoculation of Fragaria vesca with an infectious clone of SVBV-CN results in systemic infection with distinct symptoms of yellowing bands along the main leaf veins. This suggests that the SVBV-CN infectious clone can recapitulate the symptoms observed in naturally infected strawberries, and therefore is likely the causal agent of the original disease observed in strawberries. Furthermore, strawberry plants inoculated with the infectious clone using vacuum infiltration developed symptoms with a very high infection rate of 86-100 % in 4-5 weeks post-inoculation. This compares to an infection rate of 20-40 % in 8-9 weeks post-inoculation using syringe-inoculation. CONCLUSIONS The complete nucleotide sequence of SVBV from a naturally infected strawberry was determined. Agroinfiltration of strawberry plants using an infectious clone of SVBV-CN resulted in symptoms typically found in infected strawberries from Shenyang city of Liaoning province in China. This is the first report describing an infectious clone of SVBV-CN, and that vacuum infiltration can be potentially used as a new and highly efficient means for inoculation of strawberry plants.
Collapse
Affiliation(s)
- Mingfeng Feng
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Hanping Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Yuan Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Yahui Hu
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Dengpan Zuo
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| | - Tong Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036 People’s Republic of China
| |
Collapse
|
28
|
Bouton C, Geldreich A, Ramel L, Ryabova LA, Dimitrova M, Keller M. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern. PLoS One 2015; 10:e0132665. [PMID: 26162084 PMCID: PMC4498817 DOI: 10.1371/journal.pone.0132665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splicing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5' region and suggested that the main role of CaMV splicing is to downregulate expression of open reading frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA.
Collapse
Affiliation(s)
- Clément Bouton
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laëtitia Ramel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| |
Collapse
|
29
|
Kalischuk ML, Johnson D, Kawchuk LM. Priming with a double-stranded DNA virus alters Brassica rapa seed architecture and facilitates a defense response. Gene 2015; 557:130-7. [DOI: 10.1016/j.gene.2014.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/06/2014] [Accepted: 12/09/2014] [Indexed: 01/11/2023]
|
30
|
Lutz L, Okenka G, Schoelz J, Leisner S. Mutations within A 35 amino acid region of P6 influence self-association, inclusion body formation, and Caulimovirus infectivity. Virology 2015; 476:26-36. [PMID: 25506670 PMCID: PMC4323857 DOI: 10.1016/j.virol.2014.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022]
Abstract
Cauliflower mosaic virus gene VI product (P6) is an essential protein that forms cytoplasmic, inclusion bodies (IBs). P6 contains four regions involved in self-association, termed D1-D4. D3 binds to D1, along with D4 and contains a spacer region (termed D3b) between two RNA-binding domains. Here we show D3b binds full-length P6 along with D1 and D4. Full-length P6s harboring single amino acid substitutions within D3b showed reduced binding to both D1 and D4. Full-length P6s containing D3b mutations and fused with green fluorescent protein formed inclusion-like bodies (IL-Bs) when expressed in Nicotiana benthamiana leaves. However, mutant P6s with reduced binding to D1 and D4, showed smaller IL-Bs, than wild type. Likewise, viruses containing these mutations showed a decrease in inoculated leaf viral DNA levels and reduced efficiency of systemic infection. These data suggest that mutations influencing P6 self-association alter IB formation and reduce virus infection.
Collapse
Affiliation(s)
- Lindy Lutz
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - Genevieve Okenka
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | - James Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Scott Leisner
- Department of Biological Sciences, The University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA.
| |
Collapse
|
31
|
The temporal evolution and global spread of Cauliflower mosaic virus, a plant pararetrovirus. PLoS One 2014; 9:e85641. [PMID: 24465629 PMCID: PMC3897471 DOI: 10.1371/journal.pone.0085641] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 11/29/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) is a plant pararetrovirus with a double-stranded DNA genome. It is the type member of the genus Caulimovirus in the family Caulimoviridae. CaMV is transmitted by sap inoculation and in nature by aphids in a semi-persistent manner. To investigate the patterns and timescale of CaMV migration and evolution, we sequenced and analyzed the genomes of 67 isolates of CaMV collected mostly in Greece, Iran, Turkey, and Japan together with nine published sequences. We identified the open-reading frames (ORFs) in the genomes and inferred their phylogeny. After removing recombinant sequences, we estimated the substitution rates, divergence times, and phylogeographic patterns of the virus populations. We found that recombination has been a common feature of CaMV evolution, and that ORFs I–V have a different evolutionary history from ORF VI. The ORFs have evolved at rates between 1.71 and 5.81×10−4 substitutions/site/year, similar to those of viruses with RNA or ssDNA genomes. We found four geographically confined lineages. CaMV probably spread from a single population to other parts of the world around 400–500 years ago, and is now widely distributed among Eurasian countries. Our results revealed evidence of frequent gene flow between populations in Turkey and those of its neighboring countries, with similar patterns observed for Japan and the USA. Our study represents the first report on the spatial and temporal spread of a plant pararetrovirus.
Collapse
|
32
|
Almeyda CV, Eid SG, Saar D, Samuitiene M, Pappu HR. Comparative analysis of endogenous plant pararetroviruses in cultivated and wild Dahlia spp. Virus Genes 2013; 48:140-52. [PMID: 24353027 DOI: 10.1007/s11262-013-0997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/16/2013] [Indexed: 11/28/2022]
Abstract
Two distinct caulimoviruses, Dahlia mosaic virus (DMV) and Dahlia common mosaic virus, and an endogenous plant pararetroviral sequence (DvEPRS) were reported in Dahlia spp. DvEPRS, previously referred to as DMV-D10, was originally identified in the US from the cultivated Dahlia variabilis, and has also been found in New Zealand, Lithuania and Egypt, as well as in wild dahlia species growing in their natural habitats in Mexico. Sequence analysis of three new EPRSs from cultivated dahlias from Lithuania [D10-LT; 7,159 nucleotide level (nt)], New Zealand (D10-NZ, 7,156 nt), and the wild species, Dahlia rupicola, from Mexico (D10-DR, 7,133 nt) is reported in this study. The three EPRSs have the structure and organization typical of a caulimovirus species and showed identities among various open reading frames (ORFs) ranging between 71 and 97 % at the nt when compared to those or the known DvEPRS from the US. Examination of a dataset of seven full-length EPRSs obtained to date from cultivated and wild Dahlia spp. provided clues into genetic diversity of these EPRSs from diverse sources of dahlia. Phylogenetic analyses, mutation frequencies, potential recombination events, selection, and fitness were evaluated as evolutionary evidences for genetic variation. Assessment of all ORFs using phylogenomic and population genetics approaches suggests a wide genetic diversity of EPRSs occurring in dahlias. Phylogenetic analyses show that the EPRSs from various sources form one clade indicating a lack of clustering by geographical origin. Grouping of various EPRSs into two host taxa (cultivated vs. wild) shows little divergence with respect to their origin. Population genetic parameters demonstrate negative selection for all ORFs, with the reverse transcriptase region more variable than other ORFs. Recombination events were found which provide evolutionary evidence for genetic diversity among dahlia-associated EPRSs. This study contributes to an increased understanding of molecular population genetics and evolutionary pathways of these reverse transcribing viral elements.
Collapse
Affiliation(s)
- C V Almeyda
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | |
Collapse
|
33
|
A phylogeographical study of the cauliflower mosaic virus population in mid-Eurasia Iran using complete genome analysis. Arch Virol 2013; 159:1329-40. [PMID: 24343265 DOI: 10.1007/s00705-013-1910-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/26/2013] [Indexed: 10/25/2022]
Abstract
The full-length sequences of 34 Iranian cauliflower mosaic virus (CaMV) isolates were compared with others from public nucleotide sequence databases to provide a comprehensive overview of the genetic variability and patterns of genetic exchange in CaMV isolates from Iran. Based on the severity of symptoms and their ability to infect Brassica oleracea var. capitata, Iranian CaMV isolates were grouped into two distinct biotypes: latent/mild mottle (LI/MMo) and severe (S) infection. Recombination breakpoints were detected between the large intergenic region (LIR) and open reading frame (ORF) V (event 2); between ORF VII and ORF II (event 3), between ORF I and ORF III (event 4), and within ORF VI (event 1). Phylogenetic analysis indicated that Iranian CaMV isolates clustered into two subgroups belonging to group I (GI) that were distinct from North American and European isolates from group II (GII). Northeast Iranian isolates (subgroup B) and CaMV isolates from subgroup A closely corresponded to the S and LI/MMo biological groups, respectively. Genome-wide pairwise identity analysis of the CaMV isolates revealed three regions of pairwise identity representation: 92-94 % for GII and 94-96 % and 98-100 % for subgroups A and B. The within-population diversity was lower than the between-population diversity, suggesting the contribution of a founder effect on diversification of CaMV isolates. Amino acid sequences were conserved, with ω values ranging from 0.074 to 0.717 in different proteins. Thirteen amino acids in the deduced proteins of ORFs I, II, III, VI and VII were under positive selection (ω > 1), whereas purifying selection applied to the proteins encoded by ORFs IV and V. This study suggests that variation in the CaMV population can be explained by host-range differentiation and selection pressure. Moreover, recombination analysis revealed that a genomic exchange is responsible for the emergence of CaMV strains, providing valuable new information for understanding the diversity and evolution of caulimoviruses.
Collapse
|
34
|
Chen X, Huang H, Xu L. The CaMV 35S enhancer has a function to change the histone modification state at insertion loci in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2013; 126:841-846. [PMID: 23880941 DOI: 10.1007/s10265-013-0580-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Chromatin regions with different states usually harbor distinct epigenetic information, through which gene expression is regulated. Recent studies using mammalian cells showed that a chromatin state signature is associated with active developmental enhancers, defined by high levels of histone H3 lysine 27 acetylation (H3K27ac) and strong depletion of H3K27 trimethylation (H3K27me3). These findings also imply that active enhancers may play a role in creating a chromatin state by changing histone modification markers, which in turn affects gene expression. To explore whether an active enhancer in plants affect histone modifications, we investigated the cauliflower mosaic virus 35S enhancer (35Senh) for understanding its action model in Arabidopsis. We report that the 35Senh has a function to change the histone modification pattern at its presenting loci, by characterization of the 35Senh activated BREVIPEDICELLUS (BP) silencing lines and the randomly selected 35Senh activation tagging lines. By analyzing histone modification markers reflecting the plant chromatin state, we show that the 35Senh is generally correlated with the reduced level of H3K27me3 and the increased level of H3K4me3 at the insertion loci. Our data are consistent with those in mammals and suggest that the enhancer sequence correlating with the active chromatin state signature may be generally present in the eukaryotic kingdom.
Collapse
Affiliation(s)
- Xiaofan Chen
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | |
Collapse
|
35
|
Laird J, McInally C, Carr C, Doddiah S, Yates G, Chrysanthou E, Khattab A, Love AJ, Geri C, Sadanandom A, Smith BO, Kobayashi K, Milner JJ. Identification of the domains of cauliflower mosaic virus protein P6 responsible for suppression of RNA silencing and salicylic acid signalling. J Gen Virol 2013; 94:2777-2789. [PMID: 24088344 PMCID: PMC3836500 DOI: 10.1099/vir.0.057729-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in Nicotiana tabacum, WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent PR1a expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or PR1a expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded.
Collapse
Affiliation(s)
- Janet Laird
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Carol McInally
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Craig Carr
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sowjanya Doddiah
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gary Yates
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Elina Chrysanthou
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ahmed Khattab
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Andrew J Love
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Chiara Geri
- Istituto di Biologia e Biotechnologia Agraria, Consiglio Nazionale Delle Richerche, Pisa, Italy.,Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ari Sadanandom
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK
| | - Brian O Smith
- Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Kappei Kobayashi
- Plant Molecular Biology and Virology, Faculty of Agriculture, Ehime University, Ehime 790-8566, Japan
| | - Joel J Milner
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular Cellular and Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
36
|
Virus factories of cauliflower mosaic virus are virion reservoirs that engage actively in vector transmission. J Virol 2013; 87:12207-15. [PMID: 24006440 DOI: 10.1128/jvi.01883-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cauliflower mosaic virus (CaMV) forms two types of inclusion bodies within infected plant cells: numerous virus factories, which are the sites for viral replication and virion assembly, and a single transmission body (TB), which is specialized for virus transmission by aphid vectors. The TB reacts within seconds to aphid feeding on the host plant by total disruption and redistribution of its principal component, the viral transmission helper protein P2, onto microtubules throughout the cell. At the same time, virions also associate with microtubules. This redistribution of P2 and virions facilitates transmission and is reversible; the TB reforms within minutes after vector departure. Although some virions are present in the TB before disruption, their subsequent massive accumulation on the microtubule network suggests that they also are released from virus factories. Using drug treatments, mutant viruses, and exogenous supply of viral components to infected protoplasts, we show that virions can rapidly exit virus factories and, once in the cytoplasm, accumulate together with the helper protein P2 on the microtubule network. Moreover, we show that during reversion of this phenomenon, virions from the microtubule network can either be incorporated into the reverted TB or return to the virus factories. Our results suggest that CaMV factories are dynamic structures that participate in vector transmission by controlled release and uptake of virions during TB reaction.
Collapse
|
37
|
Biological and molecular variation of Iranian Cauliflower mosaic virus (CaMV) isolates. Virus Genes 2013; 47:347-56. [DOI: 10.1007/s11262-013-0948-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
|
38
|
Love AJ, Geri C, Laird J, Carr C, Yun BW, Loake GJ, Tada Y, Sadanandom A, Milner JJ. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 2012; 7:e47535. [PMID: 23071821 PMCID: PMC3469532 DOI: 10.1371/journal.pone.0047535] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/12/2012] [Indexed: 01/05/2023] Open
Abstract
Cauliflower mosaic virus (CaMV) encodes a multifunctional protein P6 that is required for translation of the 35S RNA and also acts as a suppressor of RNA silencing. Here we demonstrate that P6 additionally acts as a pathogenicity effector of an unique and novel type, modifying NPR1 (a key regulator of salicylic acid (SA)- and jasmonic acid (JA)-dependent signaling) and inhibiting SA-dependent defence responses We find that that transgene-mediated expression of P6 in Arabidopsis and transient expression in Nicotiana benthamiana has profound effects on defence signaling, suppressing expression of representative SA-responsive genes and increasing expression of representative JA-responsive genes. Relative to wild-type Arabidopsis P6-expressing transgenics had greatly reduced expression of PR-1 following SA-treatment, infection by CaMV or inoculation with an avirulent bacterial pathogen Pseudomonas syringae pv tomato (Pst). Similarly transient expression in Nicotiana benthamiana of P6 (including a mutant form defective in translational transactivation activity) suppressed PR-1a transcript accumulation in response to Agrobacterium infiltration and following SA-treatment. As well as suppressing the expression of representative SA-regulated genes, P6-transgenic Arabidopsis showed greatly enhanced susceptibility to both virulent and avirulent Pst (titres elevated 10 to 30-fold compared to non-transgenic controls) but reduced susceptibility to the necrotrophic fungus Botrytis cinerea. Necrosis following SA-treatment or inoculation with avirulent Pst was reduced and delayed in P6-transgenics. NPR1 an important regulator of SA/JA crosstalk, was more highly expressed in the presence of P6 and introduction of the P6 transgene into a transgenic line expressing an NPR1:GFP fusion resulted in greatly increased fluorescence in nuclei even in the absence of SA. Thus in the presence of P6 an inactive form of NPR1 is mislocalized in the nucleus even in uninduced plants. These results demonstrate that P6 is a new type of pathogenicity effector protein that enhances susceptibility to biotrophic pathogens by suppressing SA- but enhancing JA-signaling responses.
Collapse
Affiliation(s)
- Andrew J. Love
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chiara Geri
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
- Istituto di Biologia e Biotechnologia Agraria, Consiglio Nazionale Delle Richerche, Pisa, Italy
| | - Janet Laird
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Craig Carr
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Byung-Wook Yun
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Edinburgh, United Kingdom
| | - Gary J. Loake
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Edinburgh, United Kingdom
| | - Yasuomi Tada
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Ari Sadanandom
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joel J. Milner
- Plant Science Research Theme, School of Life Sciences and Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
39
|
Lutz L, Raikhy G, Leisner SM. Cauliflower mosaic virus major inclusion body protein interacts with the aphid transmission factor, the virion-associated protein, and gene VII product. Virus Res 2012; 170:150-3. [PMID: 22982205 DOI: 10.1016/j.virusres.2012.08.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/22/2012] [Accepted: 08/26/2012] [Indexed: 10/27/2022]
Abstract
The Cauliflower mosaic virus (CaMV) gene VI product (P6) is a multifunctional protein essential for viral infection. In order to perform its various tasks, P6 interacts with both viral and host factors, as well as forming electron-dense cytoplasmic inclusion bodies. Here we investigate the interactions of P6 with three CaMV proteins: P2 (aphid transmission factor), P3 (virion-associated protein), and P7 (protein of unknown function). Based on yeast two-hybrid and maltose-binding protein pull-down experiments, P6 interacted with all three of these CaMV proteins. P2 helps to stabilize P6 inclusion bodies. Although the P2s from two CaMV isolates (W260 and CM1841) differ in the ability to stabilize inclusion bodies, both interacted similarly with P6. This suggests that inclusion body stability may not be dependent on the efficiency of P2-P6 interaction. However, neither P2 nor P3 interacted with P7 in yeast two-hybrid assays.
Collapse
Affiliation(s)
- Lindy Lutz
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, United States
| | | | | |
Collapse
|
40
|
Bak A, Irons SL, Martinière A, Blanc S, Drucker M. Host cell processes to accomplish mechanical and non-circulative virus transmission. PROTOPLASMA 2012; 249:529-39. [PMID: 21984344 DOI: 10.1007/s00709-011-0328-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/28/2011] [Indexed: 05/22/2023]
Abstract
Mechanical vector-less transmission of viruses, as well as vector-mediated non-circulative virus transmission, where the virus attaches only to the exterior of the vector during the passage to a new host, are apparently simple processes: the viruses are carried along with the wind, the food or by the vector to a new host. We discuss here, using the examples of the non-circulatively transmitted Cauliflower mosaic virus that binds to its aphid vector's exterior mouthparts, and that of the mechanically (during feeding activity) transmitted Autographa californica multicapsid nucleopolyhedrovirus, that transmission of these viruses is not so simple as previously thought. Rather, these viruses prepare their transmission carefully and long before the actual acquisition event. Host-virus interactions play a pivotal and specialised role in the future encounter with the vector or the new host. This ensures optimal propagation and enlarges the tremendous bottleneck transmission presents for viruses and other pathogens.
Collapse
Affiliation(s)
- Aurélie Bak
- INRA, Equipe CaGeTE, UMR BGPI Plant Pathogen Interactions, TA A54K Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
41
|
Špak J, Votruba I, Pavingerová D, Holý A, Špaková V, Petrzik K. Antiviral activity of tenofovir against Cauliflower mosaic virus and its metabolism in Brassica pekinensis plants. Antiviral Res 2011; 92:378-81. [DOI: 10.1016/j.antiviral.2011.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/26/2011] [Accepted: 08/16/2011] [Indexed: 11/28/2022]
|
42
|
Hadfield J, Linderme D, Shepherd DN, Bezuidenhout M, Lefeuvre P, Martin DP, Varsani A. Complete genome sequence of a dahlia common mosaic virus isolate from New Zealand. Arch Virol 2011; 156:2297-301. [DOI: 10.1007/s00705-011-1112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
|
43
|
Cuellar WJ, De Souza J, Barrantes I, Fuentes S, Kreuze JF. Distinct cavemoviruses interact synergistically with sweet potato chlorotic stunt virus (genus Crinivirus) in cultivated sweet potato. J Gen Virol 2011; 92:1233-1243. [PMID: 21307225 DOI: 10.1099/vir.0.029975-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two serologically unrelated sweet potato viruses causing symptoms of vein clearing in the indicator plant Ipomoea setosa were isolated and their genomes have been sequenced. They are associated with symptomless infections in sweet potato but distinct vein-clearing symptoms and higher virus titres were observed when these viruses co-infected with sweet potato chlorotic stunt virus (SPCSV), a virus that is distributed worldwide and is a mediator of severe virus diseases in this crop. Molecular characterization and phylogenetic analysis revealed an overall nucleotide identity of 47.6 % and an arrangement of the movement protein and coat protein domains characteristic of members of the genus Cavemovirus, in the family Caulimoviridae. We detected both cavemoviruses in cultivated sweet potato from East Africa, Central America and the Caribbean islands, but not in samples from South America. One of the viruses characterized showed a similar genome organization as, and formed a phylogenetic sublineage with, tobacco vein clearing virus (TVCV), giving further support to the previously suggested separation of TVCV, and related viral sequences, into a new caulimovirid genus. Given their geographical distribution and previous reports of similar but yet unidentified viruses, sweet potato cavemoviruses may co-occur with SPCSV more often than previously thought and they could therefore contribute to the extensive yield losses and cultivar decline caused by mixed viral infections in sweet potato.
Collapse
Affiliation(s)
- Wilmer J Cuellar
- Virology Laboratory, Crop Management & Production Systems Division, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Peru
| | - Joao De Souza
- Virology Laboratory, Crop Management & Production Systems Division, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Peru
| | - Israel Barrantes
- Magdeburg Centre for Systems Biology (MaCS), Otto von Guericke University, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Segundo Fuentes
- Virology Laboratory, Crop Management & Production Systems Division, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Peru
| | - Jan F Kreuze
- Applied Biotechnology Laboratory, Germplasm Enhancement & Crop Improvement Division, International Potato Center (CIP), Av. La Molina 1895, Lima 12, Peru
| |
Collapse
|
44
|
Sequence analysis of the replicase gene of 'sweet potato caulimo-like virus' suggests that this virus is a distinct member of the genus Cavemovirus. Arch Virol 2010; 156:535-7. [PMID: 21184242 DOI: 10.1007/s00705-010-0886-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
Abstract
Virion purification from indicator plants and partial sequencing of the replicase region of a 'sweet potato caulimo-like virus' (SPCV) isolate from Madeira, Portugal, are described. Phylogenetic analysis suggests that SPCV is a distinct member of the genus Cavemovirus (family Caulimoviridae). These results explain previous failed attempts to characterize SPCV based on antibodies or primers designed for other members of the Caulimoviridae. Using a quick DNA extraction protocol and PCR primers flanking the RT motif region, we were able to detect SPCV directly in sweet potato, thus saving considerable time during routine virus indexing.
Collapse
|
45
|
Pagán I, Fraile A, Fernandez-Fueyo E, Montes N, Alonso-Blanco C, García-Arenal F. Arabidopsis thaliana as a model for the study of plant-virus co-evolution. Philos Trans R Soc Lond B Biol Sci 2010; 365:1983-95. [PMID: 20478893 PMCID: PMC2880114 DOI: 10.1098/rstb.2010.0062] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding plant-virus coevolution requires wild systems in which there is no human manipulation of either host or virus. To develop such a system, we analysed virus infection in six wild populations of Arabidopsis thaliana in Central Spain. The incidence of five virus species with different life-styles was monitored during four years, and this was analysed in relation to the demography of the host populations. Total virus incidence reached 70 per cent, which suggests a role of virus infection in the population structure and dynamics of the host, under the assumption of a host fitness cost caused by the infection. Maximum incidence occurred at early growth stages, and co-infection with different viruses was frequent, two factors often resulting in increased virulence. Experimental infections under controlled conditions with two isolates of the most prevalent viruses, cauliflower mosaic virus and cucumber mosaic virus, showed that there is genetic variation for virus accumulation, although this depended on the interaction between host and virus genotypes. Comparison of Q(ST)-based genetic differentiations between both host populations with F(ST) genetic differentiation based on putatively neutral markers suggests different selection dynamics for resistance against different virus species or genotypes. Together, these results are compatible with a hypothesis of plant-virus coevolution.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Elena Fernandez-Fueyo
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Nuria Montes
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
46
|
Khelifa M, Massé D, Blanc S, Drucker M. Evaluation of the minimal replication time of Cauliflower mosaic virus in different hosts. Virology 2010; 396:238-45. [PMID: 19913268 DOI: 10.1016/j.virol.2009.09.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/02/2009] [Accepted: 09/26/2009] [Indexed: 11/22/2022]
Abstract
Though the duration of a single round of replication is an important biological parameter, it has been determined for only few viruses. Here, this parameter was determined for Cauliflower mosaic virus (CaMV) in transfected protoplasts from different hosts: the highly susceptible Arabidopsis and turnip, and Nicotiana benthamiana, where CaMV accumulates only slowly. Four methods of differing sensitivity were employed: labelling of (1) progeny DNA and (2) capsid protein, (3) immunocapture PCR,, and (4) progeny-specific PCR. The first progeny virus was detected about 21 h after transfection. This value was confirmed by all methods, indicating that our estimate was not biased by the sensitivity of the detection method, and approximated the actual time required for one round of CaMV replication. Unexpectedly, the replication kinetics were similar in the three hosts; suggesting that slow accumulation of CaMV in Nicotiana plants is determined by non-optimal interactions in other steps of the infection cycle.
Collapse
Affiliation(s)
- Mounia Khelifa
- Equipe CaGeTE, UMR 385 BGPI, INRA-CIRAD-SupAgro, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | |
Collapse
|
47
|
Martinière A, Zancarini A, Drucker M. Aphid transmission of cauliflower mosaic virus: the role of the host plant. PLANT SIGNALING & BEHAVIOR 2009; 4:548-50. [PMID: 19816139 PMCID: PMC2688309 DOI: 10.4161/psb.4.6.8712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 04/10/2009] [Indexed: 05/21/2023]
Abstract
Transmission of plant viruses is the result of interactions between a given virus, the host plant and the vector. Most research has focused on molecular and cellular virus-vector interactions, and the host has only been regarded as a reservoir from which the virus is acquired by the vector more or less accidentally. However, a growing body of evidence suggests that the host can play a crucial role in transmission. Indeed, at least one virus, Cauliflower mosaic virus, exploits the host's cellular pathways to form specialized intracellular structures that optimize virus uptake by the vector and hence transmission.
Collapse
Affiliation(s)
- Alexandre Martinière
- Equipe CaGeTE, UMR 385 BGPI, INRA-CIRAD-SupAgro, Campus International de Baillarguet, Montpellier, France
| | | | | |
Collapse
|
48
|
Martinière A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M. A role for plant microtubules in the formation of transmission-specific inclusion bodies of Cauliflower mosaic virus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:135-146. [PMID: 19077170 DOI: 10.1111/j.1365-313x.2008.03768.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Interactions between microtubules and viruses play important roles in viral infection. The best-characterized examples involve transport of animal viruses by microtubules to the nucleus or other intracellular destinations. In plant viruses, most work to date has focused on interaction between viral movement proteins and the cytoskeleton, which is thought to be involved in viral cell-to-cell spread. We show here, in Cauliflower mosaic virus (CaMV)-infected plant cells, that viral electron-lucent inclusion bodies (ELIBs), whose only known function is vector transmission, require intact microtubules for their efficient formation. The kinetics of the formation of CaMV-related inclusion bodies in transfected protoplasts showed that ELIBs represent newly emerging structures, appearing at late stages of the intracellular viral life cycle. Viral proteins P2 and P3 are first produced in multiple electron-dense inclusion bodies, and are later specifically exported to transiently co-localize with microtubules, before concentrating in a single, massive ELIB in each infected cell. Treatments with cytoskeleton-affecting drugs suggested that P2 and P3 might be actively transported on microtubules, by as yet unknown motors. In addition to providing information on the intracellular life cycle of CaMV, our results show that specific interactions between host cell and virus may be dedicated to a later role in vector transmission. More generally, they indicate a new unexpected function for plant cell microtubules in the virus life cycle, demonstrating that microtubules act not only on immediate intracellular or intra-host phenomena, but also on processes ultimately controlling inter-host transmission.
Collapse
Affiliation(s)
- Alexandre Martinière
- Equipe CaGeTE, UMR 385 BGPI CIRAD-INRA-SupAgro, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | |
Collapse
|
49
|
Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 2008; 27:2102-12. [PMID: 18615098 DOI: 10.1038/emboj.2008.129] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 06/06/2008] [Indexed: 01/02/2023] Open
Abstract
Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-alpha-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function.
Collapse
|
50
|
Love AJ, Laird J, Holt J, Hamilton AJ, Sadanandom A, Milner JJ. Cauliflower mosaic virus protein P6 is a suppressor of RNA silencing. J Gen Virol 2007; 88:3439-3444. [DOI: 10.1099/vir.0.83090-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We infected a transgenic Arabidopsis line (GxA), containing an amplicon-silenced 35S : : GFP transgene, with cauliflower mosaic virus (CaMV), a plant pararetrovirus with a DNA genome. Systemically infected leaves showed strong GFP fluorescence and amplicon transcripts were detectable in Northern blots, indicating that silencing of GFP had been suppressed during CaMV-infection. Transgenic Arabidopsis lines expressing CaMV protein P6, the major genetic determinant of symptom severity, were crossed with GxA. Progeny showed strong GFP fluorescence throughout and amplicon transcripts were detectable in Northern blots, indicating that P6 was suppressing local and systemic silencing. However, levels of 21 nt siRNAs derived from the GFP transgene were not reduced. In CaMV-infected plants, the P6 transgene did not reduce levels of CaMV leader-derived 21 and 24 nt siRNAs relative to levels of CaMV 35S RNA. These results demonstrate that CaMV can efficiently suppress silencing of a GFP transgene, and that P6 acts as a silencing suppressor.
Collapse
Affiliation(s)
- Andrew J. Love
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Janet Laird
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Justin Holt
- Department of Pathology, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Ari Sadanandom
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Joel J. Milner
- Plant Science Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|