1
|
Monteagudo-Cascales E, Gavira JA, Xing J, Velando F, Matilla MA, Zhulin IB, Krell T. Bacterial sensor evolved by decreasing complexity. Proc Natl Acad Sci U S A 2025; 122:e2409881122. [PMID: 39879239 DOI: 10.1073/pnas.2409881122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels, and motility. Receptors are typically activated by signal binding to ligand-binding domains (LBDs). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans. They form the predominant family of extracytosolic bacterial LBDs and were identified in all major receptor types. Cache domains are composed of either a single (sCache) or a double (dCache) structural module. The functional relevance of bimodular LBDs remains poorly understood. Here, we identify the PacF chemoreceptor in the phytopathogen Pectobacterium atrosepticum that recognizes formate at the membrane-distal module of its dCache domain, triggering chemoattraction. We further demonstrate that a family of formate-specific sCache domains has evolved from a dCache domain, exemplified by PacF, by losing the membrane-proximal module. By solving high-resolution structures of two family members in complex with formate, we show that the molecular basis for formate binding at sCache and dCache domains is highly similar, despite their low sequence identity. The apparent loss of the membrane-proximal module may be related to the observation that dCache domains bind ligands typically at the membrane-distal module, whereas studies have failed to find ligands bound in the membrane-proximal module. This work advances our understanding of signal sensing in bacterial receptors and suggests that evolution by reducing complexity may be a route for shaping diversity.
Collapse
Affiliation(s)
- Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain
| | - José A Gavira
- Laboratory of Crystallographic Studies, Instituto Andaluz de Ciencias de la Tierra-Consejo Superior de Investigaciones Científicas, Armilla 18100, Spain
| | - Jiawei Xing
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210
| | - Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada 18008, Spain
| |
Collapse
|
2
|
Jung H, Han G, Lee D, Jung HK, Kim YS, Kong HJ, Kim YO, Seo YS, Park J. Understanding the Impact of Salt Stress on Plant Pathogens Through Phenotypic and Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2025; 14:97. [PMID: 39795357 PMCID: PMC11722782 DOI: 10.3390/plants14010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 01/13/2025]
Abstract
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized. This study investigated the effects of salt stress on representative plant pathogens, such as Burkholderia gladioli, Burkholderia glumae, Pectobacterium carotovorum subsp. carotovorum (Pcc), Ralstonia solanacearum, and Xanthomonas oryzae pv. oryzae. Phenotypic assays revealed that B. gladioli and R. solanacearum are highly sensitive to salt stress, exhibiting significant reductions in growth, motility, and enzyme production, whereas Pcc showed notable tolerance. Pan-genome-based comparative transcriptomics identified co-downregulated patterns in B. gladioli and R. solanacearum under stress conditions, indicating the suppression of bacterial chemotaxis and type III secretion systems. Uniquely upregulated patterns in Pcc were associated with enhanced survival under high salinity, such as protein quality control, osmotic equilibrium, and iron acquisition. Additionally, the application of salt stress combined with the beneficial bacterium Chryseobacterium salivictor significantly reduced tomato wilt caused by R. solanacearum, suggesting a potential management strategy. This study underscores practical implications for effectively understanding and controlling plant pathogens under future climate changes involving salt stress.
Collapse
Affiliation(s)
- Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun-Kyoung Jung
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Sam Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| |
Collapse
|
3
|
Kim D, Kim M, Woo S, Nam S, Myeong NR, Kim E, Lee YM. Potential risks of bacterial plant pathogens from thawing permafrost in the Alaskan tundra. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117531. [PMID: 39672037 DOI: 10.1016/j.ecoenv.2024.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Global warming-induced permafrost thawing raises concerns about the release of dormant microbes, including potentially harmful plant pathogens. However, the potential pathogenic risks associated with the thawing of permafrost remain poorly understood. Here, we conducted a 90-day soil incubation experiment at 4 °C to mimic extended permafrost thawing in Alaskan tundra soils stratified into active (A), transitional (T), and permanently frozen (P) layers. Following incubation, we examined the changes in bacterial abundance and community composition and tested the reactivation and pathogenicity of dormant plant pathogenic bacteria. Bacterial abundance, measured by colony-forming units and 16S rRNA gene copies, distinctly increased in the T and P layers after thawing. These layers also exhibited substantial shifts in bacterial community structure, with Fe-cycling taxa becoming more abundant and permafrost-dominant taxa decreasing in abundance. Notably, we isolated 52 strains with proteolytic activity, and our pathogenicity tests confirmed that Pseudomonas spp. isolates caused potato soft rot symptoms. Some Pseudomonas pathogens were undetectable in the amplicon sequencing data before thawing and emerged only in the thawed T and P layers. Our findings illustrate that permafrost acts as a reservoir of potential plant pathogens, and their resurgence upon thawing poses a potential risk to Arctic ecosystems.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Sungho Woo
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Sungjin Nam
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Nu Ri Myeong
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| | - Eungbin Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea.
| |
Collapse
|
4
|
Lee SY, Kim SJ, Ha JH. Quantification of Pectobacterium carotovorum subsp. carotovorum in kimchi cabbage using a surface-enhanced Raman scattering platform with silver nanostructures. Biosens Bioelectron 2025; 267:116766. [PMID: 39265428 DOI: 10.1016/j.bios.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Pectobacterium carotovorum subsp. carotovorum (PCC) is a notorious plant pathogen responsible for severe soft rot in kimchi cabbage, which results in significant economic losses. To detect PCC rapidly and accurately in kimchi cabbage, we developed a surface-enhanced Raman scattering (SERS) substrate on which silver nanospheres (AgNSs), nanowires (AgNWs), and nanoseeds are combined on a polydimethylsiloxane (PDMS) platform. The incorporation of Ag nanoseeds creates a higher density of hotspots, which ensures a low detection limit of 1.001 CFU/mL. Electron microscopy and spectroscopic analyses confirmed the successful fabrication of the substrate and its enhanced sensitivity. The SERS substrate exhibits excellent selectivity by effectively distinguishing PCC from other bacteria commonly found in kimchi cabbage. The substrate gives rise to strong Raman signals across PCC concentrations ranging from 101 to 106 CFU/mL. Additionally, a predictive model was developed for accurately detecting PCC in real kimchi cabbage samples, and the results were validated by polymerase chain reaction measurements. A sensitive, selective, and rapid approach for PCC detection in kimchi cabbage that offers a promising improvement over existing methodologies is presented.
Collapse
Affiliation(s)
- Seong Youl Lee
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea
| | - Su-Ji Kim
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea
| | - Ji-Hyoung Ha
- Hygienic Safety·Materials Research Group, World Institute of Kimchi, 61755, 86 Kimchi-ro, Nam-gu, Gwangju Metropolitan City, South Korea.
| |
Collapse
|
5
|
Shim Y, Lee JY, Jung J. Effects of Kimchi-Derived Lactic Acid Bacteria on Reducing Biological Hazards in Kimchi. J Microbiol Biotechnol 2024; 34:2586-2595. [PMID: 39467693 PMCID: PMC11729699 DOI: 10.4014/jmb.2408.08016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
This study was performed to investigate the use of plant-based lactic acid bacteria (LAB) to reduce microbiological hazards in kimchi. Cell-free supernatants (CFS) from four LAB strains isolated from kimchi were tested for antimicrobial activity against five foodborne pathogens and two soft-rot pathogens. Each CFS showed antimicrobial activity against both foodborne and soft-rot pathogens. Washing salted kimchi cabbages inoculated with B. cereus with 5% CFS inhibited B. cereus to a greater extent than NaClO. The CFS from WiKim 83 and WiKim 87 exhibits inhibition rates of 25.09% and 24.21%, respectively, compared to the 19.19% rate of NaClO. Additionally, the CFS from WiKim 116 and WiKim 117 showed inhibition rates of 18.74% and 20.03%, respectively. Direct treatment of kimchi cabbage with soft-rot pathogens and CFS for five days inhibited the pathogens with similar efficacy to that of NaClO. To elucidate the antimicrobial activity mechanisms, pH neutralization, heat treatment, and organic acid analyses were performed. pH neutralization reduced the antimicrobial activity, whereas heat treatment did not, indicating that lactic, acetic, citric, and phenyllactic acids contribute to the thermal stability and antimicrobial properties of CFS. This study suggests that the four kimchi-derived LAB, which maintain a low pH through organic acid production, could be viable food preservatives capable of reducing biological hazards in kimchi.
Collapse
Affiliation(s)
- Yeonsoo Shim
- Industrial Solution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jae Yong Lee
- Industrial Solution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Jihye Jung
- Industrial Solution Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| |
Collapse
|
6
|
Radke K, Rivers B, Simpkins M, Hardy J, Schachterle JK. Characterization and Genomics of Pectinolytic Bacteria Isolated from Soft Rot Symptomatic Produce. Pathogens 2024; 13:1096. [PMID: 39770355 PMCID: PMC11728799 DOI: 10.3390/pathogens13121096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Bacterial soft rot causes major crop losses annually and can be caused by several species from multiple genera. These bacteria have a broad host range and often infect produce through contact with soil. The main genera causing bacterial soft rot are Pectobacterium and Dickeya, both of which have widespread geographical distribution. Because of many recent renaming and reclassifications of bacteria causing soft rot, identification and characterization of the causative agents can be challenging. In this work, we surveyed commercially available produce exhibiting typical soft rot symptoms, isolating pectinolytic bacteria and characterizing them genetically and phenotypically. We found that in our sampling, many samples were from the genus Pectobacterium; however, other genera were also capable of eliciting symptoms in potatoes, including an isolate from the genus Chryseobacterium. Genomic analyses revealed that many of the Pectobacterium isolates collected share prophages not found in other soft rot species, suggesting a potential role for these prophages in the evolution or fitness of these isolates. Our Chryseobacterium isolate was most similar to C. scophthalmum, a fish pathogen, suggesting that this isolate may be a crossover pathogen.
Collapse
Affiliation(s)
| | | | | | | | - Jeffrey K. Schachterle
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA; (K.R.)
| |
Collapse
|
7
|
Keating C, Kilbride E, Stalham MA, Nellist C, Milner J, Humphris S, Toth I, Mable BK, Ijaz UZ. Balancing the scales: assessing the impact of irrigation and pathogen burden on potato blackleg disease and soil microbial communities. MICROBIOME 2024; 12:210. [PMID: 39434184 PMCID: PMC11492761 DOI: 10.1186/s40168-024-01918-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/26/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Understanding the interaction between environmental conditions, crop yields, and soil health is crucial for sustainable agriculture in a changing climate. Management practices to limit disease are a balancing act. For example, in potato production, dry conditions favour common scab (Streptomyces spp.) and wet conditions favour blackleg disease (Pectobacterium spp.). The exact mechanisms involved and how these link to changes in the soil microbiome are unclear. Our objectives were to test how irrigation management and bacterial pathogen load in potato seed stocks impact: (i) crop yields; (ii) disease development (blackleg or common scab); and (iii) soil microbial community dynamics. METHODS We used stocks of seed potatoes with varying natural levels of Pectobacterium (Jelly [high load], Jelly [low load] and Estima [Zero - no Pectobacterium]). Stocks were grown under four irrigation regimes that differed in the timing and level of watering. The soil microbial communities were profiled using amplicon sequencing at 50% plant emergence and at harvest. Generalised linear latent variable models and an annotation-free mathematical framework approach (ensemble quotient analysis) were then used to show the interacting microbes with irrigation regime and Pectobacterium pathogen levels. RESULTS Irrigation increased blackleg symptoms in the plots planted with stocks with low and high levels of Pectobacterium (22-34%) but not in the zero stock (2-6%). However, withholding irrigation increased common scab symptoms (2-5%) and reduced crop yields. Irrigation did not impact the composition of the soil microbiome, but planting stock with a high Pectobacterium burden resulted in an increased abundance of Planctomycetota, Anaerolinea and Acidobacteria species within the microbiome. Ensemble quotient analysis highlighted the Anaerolinea taxa were highly associated with high levels of Pectobacterium in the seed stock and blackleg symptoms in the field. CONCLUSIONS We conclude that planting seed stocks with a high Pectobacterium burden alters the abundance of specific microbial species within the soil microbiome and suggest that managing pathogen load in seed stocks could substantially affect soil communities, affecting crop health and productivity. Video Abstract.
Collapse
Affiliation(s)
- Ciara Keating
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Present Address: Department of Engineering, Durham University, Durham, UK.
| | - Elizabeth Kilbride
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mark A Stalham
- Mark Stalham Potato Consultancy, Cambridge, UK
- NIAB, Cambridge, UK
| | | | - Joel Milner
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Sonia Humphris
- Cell & Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Ian Toth
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cell & Molecular Sciences, James Hutton Institute, Dundee, UK
| | - Barbara K Mable
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow, UK.
| |
Collapse
|
8
|
Velando F, Monteagudo-Cascales E, Matilla MA, Krell T. Differential CheR Affinity for Chemoreceptor C-Terminal Pentapeptides Modulates Chemotactic Responses. Mol Microbiol 2024; 122:465-476. [PMID: 39180229 DOI: 10.1111/mmi.15305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/26/2024]
Abstract
Many chemoreceptors contain a C-terminal pentapeptide at the end of a linker. In Escherichia coli, this pentapeptide forms a high-affinity binding site for CheR and phosphorylated CheB, and its removal interferes with chemoreceptor adaptation. Analysis of chemoreceptors revealed significant variation in their pentapeptide sequences, and bacteria often possess multiple chemoreceptors with differing pentapeptides. To assess whether this sequence variation alters CheR affinity and chemotaxis, we used Pectobacterium atrosepticum SCRI1043 as a model. SCRI1043 has 36 chemoreceptors, with 19 of them containing a C-terminal pentapeptide. We show that the affinity of CheR for the different pentapeptides varies up to 11-fold (KD 90 nM to 1 μM). Pentapeptides with the highest and lowest affinities differ only in a single amino acid. Deletion of the cheR gene abolishes chemotaxis. The replacement of the pentapeptide in the PacC chemoreceptor with those of the highest and lowest affinities significantly reduced chemotaxis to its cognate chemoeffector, L-Asp. Altering the PacC pentapeptide also reduced chemotaxis to L-Ser, but not to nitrate, which are responses mediated by the nontethered PacB and PacN chemoreceptors, respectively. Changes in the pentapeptide sequence thus modulate the response of the cognate receptor and that of another chemoreceptor.
Collapse
Affiliation(s)
- Félix Velando
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Miguel A Matilla
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Tino Krell
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
9
|
Sunil S, Walsky T, Henry M, Kemmerling L, Pajor M, Guo X, Murphy SI, Ivanek R, Wiedmann M. A longitudinal study on the bacterial quality of baby spinach cultivated in Arizona and California. Appl Environ Microbiol 2024; 90:e0055324. [PMID: 38995040 PMCID: PMC11337821 DOI: 10.1128/aem.00553-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
In the U.S., baby spinach is mostly produced in Arizona (AZ) and California (CA). Characterizing the impact of growing region on the bacterial quality of baby spinach can inform quality management practices in industry. Between December 2021 and December 2022, baby spinach was sampled after harvest and packaging for microbiological testing, including shelf-life testing of packaged samples that were stored at 4°C. Samples were tested to (i) determine bacterial concentration, and (ii) obtain and identify bacterial isolates. Packaged samples from the Salinas, CA, area (n = 13), compared to those from the Yuma, AZ, area (n = 9), had a significantly higher bacterial concentration, on average, by 0.78 log10 CFU/g (P < 0.01, based on aerobic, mesophilic plate count data) or 0.67 log10 CFU/g (P < 0.01, based on psychrotolerant plate count data); the bacterial concentrations of harvest samples from the Yuma and Salinas areas were not significantly different. Our data also support that an increase in preharvest temperature is significantly associated with an increase in the bacterial concentration on harvested and packaged spinach. A Fisher's exact test and linear discriminant analysis (effect size), respectively, demonstrated that (i) the genera of 2,186 bacterial isolates were associated (P < 0.01) with growing region and (ii) Pseudomonas spp. and Exiguobacterium spp. were enriched in spinach from the Yuma and Salinas areas, respectively. Our findings provide preliminary evidence that growing region and preharvest temperature may impact the bacterial quality of spinach and thus could inform more targeted strategies to manage produce quality. IMPORTANCE In the U.S., most spinach is produced in Arizona (AZ) and California (CA) seasonally; typically, spinach is cultivated in the Yuma, AZ, area during the winter and in the Salinas, CA, area during the summer. As the bacterial quality of baby spinach can influence consumer acceptance of the product, it is important to assess whether the bacterial quality of baby spinach can vary between spinach-growing regions. The findings of this study provide insights that could be used to support region-specific quality management strategies for baby spinach. Our results also highlight the value of further evaluating the impact of growing region and preharvest temperature on the bacterial quality of different produce commodities.
Collapse
Affiliation(s)
- Sriya Sunil
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Tamara Walsky
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Mikayla Henry
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Leonie Kemmerling
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Magdalena Pajor
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Xiaodong Guo
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Sarah I. Murphy
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Renata Ivanek
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Monteagudo-Cascales E, Gavira JA, Xing J, Velando F, Matilla MA, Zhulin IB, Krell T. Bacterial sensor evolved by decreasing complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594639. [PMID: 38798610 PMCID: PMC11118575 DOI: 10.1101/2024.05.17.594639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Bacterial receptors feed into multiple signal transduction pathways that regulate a variety of cellular processes including gene expression, second messenger levels and motility. Receptors are typically activated by signal binding to ligand binding domains (LBD). Cache domains are omnipresent LBDs found in bacteria, archaea, and eukaryotes, including humans. They form the predominant family of extracytosolic bacterial LBDs and were identified in all major receptor types. Cache domains are composed of either a single (sCache) or a double (dCache) structural module. The functional relevance of bimodular LBDs remains poorly understood. Here, we identify the PacF chemoreceptor in the phytopathogen Pectobacterium atrosepticum that recognizes formate at the membrane distal module of its dCache domain, triggering chemoattraction. We further demonstrate that a family of formate-specific sCache domains has evolved from a dCache domain, exemplified by PacF, by losing the membrane proximal module. By solving high-resolution structures of two family members in complex with formate, we show that the molecular basis for formate binding at sCache and dCache domains is highly similar, despite their low sequence identity. The apparent loss of the membrane proximal module may be related to the observation that dCache domains bind ligands typically at the membrane distal module, whereas the membrane proximal module is not involved in signal sensing. This work advances our understanding of signal sensing in bacterial receptors and suggests that evolution by reducing complexity may be a common trend shaping their diversity. Significance Many bacterial receptors contain multi-modular sensing domains indicative of complex sensory processes. The presence of more than one sensing module likely permits the integration of multiple signals, although, the molecular detail and functional relevance for these complex sensors remain poorly understood. Bimodular sensory domains are likely to have arisen from the fusion or duplication of monomodular domains. Evolution by increasing complexity is generally believed to be a dominant force. Here we reveal the opposite - how a monomodular sensing domain has evolved from a bimodular one. Our findings will thus motivate research to establish whether evolution by decreasing complexity is typical of other sensory domains.
Collapse
|
11
|
Islam T, Haque MA, Barai HR, Istiaq A, Kim JJ. Antibiotic Resistance in Plant Pathogenic Bacteria: Recent Data and Environmental Impact of Unchecked Use and the Potential of Biocontrol Agents as an Eco-Friendly Alternative. PLANTS (BASEL, SWITZERLAND) 2024; 13:1135. [PMID: 38674544 PMCID: PMC11054394 DOI: 10.3390/plants13081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
The economic impact of phytopathogenic bacteria on agriculture is staggering, costing billions of US dollars globally. Pseudomonas syringae is the top most phytopathogenic bacteria, having more than 60 pathovars, which cause bacteria speck in tomatoes, halo blight in beans, and so on. Although antibiotics or a combination of antibiotics are used to manage infectious diseases in plants, they are employed far less in agriculture compared to human and animal populations. Moreover, the majority of antibiotics used in plants are immediately washed away, leading to environmental damage to ecosystems and food chains. Due to the serious risk of antibiotic resistance (AR) and the potential for environmental contamination with antibiotic residues and resistance genes, the use of unchecked antibiotics against phytopathogenic bacteria is not advisable. Despite the significant concern regarding AR in the world today, there are inadequate and outdated data on the AR of phytopathogenic bacteria. This review presents recent AR data on plant pathogenic bacteria (PPB), along with their environmental impact. In light of these findings, we suggest the use of biocontrol agents as a sustainable, eco-friendly, and effective alternative to controlling phytopathogenic bacteria.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh;
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| | - Arif Istiaq
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St Louis, MO 63110-1010, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea;
| |
Collapse
|
12
|
Mohaimin AZ, Krishnamoorthy S, Shivanand P. A critical review on bioaerosols-dispersal of crop pathogenic microorganisms and their impact on crop yield. Braz J Microbiol 2024; 55:587-628. [PMID: 38001398 PMCID: PMC10920616 DOI: 10.1007/s42770-023-01179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and progress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen invasion and infestation, crop diseases and yield.
Collapse
Affiliation(s)
- Abdul Zul'Adly Mohaimin
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Sarayu Krishnamoorthy
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Pooja Shivanand
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| |
Collapse
|
13
|
Kaganovich M, Taha M, Zig U, Tshuva EY, Shalev DE, Gamliel A, Reches M. Self-Assembly of a Dipeptide with a Reduced Amount of Copper into Antifungal and Antibacterial Particles. Biomacromolecules 2024; 25:1018-1026. [PMID: 38252413 PMCID: PMC11184556 DOI: 10.1021/acs.biomac.3c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
With the growing concern over the environmental impact and health risks associated with conventional pesticides, there is a great need for developing safer and more sustainable alternatives. This study demonstrates the self-assembly of antimicrobial and antifungal spherical particles by a dipeptide utilizing a reduced amount of copper salt compared to the commonly employed formulation. The particles can be sprayed on a surface and form an antimicrobial coating. The effectiveness of the coating against the bacteria Pectobacterium brasiliense, a common pathogen affecting potato crops, was demonstrated, as the coating reduced the bacterial load by 7.3 log. Moreover, a comprehensive field trial was conducted, where the formulation was applied to potato seeds. Remarkably, it exhibited good efficacy against three prevalent potato pathogens (P. brasiliense, Pythium spp., and Spongospora subterranea) while demonstrating no phytotoxic effects on the potatoes. These findings highlight the tremendous potential of this formulation as a nonphytotoxic alternative to replace hazardous pesticides currently available in the market.
Collapse
Affiliation(s)
- Michaela Kaganovich
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Mohammad Taha
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Uri Zig
- Hevel
Maon Enterprises, Negev 8551900, Israel
| | - Edit Y. Tshuva
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Deborah E. Shalev
- Wolfson
Centre for Applied Structural Biology, The
Hebrew University of Jerusalem, Jerusalem 9190500, Israel
- Department
of Pharmaceutical Engineering, Azrieli College
of Engineering, Jerusalem 9103501, Israel
| | - Abraham Gamliel
- Laboratory
for Pest Management Research, Institute
of Agricultural Engineering, ARO—The Volcani Center, Rishon LeZion 7505001, Israel
| | - Meital Reches
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The
Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
14
|
Gonzales M, Kergaravat B, Jacquet P, Billot R, Grizard D, Chabrière É, Plener L, Daudé D. Disrupting quorum sensing as a strategy to inhibit bacterial virulence in human, animal, and plant pathogens. Pathog Dis 2024; 82:ftae009. [PMID: 38724459 PMCID: PMC11110857 DOI: 10.1093/femspd/ftae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024] Open
Abstract
The development of sustainable alternatives to conventional antimicrobials is needed to address bacterial virulence while avoiding selecting resistant strains in a variety of fields, including human, animal, and plant health. Quorum sensing (QS), a bacterial communication system involved in noxious bacterial phenotypes such as virulence, motility, and biofilm formation, is of utmost interest. In this study, we harnessed the potential of the lactonase SsoPox to disrupt QS of human, fish, and plant pathogens. Lactonase treatment significantly alters phenotypes including biofilm formation, motility, and infection capacity. In plant pathogens, SsoPox decreased the production of plant cell wall degrading enzymes in Pectobacterium carotovorum and reduced the maceration of onions infected by Burkholderia glumae. In human pathogens, lactonase treatment significantly reduced biofilm formation in Acinetobacter baumannii, Burkholderia cepacia, and Pseudomonas aeruginosa, with the cytotoxicity of the latter being reduced by SsoPox treatment. In fish pathogens, lactonase treatment inhibited biofilm formation and bioluminescence in Vibrio harveyi and affected QS regulation in Aeromonas salmonicida. QS inhibition can thus be used to largely impact the virulence of bacterial pathogens and would constitute a global and sustainable approach for public, crop, and livestock health in line with the expectations of the One Health initiative.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Baptiste Kergaravat
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Pauline Jacquet
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Raphaël Billot
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Damien Grizard
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Éric Chabrière
- Aix Marseille University, MEPHI, IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - Laure Plener
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, Marseille 13005, France
| |
Collapse
|
15
|
Kang J, Yoon HM, Jung J, Yu S, Choi SY, Bae HW, Cho YH, Chung EH, Lee Y. Pleiotropic effects of N-acylhomoserine lactone synthase ExpI on virulence, competition, and transmission in Pectobacterium carotovorum subsp. carotovorum Pcc21. PEST MANAGEMENT SCIENCE 2024; 80:687-697. [PMID: 37758685 DOI: 10.1002/ps.7797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Pectobacterium species are necrotrophic phytopathogenic bacteria that cause soft rot disease in economically important crops. The successful infection of host plants relies on interactions among virulence factors, competition, and transmission within hosts. Pectobacteria primarily produce and secrete plant cell-wall degrading enzymes (PCWDEs) for virulence. The regulation of PCWDEs is controlled by quorum sensing (QS). Thus, the QS system is crucial for disease development in pectobacteria through PCWDEs. RESULTS In this study, we identified a Tn-insertion mutant, M2, in the expI gene from a transposon mutant library of P. carotovorum subsp. carotovorum Pcc21 (hereafter Pcc21). The mutant exhibited reduced production and secretion of PCWDEs, impaired flagellar motility, and increased sensitivity to hydrogen peroxide, resulting in attenuated soft rot symptoms in cabbage and potato tubers. Transcriptomic analysis revealed the down-regulation of genes involved in the production and secretion in the mutant, consistent with the observed phenotype. Furthermore, the Pcc21 wild-type transiently colonized in the gut of Drosophila melanogaster within 12 h after feeding, while the mutant compromised colonization phenotype. Interestingly, Pcc21 produces a bacteriocin, carocin D, to compete with other bacteria. The mutant exhibited up-regulation of carocin D-encoding genes (caroDK) and inhibited the growth of a closely related bacterium, P. wasabiae. CONCLUSION Our results demonstrated the significance of ExpI in the overall pathogenic lifestyle of Pcc21, including virulence, competition, and colonization in plant and insect hosts. These findings suggest that disease outcome is a result of complex interactions mediated by ExpI across multiple steps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jihee Kang
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Hye Min Yoon
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seonmi Yu
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Shin-Yae Choi
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Hee-Won Bae
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
16
|
Maphosa S, Moleleki LN. A computational and secretome analysis approach reveals exclusive and shared candidate type six secretion system substrates in Pectobacterium brasiliense 1692. Microbiol Res 2024; 278:127501. [PMID: 37976736 DOI: 10.1016/j.micres.2023.127501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/24/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
The type 6 secretion system (T6SS) of Gram-negative bacteria (GNB) has implications for bacterial competition, virulence, and survival. For the broad host range pathogen, Pectobacterium brasiliense 1692, T6SS-mediated competition occurs in a tissue-specific manner. However, no other roles have been investigated. The aim of this study was to identify T6SS-associated proteins under virulence inducing conditions. We used Bastion tools to predict 1479 Pbr1692 secreted proteins. Sixteen percent of these overlap between type 1-4 secretion systems (T1SS-T4SS) and T6SS. Using label-free quantitative mass spectrometry of Pbr1692 T6SS active and T6SS inactive strains' secretomes cultured in minimal media supplemented with host extract, 49 T6SS-associated proteins with varied gene ontology predicted functions were identified. We report 19 and 30 T6SS primary substrates and differentially secreted proteins, respectively, in T6SS mutants versus wild type strains. Of the total 49 T6SS-associated proteins presented in this study, 25 were also predicted using the BastionX platform as T6SS exclusive and shared substrates with T1SS-T4SS. This work provides a list of Pbr1692 T6SS secreted effector candidates. These include a potential antibacterial toxin HNH endonuclease and several predicted virulence proteins, including plant cell wall degrading enzymes. A preliminary basis for potential crosstalk between GNB secretion systems is also highlighted.
Collapse
Affiliation(s)
- S Maphosa
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa.
| | - L N Moleleki
- Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
17
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
18
|
Wu J, Ohura T, Ogura R, Wang J, Choi JH, Kobori H, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Takikawa Y, Hirai H, Kawagishi H. Bioactive Compounds from the Mushroom-Forming Fungus Chlorophyllum molybdites. Antibiotics (Basel) 2023; 12:596. [PMID: 36978462 PMCID: PMC10044768 DOI: 10.3390/antibiotics12030596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
A novel compound (1) along with two known compounds (2 and 3) were isolated from the culture broth of Chlorophyllum molybdites, and three known compounds (4-6) were isolated from its fruiting bodies. The planar structure of 1 was determined by the interpretation of spectroscopic data. By comparing the specific rotation of the compound with that of the analog compound, the absolute configuration of 1 was determined to be R. This is the first time that compounds 2-4 were isolated from a mushroom-forming fungus. Compound 2 showed significant inhibition activity against Axl and immune checkpoints (PD-L1, PD-L2). In the bioassay to examine growth inhibitory activity against the phytopathogenic bacteria Peptobacterium carotovorum, Clavibacter michiganensis and Burkholderia glumae, compounds 2 and 3 inhibited the growth of P. carotovorum and C. michiganensis. In the bioassay to examine plant growth regulatory activity, compounds 1-4 showed a significant regulatory activity on lettuce growth.
Collapse
Affiliation(s)
- Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takeru Ohura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ryuhei Ogura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Junhong Wang
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hajime Kobori
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Iwade Research Institute of Mycology Co., Ltd., Suehirocho 1-9, Tsu 514-0012, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yuichi Takikawa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
19
|
Yu S, Kang J, Chung EH, Lee Y. Disruption of the metC Gene Affects Methionine Biosynthesis in Pectobacterium carotovorum subsp. carotovorum Pcc21 and Reduces Soft-Rot Disease. THE PLANT PATHOLOGY JOURNAL 2023; 39:62-74. [PMID: 36760050 PMCID: PMC9929172 DOI: 10.5423/ppj.oa.09.2022.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Plant pathogenic Pectobacterium species cause severe soft rot/blackleg diseases in many economically important crops worldwide. Pectobacterium utilizes plant cell wall degrading enzymes (PCWDEs) as the main virulence determinants for its pathogenicity. In this study, we screened a random mutant, M29 is a transposon insertion mutation in the metC gene encoding cystathionine β-lyase that catalyzes cystathionine to homocysteine at the penultimate step in methionine biosynthesis. M29 became a methionine auxotroph and resulted in growth defects in methionine-limited conditions. Impaired growth was restored with exogenous methionine or homocysteine rather than cystathionine. The mutant exhibited reduced soft rot symptoms in Chinese cabbages and potato tubers, maintaining activities of PCWDEs and swimming motility. The mutant was unable to proliferate in both Chinese cabbages and potato tubers. The reduced virulence was partially restored by a complemented strain or 100 µM of methionine, whereas it was fully restored by the extremely high concentration (1 mM). Our transcriptomic analysis showed that genes involved in methionine biosynthesis or transporter were downregulated in the mutant. Our results demonstrate that MetC is important for methionine biosynthesis and transporter and influences its virulence through Pcc21 multiplication in plant hosts.
Collapse
Affiliation(s)
- Seonmi Yu
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| | - Jihee Kang
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul 02841,
Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon 11160,
Korea
| |
Collapse
|
20
|
Naligama KN, Halmillawewa AP. Pectobacterium carotovorum Phage vB_PcaM_P7_Pc Is a New Member of the Genus Certrevirus. Microbiol Spectr 2022; 10:e0312622. [PMID: 36346243 PMCID: PMC9769974 DOI: 10.1128/spectrum.03126-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Pectobacterium carotovorum is an economically important phytopathogen and has been identified as the major causative agent of bacterial soft rot in carrots. Control of this phytopathogen is vital to minimizing carrot harvest losses. As fully efficient control measures to successfully avoid the disease are unavailable, the phage-mediated biocontrol of the pathogen has recently gained scientific attention. In this study, we present a comprehensive characterization of the P. carotovorum phage vB_PcaM_P7_Pc (abbreviated as P7_Pc) that was isolated from infected carrot samples with characteristic soft rot symptoms, which were obtained from storage facilities at market places in Gampaha District, Sri Lanka. P7_Pc is a myovirus, and it exhibits growth characteristics of an exclusively lytic life cycle. It showed visible lysis against four of the tested P. carotovorum strains and one Pectobacterium aroidearum strain. This phage also showed a longer latent period (125 min) than other related phages; however, this did not affect its high phage titter (>1010 PFU/mL). The final assembled genome of P7_Pc is 147,299 bp in length with a G+C content of 50.34%. Of the 298 predicted open reading frames (ORFs) of the genome of P7_Pc, putative functions were assigned to 53 ORFs. Seven tRNA-coding genes were predicted in the genome, while the genome lacked any major genes coding for lysogeny-related products, confirming its virulent nature. The P7_Pc genome shares 96.12% and 95.74% average nucleotide identities with Cronobacter phages CR8 and PBES02, respectively. Phylogenetic and phylogenomic analyses of the genome revealed that P7_Pc clusters well within the clade with the members representing the genus Certrevirus. Currently, there are only 4 characterized Pectobacterium phages (P. atrosepticum phages phiTE and CB7 and Pectobacterium phages DU_PP_I and DU_PP_IV) that are classified under the genus, making the phage P7_Pc the first reported member of the genus isolated using the host bacterium P. carotovorum. The results of this study provide a detailed characterization of the phage P7_Pc, enabling its careful classification into the genus Certrevirus. The knowledge gathered on the phage based on the shared biology of the genus will further aid in the future selection of phage P7_Pc as a biocontrol agent. IMPORTANCE Bacterial soft rot disease, caused by Pectobacterium spp., can lead to significant losses in carrot yields. As current control measures involving the use of chemicals or antibiotics are not recommended in many countries, bacteriophage-mediated biocontrol strategies are being explored for the successful control of these phytopathogens. The successful implementation of such biocontrol strategies relies heavily upon the proper understanding of the growth characteristics and genomic properties of the phage. Further, the selection of taxonomically different phages for the formulation of phage cocktails in biocontrol applications is critical to combat potential bacterial resistance development. This study was conducted to carefully characterize and resolve the phylogenetic placement of the P. carotovorum phage vB_PcaM_P7_Pc by using its biological and genomic properties. Phage P7_Pc has a myovirus morphotype with an exclusively lytic life cycle, and the absence of genes related to lysogeny, toxin production, and antibiotic resistance in its genome confirmed its suitability to be used in environmental applications. Furthermore, P7_Pc is classified under the genus Certrevirus, making it the first reported phage of the genus of the host species, P. carotovorum.
Collapse
Affiliation(s)
- Kishani N. Naligama
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | | |
Collapse
|
21
|
Biological control of soft rot in potato by κ-carrageenan carriers encapsulated microbial predators. Appl Microbiol Biotechnol 2022; 107:81-96. [DOI: 10.1007/s00253-022-12294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022]
|
22
|
Kachhadia R, Kapadia C, Datta R, Jajda H, Danish S, Glick BR. Cloning and characterization of Aiia, an acylhomoserine lactonase from Bacillus cereus RC1 to control soft rot causing pathogen Lelliottia amnigena RCE. Arch Microbiol 2022; 204:665. [DOI: 10.1007/s00203-022-03271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
|
23
|
Chen C, Cai J, Ren YH, Xu Y, Liu HL, Zhao YY, Chen XF, Liu ZB. Antimicrobial activity, chemical composition and mechanism of action of Chinese chive ( Allium tuberosum Rottler) extracts. Front Microbiol 2022; 13:1028627. [PMID: 36386646 PMCID: PMC9664698 DOI: 10.3389/fmicb.2022.1028627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/13/2022] [Indexed: 01/25/2023] Open
Abstract
Chinese chive (Allium tuberosum Rottler) is a popular food from Allium species in East and Southeast Asia. Most Allium species possess characteristic aromas and have antimicrobial activity. In this study, the antimicrobial activities of root, leaf, and scape extracts of Chinese chive at different pH levels (3.0, 5.0, 7.0, 9.0, and 10.7) were compared. The most pronounced activity was produced by the scape extract, and the greatest activity was obtained at pH 5.0. HPLC and GC-MS analysis showed that the major active ingredient was 2-amino-5-methylbenzoic acid. The mechanism of action of Chinese chive scape extracts may involve the depression or disruption of cell membrane integrity, according to our results of the leakage of electrolytes and protein, as well as scanning electron microscopy and transmission electron microscopy observations.
Collapse
Affiliation(s)
- Cun Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China,Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, Sichuan, China
| | - Jing Cai
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ying-hong Ren
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, Sichuan, China
| | - Yue Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hong-ling Liu
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Science, Chengdu Normal University, Chengdu, Sichuan, China
| | - Yu-yang Zhao
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xing-fu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Xing-fu Chen,
| | - Zhi-bin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China,Zhi-bin Liu,
| |
Collapse
|
24
|
Yi SY, Lee M, Park SK, Lu L, Lee G, Kim SG, Kang SY, Lim YP. Jasmonate regulates plant resistance to Pectobacterium brasiliense by inducing indole glucosinolate biosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:964092. [PMID: 36247644 PMCID: PMC9559233 DOI: 10.3389/fpls.2022.964092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/08/2022] [Indexed: 05/31/2023]
Abstract
Pectobacterium brasiliense (P. brasiliense) is a necrotrophic bacterium that causes the soft rot disease in Brassica rapa. However, the mechanisms underlying plant immune responses against necrotrophic bacterial pathogens with a broad host range are still not well understood. Using a flg22-triggered seedling growth inhibition (SGI) assay with 455 Brassica rapa inbred lines, we selected six B. rapa flagellin-insensitive lines (Brfin2-7) and three B. rapa flagellin-sensitive lines (Brfs1-3). Brfin lines showed compromised flg22-induced immune responses (oxidative burst, mitogen-activated protein kinase (MAPK) activation, and seedling growth inhibition) compared to the control line R-o-18; nevertheless, they were resistant to P. brasiliense. To explain this, we analyzed the phytohormone content and found that most Brfin lines had higher P. brasiliense-induced jasmonic acid (JA) than Brfs lines. Moreover, MeJA pretreatment enhanced the resistance of B. rapa to P. brasiliense. To explain the correlation between the resistance of Brfin lines to P. brasiliense and activated JA signaling, we analyzed pathogen-induced glucosinolate (GS) content in B. rapa. Notably, in Brfin7, the neoglucobrassicin (NGBS) content among indole glucosinolates (IGS) was significantly higher than that in Brfs2 following P. brasiliense inoculation, and genes involved in IGSs biosynthesis were also highly expressed. Furthermore, almost all Brfin lines with high JA levels and resistance to P. brasiliense had higher P. brasiliense-induced NGBS levels than Brfs lines. Thus, our results show that activated JA-mediated signaling attenuates flg22-triggered immunity but enhances resistance to P. brasiliense by inducing indole glucosinolate biosynthesis in Brassica rapa. This study provides novel insights into the role of JA-mediated defense against necrotrophic bacterial pathogens within a broad host range.
Collapse
Affiliation(s)
- So Young Yi
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Myungjin Lee
- Institute of Agricultural Science, Chungnam National University, Daejeon, South Korea
| | - Sun Kyu Park
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Lu Lu
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| | - Gisuk Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, South Korea
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, South Korea
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, South Korea
| | - Yong Pyo Lim
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
25
|
Control of the bacterial soft rot pathogen, Pectobacterium carotovorum by Bacillus velezensis CE 100 in cucumber. Microb Pathog 2022; 173:105807. [PMID: 36183955 DOI: 10.1016/j.micpath.2022.105807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022]
Abstract
Pectobacterium carotovorum is a problematic bacterial pathogen causing soft rot in different vegetable crops, resulting in yield losses during pre- and post-harvest periods. In this study, Bacillus velezensis CE 100 showed antibacterial activity against P. carotovorum. Co-inoculation experiment indicated that B. velezensis CE 100 reduced the proliferation rate of P. carotovorum at the early incubation period and that a long incubation time induced a loss of viability of the bacterial pathogen. Agar well diffusion assay revealed that the culture filtrate of strain CE 100 affected the growth of P. carotovorum in a dose-dependent pattern. In time-kill assay, inoculation of P. carotovorum with 50% culture filtrate of strain CE 100 resulted in a complete loss of survival at 4 h incubation period. An antibacterial compound isolated from chloroform extract of B. velezensis CE 100 was identified as macrolactin A based on results of 1H and 13C NMR and mass spectrometry. However, time-kill assay showed that purified macrolactin A at a concentration of 200 μg/mL was not highly effective to control the growth of P. carotovorum although reduction in cell number of P. carotovorum was observed. Moreover, in vivo assay revealed that B. velezensis CE 100 effectively controlled bacterial soft rot. As a consequence, it significantly improved cucumber growth. Therefore, B. velezensis CE 100 could be used as an eco-friendly bioagent for effective control of bacterial soft rot to minimize global economic losses in crop production.
Collapse
|
26
|
Effects of Natural Rheum tanguticum on the Cell Wall Integrity of Resistant Phytopathogenic Pectobacterium carotovorum subsp. Carotovorum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165291. [PMID: 36014529 PMCID: PMC9414576 DOI: 10.3390/molecules27165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022]
Abstract
The abuse of agricultural antibiotics has led to the emergence of drug-resistant phytopathogens. Rifampicin and streptomycin and streptomycin resistance Pectobacterium carotovorum subsp. carotovorum (PccS1) was obtained from pathological plants in a previous experiment. Rheum tanguticum, derived from the Chinese plateau area, exhibits excellent antibacterial activity against PccS1, yet the action mode has not been fully understood. In present text, the cell wall integrity of the PccS1 was tested by the variation of the cellular proteins, SDS polyacrylamide gel electrophoresis (SDS-PAGE), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometer (FTIR) characteristics. Label-free quantitative proteomics was further used to identify the DEPs in the pathogen response to treatment with Rheum tanguticum Maxim. ex Balf. extract (abbreviated as RTMBE). Based on the bioinformatics analysis of these different expressed proteins (DEPs), RTMBE mainly inhibited some key protein expressions of beta-Lactam resistance, a two-component system and phosphotransferase system. Most of these membrane proteins were extraordinarily suppressed, which was also consistent with the morphological tests. In addition, from the downregulated flagellar motility related proteins, it was also speculated that RTMBE played an essential antibacterial role by affecting the swimming motility of the cells. The results indicated that Rheum tanguticum can be used to attenuate the virulence of the drug-resistant phytopathogenic bacteria.
Collapse
|
27
|
Cho ER, Kim JY, Oh SW, Kang DH. Inactivation of Pectobacterium carotovorum subsp. Carotovorum and Dickeya chrysanthemi on the surface of fresh produce using a 222 nm krypton–chlorine excimer lamp and 280 nm UVC light-emitting diodes. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Comparative Genome Analyses of Plant Rust Pathogen Genomes Reveal a Confluence of Pathogenicity Factors to Quell Host Plant Defense Responses. PLANTS 2022; 11:plants11151962. [PMID: 35956440 PMCID: PMC9370660 DOI: 10.3390/plants11151962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
Switchgrass rust caused by Puccinia novopanici (P. novopanici) has the ability to significantly affect the biomass yield of switchgrass, an important biofuel crop in the United States. A comparative genome analysis of P. novopanici with rust pathogen genomes infecting monocot cereal crops wheat, barley, oats, maize and sorghum revealed the presence of larger structural variations contributing to their genome sizes. A comparative alignment of the rust pathogen genomes resulted in the identification of collinear and syntenic relationships between P. novopanici and P. sorghi; P. graminis tritici 21–0 (Pgt 21) and P. graminis tritici Ug99 (Pgt Ug99) and between Pgt 21 and P. triticina (Pt). Repeat element analysis indicated a strong presence of retro elements among different Puccinia genomes, contributing to the genome size variation between ~1 and 3%. A comparative look at the enriched protein families of Puccinia spp. revealed a predominant role of restriction of telomere capping proteins (RTC), disulfide isomerases, polysaccharide deacetylases, glycoside hydrolases, superoxide dismutases and multi-copper oxidases (MCOs). All the proteomes of Puccinia spp. share in common a repertoire of 75 secretory and 24 effector proteins, including glycoside hydrolases cellobiohydrolases, peptidyl-propyl isomerases, polysaccharide deacetylases and protein disulfide-isomerases, that remain central to their pathogenicity. Comparison of the predicted effector proteins from Puccinia spp. genomes to the validated proteins from the Pathogen–Host Interactions database (PHI-base) resulted in the identification of validated effector proteins PgtSR1 (PGTG_09586) from P. graminis and Mlp124478 from Melampsora laricis across all the rust pathogen genomes.
Collapse
|
29
|
Wei L, Zhang Q, Xie A, Xiao Y, Guo K, Mu S, Xie Y, Li Z, He T. Isolation of Bioactive Compounds, Antibacterial Activity, and Action Mechanism of Spore Powder From Aspergillus niger xj. Front Microbiol 2022; 13:934857. [PMID: 35898902 PMCID: PMC9309528 DOI: 10.3389/fmicb.2022.934857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fungi can produce a wide range of secondary metabolites, and they have represented a potential resource of novel bioactive compounds. Bacterial plant diseases have a serious impact on the sustainable development of agriculture worldwide, so it is necessary to use natural antibacterial compounds in microorganisms to control plant pathogens. This study was conducted to investigate the bioactive compounds of Aspergillus niger xj, three plant pathogens (Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1, and Ralstonia solanacearum RS-2) were used as indicator bacteria, according to the biological activity tracking, five compounds were isolated from A. niger xj spore powder, and characterization of compounds was done by NMR (1H-NMR and 13C-NMR) and EI-MS and was identified as ergosterol (1), β-sitosterol (2), 5-pentadecylresorcinol (3), 5-hydroxymethyl-2-furancarboxylic acid (4), and succinimide (5). Compounds 3 and 5 were isolated from A. niger xj for the first time. The minimum inhibitory concentration (MIC) of five compounds against three plant pathogens was evaluated, the results showed that compound 4 exhibited the strongest antibacterial activity against tested bacteria, and RS-2 was the most sensitive to compound 4, showing the lowest MIC of 15.56 μg/ml. We concluded that the mechanism of action of the compound 4 against RS-2 might be described as compound 4 acting on bacterial protein synthesis and intracellular metabolism according to the results of the scanning electron microscopy observation, permeability of cell membrane and SDS-PAGE. These results indicated that compound 4 has good potential to be as a biocontrol agent. In conclusion, the results from this study demonstrated that the compounds with antibacterial activity are of great significance of the prevention and control of plant phytopathogenic bacteria, and they may be applicable to exploring alternative approaches to integrated control of phytopathogens.
Collapse
Affiliation(s)
- Longfeng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Qinyu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Ailin Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Kun Guo
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Yudan Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
30
|
Steglińska A, Pielech-Przybylska K, Janas R, Grzesik M, Borowski S, Kręgiel D, Gutarowska B. Volatile Organic Compounds and Physiological Parameters as Markers of Potato ( Solanum tuberosum L.) Infection with Phytopathogens. Molecules 2022; 27:molecules27123708. [PMID: 35744835 PMCID: PMC9230024 DOI: 10.3390/molecules27123708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The feasibility of early disease detection in potato seeds storage monitoring of volatile organic compounds (VOCs) and plant physiological markers was evaluated using 10 fungal and bacterial pathogens of potato in laboratory-scale experiments. Data analysis of HS-SPME-GC-MS revealed 130 compounds released from infected potatoes, including sesquiterpenes, dimethyl disulfide, 1,2,4-trimethylbenzene, 2,6,11-trimethyldodecane, benzothiazole, 3-octanol, and 2-butanol, which may have been associated with the activity of Fusarium sambucinum, Alternaria tenuissima and Pectobacterium carotovorum. In turn, acetic acid was detected in all infected samples. The criteria of selection for volatiles for possible use as incipient disease indicators were discussed in terms of potato physiology. The established physiological markers proved to demonstrate a negative effect of phytopathogens infecting seed potatoes not only on the kinetics of stem and root growth and the development of the entire root system, but also on gas exchange, chlorophyll content in leaves, and yield. The negative effect of phytopathogens on plant growth was dependent on the time of planting after infection. The research also showed different usefulness of VOCs and physiological markers as the indicators of the toxic effect of inoculated phytopathogens at different stages of plant development and their individual organs.
Collapse
Affiliation(s)
- Aleksandra Steglińska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
- Correspondence:
| | - Katarzyna Pielech-Przybylska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland;
| | - Regina Janas
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Mieczysław Grzesik
- The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland; (R.J.); (M.G.)
| | - Sebastian Borowski
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-530 Łódź, Poland; (S.B.); (D.K.); (B.G.)
| |
Collapse
|
31
|
Zhou J, Hu M, Hu A, Li C, Ren X, Tao M, Xue Y, Chen S, Tang C, Xu Y, Zhang L, Zhou X. Isolation and Genome Analysis of Pectobacterium colocasium sp. nov. and Pectobacterium aroidearum, Two New Pathogens of Taro. FRONTIERS IN PLANT SCIENCE 2022; 13:852750. [PMID: 35557713 PMCID: PMC9088014 DOI: 10.3389/fpls.2022.852750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
Bacterial soft rot is one of the most destructive diseases of taro (Colocasia esculenta) worldwide. In recent years, frequent outbreaks of soft rot disease have seriously affected taro production and became a major constraint to the development of taro planting in China. However, little is known about the causal agents of this disease, and the only reported pathogens are two Dickeya species and P. carotovorum. In this study, we report taro soft rot caused by two novel Pectobacterium strains, LJ1 and LJ2, isolated from taro corms in Ruyuan County, Shaoguan City, Guangdong Province, China. We showed that LJ1 and LJ2 fulfill Koch's postulates for taro soft rot. The two pathogens can infect taro both individually and simultaneously, and neither synergistic nor antagonistic interaction was observed between the two pathogens. Genome sequencing of the two strains indicated that LJ1 represents a novel species of the genus Pectobacterium, for which the name "Pectobacterium colocasium sp. nov." is proposed, while LJ2 belongs to Pectobacterium aroidearum. Pan-genome analysis revealed multiple pathogenicity-related differences between LJ1, LJ2, and other Pectobacterium species, including unique virulence factors, variation in the copy number and organization of Type III, IV, and VI secretion systems, and differential production of plant cell wall degrading enzymes. This study identifies two new soft rot Pectobacteriaceae (SRP) pathogens causing taro soft rot in China, reports a new case of co-infection of plant pathogens, and provides valuable resources for further investigation of the pathogenic mechanisms of SRP.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Anqun Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xinyue Ren
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Min Tao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shanshan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chongzhi Tang
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
| | - Yiwu Xu
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, China
- Qingyuan Agricultural Science and Technology Service Co., Ltd., Qingyuan, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
32
|
Rastgou M, Rezaee Danesh Y, Ercisli S, Sayyed RZ, El Enshasy HA, Dailin DJ, Alfarraj S, Ansari MJ. The Effect of Some Wild Grown Plant Extracts and Essential Oils on Pectobacterium betavasculorum: The Causative Agent of Bacterial Soft Rot and Vascular Wilt of Sugar Beet. PLANTS (BASEL, SWITZERLAND) 2022; 11:1155. [PMID: 35567156 PMCID: PMC9104036 DOI: 10.3390/plants11091155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/31/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The bacterial soft rot and vascular wilt of sugar beet are the major diseases of sugar crops globally induced by Pectobacterium betavasculorum and P. carotovorum subsp. carotovorum (Pcc). The control of this bacterial disease is a severe problem, and only a few copper-based chemical bactericides are available for this disease. Because of the limitations of chemicals to control plant bacterial pathogens, the essential oils and extracts have been considered one of the best alternative strategies for their control. In this study, twenty-seven essential oils and twenty-nine plant extracts were extracted and evaluated for their antibacterial activities against Pectobacterium betavasculorum isolate C3, using the agar diffusion method at 0.01%, 0.1%, and 100% (v/v). Pure Pimpinella anisum L. oil exhibited the most anti-bacterial activity among three different concentrations of essential oils and extracts, followed by Thymus vulgaris L. oil and Rosa multiflora Thunb. extract. The efficacy of effective essential oils and extracts on Ic1 cultivar of sugar beet seeds germination and seedling growth in vivo also were tested. The seed germination of the Ic1 cultivar was inhibited at all the concentrations of essential oils used. Only extracts of Rosa multiflora Thunb., Brassica oleracea L., Lactuca serriola L., Salvia rosmarinus Spenn., Syzygium aromaticum (L.) Merr. and L.M.Perry, Eucalyptus globulus Labill., and essential oils of Ocmium basilicum L., Pimpinella anisum L., and Mentha× piperita L.L. in 0.1% concentration had no inhibition on seed germination and could improve seedling growth. This is the first report of the antibacterial activity of essential oils and extracts on Pectobacterium betavasculorum.
Collapse
Affiliation(s)
- Mina Rastgou
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran;
| | - Younes Rezaee Danesh
- Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran;
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum 25240, Turkey;
| | - R. Z. Sayyed
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL 36830, USA;
- Department of Microbiology, PSGVP Mandal’s Shri S I Patil Arts, G B Patel Science and STKVS Commerce College, Shahada 425409, India
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia; (H.A.E.E.); (D.J.D.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Borg Al Arab 21934, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia; (H.A.E.E.); (D.J.D.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor 81310, Malaysia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College, Mahatma Jyotiba Phule Rohilkhand University Bareilly, Moradabad 244001, India;
| |
Collapse
|
33
|
Jarboe LR, Khalid A, Rodriguez Ocasio E, Noroozi KF. Extrapolation of design strategies for lignocellulosic biomass conversion to the challenge of plastic waste. J Ind Microbiol Biotechnol 2022; 49:kuac001. [PMID: 35040946 PMCID: PMC9119000 DOI: 10.1093/jimb/kuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
The goal of cost-effective production of fuels and chemicals from biomass has been a substantial driver of the development of the field of metabolic engineering. The resulting design principles and procedures provide a guide for the development of cost-effective methods for degradation, and possibly even valorization, of plastic wastes. Here, we highlight these parallels, using the creative work of Lonnie O'Neal (Neal) Ingram in enabling production of fuels and chemicals from lignocellulosic biomass, with a focus on ethanol production as an exemplar process.
Collapse
Affiliation(s)
- Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ammara Khalid
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Efrain Rodriguez Ocasio
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kimia Fashkami Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
34
|
Mallick T, Mishra R, Mohanty S, Joshi RK. Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features. THE PLANT PATHOLOGY JOURNAL 2022; 38:102-114. [PMID: 35385916 PMCID: PMC9343900 DOI: 10.5423/ppj.oa.12.2021.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.
Collapse
Affiliation(s)
- Tista Mallick
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| | - Rukmini Mishra
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar 751022, Odisha, India
| | - Sasmita Mohanty
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| | - Raj Kumar Joshi
- Department of Biotechnology, Rama Devi Women’s University, Bhubaneswar 751022, Odisha, India
| |
Collapse
|
35
|
Muñoz CY, Zhou L, Yi Y, Kuipers OP. Biocontrol properties from phyllospheric bacteria isolated from Solanum lycopersicum and Lactuca sativa and genome mining of antimicrobial gene clusters. BMC Genomics 2022; 23:152. [PMID: 35189837 PMCID: PMC8862347 DOI: 10.1186/s12864-022-08392-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/09/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Biocontrol agents are sustainable eco-friendly alternatives for chemical pesticides that cause adverse effects in the environment and toxicity in animals including humans. An improved understanding of the phyllosphere microbiology is of vital importance for biocontrol development. Most studies have been directed towards beneficial plant-microbe interactions and ignore the pathogens that might affect humans when consuming vegetables. In this study we extended this perspective and investigated potential biocontrol strains isolated from tomato and lettuce phyllosphere that can promote plant growth and potentially antagonize human pathogens as well as plant pathogens. Subsequently, we mined into their genomes for discovery of antimicrobial biosynthetic gene clusters (BGCs), that will be further characterized. RESULTS The antimicrobial activity of 69 newly isolated strains from a healthy tomato and lettuce phyllosphere against several plant and human pathogens was screened. Three strains with the highest antimicrobial activity were selected and characterized (Bacillus subtilis STRP31, Bacillus velezensis SPL51, and Paenibacillus sp. PL91). All three strains showed a plant growth promotion effect on tomato and lettuce. In addition, genome mining of the selected isolates showed the presence of a large variety of biosynthetic gene clusters. A total of 35 BGCs were identified, of which several are already known, but also some putative novel ones were identified. Further analysis revealed that among the novel BGCs, one previously unidentified NRPS and two bacteriocins are encoded, the gene clusters of which were analyzed in more depth. CONCLUSIONS Three recently isolated strains of the Bacillus genus were identified that have high antagonistic activity against lettuce and tomato plant pathogens. Known and unknown antimicrobial BGCs were identified in these antagonistic bacterial isolates, indicating their potential to be used as biocontrol agents. Our study serves as a strong incentive for subsequent purification and characterization of novel antimicrobial compounds that are important for biocontrol.
Collapse
Affiliation(s)
- Claudia Y Muñoz
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Lu Zhou
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Yunhai Yi
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
36
|
Rafique N, Bashir S, Khan MZ, Hayat I, Orts W, Wong DWS. Metabolic engineering of Bacillus subtilis with an endopolygalacturonase gene isolated from Pectobacterium. carotovorum; a plant pathogenic bacterial strain. PLoS One 2021; 16:e0256562. [PMID: 34936645 PMCID: PMC8694468 DOI: 10.1371/journal.pone.0256562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/20/2021] [Indexed: 12/02/2022] Open
Abstract
Pectinolytic enzymes or pectinases are synthesized naturally by numerous microbes and plants. These enzymes degrade various kinds of pectin which exist as the major component of the cell wall in plants. A pectinase gene encoding endo-polygalacturonase (endo-PGase) enzyme was isolated from Pectobacterium carotovorum a plant pathogenic strain of bacteria and successfully cloned into a secretion vector pHT43 having σA-dependent promoter for heterologous expression in Bacillus subtilis (WB800N).The desired PCR product was 1209bp which encoded an open reading frame of 402 amino acids. Recombinant proteins showed an estimated molecular weight of 48 kDa confirmed by sodium dodecyl sulphate-polyacrylamide-gel electrophoresis. Transformed B. subtilis competent cells harbouring the engineered pHT43 vector with the foreign endo-PGase gene were cultured in 2X-yeast extract tryptone medium and subsequently screened for enzyme activity at various temperatures and pH ranges. Optimal activity of recombinant endo-PGase was found at 40°C and pH 5.0. To assay the catalytic effect of metal ions, the recombinant enzyme was incubated with 1 mM concentration of various metal ions. Potassium chloride increased the enzyme activity while EDTA, Zn++ and Ca++, strongly inhibited the activity. The chromatographic analysis of enzymatic hydrolysates of polygalacturonic acid (PGA) and pectin substrates using HPLC and TLC revealed tri and tetra-galacturonates as the end products of recombinant endo-PGase hydrolysis. Conclusively, endo-PGase gene from the plant pathogenic strain was successfully expressed in Bacillus subtilis for the first time using pHT43 expression vector and could be assessed for enzyme production using a very simple medium with IPTG induction. These findings proposed that the Bacillus expression system might be safer to escape endotoxins for commercial enzyme production as compared to yeast and fungi. Additionally, the hydrolysis products generated by the recombinant endo-PGase activity offer their useful applications in food and beverage industry for quality products.
Collapse
Affiliation(s)
- Nagina Rafique
- Department of Food Science and Technology, Faculty of Agriculture, University of the Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
- Bioproducts Research Unit, Western Regional Research Centre, United States Department of Agriculture, Albany, California, United States of America
| | - Saiqa Bashir
- Department of Food Science and Technology, Faculty of Agriculture, University of the Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Muhammad Zubair Khan
- Department of Plant Breeding and Molecular Genetics, Faculty of Agriculture, University of Poonch Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Imran Hayat
- Department of Food Science and Technology, Faculty of Agriculture, University of the Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Willium Orts
- Bioproducts Research Unit, Western Regional Research Centre, United States Department of Agriculture, Albany, California, United States of America
| | - Dominic W. S. Wong
- Bioproducts Research Unit, Western Regional Research Centre, United States Department of Agriculture, Albany, California, United States of America
| |
Collapse
|
37
|
Devi V, Harjai K, Chhibber S. Self-targeting spacers in CRISPR-array: Accidental occurrence or evolutionarily conserved phenomenon. J Basic Microbiol 2021; 62:4-12. [PMID: 34904260 DOI: 10.1002/jobm.202100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 11/12/2022]
Abstract
In recent years, a tremendous amount of inquisitiveness among scientists in the clustered regularly interspaced short palindrome repeats (CRISPR)-CRISPR-associated proteins (Cas) has led to many studies to delineate their exact role in prokaryotes. CRISPR-Cas is an adaptive immune system that protects prokaryotes from phages and mobile genetic elements. It incorporates small DNA fragment of the invader in the CRISPR-array and protects the host from future invasion by them. In a few instances, the CRISPR-array also incorporates self-targeting spacers, most likely by accident or leaky incorporation. A significant number of spacers are found to match with the host genes across the species; however, self-targeting spacers have not been investigated in detail in most of the organisms. The presence of self-targeting spacers in the CRISPR-array led to speculation that the CRISPR-Cas system has a lot more to offer than just being the conventional adaptive immune system. It has been implicated in gene regulation and autoimmunity more or less equally. In this review, an attempt has been made to understand self-targeting spacers in the context of gene regulation, autoimmunity, and its avoidance strategies.
Collapse
Affiliation(s)
- Veena Devi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
38
|
Padilla-Gálvez N, Luengo-Uribe P, Mancilla S, Maurin A, Torres C, Ruiz P, France A, Acuña I, Urrutia H. Antagonistic activity of endophytic actinobacteria from native potatoes (Solanum tuberosum subsp. tuberosum L.) against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum. BMC Microbiol 2021; 21:335. [PMID: 34876006 PMCID: PMC8650274 DOI: 10.1186/s12866-021-02393-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The native potatoes (Solanum tuberosum subsp. tuberosum L.) grown in Chile (Chiloé) represent a new, unexplored source of endophytes to find potential biological control agents for the prevention of bacterial diseases, like blackleg and soft rot, in potato crops. RESULT The objective of this study was the selection of endophytic actinobacteria from native potatoes for antagonistic activity against Pectobacterium carotovorum subsp. carotovorum and Pectobacterium atrosepticum, and their potential to suppress tissue maceration symptoms in potato tubers. This potential was determined through the quorum quenching activity using a Chromobacterium violaceaum ATCC 12472 Wild type (WT) bioassay and its colonization behavior of the potato plant root system (S. tuberosum) by means of the Double labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) targeting technique. The results showed that although Streptomyces sp. TP199 and Streptomyces sp. A2R31 were able to inhibit the growth of the pathogens, only the Streptomyces sp. TP199 isolate inhibited Pectobacterium sp. growth and diminished tissue maceration in tubers (p ≤ 0.05). Streptomyces sp. TP199 had metal-dependent acyl homoserine lactones (AHL) quorum quenching activity in vitro and was able to colonize the root endosphere 10 days after inoculation. CONCLUSIONS We concluded that native potatoes from southern Chile possess endophyte actinobacteria that are potential agents for the disease management of soft rot and blackleg.
Collapse
Affiliation(s)
- Natalia Padilla-Gálvez
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
| | - Paola Luengo-Uribe
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
| | - Sandra Mancilla
- Instituto de Investigaciones Agropecuarias, INIA Remehue. Ruta 5 Norte Km 8-, Osorno, Región de Los Lagos, Chile
| | - Amandine Maurin
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
- University of Montpellier, Montpellier, France
| | - Claudia Torres
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
| | - Pamela Ruiz
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Autopista Concepción Talcahuano # 7100, 4300866, Talcahuano, Chile
| | - Andrés France
- Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Región de Ñuble, Chillán, Chile
| | - Ivette Acuña
- Instituto de Investigaciones Agropecuarias, INIA Remehue. Ruta 5 Norte Km 8-, Osorno, Región de Los Lagos, Chile
| | - Homero Urrutia
- Laboratorio de Biopelículas y Microbiología Ambiental, Centro de Biotecnología, Universidad de Concepción, Victor Lamas 1290, P.O. Box: 160 C, Concepción, Chile.
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
39
|
Song H, Lee JY, Lee HW, Ha JH. Inactivation of bacteria causing soft rot disease in fresh cut cabbage using slightly acidic electrolyzed water. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Boluk G, Arizala D, Dobhal S, Zhang J, Hu J, Alvarez AM, Arif M. Genomic and Phenotypic Biology of Novel Strains of Dickeya zeae Isolated From Pineapple and Taro in Hawaii: Insights Into Genome Plasticity, Pathogenicity, and Virulence Determinants. FRONTIERS IN PLANT SCIENCE 2021; 12:663851. [PMID: 34456933 PMCID: PMC8386352 DOI: 10.3389/fpls.2021.663851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Dickeya zeae, a bacterial plant pathogen of the family Pectobacteriaceae, is responsible for a wide range of diseases on potato, maize, rice, banana, pineapple, taro, and ornamentals and significantly reduces crop production. D. zeae causes the soft rot of taro (Colocasia esculenta) and the heart rot of pineapple (Ananas comosus). In this study, we used Pacific Biosciences single-molecule real-time (SMRT) sequencing to sequence two high-quality complete genomes of novel strains of D. zeae: PL65 (size: 4.74997 MB; depth: 701x; GC: 53.6%) and A5410 (size: 4.7792 MB; depth: 558x; GC: 53.5%) isolated from economically important Hawaiian crops, taro, and pineapple, respectively. Additional complete genomes of D. zeae representing three additional hosts (philodendron, rice, and banana) and other species used for a taxonomic comparison were retrieved from the NCBI GenBank genome database. Genomic analyses indicated the truncated type III and IV secretion systems (T3SS and T4SS) in the taro strain, which only harbored one and two genes of T3SS and T4SS, respectively, and showed high heterogeneity in the type VI secretion system (T6SS). Unlike strain EC1, which was isolated from rice and recently reclassified as D. oryzae, neither the genome PL65 nor A5410 harbors the zeamine biosynthesis gene cluster, which plays a key role in virulence of other Dickeya species. The percentages of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the two genomes were 94.47 and 57.00, respectively. In this study, we compared the major virulence factors [plant cell wall-degrading extracellular enzymes and protease (Prt)] produced by D. zeae strains and evaluated the virulence on taro corms and pineapple leaves. Both strains produced Prts, pectate lyases (Pels), and cellulases but no significant quantitative differences were observed (p > 0.05) between the strains. All the strains produced symptoms on taro corms and pineapple leaves, but the strain PL65 produced symptoms more rapidly than others. Our study highlights the genetic constituents of pathogenicity determinants and genomic heterogeneity that will help to understand the virulence mechanisms and aggressiveness of this plant pathogen.
Collapse
Affiliation(s)
- Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Jingxin Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
41
|
Wang S, Vetukuri RR, Kushwaha SK, Hedley PE, Morris J, Studholme DJ, Welsh LRJ, Boevink PC, Birch PRJ, Whisson SC. Haustorium formation and a distinct biotrophic transcriptome characterize infection of Nicotiana benthamiana by the tree pathogen Phytophthora kernoviae. MOLECULAR PLANT PATHOLOGY 2021; 22:954-968. [PMID: 34018655 PMCID: PMC8295517 DOI: 10.1111/mpp.13072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 05/29/2023]
Abstract
Phytophthora species cause some of the most serious diseases of trees and threaten forests in many parts of the world. Despite the generation of genome sequence assemblies for over 10 tree-pathogenic Phytophthora species and improved detection methods, there are many gaps in our knowledge of how these pathogens interact with their hosts. To facilitate cell biology studies of the infection cycle we examined whether the tree pathogen Phytophthora kernoviae could infect the model plant Nicotiana benthamiana. We transformed P. kernoviae to express green fluorescent protein (GFP) and demonstrated that it forms haustoria within infected N. benthamiana cells. Haustoria were also formed in infected cells of natural hosts, Rhododendron ponticum and European beech (Fagus sylvatica). We analysed the transcriptome of P. kernoviae in cultured mycelia, spores, and during infection of N. benthamiana, and detected 12,559 transcripts. Of these, 1,052 were predicted to encode secreted proteins, some of which may function as effectors to facilitate disease development. From these, we identified 87 expressed candidate RXLR (Arg-any amino acid-Leu-Arg) effectors. We transiently expressed 12 of these as GFP fusions in N. benthamiana leaves and demonstrated that nine significantly enhanced P. kernoviae disease progression and diversely localized to the cytoplasm, nucleus, nucleolus, and plasma membrane. Our results show that N. benthamiana can be used as a model host plant for studying this tree pathogen, and that the interaction likely involves suppression of host immune responses by RXLR effectors. These results establish a platform to expand the understanding of Phytophthora tree diseases.
Collapse
Affiliation(s)
- Shumei Wang
- Division of Plant SciencesUniversity of DundeeJames Hutton InstituteInvergowrie, DundeeUK
| | - Ramesh R. Vetukuri
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Sandeep K. Kushwaha
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
- National Institute of Animal BiotechnologyHyderabadIndia
| | - Pete E. Hedley
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Jenny Morris
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - David J. Studholme
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
| | - Lydia R. J. Welsh
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Petra C. Boevink
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | - Paul R. J. Birch
- Division of Plant SciencesUniversity of DundeeJames Hutton InstituteInvergowrie, DundeeUK
- Cell and Molecular SciencesJames Hutton InstituteInvergowrie, DundeeUK
| | | |
Collapse
|
42
|
The Right-Handed Parallel β-Helix Topology of Erwinia chrysanthemi Pectin Methylesterase Is Intimately Associated with Both Sequential Folding and Resistance to High Pressure. Biomolecules 2021; 11:biom11081083. [PMID: 34439750 PMCID: PMC8392785 DOI: 10.3390/biom11081083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/30/2022] Open
Abstract
The complex topologies of large multi-domain globular proteins make the study of their folding and assembly particularly demanding. It is often characterized by complex kinetics and undesired side reactions, such as aggregation. The structural simplicity of tandem-repeat proteins, which are characterized by the repetition of a basic structural motif and are stabilized exclusively by sequentially localized contacts, has provided opportunities for dissecting their folding landscapes. In this study, we focus on the Erwinia chrysanthemi pectin methylesterase (342 residues), an all-β pectinolytic enzyme with a right-handed parallel β-helix structure. Chemicals and pressure were chosen as denaturants and a variety of optical techniques were used in conjunction with stopped-flow equipment to investigate the folding mechanism of the enzyme at 25 °C. Under equilibrium conditions, both chemical- and pressure-induced unfolding show two-state transitions, with average conformational stability (ΔG° = 35 ± 5 kJ·mol−1) but exceptionally high resistance to pressure (Pm = 800 ± 7 MPa). Stopped-flow kinetic experiments revealed a very rapid (τ < 1 ms) hydrophobic collapse accompanied by the formation of an extended secondary structure but did not reveal stable tertiary contacts. This is followed by three distinct cooperative phases and the significant population of two intermediate species. The kinetics followed by intrinsic fluorescence shows a lag phase, strongly indicating that these intermediates are productive species on a sequential folding pathway, for which we propose a plausible model. These combined data demonstrate that even a large repeat protein can fold in a highly cooperative manner.
Collapse
|
43
|
Xu P, Wang H, Qin C, Li Z, Lin C, Liu W, Miao W. Analysis of the Taxonomy and Pathogenic Factors of Pectobacterium aroidearum L6 Using Whole-Genome Sequencing and Comparative Genomics. Front Microbiol 2021; 12:679102. [PMID: 34276610 PMCID: PMC8282894 DOI: 10.3389/fmicb.2021.679102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022] Open
Abstract
Soft rot pectobacteria are devastating plant pathogens with a global distribution and a broad host range. Pectobacterium aroidearum L6, previously isolated from leaves of Syngonium podophyllum, is a pectolytic bacterial pathogen that causes typical soft rot on S. podophyllum. There is a shortage for genome data of P. aroidearum, which seriously hinders research on classification and pathogenesis of Pectobacterium. We present here the complete genome sequence of P. aroidearum L6. The L6 strain carries a single 4,995,896-bp chromosome with 53.10% G + C content and harbors 4,306 predicted protein-coding genes. We estimated in silico DNA-DNA hybridization and average nucleotide identity values in combination with the whole-genome-based phylogeny from 19 Pectobacterium strains including P. aroidearum L6. The results showed that L6 and PC1 formed a population distinct from other populations of the Pectobacterium genus. Phylogenetic analysis based on 16S rRNA and genome sequences showed a close evolutionary relationship among Pectobacterium species. Overall, evolutionary analysis showed that L6 was in the same branch with PC1. In comparison with 18 Pectobacterium spp. reference pathogens, strain L6 had 2,712 gene families, among which 1,632 gene families were identified as orthologous to those strains, as well as 1 putative unique gene family. We discovered 478 genes, 10.4% of the total of predicted genes, that were potentially related to pathogenesis using the Virulence Factors of Pathogenic Bacteria database. A total of 25 genes were related to toxins, 35 encoded plant cell-wall degrading enzymes, and 122 were involved in secretion systems. This study provides a foundation for a better understanding of the genomic structure of P. aroidearum and particularly offers information for the discovery of potential pathogenic factors and the development of more effective strategies against this pathogen.
Collapse
Affiliation(s)
- Peidong Xu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
- School of Life Sciences, Hainan University, Haikou, China
| | - Huanwei Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chunxiu Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Zengping Li
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Chunhua Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Wenbo Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Weiguo Miao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| |
Collapse
|
44
|
Affinibrenneria salicis gen. nov. sp. nov. isolated from Salix matsudana bark canker. Arch Microbiol 2021; 203:3473-3481. [PMID: 33903975 DOI: 10.1007/s00203-021-02323-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/03/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
L3-3HAT, a Gram-negative-staining, facultatively anaerobic, motile bacterial strain, was isolated from the symptomatic bark of Salix matsudana canker in China. 16S rRNA gene analysis revealed that the novel strain shares the highest sequence similarity with Brenneria goodwinii FRB141T (95.5%). In phylogenetic trees based on four housekeeping genes (gyrB, rpoB, atpD, and infB) and the 16S rRNA gene sequence, the novel strain formed a separate branch from the five genera of the family Pectobacteriaceae (Lonsdalea, Brenneria, Dickeya, Pectobacterium, and Sodalis), suggesting that the novel strain should belong to a novel species of a novel genus within the family Pectobacteriaceae. The result was also supported by phylogenomics, amino acid identity and average nucleotide identity. The major fatty acids were C14:0, C16:0, C17:0 cyclo, and C19:0 cyclo ɷ8c. Genome analysis showed that the novel strain has a large genome (5.89 Mb) with 5,052 coding genes, including 181 virulence genes by searching the pathogen-host interactions database (PHI-base), indicating that the novel strain is a potential pathogen of plants and animals. Based on phenotypic and genotypic characteristics, the L3-3HAT strain represents a novel species of a novel genus in the Pectobacteriaceae family, for which the name Affinibrenneria salicis gen nov. sp. nov. is proposed. The strain type is L3-3HAT (= CFCC 15588T = LMG 31209T).
Collapse
|
45
|
Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, Li Z, He T, Xiao Y, Zhao J, Zhang Q. Isolation and Identification of Antibacterial Bioactive Compounds From Bacillus megaterium L2. Front Microbiol 2021; 12:645484. [PMID: 33841370 PMCID: PMC8024468 DOI: 10.3389/fmicb.2021.645484] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial metabolites exhibit a variety of biologically active compounds including antibacterial and antifungal activities. It is well known that Bacillus is considered to be a promising source of bioactive secondary metabolites. Most plant pathogens have an incredible ability to mutate and acquire resistance, causing major economic losses in the agricultural field. Therefore, it is necessary to use the natural antibacterial compounds in microbes to control plant pathogens. This study was conducted to investigate the bio-active compounds of Bacillus megaterium L2. According to the activity guidance of Agrobacterium tumefaciens T-37, Erwinia carotovora EC-1 and Ralstonia solanacearum RS-2, five monomeric compounds, including erucamide (1), behenic acid (2), palmitic acid (3), phenylacetic acid (4), and β-sitosterol (5), were fractionated and purified from the crude ethyl acetate extract of B. megaterium. To our knowledge, all compounds were isolated from the bacterium for the first time. To understand the antimicrobial activity of these compounds, and their minimum inhibitory concentrations (MICs) (range: 0.98∼500 μg/mL) were determined by the broth microdilution method. For the three tested pathogens, palmitic acid exhibited almost no antibacterial activity (>500 μg/mL), while erucamide had moderate antibacterial activity (MIC = 500 μg/mL). Behenic acid showed MICs of 250 μg/mL against T-37 and RS-2 strains with an antibacterial activity. β-sitosterol showed significant antimicrobial activity against RS-2. β-sitosterol showed remarkable antimicrobial activity against RS-2 with an MIC of 15.6 μg/mL. In addition, with the antimicrobial activity, against T-37 (62.5 μg/mL) and against EC-1 (125 μg/mL) and RS-2 (15.6 μg/mL) strains notably, phenylacetic acid may be interesting for the prevention and control of phytopathogenic bacteria. Our findings suggest that isolated compounds such as behenic acid, β-sitosterol, and phenylacetic acid may be promising candidates for natural antimicrobial agents.
Collapse
Affiliation(s)
- Yudan Xie
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Qiuju Peng
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yuyu Ji
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Ailin Xie
- College of Life Sciences, Guizhou University, Guiyang, China
| | - Long Yang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Shuzhen Mu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Tengxia He
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Jinyi Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Qinyu Zhang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering, College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
46
|
European Population of Pectobacterium punjabense: Genomic Diversity, Tuber Maceration Capacity and a Detection Tool for This Rarely Occurring Potato Pathogen. Microorganisms 2021; 9:microorganisms9040781. [PMID: 33917923 PMCID: PMC8068253 DOI: 10.3390/microorganisms9040781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
Enterobacteria belonging to the Pectobacterium and Dickeya genera are responsible for soft rot and blackleg diseases occurring in many crops around the world. Since 2016, the number of described species has more than doubled. However, some new species, such as Pectobacterium punjabense, are often poorly characterized, and little is known about their genomic and phenotypic variation. Here, we explored several European culture collections and identified seven strains of P. punjabense. All were collected from potato blackleg symptoms, sometimes from a long time ago, i.e., the IFB5596 strain isolated almost 25 years ago. We showed that this species remains rare, with less than 0.24% of P. punjabense strains identified among pectinolytic bacteria present in the surveyed collections. The analysis of the genomic diversity revealed the non-clonal character of P. punjabense species. Furthermore, the strains showed aggressiveness differences. Finally, a qPCR Taqman assay was developed for rapid and specific strain characterization and for use in diagnostic programs.
Collapse
|
47
|
Biocontrol of Soft Rot Caused by Pectobacterium odoriferum with Bacteriophage phiPccP-1 in Kimchi Cabbage. Microorganisms 2021; 9:microorganisms9040779. [PMID: 33917817 PMCID: PMC8068257 DOI: 10.3390/microorganisms9040779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Pectobacterium odoriferum has recently emerged as a widely infective and destructive pathogen causing soft-rot disease in various vegetables. Bacteriophage phiPccP-1 isolated from Pyeongchang, South Korea, showed lytic activity against P. odoriferum Pco14 and two other Pectobacterium species. The transmission electron microscopy and genome phylograms revealed that phiPccP-1 belongs to the Unyawovirus genus, Studiervirinae subfamily of the Autographivirinae family. Genome comparison showed that its 40,487 bp double-stranded DNA genome shares significant similarity with Pectobacterium phage DU_PP_II with the identity reaching 98% of the genome. The phiPccP-1 application significantly inhibited the development of soft-rot disease in the mature leaves of the harvested Kimchi cabbage up to 48 h after Pco14 inoculation compared to the untreated leaves, suggesting that phiPccP-1 can protect Kimchi cabbage from soft-rot disease after harvest. Remarkably, bioassays with phiPccP-1 in Kimchi cabbage seedlings grown in the growth chamber successfully demonstrated its prophylactic and therapeutic potential in the control of bacterial soft-rot disease in Kimchi cabbage. These results indicate that bacteriophage phiPccP-1 can be used as a potential biological agent for controlling soft rot disease in Kimchi cabbage.
Collapse
|
48
|
Wang H, Wang Y, Humphris S, Nie W, Zhang P, Wright F, Campbell E, Hu B, Fan J, Toth I. Pectobacterium atrosepticum KDPG aldolase, Eda, participates in the Entner-Doudoroff pathway and independently inhibits expression of virulence determinants. MOLECULAR PLANT PATHOLOGY 2021; 22:271-283. [PMID: 33301200 PMCID: PMC7814964 DOI: 10.1111/mpp.13025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 05/22/2023]
Abstract
Pectobacterium carotovorum has an incomplete Entner-Doudoroff (ED) pathway, including enzyme 2-keto-3-deoxy-6-phosphogluconate aldolase (Eda) but lacking phosphogluconate dehydratase (Edd), while P. atrosepticum (Pba) has a complete pathway. To understand the role of the ED pathway in Pectobacterium infection, mutants of these two key enzymes, Δeda and Δedd, were constructed in Pba SCRI1039. Δeda exhibited significant decreased virulence on potato tubers and colonization in planta and was greatly attenuated in pectinase activity and the ability to use pectin breakdown products, including polygalacturonic acid (PGA) and galacturonic acid. These reduced phenotypes were restored following complementation with an external vector expressing eda. Quantitative reverse transcription PCR analysis revealed that expression of the pectinase genes pelA, pelC, pehN, pelW, and pmeB in Δeda cultured in pyruvate, with or without PGA, was significantly reduced compared to the wild type, while genes for virulence regulators (kdgR, hexR, hexA, and rsmA) remained unchanged. However, Δedd showed similar phenotypes to the wild type. To our knowledge, this is the first demonstration that disruption of eda has a feedback effect on inhibiting pectin degradation and that Eda is involved in building the arsenal of pectinases needed during infection by Pectobacterium.
Collapse
Affiliation(s)
- Huan Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
- Institute of Agricultural Science of Taihu Lake DistrictSuzhouChina
| | - Yujie Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Sonia Humphris
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| | - Weihua Nie
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Pengfei Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Frank Wright
- Bioinformatics and StatisticsJames Hutton InstituteDundeeUK
| | - Emma Campbell
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| | - Baishi Hu
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jiaqin Fan
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Ian Toth
- Cell and Molecular ScienceJames Hutton InstituteDundeeUK
| |
Collapse
|
49
|
Yang JS, Lee HW, Song H, Ha JH. Volatile Metabolic Markers for Monitoring Pectobacterium carotovorum subsp. carotovorum Using Headspace Solid-Phase Microextraction Coupled with Gas Chromatography-Mass Spectrometry. J Microbiol Biotechnol 2021; 31:70-78. [PMID: 33203818 PMCID: PMC9705696 DOI: 10.4014/jmb.2009.09028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Identifying the extracellular metabolites of microorganisms in fresh vegetables is industrially useful for assessing the quality of processed foods. Pectobacterium carotovorum subsp. carotovorum (PCC) is a plant pathogenic bacterium that causes soft rot disease in cabbages. This microbial species in plant tissues can emit specific volatile molecules with odors that are characteristic of the host cell tissues and PCC species. In this study, we used headspace solid-phase microextraction followed by gas chromatography coupled with mass spectrometry (HS-SPME-GC-MS) to identify volatile compounds (VCs) in PCC-inoculated cabbage at different storage temperatures. HS-SPME-GC-MS allowed for recognition of extracellular metabolites in PCC-infected cabbages by identifying specific volatile metabolic markers. We identified 4-ethyl-5-methylthiazole and 3-butenyl isothiocyanate as markers of fresh cabbages, whereas 2,3-butanediol and ethyl acetate were identified as markers of soft rot in PCC-infected cabbages. These analytical results demonstrate a suitable approach for establishing non-destructive plant pathogen-diagnosis techniques as alternatives to standard methods, within the framework of developing rapid and efficient analytical techniques for monitoring plant-borne bacterial pathogens. Moreover, our techniques could have promising applications in managing the freshness and quality control of cabbages.
Collapse
Affiliation(s)
- Ji-Su Yang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hae-Won Lee
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Hyeyeon Song
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Ji-Hyoung Ha
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju 61755, Republic of Korea,Corresponding author Phone: +82-62-610-1845 E-mail:
| |
Collapse
|
50
|
Promnuan Y, Promsai S, Meelai S. Antimicrobial activity of Streptomyces spp. isolated from Apis dorsata combs against some phytopathogenic bacteria. PeerJ 2021; 8:e10512. [PMID: 33384897 PMCID: PMC7751431 DOI: 10.7717/peerj.10512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the antimicrobial potential of actinomycetes isolated from combs of the giant honey bee, Apis dorsata. In total, 25 isolates were obtained from three different media and were screened for antimicrobial activity against four plant pathogenic bacteria (Ralstonia solanacearum, Xanthomonas campestris pv. campestris, Xanthomonas oryzae pv. oryzae and Pectobacterium carotovorum). Following screening using a cross-streaking method, three isolates showed the potential to inhibit the growth of plant pathogenic bacteria. Based on a 96-well microtiter assay, the crude extract of DSC3-6 had minimum inhibitory concentration (MIC) values against X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum of 16, 32, 32 and 64 mg L-1, respectively. The crude extract of DGA3-20 had MIC values against X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum of 32, 32, 32 and 64 mg L-1, respectively. The crude extract of DGA8-3 at 32 mgL-1 inhibited the growth of X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum. Based on their 16S rRNA gene sequences, all isolates were identified as members of the genus Streptomyces. The analysis of 16S rRNA gene sequence similarity and of the phylogenetic tree based on the maximum likelihood algorithm showed that isolates DSC3-6, DGA3-20 and DGA8-3 were closely related to Streptomyces ramulosus (99.42%), Streptomyces axinellae (99.70%) and Streptomyces drozdowiczii (99.71%), respectively. This was the first report on antibacterial activity against phytopathogenic bacteria from actinomycetes isolated from the giant honey bee.
Collapse
Affiliation(s)
- Yaowanoot Promnuan
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University-Kamphaeng Saen campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Saran Promsai
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University-Kamphaeng Saen campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sujinan Meelai
- Department of Microbiology, Faculty of Science, Silpakorn University-Sanam Chandra Palace campus, Nakhon Pathom, Nakhon Pathom, Thailand
| |
Collapse
|