1
|
Sukmawati D, Adisyahputra A, Al-Ani LKT, Al Husna SN, Afifah ZN, Sriherwanto C, Surono S, Setiarto RHB, Nurjayadi M, Rahman RA. Pichia kudriavzevii UNJCC Y-137 and Candida tropicalis UNJCC Y-140 isolated from Durio kutejensis as potential probiotic agents. Food Sci Biotechnol 2024; 33:3527-3540. [PMID: 39493392 PMCID: PMC11525367 DOI: 10.1007/s10068-024-01609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 11/05/2024] Open
Abstract
Durio kutejensis, commonly known as Lai durian, has a unique characteristics of a creamy texture and a combination of sweet and bitter tastes. This study aimed to isolate and screen yeast from fruits as a potential probiotic agent. The tests consisted of tolerance to bile salt and gastric acid at pH 2, antibacterial activity against Listeria monocytogenes and Salmonella enteriditis, and hemolytic activity on blood agar medium. The results showed that 40 yeasts isolated from Lai durian fruit and 34 of these isolates grew on YMA medium. The two isolates showed high significance in the probiotic tests. These two isolates were able to grow on bile salt up to a concentration of 2% and gastric acid for up to 6 h, with survival rates of 99.06% and 100%, respectively. Two isolates were identified as Pichia kudriavzevii UNJCC Y-137 and Candida tropicalis UN-JCC Y-140 Therefore, these two yeast isolates can be used as potential probiotic agents.
Collapse
Affiliation(s)
- Dalia Sukmawati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
- Universitas Negeri Jakarta Culture Collection (UNJCC), Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| | - Adisyahputra Adisyahputra
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| | | | - Shabrina Nida Al Husna
- Department of Microbiology, School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Zakiah Nur Afifah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Rawamangun, Jakarta Timur, Indonesia
| | - Catur Sriherwanto
- Biotechnology Laboratory, Agency for the Assessment and Application of Technology, BPPT, Building 630, Science and Technology Park, Tangerang Selatan, Banten 15314 Indonesia
| | - Surono Surono
- Research Centre for Applied Microbiology, National Research and Innovation Agency, Main Street Jakarta-Bogor Km 46, KST Soekarno, Cibinong, Bogor, West Java 16911 Indonesia
| | - R. Haryo Bimo Setiarto
- Research Centre for Applied Microbiology, National Research and Innovation Agency, Main Street Jakarta-Bogor Km 46, KST Soekarno, Cibinong, Bogor, West Java 16911 Indonesia
- Research Collaboration Center for Traditional Fermentation, National Research and Innovation Agency (BRIN), Main Street Jakarta-Bogor Km 46, KST Soekarno, Cibinong, Bogor, West Java 16911 Indonesia
| | - Muktiningsih Nurjayadi
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Jakarta, Jl. Rawamangun Muka, Jakarta Timur, Indonesia
| | - Roshanida A. Rahman
- Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 Skudai, Johor Malaysia
| |
Collapse
|
2
|
Mal S, Das TK, Pradhan S, Ghosh K. Probiotics as a Therapeutic Approach for Non-infectious Gastric Ulcer Management: a Comprehensive Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10348-7. [PMID: 39190267 DOI: 10.1007/s12602-024-10348-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
A gastric ulcer is a stomach lining or nearby intestine disruption caused by acid and pepsin. Helicobacter pylori (H. pylori) and NSAIDs are the primary culprits behind stomach infections that can lead to gastric ulcers and other digestive disorders. Additionally, lifestyle choices such as alcohol consumption and cigarette smoking, stress, and exposure to cold environments can also contribute to non-infectious gastric ulcers. Various treatments are available for gastric ulcers, including antibiotics, anticholinergics, and antacids. However, potential concerns include antibiotic resistance, side effects, and treatment failure. Considering this, there is a need for an alternative approach to manage it. Fortunately, probiotics, typically Lactobacillus and Bifidobacterium, show potential for healing gastric ulcers, offering a non-invasive alternative to conventional treatments. A notable concern arises from applying probiotic bacteria stemming from the propensity of pathogenic bacteria to develop antimicrobial resistance in response to antibiotic therapies. Therefore, the use of yeast becomes more imperative due to its natural resistance to antibacterial antibiotics for antibacterial-treated patients. Probiotic bacteria and yeasts could heal gastric ulcers by regulating the immune response, reducing inflammation, and restoring the balance between defensive and aggressive factors of the gastric layer. This comprehensive review provides an in-depth analysis of the benefits of probiotics and their potential as a therapeutic treatment for non-infectious gastric ulcers, along with other probiotic options. In particular, this review provides a succinct summary of multiple literature studies on probiotics, emphasising the distinctive properties of yeast probiotics, as well as their (bacteria and yeasts) application in the management of non-infectious gastric ulcers.
Collapse
Affiliation(s)
- Subhasree Mal
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Tridip K Das
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India
- Biodiversity and Environmental Studies Research Centre, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, West Bengal, India.
| |
Collapse
|
3
|
JanssenDuijghuijsen L, van den Belt M, Rijnaarts I, Vos P, Guillemet D, Witteman B, de Wit N. Acacia fiber or probiotic supplements to relieve gastrointestinal complaints in patients with constipation-predominant IBS: a 4-week randomized double-blinded placebo-controlled intervention trial. Eur J Nutr 2024; 63:1983-1994. [PMID: 38653808 PMCID: PMC11329592 DOI: 10.1007/s00394-024-03398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE To date, no adequate treatment for irritable bowel syndrome with predominant constipation complaints (IBS-C) is available. Fibers with prebiotic properties and probiotic compounds have shown promise in relieving IBS-C-related complaints. We aimed to determine the effects of a 4-week intervention with either an Acacia fiber (AF) with prebiotic properties or a probiotic Bifidobacterium Lactis (BLa80) supplement, compared to a control supplement, on stool pattern, IBS symptoms and Quality of Life (QoL), in IBS-C individuals. METHODS A parallel, double-blind, randomized controlled trial involving 180 subjects meeting the ROME IV criteria for IBS-C was conducted. Following a 4-week observation period, subjects received either AF (10 g), Probiotic BLa80 (4 g; 2 × 1011 CFU/g) or a maltodextrin placebo (10 g) daily for 4 weeks. Subjects reported daily information on stool pattern and gastrointestinal complaints. Before and after each 4-week period, questionnaires on symptom severity, constipation symptoms, anxiety and depression and QoL were completed. Stool mass was measured for 5-days before and after the intervention. RESULTS Stool frequency significantly improved in the AF and Probiotic BLa80 groups compared to placebo (P < 0.001, P = 0.02, respectively). Probiotic BLa80 showed a significant reduction in IBS symptom severity (P = 0.03), for AF a trend towards decreased constipation symptoms (PAC-SYM, P = 0.10) was observed. No significant changes in stool consistency, stool mass or QoL measures were observed between the AF and Probiotic BLa80 compared to placebo. CONCLUSION Daily dietary supplementation with Acacia fiber and probiotic supplements might help IBS-C patients by relieving IBS-related complaints compared to a placebo supplement. REGISTRATION NUMBER OF CLINICAL TRIAL The trial is registered at ClinicalTrials.gov: NCT04798417: Study Details | Nutrition to Relieve IBS Constipation | ClinicalTrials.gov.
Collapse
Affiliation(s)
| | - Maartje van den Belt
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands.
| | - Iris Rijnaarts
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Paul Vos
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Ben Witteman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
- Gastroenterology and Hepatology department, Hospital Gelderse Vallei, Ede, the Netherlands
| | - Nicole de Wit
- Wageningen Food and Biobased Research, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Mysonhimer AR, Brown MD, Alvarado DA, Cornman E, Esmail M, Abdiel T, Gutierrez K, Vasquez J, Cannavale CN, Miller MJ, Khan NA, Holscher HD. Honey Added to Yogurt with Bifidobacterium animalis subsp. lactis DN-173 010/CNCM I-2494 Supports Probiotic Enrichment but Does Not Reduce Intestinal Transit Time in Healthy Adults: A Randomized, Controlled, Crossover Trial. J Nutr 2024; 154:2396-2410. [PMID: 38830472 PMCID: PMC11375456 DOI: 10.1016/j.tjnut.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Honey improves probiotic survival in vitro. However, if this effect translates to humans has not been investigated. OBJECTIVES We aimed to determine effects of honey plus yogurt containing the probiotic Bifidobacterium animalis subsp. lactis DN-173 010/CNCM I-2494 (B. animalis) on intestinal transit time, probiotic enrichment, digestive health, mood, and cognition in adults. METHODS Sixty-six healthy adults (34 female; 33.6 ± 9.8 y; 24.6 ± 3.0 kg/m2) in a crossover trial were randomly assigned to 2-wk yogurt conditions in a counterbalanced order with ≥4-wk washout: 1) Honey (HON): yogurt plus honey and 2) Negative Control (NC): heat-treated yogurt plus sugar. Of the participants, n = 62 completed the trial, and n = 37 (17 female; 32.0 ± 8.3 y; 25.0 ± 2.9 kg/m2) elected to enroll in a third condition (a nonrandomized study extension) after ≥4-wk washout with a reference Positive Control (PC): yogurt plus sugar. At baseline and end of each of the 3 conditions, intestinal transit time was measured with dye capsules; probiotic abundance with fecal DNA 16S sequencing; digestive health with symptom/function records, Bristol stool consistency, Gastrointestinal Tolerability, and Gastrointestinal Quality of Life Index; mood with Positive and Negative Affect Schedule-Short Form, Depression Anxiety Stress Scales-42, Patient-Reported Outcomes Measurement Information System questionnaires, and an emotional image task; and cognition with a spatial reconstruction task. Data were analyzed using linear mixed-effects models (LMMs) with significance at P ≤ 0.05. Baseline and end data were included in the LMM, with fixed effects being treatment, time, treatment by time interaction, and baseline covariate, and the random effect being the participant. RESULTS B. animalis was enriched in HON (d = 3.54; P = 0.0002) compared to controls with linear discriminant analysis effect size. Intestinal transit time, gastrointestinal health, mood, and cognition did not differ between conditions (LMM: Ps > 0.05). CONCLUSIONS Yogurt + honey enriched B. animalis but did not reduce intestinal transit time or have other functional gastrointestinal, mood, or cognitive effects in adults. This trial was registered at www. CLINICALTRIALS gov as NCT04187950 and NCT04901390.
Collapse
Affiliation(s)
- Annemarie R Mysonhimer
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Marina D Brown
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - David A Alvarado
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Eva Cornman
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Myra Esmail
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Tehila Abdiel
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Karen Gutierrez
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Jorge Vasquez
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Corinne N Cannavale
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Michael J Miller
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Naiman A Khan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States; Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, United States; Neuroscience Program, University of Illinois, Urbana, IL, United States
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
5
|
Jena R, Choudhury PK. Bifidobacteria in Fermented Dairy Foods: A Health Beneficial Outlook. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10189-w. [PMID: 37979040 DOI: 10.1007/s12602-023-10189-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bifidobacteria, frequently present in the human gastrointestinal tract, play a crucial role in preserving gut health and are mostly recognized as beneficial probiotic microorganisms. They are associated with fermenting complex carbohydrates, resulting in the production of short-chain fatty acids, bioactive peptides, exopolysaccharides, and vitamins, which provide energy and contribute to gut homeostasis. In light of these findings, research in food processing technologies has harnessed probiotic bacteria such as lactobacilli and bifidobacteria for the formulation of a wide range of fermented dairy products, ensuring their maximum survival and contributing to the development of distinctive quality characteristics and therapeutic benefits. Despite the increased interest in probiotic dairy products, introducing bifidobacteria into the dairy food chain has proved to be complicated. However, survival of Bifidobacterium species is conditioned by strain of bacteria used, metabolic interactions with lactic acid bacteria (LAB), fermentation parameters, and the temperature of storage and preservation of the dairy products. Furthermore, fortification of dairy foods and whey beverages with bifidobacteria have ability to change physicochemical and rheological properties beyond economic value of dairy products. In summary, this review underscores the significance of bifidobacteria as probiotics in diverse fermented dairy foods and accentuates their positive impact on human health. By enhancing our comprehension of the beneficial repercussions associated with the consumption of bifidobacteria-rich products, we aim to encourage individuals to embrace these probiotics as a means of promoting holistic health.
Collapse
Affiliation(s)
- Rajashree Jena
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Prasanta Kumar Choudhury
- Department of Dairy Technology, School of Agricultural and Bioengineering, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India.
| |
Collapse
|
6
|
Saito Y, Sagae T. Defecation status, intestinal microbiota, and habitual diet are associated with the fecal bile acid composition: a cross-sectional study in community-dwelling young participants. Eur J Nutr 2023:10.1007/s00394-023-03126-8. [PMID: 36881180 DOI: 10.1007/s00394-023-03126-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE Bile acid (BA) metabolism by intestinal bacteria is associated with the risk of gastrointestinal diseases; additionally, its control has become a modern strategy for treating metabolic diseases. This cross-sectional study investigated the influence of defecation status, intestinal microbiota, and habitual diet on fecal BA composition in 67 community-dwelling young participants. METHODS Feces were collected for intestinal microbiota and BA analyses; data about defecation status and dietary habits were collected using the Bristol stool form scales and a brief-type self-administered diet history questionnaire, respectively. The participants were categorized into four clusters based on their fecal BA composition, according to cluster analysis, and tertiles based on deoxycholic acid (DCA) and lithocholic acid (LCA) levels. RESULTS The high primary BA (priBA) cluster with high fecal cholic acid (CA) and chenodeoxycholic acid (CDCA) levels had the highest frequency of normal feces, whereas the second BA (secBA) cluster with high levels of fecal DCA and LCA had the lowest. Alternately, the high-priBA cluster had a distinct intestinal microbiota, with higher Clostridium subcluster XIVa and lower Clostridium cluster IV and Bacteroides. The low-secBA cluster with low fecal DCA and LCA levels had the lowest animal fat intake. Nevertheless, the insoluble fiber intake of the high-priBA cluster was significantly higher than that of the high-secBA cluster. CONCLUSION High fecal CA and CDCA levels were associated with distinct intestinal microbiota. Conversely, high levels of cytotoxic DCA and LCA were associated with increased animal fat intake and decreased frequency of normal feces and insoluble fiber intake. CLINICAL TRIAL REGISTRY University Hospital Medical Information Network (UMIN) Center system (UMIN000045639); date of registration: 15/11/2019.
Collapse
Affiliation(s)
- Yosuke Saito
- Department of Clinical Nutrition, Faculty of Health and Wellness Sciences, Hiroshima International University, 5-1-1, Hirokoshingai, Kure, Hiroshima, 737-0112, Japan.
- Department of Human Life Sciences, Sakura no Seibo Junior College, Fukushima, Japan.
| | - Toyoaki Sagae
- Department of Health and Nutrition, Yamagata Prefectural Yonezawa University of Nutrition Sciences, Yamagata, Japan
| |
Collapse
|
7
|
Park SH, Lee MR, Yang SY, Lee JY, Lee HH, Seong YJ, Kim B, Kim HJ, Jin H, Johnston TV, Ku S, Park MS. In vivo functional effects of Weissella confusa VP30 exopolysaccharides on loperamide-induced constipation in rats. Food Sci Biotechnol 2022; 31:1703-1715. [PMID: 36312995 PMCID: PMC9596668 DOI: 10.1007/s10068-022-01159-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022] Open
Abstract
In this work, the in vivo functionalities of milk fermented with Weissella confusa VP30 (VP30-EPS) and purified exopolysaccharide (pEPS) from the milk fermented with Weissella confusa VP30 were evaluated for their effect on constipation using an experimental constipated rat model. Rats were randomly divided into four groups: (i) control group (PBS administered normal group), (ii) loperamide treated group (constipation group), (iii) constipation with loperamide plus VP30-EPS (1 g/kg), and (iv) constipation with loperamide plus pEPS (0.6 g/kg) groups. Loperamide treatment induced animal constipation and significantly reduced the frequency of defecation, intestinal transit ratio, and water content of feces. However, all four fecal parameters were improved in both the loperamide plus VP30-EPS and pEPS administered groups as compared to the loperamide group. These results suggest that the addition of VP30-EPS potentially improves the functional laxative effects of commercial products. This study suggests the possibility that VP30-EPS can be applied to fermented and/or functional foods to relieve constipation.
Collapse
Affiliation(s)
- Se-Ho Park
- Research Center, BIFIDO Co., Ltd, Hanam-si, Gyeonggi-do 12930 Republic of Korea
| | - Mi-Ra Lee
- Hongcheon Institute of Medicinal Herb, Hongcheon-gun, Gangwon-do 25142 Republic of Korea
| | - Su Young Yang
- Research Center, BIFIDO Co., Ltd, Hanam-si, Gyeonggi-do 12930 Republic of Korea
| | - Ju Yeon Lee
- Research Center, BIFIDO Co., Ltd, Hanam-si, Gyeonggi-do 12930 Republic of Korea
| | - Hyun Ha Lee
- Research Center, BIFIDO Co., Ltd, Hanam-si, Gyeonggi-do 12930 Republic of Korea
| | - Yeong-Je Seong
- Research Center, BIFIDO Co., Ltd, Hanam-si, Gyeonggi-do 12930 Republic of Korea
| | - Bohye Kim
- Hongcheon Institute of Medicinal Herb, Hongcheon-gun, Gangwon-do 25142 Republic of Korea
| | - Hee-Jun Kim
- Hongcheon Institute of Medicinal Herb, Hongcheon-gun, Gangwon-do 25142 Republic of Korea
| | - Hui Jin
- Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Tony V. Johnston
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132 USA
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN 37132 USA
| | - Myeong Soo Park
- Research Center, BIFIDO Co., Ltd, Hanam-si, Gyeonggi-do 12930 Republic of Korea
| |
Collapse
|
8
|
Comparative study on alleviating effect of kiwi berry (Actinidia arguta) polysaccharide and polyphenol extracts on constipated mice. Food Res Int 2022; 162:112037. [DOI: 10.1016/j.foodres.2022.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022]
|
9
|
Legan TB, Lavoie B, Mawe GM. Direct and indirect mechanisms by which the gut microbiota influence host serotonin systems. Neurogastroenterol Motil 2022; 34:e14346. [PMID: 35246905 PMCID: PMC9441471 DOI: 10.1111/nmo.14346] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
Mounting evidence highlights the pivotal role of enteric microbes as a dynamic interface with the host. Indeed, the gut microbiota, located in the lumen of the gastrointestinal (GI) tract, influence many essential physiological processes that are evident in both healthy and pathological states. A key signaling molecule throughout the body is serotonin (5-hydroxytryptamine; 5-HT), which acts in the GI tract to regulate numerous gut functions including intestinal motility and secretion. The gut microbiota can modulate host 5-HT systems both directly and indirectly. Direct actions of gut microbes, evidenced by studies using germ-free animals or antibiotic administration, alter the expression of key 5-HT-related genes to promote 5-HT biosynthesis. Indirectly, the gut microbiota produce numerous microbial metabolites, whose actions can influence host serotonergic systems in a variety of ways. This review summarizes the current knowledge regarding mechanisms by which gut bacteria act to regulate host 5-HT and 5-HT-mediated gut functions, as well as implications for 5-HT in the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Theresa B Legan
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| | - Brigitte Lavoie
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| | - Gary M Mawe
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
10
|
Gan D, Chen J, Tang X, Xiao L, Martoni CJ, Leyer G, Huang G, Li W. Impact of a probiotic chewable tablet on stool habits and microbial profile in children with functional constipation: A randomized controlled clinical trial. Front Microbiol 2022; 13:985308. [PMID: 36071965 PMCID: PMC9441913 DOI: 10.3389/fmicb.2022.985308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Constipation is a common and typically multifactorial childhood complaint, and the clinical management of childhood functional constipation (FC) is challenging. A randomized, single-blind, placebo-controlled, multi-center clinical trial was conducted in 92 children (47 from Beijing, China and 45 from Shanghai, China) aged 4–12 with FC according to Rome III criteria. Children were assigned to receive a probiotic chewable tablet (5 × 109 CFU/day, n = 47), consisting of Lactobacillus acidophilus DDS-1® and Bifidobacterium animalis subsp. lactis UABla-12™ or placebo (n = 45), twice daily for 4 weeks, followed by a week follow-up period. Results suggested that the probiotic group showed a faster and more pronounced normalization of stool frequency over the intervention period (3.15 vs. 1.83) when compared to placebo group (2.51 vs. 1.87). Meanwhile, the percentage of subjects with hard defecation decreased from 43 to 14% in the probiotic group, while the percentage of subjects with normal defecation increased from 56 to 80% in the probiotic group, further confirming the normalization of stools habits. This randomized controlled trial demonstrated the potential of a probiotic chewable tablet containing L. acidophilus DDS-1® and B. Lactis UABla-12™ as a daily probiotic dosage form for children with FC.
Collapse
Affiliation(s)
- Dan Gan
- Sirio Pharma Co., Ltd., Shantou, China
- *Correspondence: Dan Gan,
| | | | - Xin Tang
- Sirio Pharma Co., Ltd., Shantou, China
| | - Luyao Xiao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | - Wei Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Wei Li,
| |
Collapse
|
11
|
Lee KJ, Ryoo E, Lee YM, Yoon JM, Jang HJ, Choi SY, Choi YJ, Kim HJ, Chung JY, Shim JO. Saccharomyces boulardii and Lactulose for Childhood Functional Constipation: A Multicenter Randomized Controlled Trial. J Neurogastroenterol Motil 2022; 28:454-462. [PMID: 35799239 PMCID: PMC9274472 DOI: 10.5056/jnm21130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022] Open
Abstract
Background/Aims The effects of probiotics in children vary based on diseases and probiotic strains. We aim to investigate the effectiveness of Saccharomyces boulardii and lactulose for treating childhood functional constipation. Methods This open-label randomized controlled trial was conducted at 10 university hospitals in Korea. Children who were diagnosed with functional constipation were allocated to 3 groups (lactulose monotherapy, combination therapy, and S. boulardii monotherapy). The primary outcome was treatment success rate that was accordingly defined as ≥ 3 bowel movements without incontinence at week 12. The cumulative successful maintenance and drug maintenance rates without drug changes were calculated throughout the study period. We compared stool frequency, incontinence, consistency, and painful defecation at week 2 among the 3 groups. Results Overall, 187 children were assigned to the lactulose monotherapy (n = 69), combination therapy (n = 68), or S. boulardii monotherapy (n = 50) groups. The primary outcome was significantly higher in the lactulose monotherapy group (26.1%) or combination therapy group (41.2%) than in the S. boulardii monotherapy group (8.0%). The S. boulardii monotherapy group showed a significantly lower cumulative successful maintenance and drug maintenance rate than the other 2 groups. There were no significant intergroup differences in the frequency of defecation, incontinence, painful defecation, or stool consistency during the follow-up at week 2. Conclusion S. boulardii monotherapy was not superior to lactulose monotherapy or combination therapy and showed a higher drug change rate, supporting the current recommendation of probiotics in the treatment of childhood functional constipation.
Collapse
Affiliation(s)
- Kyung Jae Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Gangwon-do, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul, Korea (Current address)
| | - Eell Ryoo
- Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Yoo Min Lee
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Gyeonggi-do, Korea
| | - Jung Min Yoon
- Department of Pediatrics, Konyang University Hospital, Konyang University College of Medicine, Daejeon, Korea
| | - Hyo-Jeong Jang
- Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University College of Medicine, Daegu, Korea
| | - So Yoon Choi
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
- Department of Pediatrics, Haeundaepaik Hospital, Inje University College of Medicine, Busan, Korea
| | - You Jin Choi
- Department of Pediatrics, Inje University Ilsan Paik Hospital, Goyang, Gyeonggi-do, Korea
| | - Hyun Jin Kim
- Department of Pediatrics, Chungnam National University Hospital, Daejeon, Korea
| | - Ju Young Chung
- Department of Pediatrics, Sanggye-Paik Hospital, Inje University College of Medicine, Seoul, Korea
| | - Jung Ok Shim
- Department of Pediatrics, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Korea
| |
Collapse
|
12
|
Effects of Lactobacillus plantarum P9 Probiotics on Defecation and Quality of Life of Individuals with Chronic Constipation: Protocol for a Randomized, Double-Blind, Placebo-Controlled Clinical Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4144321. [PMID: 35733625 PMCID: PMC9208957 DOI: 10.1155/2022/4144321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/25/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Background Although probiotics have been shown to improve constipation-related symptoms, a clear consensus on the use of probiotics as a constipation-relieving agent has not been reached, which is attributed to the limited available evidence and inconsistent protocols used in existing studies. Method A randomized, double-blind, placebo-controlled clinical trial is designed to study the efficiency and possible mechanism of action of probiotics for chronic constipation, in which 200 eligible volunteers with chronic constipation will be randomly assigned to a probiotic group (oral Lactobacillus plantarum P9 probiotic powder, 100 billion colony-forming units (CFUs)/day) or a placebo group. Volunteers, treatment distributors, data collectors, and data analysts will be blinded. The primary outcome is the weekly mean frequency of complete spontaneous bowel movements (CSBMs), and secondary outcomes include weekly mean frequency of CSBMs ≥3, weekly mean frequency of spontaneous bowel movements (SBMs), weekly mean stool appearance score, weekly mean difficulty of passing stool score, weekly percentage of volunteers who use auxiliary measures to assist with defecation (WPUAMA), quality-of-life (QOL) score, emotional status score, gut microbiome, and faecal metabolome. Each outcome measure will be assessed at the time points of preadministration (day 0), administration (day 14 and/or 28), and postadministration (day 42) to identify inter- and intragroup differences. Adverse events will be recorded to evaluate the safety of L. plantarum P9. Discussion. The protocol will provide methodological guidance for other similar studies, avoiding methodological bias and ultimately facilitating the formulation of consensus on the use of probiotics as a constipation-relieving agent. In addition, the results are more comprehensive than those of existing studies and may objectively and scientifically reflect the effectiveness of L. plantarum P9 on constipation. If the expected study findings are obtained, L. plantarum P9, taken as a probiotic, may become a complementary choice for chronically constipated patients. This trial is registered with Chinese Clinical Trial Registry (ChiCTR) (no. ChiCTR2000038396) registered on November 22, 2020, https://www.chictr.org.cn/showproj.aspx?proj=54024.
Collapse
|
13
|
Cheng J, Laitila A, Ouwehand AC. Bifidobacterium animalis subsp. lactis HN019 Effects on Gut Health: A Review. Front Nutr 2022; 8:790561. [PMID: 34970580 PMCID: PMC8712437 DOI: 10.3389/fnut.2021.790561] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/19/2022] Open
Abstract
Optimal gut motility is central to bowel function and gut health. The link between the gut dysmotility related disorders and dysfunctional-intestinal barriers has led to a hypothesis that certain probiotics could help in normalizing gut motility and maintain gut health. This review investigates the roles of Bifidobacterium animalis subsp. lactis HN019 (B. lactis HN019™) on gut health, and its mechanisms of action in various pre-clinical and clinical studies. Research supports the hypothesis that B. lactis HN019™ has a beneficial role in maintaining intestinal barrier function during gastrointestinal infections by competing and excluding potential pathogens via different mechanisms; maintaining normal tight junction function in vitro; and regulating host immune defense toward pathogens in both in vitro and human studies. This has been observed to lead to reduced incidence of diarrhea. Interestingly, B. lactis HN019™ also supports normal physiological function in immunosenescent elderly and competes and excludes potential pathogens. Furthermore, B. lactis HN019™ reduced intestinal transit time and increased bowel movement frequency in functional constipation, potentially by modulating gut–brain–microbiota axis, mainly via serotonin signaling pathway, through short chain fatty acids derived from microbial fermentation. B. lactis HN019™ is thus a probiotic that can contribute to relieving gut dysmotility related disorders.
Collapse
Affiliation(s)
- Jing Cheng
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| | - Arja Laitila
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| | - Arthur C Ouwehand
- International Flavors & Fragrances Inc., Global Health and Nutrition Science, Danisco Sweeteners Oy, Kantvik, Finland
| |
Collapse
|
14
|
Hou JJ, Wang X, Wang YM, Wang BM. Interplay between gut microbiota and bile acids in diarrhoea-predominant irritable bowel syndrome: a review. Crit Rev Microbiol 2021; 48:696-713. [PMID: 34936854 DOI: 10.1080/1040841x.2021.2018401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease that disturbs the physiology and psychology of patients and increases the burden on families, the healthcare system, society, and economic development, affecting more and more people around the world. Despite the multiple factors that account for IBS remaining incompletely studied, emerging evidence demonstrated the abnormal changes in gut microbiota and bile acids (BAs) metabolism closely associated with IBS. Moreover, microbiota drives significant modifications for BAs, consisting of deconjugation, 7α-dehydroxylation, oxidation, epimerization, desulfation, esterification, and so on, while BAs, in turn, affect the microbiota directly or indirectly. In light of the complex connection among gut microbiota, BAs, and IBS, it is urgent to review the latest research progress in this field. In this review, we described the disorders of intestinal microecology and BAs profiles in IBS-D and also highlighted the cross-talk between gut microbiota and BAs in the context of IBS-D. Integrating these, we suggest that new therapeutic strategies targeting the microbiota-BAs axis for IBS-D, even for other related diseases caused by bacteria-bile acid dysbiosis should be expected.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
15
|
Araújo MM, Vogado CDO, Mendes MM, Gonçalves VSS, Botelho PB. Effects of Bifidobacterium animalis subspecies lactis supplementation on gastrointestinal symptoms: systematic review with meta-analysis. Nutr Rev 2021; 80:1619-1633. [PMID: 34918142 DOI: 10.1093/nutrit/nuab109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CONTEXT The effects of probiotics on gastrointestinal (GI) symptoms have been increasingly investigated, particularly that of Bifidobacterium animalis. Clinical trials so far have shown differing evidence regarding these effects in healthy adults. OBJECTIVE To synthesize the published evidence on the effects of B. animalis subspecies lactis on GI symptoms (GIS) in healthy adults. DATA SOURCE A search of the Medline, Embase, Lilacs, Scopus, Web of Science, ProQuest, and Google Scholar databases was conducted for reports on randomized controlled trials published up to October 2021. DATA EXTRACTION Population characteristics and data on colonic transit time (CTT), stool consistency, defecation frequency, abdominal pain, bloating, flatulence, volunteer compliance, and adverse events were extracted. A random-effects model was used to estimate the effect of probiotic treatment on these variables. DATA SYNTHESIS In total, 1551 studies were identified, of which 14 were included in the qualitative synthesis and 13 in the meta-analysis. Overall, probiotic supplementation increased defecation frequency (standardized mean difference [SMD], 0.26; 95%CI, 0.13-0.39). Subgroup analysis revealed a decrease in CTT (SMD, -0.34; 95%CI, -0.62 to -0.07) in short-term treatment (≤14 d) and an improvement in stool consistency (SMD, 0.76; 95%CI, 0.44-1.08) in individuals without GIS. No improvement in abdominal pain and bloating was found. CONCLUSIONS B. animalis subspecies lactis supplementation may increase defecation frequency and, in short-term treatment, may reduce CTT in healthy adults and improve stool consistency in individuals without GIS. More high-quality randomized controlled trials are needed to develop a clinical protocol for the use of this strain to improve these symptoms. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42020154060.
Collapse
Affiliation(s)
- Maísa Miranda Araújo
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Carolina de Oliveira Vogado
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Marcela Moraes Mendes
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| | - Vivian Siqueira Santos Gonçalves
- Graduate Program in Public Health, Department of Nutrition, Faculty of Health Science, University of Brasília, Brasília, Federal District, Brazil
| | - Patrícia Borges Botelho
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasília, Brasília, Federal District, Brazil
| |
Collapse
|
16
|
Layer P, Andresen V, Allescher H, Bischoff SC, Claßen M, Elsenbruch S, Freitag M, Frieling T, Gebhard M, Goebel-Stengel M, Häuser W, Holtmann G, Keller J, Kreis ME, Kruis W, Langhorst J, Jansen PL, Madisch A, Mönnikes H, Müller-Lissner S, Niesler B, Pehl C, Pohl D, Raithel M, Röhrig-Herzog G, Schemann M, Schmiedel S, Schwille-Kiuntke J, Storr M, Preiß JC, Andus T, Buderus S, Ehlert U, Engel M, Enninger A, Fischbach W, Gillessen A, Gschossmann J, Gundling F, Haag S, Helwig U, Hollerbach S, Karaus M, Katschinski M, Krammer H, Kuhlbusch-Zicklam R, Matthes H, Menge D, Miehlke S, Posovszky MC, Schaefert R, Schmidt-Choudhury A, Schwandner O, Schweinlin A, Seidl H, Stengel A, Tesarz J, van der Voort I, Voderholzer W, von Boyen G, von Schönfeld J, Wedel T. Update S3-Leitlinie Reizdarmsyndrom: Definition, Pathophysiologie, Diagnostik und Therapie. Gemeinsame Leitlinie der Deutschen Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten (DGVS) und der Deutschen Gesellschaft für Neurogastroenterologie und Motilität (DGNM) – Juni 2021 – AWMF-Registriernummer: 021/016. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2021; 59:1323-1415. [PMID: 34891206 DOI: 10.1055/a-1591-4794] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- P Layer
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - V Andresen
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - H Allescher
- Zentrum für Innere Medizin, Gastroent., Hepatologie u. Stoffwechsel, Klinikum Garmisch-Partenkirchen, Garmisch-Partenkirchen, Deutschland
| | - S C Bischoff
- Institut für Ernährungsmedizin, Universität Hohenheim, Stuttgart, Deutschland
| | - M Claßen
- Klinik für Kinder- und Jugendmedizin, Klinikum Links der Weser, Bremen, Deutschland
| | - S Elsenbruch
- Klinik für Neurologie, Translational Pain Research Unit, Universitätsklinikum Essen, Essen, Deutschland.,Abteilung für Medizinische Psychologie und Medizinische Soziologie, Ruhr-Universität Bochum, Bochum, Deutschland
| | - M Freitag
- Abteilung Allgemeinmedizin Department für Versorgungsforschung, Universität Oldenburg, Oldenburg, Deutschland
| | - T Frieling
- Medizinische Klinik II, Helios Klinikum Krefeld, Krefeld, Deutschland
| | - M Gebhard
- Gemeinschaftspraxis Pathologie-Hamburg, Hamburg, Deutschland
| | - M Goebel-Stengel
- Innere Medizin II, Helios Klinik Rottweil, Rottweil, und Innere Medizin VI, Psychosomat. Medizin u. Psychotherapie, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - W Häuser
- Innere Medizin I mit Schwerpunkt Gastroenterologie, Klinikum Saarbrücken, Saarbrücken, Deutschland
| | - G Holtmann
- Faculty of Medicine & Faculty of Health & Behavioural Sciences, Princess Alexandra Hospital, Brisbane, Australien
| | - J Keller
- Medizinische Klinik, Israelitisches Krankenhaus, Hamburg, Deutschland
| | - M E Kreis
- Klinik für Allgemein-, Viszeral- und Gefäßchirurgie, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Deutschland
| | | | - J Langhorst
- Klinik für Integrative Medizin und Naturheilkunde, Sozialstiftung Bamberg, Klinikum am Bruderwald, Bamberg, Deutschland
| | - P Lynen Jansen
- Deutsche Gesellschaft für Gastroenterologie, Verdauungs- und Stoffwechselkrankheiten, Berlin, Deutschland
| | - A Madisch
- Klinik für Gastroenterologie, interventionelle Endoskopie und Diabetologie, Klinikum Siloah, Klinikum Region Hannover, Hannover, Deutschland
| | - H Mönnikes
- Klinik für Innere Medizin, Martin-Luther-Krankenhaus, Berlin, Deutschland
| | | | - B Niesler
- Abteilung Molekulare Humangenetik Institut für Humangenetik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - C Pehl
- Medizinische Klinik, Krankenhaus Vilsbiburg, Vilsbiburg, Deutschland
| | - D Pohl
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
| | - M Raithel
- Medizinische Klinik II m.S. Gastroenterologie und Onkologie, Waldkrankenhaus St. Marien, Erlangen, Deutschland
| | | | - M Schemann
- Lehrstuhl für Humanbiologie, TU München, Deutschland
| | - S Schmiedel
- I. Medizinische Klinik und Poliklinik Gastroenterologie, Universitätsklinikum Hamburg-Eppendorf, Deutschland
| | - J Schwille-Kiuntke
- Abteilung für Psychosomatische Medizin und Psychotherapie, Medizinische Universitätsklinik Tübingen, Tübingen, Deutschland.,Institut für Arbeitsmedizin, Sozialmedizin und Versorgungsforschung, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - M Storr
- Zentrum für Endoskopie, Gesundheitszentrum Starnberger See, Starnberg, Deutschland
| | - J C Preiß
- Klinik für Innere Medizin - Gastroenterologie, Diabetologie und Hepatologie, Vivantes Klinikum Neukölln, Berlin, Deutschland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Engevik MA, Danhof HA, Hall A, Engevik KA, Horvath TD, Haidacher SJ, Hoch KM, Endres BT, Bajaj M, Garey KW, Britton RA, Spinler JK, Haag AM, Versalovic J. The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiol 2021; 21:154. [PMID: 34030655 PMCID: PMC8145834 DOI: 10.1186/s12866-021-02166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
- Department of Regernative Medicine & Cell Biology, Medical University of South Carolina, SC, Charleston, USA.
| | - Heather A Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kristen A Engevik
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kathleen M Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Meghna Bajaj
- Department of Chemistry and Physics, and Department of Biotechnology, Alcorn State University, Lorman, MS, 39096, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Robert A Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer K Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
18
|
Müller M, Hermes GDA, Emanuel E. C, Holst JJ, Zoetendal EG, Smidt H, Troost F, Schaap FG, Damink SO, Jocken JWE, Lenaerts K, Masclee AAM, Blaak EE. Effect of wheat bran derived prebiotic supplementation on gastrointestinal transit, gut microbiota, and metabolic health: a randomized controlled trial in healthy adults with a slow gut transit. Gut Microbes 2020; 12:1704141. [PMID: 31983281 PMCID: PMC7524158 DOI: 10.1080/19490976.2019.1704141] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute intake of the wheat bran extract Arabinoxylan-Oligosaccharide (AXOS) modulates the gut microbiota, improves stool characteristics and postprandial glycemia in healthy humans. Yet, little is known on how long-term AXOS intake influences gastrointestinal (GI) functioning, gut microbiota, and metabolic health. In this randomized, placebo-controlled, double-blind study, we evaluated the effects of AXOS intake on GI function and metabolic health in adults with slow GI transit without constipation. Forty-eight normoglycemic adults were included with whole-gut transit time (WGTT) of >35 h receiving either 15 g/day AXOS or placebo (maltodextrin) for 12-wks. The primary outcome was WGTT, and secondary outcomes included stool parameters, gut permeability, short-chain fatty acids (SCFA), microbiota composition, energy expenditure, substrate oxidation, glucose, insulin, lipids, gut hormones, and adipose tissue (AT) function. WGTT was unchanged, but stool consistency softened after AXOS. 12-wks of AXOS intake significantly changed the microbiota by increasing Bifidobacterium and decreasing microbial alpha-diversity. With a good classification accuracy, overall microbiota composition classified responders with decreased WGTT after AXOS. The incretin hormone Glucagon-like protein 1 was reduced after AXOS compared to placebo. Energy expenditure, plasma metabolites, AT parameters, SCFA, and gut permeability were unchanged. In conclusion, intake of wheat bran extract increases fecal Bifidobacterium and softens stool consistency without major effects on energy metabolism in healthy humans with a slow GI transit. We show that overall gut microbiota classified responders with decreased WGTT after AXOS highlighting that GI transit and change thereof were associated with gut microbiota independent of Bifidobacterium. NCT02491125.
Collapse
Affiliation(s)
- Mattea Müller
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gerben D. A. Hermes
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Canfora Emanuel E.
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jens J. Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Freddy Troost
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands,Food Innovation and Health Research, Centre for Healthy Eating and Food Innovation, Maastricht University, Venlo, The Netherlands
| | - Frank G. Schaap
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Steven Olde Damink
- Division of Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Johan W. E. Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Internal Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ad A. M. Masclee
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, The Netherlands,CONTACT Ellen E. Blaak Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht6200, The Netherlands
| |
Collapse
|
19
|
Abbasalizadeh S, Ebrahimi B, Azizi A, Dargahi R, Tayebali M, Ghadim ST, Foroumandi E, Aliasghari F, Javadi M, Izadi A, Banifatemeh L, Pourjafar H, Khalili L, Ghalichi F, Houshmandi S, Rad AH. Review of Constipation Treatment Methods with Emphasis on Laxative Foods. CURRENT NUTRITION & FOOD SCIENCE 2020. [DOI: 10.2174/1573401315666191002164336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Constipation is a common public health concern experienced by all individuals during
their life affecting the quality of life. In this paper, we aimed to provide an overview of the existing
evidence regarding the role of food ingredients, including bran, prune, fig, kiwifruit, and flax-seed in
constipation treatment. We searched Scopus, Pub Med, and Science Direct by using the keywords,
“laxative foods” and “constipation”, for searching studies assessing laxative food ingredients and
their beneficial effects on constipation treatment and/or control. Lifestyle modifications such as increasing
dietary fiber and fluid intake and daily exercise are the proposed first line treatments for
constipation. Optimizing ‘diet’ as an efficient lifestyle factor may contribute to the well-being of patients.
The use of laxative food ingredients including bran, prune, fig, kiwifruit, flax-seed, probiotics,
and prebiotics is a convenient alternative to cope with constipation. According to previous findings,
laxative food ingredients could be considered as effective treatments for subjects suffering from constipation.
Many studies have assessed the pharmacological and non-pharmacological roles of these
ingredients in treating constipation, however, their importance has not been thoroughly investigated.
Collapse
Affiliation(s)
- Shamsi Abbasalizadeh
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Aslan Azizi
- Agricultural Engineering Research Institute, Ministry of Jihad Agriculture, Karaj, Iran
| | - Rogaye Dargahi
- Obstetrics and Gynecology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Tayebali
- Department of Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Sepideh T. Ghadim
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Foroumandi
- Nutrition Research Center, School of Nutrition, Tabriz University of Medical Science, Tabriz, Iran
| | - Fereshteh Aliasghari
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Javadi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azimeh Izadi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Banifatemeh
- Department of Food Science & Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Pourjafar
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Leila Khalili
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Ghalichi
- Department of Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sousan Houshmandi
- Faculty of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz H. Rad
- Department of Food Science & Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Sivamaruthi BS, Fern LA, Rashidah Pg Hj Ismail DSN, Chaiyasut C. The influence of probiotics on bile acids in diseases and aging. Biomed Pharmacother 2020; 128:110310. [PMID: 32504921 DOI: 10.1016/j.biopha.2020.110310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Recent evidence indicates the use of probiotics in the prevention and treatment of diseases. Probiotics are capable of changing the gut microbiota composition and bile acid synthesis to elicit health benefits such as cholesterol-lowering, weight reduction, and improving insulin sensitivity. The aging population is prone to develop diseases because of their decreased physiological and biological systems. Probiotics are one of the promising supplements that may potentially counteract these detrimental effects. This review will discuss the influence of probiotics on bile acids in different populations-the elderly, obese individuals, and those with hypercholesterolemia, type 2 diabetes, hypertension, and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Lim Ai Fern
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link BE1410, Brunei
| | | | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
21
|
Tallyne de Aguiar Silva A, Lima Cavalcanti ID, Ayanny de Lima Fernandes M, Gisele de Oliveira Coimbra C, Manoella de Souza Lima G. Effect of zymomonas mobilis probiotic on cholesterol and its lipoprotein fractions and the intestinal regulation. Clin Nutr 2020; 39:3750-3755. [PMID: 32471645 DOI: 10.1016/j.clnu.2020.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/09/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Abstract
Zymomonas mobilis have characteristics that classify it as probiotic. Thus, this study aimed to evaluate the effect of regular consumption of fermented broth of this strain on the intestinal function of individuals with changes in intestinal transit. This is a randomized, descriptive and quantitative clinical trial, a sample composed of undergraduate students from a university center in Caruaru. After screening for individuals with constipation according to the inclusion and exclusion criteria, only 13 agreed to participate in the study. They were divided into groups: group 1 received Zymomonas mobilis fermented broth once a day; group 2 also received the fermented broth in the same concentration cells being twice a day; group 3 received cell-free fermented broth once daily; and group 4, placebo, received saline once daily, all groups drank for fifteen days, and laboratory tests were performed to check lipid profile before and after that period. Observed an increase in evacuation days in all groups averaged in media 7.0-10.5 days. Groups 1 and 2 showed an increase in total cholesterol (0.5% and 5.0%, respectively), HDL cholesterol (4.1% and 24.1%), LDL cholesterol (4.9% and 8.4%), VLDL cholesterol (17.9% and 11.2%) and triglycerides (19.1% and 27.9%). In group 3, there was a reduction of total cholesterol (-2.4%), LDL cholesterol (-11.2%), VLDL cholesterol (-15.9%), triglycerides (-27.7%) and increase in HDL cholesterol (25.7%). Thus, the broth fermented with Zymomonas mobilis regulated the intestinal transit, but did not improve the lipid profile, while the without cells broth showed a better lipid profile.
Collapse
Affiliation(s)
- Andreza Tallyne de Aguiar Silva
- Lato Sensu Multiprofessional Residence Program in Cancer Attention and Palliative Care, University Center Tabosa of Almeida (ASCES-UNITA), Caruaru, Pernambuco, Brazil.
| | - Iago Dillion Lima Cavalcanti
- Lato Sensu Multiprofessional Residence Program in Cancer Attention and Palliative Care, University Center Tabosa of Almeida (ASCES-UNITA), Caruaru, Pernambuco, Brazil
| | - Maria Ayanny de Lima Fernandes
- Lato Sensu Multiprofessional Residence Program in Cancer Attention and Palliative Care, University Center Tabosa of Almeida (ASCES-UNITA), Caruaru, Pernambuco, Brazil
| | | | | |
Collapse
|
22
|
Zendeboodi F, Khorshidian N, Mortazavian AM, da Cruz AG. Probiotic: conceptualization from a new approach. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Probiotics and constipation: mechanisms of action, evidence for effectiveness and utilisation by patients and healthcare professionals. Proc Nutr Soc 2019; 79:147-157. [PMID: 31262376 DOI: 10.1017/s0029665119000934] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of this narrative review is to assess and present evidence on the mechanisms of action of probiotics in constipation, their effectiveness and their utilisation by patients and healthcare professionals. Chronic constipation is a common bothersome disorder that has a considerable impact on patients' quality of life. Probiotics have been increasingly investigated for their effectiveness in various disorders, including chronic constipation. Probiotics may affect gut motility and constipation through their impact on the gut microbiota and fermentation, the central and enteric nervous system and the immune system. However, evidence for the effectiveness of probiotics in the management of constipation remains varied, with some strains demonstrating improvements, while others show no effect. Despite the uncertainty in evidence and the fact that the majority of healthcare professionals do not recommend probiotics for constipation, an increased prevalence of probiotic use by people with constipation has been shown. Therefore, there is a need for public health strategies to inform the public about where strong evidence of probiotic effectiveness exist, and where evidence is still weak. Education of healthcare professionals on the increased utilisation of probiotics for constipation by the public and on current evidence for the effectiveness of specific strains is also required.
Collapse
|
24
|
Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM, Versalovic J. Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 2019; 10:e01087-19. [PMID: 31213556 PMCID: PMC6581858 DOI: 10.1128/mbio.01087-19] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Much remains unknown about how the intestinal microbiome interfaces with the protective intestinal mucus layer. Bifidobacterium species colonize the intestinal mucus layer and can modulate mucus production by goblet cells. However, select Bifidobacterium strains can also degrade protective glycans on mucin proteins. We hypothesized that the human-derived species Bifidobacterium dentium would increase intestinal mucus synthesis and expulsion, without extensive degradation of mucin glycans. In silico data revealed that B. dentium lacked the enzymes necessary to extensively degrade mucin glycans. This finding was confirmed by demonstrating that B. dentium could not use naive mucin glycans as primary carbon sources in vitro To examine B. dentium mucus modulation in vivo, Swiss Webster germfree mice were monoassociated with live or heat-killed B. dentium Live B. dentium-monoassociated mice exhibited increased colonic expression of goblet cell markers Krüppel-like factor 4 (Klf4), Trefoil factor 3 (Tff3), Relm-β, Muc2, and several glycosyltransferases compared to both heat-killed B. dentium and germfree counterparts. Likewise, live B. dentium-monoassociated colon had increased acidic mucin-filled goblet cells, as denoted by Periodic Acid-Schiff-Alcian Blue (PAS-AB) staining and MUC2 immunostaining. In vitro, B. dentium-secreted products, including acetate, were able to increase MUC2 levels in T84 cells. We also identified that B. dentium-secreted products, such as γ-aminobutyric acid (GABA), stimulated autophagy-mediated calcium signaling and MUC2 release. This work illustrates that B. dentium is capable of enhancing the intestinal mucus layer and goblet cell function via upregulation of gene expression and autophagy signaling pathways, with a net increase in mucin production.IMPORTANCE Microbe-host interactions in the intestine occur along the mucus-covered epithelium. In the gastrointestinal tract, mucus is composed of glycan-covered proteins, or mucins, which are secreted by goblet cells to form a protective gel-like structure above the epithelium. Low levels of mucin or alterations in mucin glycans are associated with inflammation and colitis in mice and humans. Although current literature links microbes to the modulation of goblet cells and mucins, the molecular pathways involved are not yet fully understood. Using a combination of gnotobiotic mice and mucus-secreting cell lines, we have identified a human-derived microbe, Bifidobacterium dentium, which adheres to intestinal mucus and secretes metabolites that upregulate the major mucin MUC2 and modulate goblet cell function. Unlike other Bifidobacterium species, B. dentium does not extensively degrade mucin glycans and cannot grow on mucin alone. This work points to the potential of using B. dentium and similar mucin-friendly microbes as therapeutic agents for intestinal disorders with disruptions in the mucus barrier.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Berkley Luk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
25
|
Associations of Probiotic Fermented Milk (PFM) and Yogurt Consumption with Bifidobacterium and Lactobacillus Components of the Gut Microbiota in Healthy Adults. Nutrients 2019; 11:nu11030651. [PMID: 30889821 PMCID: PMC6470543 DOI: 10.3390/nu11030651] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
The current study investigates whether probiotic fermented milk (PFM) and yogurt consumption (YC) are related to both the ingested bacteria taxa and the overall gut microbiota (GM) composition in healthy adults. PFM and YC habits were analyzed in 260 subjects (51% male) by specific questionnaires, and the following groups were considered: (1) PFM groups: nonconsumers (PFM-NC, n = 175) and consumers (PFM, n = 85), divided as follows: Bifidobacterium-containing PFM (Bif-PFM; n = 33), Lactobacillus-containing PFM (Lb-PFM; n = 14), and mixed Bifidobacterium and Lactobacillus-containing PFM (Mixed-PFM; n = 38); (2) PFM-NC were classified as: yogurt nonconsumers (Y-NC; n = 40) and yogurt consumers (n = 135). GM was analyzed through 16S rRNA sequencing. PFM consumers showed higher Bifidobacteria taxa levels compared to NC, from phylum through to species. Specifically, Bif-PFM consumption was related to higher B. animalis levels (p < 0.001), whereas Lb-PFM consumption was associated to higher levels of Bifidobacterium (p < 0.045) and B. longum (p = 0.011). YC was related to higher levels of the yogurt starter Streptococcus thermophilus (p < 0.001). Lactobacilli and the overall GM were not related either to YC or PFM consumption. According to these results, healthy adults might benefit from PFM intake by increasing Bifidobacterium levels.
Collapse
|
26
|
Marteau P, Le Nevé B, Quinquis L, Pichon C, Whorwell PJ, Guyonnet D. Consumption of a Fermented Milk Product Containing Bifidobacterium lactis CNCM I-2494 in Women Complaining of Minor Digestive Symptoms: Rapid Response Which Is Independent of Dietary Fibre Intake or Physical Activity. Nutrients 2019; 11:nu11010092. [PMID: 30621211 PMCID: PMC6356475 DOI: 10.3390/nu11010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Background. Minor digestive symptoms are common and dietary approaches such as probiotic administration or fibre and fermentable carbohydrate intake adjustments are often recommended. A Fermented Milk Product (FMP) containing Bifidobacterium animalis subsp. lactis CNCM I-2494 and lactic acid bacteria has been shown to improve digestive symptoms after 4 weeks of consumption, but the speed of onset of this effect and its dependence on fibre intake or physical activity is unknown. To answer these questions, data from two previously published trials on FMP for minor digestive symptoms were combined. Methods. In total, 538 participants provided weekly assessments of bloating, abdominal pain/discomfort, flatulence, borborygmi/rumbling stomach from which a composite score was calculated. At baseline in one study (n = 336), dietary fibre consumption was recorded and physical activity classified as high, moderate or low. The speed of the FMP's effect was assessed by a repeated measure analysis of variance measuring the change from baseline for the composite score of digestive symptoms. Results. FMP consumption resulted in a significant decrease in the composite score of symptoms after only 2 weeks in both studies and the pooled data at week 1 (-0.35 [-0.69, 0.00]; p = 0.05), week 2 (-0.66 [-1.04, -0.27]; p < 0.001), week 3 (-0.49 [-0.89, -0.10]; p = 0.01) and week 4 (-0.46 [-0.88, -0.04]; p = 0.03). The interactions fibre intake-by-product group, physical activity-by-product group and time-by-product group were not statistically significant. Conclusion. FMP consumption leads to a rapid improvement in symptoms which is likely to encourage adherence to this dietary intervention. This effect is independent of dietary fibre and physical activity.
Collapse
Affiliation(s)
- Philippe Marteau
- Sorbonne Université, INSERM, Laboratoire des Biomolécules (LBM), 27 rue de Chaligny, 75012 Paris, France.
- APHP, Pôle Digestif, Hôpital Saint Antoine, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France.
| | - Boris Le Nevé
- Danone Nutricia Research, Innovation Science and Nutrition, 91767 Palaiseau Cedex, France.
| | - Laurent Quinquis
- Danone Nutricia Research, Innovation Science and Nutrition, 91767 Palaiseau Cedex, France.
| | - Caroline Pichon
- Danone Nutricia Research, Innovation Science and Nutrition, 91767 Palaiseau Cedex, France.
| | | | | |
Collapse
|
27
|
Tomar O. The effects of probiotic cultures on the organic acid content, texture profile and sensory attributes of Tulum cheese. INT J DAIRY TECHNOL 2018. [DOI: 10.1111/1471-0307.12574] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Oktay Tomar
- Engineering Faculty Food Engineering Department Afyon Kocatepe University Afyonkarahisar 03200 Turkey
| |
Collapse
|
28
|
Microbial treatment in chronic constipation. SCIENCE CHINA-LIFE SCIENCES 2018; 61:744-752. [PMID: 29388040 DOI: 10.1007/s11427-017-9220-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Chronic functional constipation is a kind of common intestinal disease that occurs in children, adults and elderly people. This disease not only causes great influence to physiological function, but also results in varying degrees of psychological barriers. At present, constipation treatments continue to rely on traditional methods such as purgative therapy and surgery. However, these approaches can disrupt intestinal function. Recent research between intestinal diseases and gut microbiota has gradually revealed a connection between constipation and intestinal flora disturbance, providing a theoretical basis for microbial treatment in chronic constipation. Microbial treatment mainly includes probiotic preparations such as probiotics, prebiotics, synbiotics and fecal microbiota transplantation (FMT). Due to its safety, convenience and curative effect, probiotic preparations have been widely accepted, especially gradually developed FMT with higher curative effects. Microbial treatment improves clinical symptoms, promotes the recovery of intestinal flora, and has no complications during the treatment process. Compared with traditional treatments, microbial treatment in chronic constipation has advantages, and is worthy of further promotion from clinical research to clinical application.
Collapse
|
29
|
Principi N, Cozzali R, Farinelli E, Brusaferro A, Esposito S. Gut dysbiosis and irritable bowel syndrome: The potential role of probiotics. J Infect 2017; 76:111-120. [PMID: 29291933 DOI: 10.1016/j.jinf.2017.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To discuss the role of gut dysbiosis in the development of irritable bowel syndrome (IBS) and the impact of probiotics as a potential therapeutic measure. METHODS PubMed was used to search for all of the studies published over the last 15 years using the key words: "irritable bowel syndrome" and "gut dysbiosis" or "probiotic". More than 800 articles were found, but only those published in English or providing evidence-based data were included in the evaluation. RESULTS IBS is a common disease for which no resolutive therapy is presently available. In recent years, strong evidence of a possible relationship between modifications of the gut microbiota composition and development of IBS has been collected. Moreover, the evidence showed that attempts to treat acute infectious and post-antibiotic gastroenteritis with some probiotics were significantly effective in a great number of patients, leading many experts to suggest the use of probiotics to address all of the clinical problems associated with IBS. CONCLUSION The available data are promising, but presently, a precise definition of which probiotic or which mixture of probiotics is effective cannot be made. Moreover, the dose and duration of treatment has not been established. Finally, we do not know whether probiotic treatment should be different according to the type of IBS. Further studies are needed before probiotics can be considered a reliable treatment for IBS.
Collapse
Affiliation(s)
| | - Rita Cozzali
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Edoardo Farinelli
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Andrea Brusaferro
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy.
| |
Collapse
|
30
|
|
31
|
Aryana KJ, Olson DW. A 100-Year Review: Yogurt and other cultured dairy products. J Dairy Sci 2017; 100:9987-10013. [DOI: 10.3168/jds.2017-12981] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/01/2017] [Indexed: 11/19/2022]
|
32
|
Rossi G, Jergens A, Cerquetella M, Berardi S, Di Cicco E, Bassotti G, Pengo G, Suchodolski JS. Effects of a probiotic (SLAB51™) on clinical and histologic variables and microbiota of cats with chronic constipation/megacolon: a pilot study. Benef Microbes 2017; 9:101-110. [PMID: 29065705 DOI: 10.3920/bm2017.0023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic constipation (CC) and idiopathic megacolon (IMC) occur frequently in cats. The aim of the study was to investigate the effects of a multi-strain probiotic (SLAB51™) in constipated cats (n=7) and in patients with megacolon and constipation (n=3). Ten pet cats with a diagnosis of chronic constipation, non-responsive to medical management received orally 2×1011 bacteria daily for 90 days. For microbiota analysis, selected bacterial groups were analysed by qPCR. Histological samples in megacolons were evaluated for interstitial cells of Cajal (ICC), enteric neurons, and neuronal apoptosis. Biopsies were compared at baseline (T0) and after the end of treatment (T1), and with those obtained from healthy control tissues (archived material from five healthy cats). Constipated cats displayed significantly lower ICC, and cats with idiopathic megacolon had significantly more apoptotic enteric neurons than controls. After treatment with SLAB51™, significant decreases were observed for feline chronic enteropathy activity index (FCEAI) (P=0.006), faecal consistency score, and mucosal histology scores (P<0.001). In contrast, a significant increase of ICC was observed after probiotic therapy. Lactobacillus spp. and Bacteroidetes were increased significantly after treatment (comparing constipated cats before and after treatment, and control healthy cats to constipated cats after treatment), but no other differences in microbiota were found between healthy controls and constipated cats. Treatment with SLAB51™ in cats with chronic constipation and idiopathic megacolon showed significant clinical improvement after treatment, and histological parameters suggest a potential anti-inflammatory effect of SLAB51™, associated with a reduction of mucosal infiltration, and restoration of the number of interstitial cells of Cajal.
Collapse
Affiliation(s)
- G Rossi
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - A Jergens
- 2 College of Veterinary Medicine, Iowa State University, 1800 Christensen Drive, Ames, IA 50011-1134, USA
| | - M Cerquetella
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - S Berardi
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - E Di Cicco
- 1 School of Biosciences and Veterinary Medicine, University of Camerino, Via Circonvallazione 93/95, 62024 Matelica, Italy
| | - G Bassotti
- 3 Gastroenterology & Hepatology Section, Department of Medicine, University of Perugia Medical School, Santa Maria della Misericordia Hospital, Piazzale Menghini 1, 06156 Perugia, Italy
| | - G Pengo
- 4 Clinic 'St. Antonio', Strada Statale 415, km 38,50, 26020 Madignano (CR), Italy
| | - J S Suchodolski
- 5 Gastrointestinal Laboratory, Texas A&M University, College Station 4474, 77843 TX, USA
| |
Collapse
|
33
|
Impact of β2-1 fructan on faecal community change: results from a placebo-controlled, randomised, double-blinded, cross-over study in healthy adults. Br J Nutr 2017; 118:441-453. [PMID: 28954640 DOI: 10.1017/s0007114517002318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Healthy adults (n 30) participated in a placebo-controlled, randomised, double-blinded, cross-over study consisting of two 28 d treatments (β2-1 fructan or maltodextrin; 3×5 g/d) separated by a 14-d washout. Subjects provided 1 d faecal collections at days 0 and 28 of each treatment. The ability of faecal bacteria to metabolise β2-1 fructan was common; eighty-seven species (thirty genera, and four phyla) were isolated using anaerobic medium containing β2-1 fructan as the sole carbohydrate source. β2-1 fructan altered the faecal community as determined through analysis of terminal restriction fragment length polymorphisms and 16S rRNA genes. Supplementation with β2-1 fructan reduced faecal community richness, and two patterns of community change were observed. In most subjects, β2-1 fructan reduced the content of phylotypes aligning within the Bacteroides, whereas increasing those aligning within bifidobacteria, Faecalibacterium and the family Lachnospiraceae. In the remaining subjects, supplementation increased the abundance of Bacteroidetes and to a lesser extent bifidobacteria, accompanied by decreases within the Faecalibacterium and family Lachnospiraceae. β2-1 Fructan had no impact on the metagenome or glycoside hydrolase profiles in faeces from four subjects. Few relationships were found between the faecal bacterial community and various host parameters; Bacteroidetes content correlated with faecal propionate, subjects whose faecal community contained higher Bacteroidetes produced more caproic acid independent of treatment, and subjects having lower faecal Bacteroidetes exhibited increased concentrations of serum lipopolysaccharide and lipopolysaccharide binding protein independent of treatment. We found no evidence to support a defined health benefit for the use of β2-1 fructans in healthy subjects.
Collapse
|
34
|
Dimidi E, Christodoulides S, Scott SM, Whelan K. Mechanisms of Action of Probiotics and the Gastrointestinal Microbiota on Gut Motility and Constipation. Adv Nutr 2017; 8:484-494. [PMID: 28507013 PMCID: PMC5421123 DOI: 10.3945/an.116.014407] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Constipation is a common and burdensome gastrointestinal disorder that may result from altered gastrointestinal motility. The effect of probiotics on constipation has been increasingly investigated in both animal and human studies, showing promising results. However, there is still uncertainty regarding the mechanisms of action of probiotics on gut motility and constipation. Several factors are vital to normal gut motility, including immune and nervous system function, bile acid metabolism and mucus secretion, and the gastrointestinal microbiota and fermentation; an imbalance or dysfunction in any of these components may contribute to aberrant gut motility and, consequently, symptoms of constipation. For example, adults with functional constipation have significantly decreased numbers of bifidobacteria (with one study showing a mean difference of 1 log10/g) and lactobacilli (mean difference, 1.4 log10/g) in stool samples, as well as higher breath methane, compared with control subjects. Modifying the gut luminal environment with certain probiotic strains may affect motility and secretion in the gut and, hence, provide a benefit for patients with constipation. Therefore, this review explores the mechanisms through which probiotics may exert an effect on gut motility and constipation. Nevertheless, the majority of current evidence is derived from animal studies, and therefore, further human studies are needed to determine the mechanisms through specific probiotic strains that might be effective in constipation.
Collapse
Affiliation(s)
- Eirini Dimidi
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King’s College London, London, United Kingdom; and,Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - Stephanos Christodoulides
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King’s College London, London, United Kingdom; and,Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - S Mark Scott
- Centre for Neuroscience and Trauma, Neurogastroenterology Group and GI Physiology Unit, Queen Mary University of London, London, United Kingdom
| | - Kevin Whelan
- Faculty of Life Sciences and Medicine, Diabetes and Nutritional Sciences Division, King's College London, London, United Kingdom; and
| |
Collapse
|
35
|
Wang L, Hu L, Xu Q, Yin B, Fang D, Wang G, Zhao J, Zhang H, Chen W. Bifidobacterium adolescentis Exerts Strain-Specific Effects on Constipation Induced by Loperamide in BALB/c Mice. Int J Mol Sci 2017; 18:ijms18020318. [PMID: 28230723 PMCID: PMC5343854 DOI: 10.3390/ijms18020318] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 12/12/2022] Open
Abstract
Constipation is one of the most common gastrointestinal complaints worldwide. This study was performed to determine whether Bifidobacterium adolescentis exerts inter-strain differences in alleviating constipation induced by loperamide in BALB/c mice and to analyze the main reasons for these differences. BALB/c mice underwent gavage with B. adolescentis (CCFM 626, 667, and 669) once per day for 17 days. The primary outcome measures included related constipation indicators, and the secondary outcome measures were the basic biological characteristics of the strains, the concentration changes of short-chain fatty acids in feces, and the changes in the fecal flora. B. adolescentis CCFM 669 and 667 relieved constipation symptoms by adhering to intestinal epithelial cells, growing quickly in vitro and increasing the concentrations of propionic and butyric acids. The effect of B. adolescentis on the gut microbiota in mice with constipation was investigated via 16S rRNA metagenomic analysis. The results revealed that the relative abundance of Lactobacillus increased and the amount of Clostridium decreased in the B. adolescentis CCFM 669 and 667 treatment groups. In conclusion, B. adolescentis exhibits strain-specific effects in the alleviation of constipation, mostly due to the strains’ growth rates, adhesive capacity and effects on the gut microbiome and microenvironment.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Lujun Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Qi Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Boxing Yin
- Kangyuan Dairy Co., Ltd., Yangzhou University, Yangzhou 225004, China.
| | - Dongsheng Fang
- Kangyuan Dairy Co., Ltd., Yangzhou University, Yangzhou 225004, China.
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China.
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
36
|
Lee HJ, Choi JK, Ryu HS, Choi CH, Kang EH, Park KS, Min YW, Hong KS. Therapeutic Modulation of Gut Microbiota in Functional Bowel Disorders. J Neurogastroenterol Motil 2017; 23:9-19. [PMID: 28049862 PMCID: PMC5216629 DOI: 10.5056/jnm16124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
Functional bowel disorders (FBDs) are functional gastrointestinal disorders with symptoms attributable to the middle or lower gastrointestinal tract. These include irritable bowel syndrome, functional bloating, functional constipation, functional diarrhea, and unspecified FBD. Increasing evidence has emerged of late that intestinal microbiota is involved in the pathogenesis of FBDs. In this review, the therapeutic benefits and future perspectives of the currently available strategies for modifying the gut microbiota in FBDs are described, focusing primarily on irritable bowel syndrome and functional constipation.
Collapse
Affiliation(s)
- Hyo Jeong Lee
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Kyoung Choi
- Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Han Seung Ryu
- Department of Internal Medicine, Wonkwang University College of Medicine and Digestive Disease Research Institute, Iksan, Korea
| | - Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Eun Hee Kang
- Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Sik Park
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Yang Won Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyoung Sup Hong
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Eales J, Gibson P, Whorwell P, Kellow J, Yellowlees A, Perry RHJ, Edwards M, King S, Wood H, Glanville J. Systematic review and meta-analysis: the effects of fermented milk with Bifidobacterium lactis CNCM I-2494 and lactic acid bacteria on gastrointestinal discomfort in the general adult population. Therap Adv Gastroenterol 2017; 10:74-88. [PMID: 28286561 PMCID: PMC5330605 DOI: 10.1177/1756283x16670075] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND It has been suggested that probiotics may improve gastrointestinal discomfort. Not all probiotics exhibit the same effects and consequently meta-analyses on probiotics should be confined to well-defined strains or strain combinations. The aim of this study was to evaluate the effectiveness of a probiotic fermented milk (PFM) that includes Bifidobacterium lactis (B. lactis) CNCM I-2494 and lactic acid bacteria on gastrointestinal discomfort in the general adult population. METHODS Double-blind randomized controlled trials in the general adult population comparing PFM with a control dairy product for at least 4 weeks were searched from multiple literature databases (up to February 2015). Meta-analyses using random-effects models, with individual participant data were undertaken to calculate an odds ratio (OR) or standard mean difference (SMD), with a 95% confidence interval (CI). RESULTS The search strategy identified 12,439 documents. Overall, three trials with a total of 598 adults (female = 96.5%) met the inclusion criteria. Consumption of the PFM product was associated with a significant improvement in overall gastrointestinal discomfort compared with the control product (OR = 1.48; 95% CI 1.07-2.05), with a number needed to treat (NNT) of 10.24 (95% CI 5.64-55.93). PFM was also superior to the control in reducing digestive symptoms, as measured using a composite score (SMD = -0.21; 95% CI -0.37 to -0.05). Sensitivity analyses produced similar results, and the heterogeneity between studies was minimal. CONCLUSIONS This meta-analysis shows that the consumption of PFM with B. lactis CNCM I-2494 and lactic acid bacteria is associated with a modest but consistent and significant improvement of outcomes related to gastrointestinal discomfort in healthy adults.
Collapse
Affiliation(s)
- Jacqui Eales
- York Health Economics Consortium, University of York, Heslington, York, UK
| | - Peter Gibson
- Monash University, Alfred Hospital, Melbourne, Australia
| | | | - John Kellow
- University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | | | | | - Mary Edwards
- York Health Economics Consortium, University of York, Heslington, York, UK
| | - Sarah King
- York Health Economics Consortium, University of York, Heslington, York, UK
| | - Hannah Wood
- York Health Economics Consortium, University of York, Heslington, York, UK
| | - Julie Glanville
- York Health Economics Consortium, Enterprise House, Innovation Way, University of York, Heslington, York YO10 5NQ, UK
| |
Collapse
|
38
|
Meléndez-Illanes L, González-Díaz C, Chilet-Rosell E, Álvarez-Dardet C. Does the scientific evidence support the advertising claims made for products containing Lactobacillus casei and Bifidobacterium lactis? A systematic review. J Public Health (Oxf) 2016; 38:e375-e383. [PMID: 26515088 DOI: 10.1093/pubmed/fdv151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND To analyse the scientific evidence that exists for the advertising claims made for two products containing Lactobacillus casei and Bifidobacterium lactis and to conduct a comparison between the published literature and what is presented in the corporate website. METHODS Systematic review, using Medline through Pubmed and Embase. We included human clinical trials that exclusively measured the effect of Lactobacillus casei or Bifidobacterium lactis on a healthy population, and where the objective was related to the health claims made for certain products in advertising. We assessed the levels of evidence and the strength of the recommendation according to the classification criteria established by the Oxford Centre for Evidence Based Medicine (CEBM). We also assessed the outcomes of the studies published on the website that did not appear in the search. RESULTS Of the 440 articles identified, 16 met the inclusion criteria. Only four (25%) of these presented a level of evidence of 1b and a recommendation grade of A, all corresponding to studies on product containing Bifidobacterium lactis, and only 12 of the 16 studies were published on the corporate website (47). CONCLUSIONS There is insufficient scientific evidence to support the health claims made for these products, especially in the case of product containing Lactobacillus casei.
Collapse
Affiliation(s)
| | - Cristina González-Díaz
- Department of Communication and Social Psychology, University of Alicante, Alicante, Spain
| | - Elisa Chilet-Rosell
- Research Group on Public Health, University of Alicante, Alicante, Spain Faculty of Medical Sciences, University of Cuenca, Cuenca, Ecuador
| | - Carlos Álvarez-Dardet
- Faculty of Health Sciences, University of Alicante, Alicante, Spain Research Group on Public Health, University of Alicante, Alicante, Spain Network for Epidemiology and Public Health (CIBERESP) Biomedical Research Centre, University of Alicante, Alicante, Spain
| |
Collapse
|
39
|
Nilsson A, Johansson-Boll E, Sandberg J, Björck I. Gut microbiota mediated benefits of barley kernel products on metabolism, gut hormones, and inflammatory markers as affected by co-ingestion of commercially available probiotics: a randomized controlled study in healthy subjects. Clin Nutr ESPEN 2016; 15:49-56. [PMID: 28531784 DOI: 10.1016/j.clnesp.2016.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 05/13/2016] [Accepted: 06/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Barley kernel based products have been shown to induce benefits on blood glucose regulation, cardio-metabolic risk markers and appetite regulating hormones in a time perspective of 11-16 h after intake. The mechanisms have been assigned to gut fermentation of indigestible carbohydrates. The purpose of the present study was to evaluate if the modulatory effects of barley on markers of metabolic- and appetite regulation are affected by a dietary background including a mixture of commercially available probiotics. METHODS Barley kernel bread was included in the normal diet of 21 healthy subjects in two 4-day intervention periods; with (BB-pro) or without (BB) dietary supplement with a combination of probiotics (Bifidobacterium animalis DN-173 010, Lactobacillus reuteri DSM 17938, and Lactobacillus plantarum 299v). A white wheat flour based bread was included as a reference product (WWB-ref) in a separate 4-day bread intervention period. A cross-over design was applied concerning BB- and WWB-ref; the BB-pro intervention was last in the test sequence. The BB-pro intervention was preceded by 10 days priming with probiotics. The 4 day BB- and WWB-ref intervention periods included dietary supplementation with placebo, and the interventions were preceded with 10 days priming with the placebo. The day after each intervention period, blood samples were collected at fasting and postprandially after a standardized breakfast (0-210 min) for determination of markers of glucose metabolism (blood glucose, serum (s-) insulin), inflammation (s-IL-6, s-IL-18, s-CRP, PAI-1), and concentrations of gut derived hormones involved in satiety and glucose homeostasis (plasma (p-) PYY, p-GLP-1) and intestinal barrier integrity (p-GLP-2). Breath hydrogen was determined as a marker of colonic fermentation. RESULTS Four days intervention with BB, in comparison to WWB-ref, lowered blood glucose response after a subsequent standardized breakfast (0-210 min, P < 0.05). BB and BB-pro interventions increased p-GLP-1 (0-120 min, P < 0.05) and breath H2 (0-210 min, P < 0.05). BB-pro intervention, in comparison to BB and WWB-ref, increased levels of s-PAI-1 (P < 0.05), and p-GLP-2 (0-210 min, P < 0.05) after the standardized breakfast. CONCLUSIONS With the exception of increased p-GLP-2 and an unexpected increase in s-PAI-1 concentrations, co-ingestion of a mixture of probiotics did not affect the metabolic outcome of BB; neither positively nor importantly negatively. The study was registered at: ClinicalTrials.gov, register number NCT01718418 (www.clinicaltrials.gov/ct2/show/NCT01718418).
Collapse
Affiliation(s)
- Anne Nilsson
- Food for Health Science Centre, Lund University, Lund, Sweden.
| | | | - Jonna Sandberg
- Food for Health Science Centre, Lund University, Lund, Sweden.
| | - Inger Björck
- Food for Health Science Centre, Lund University, Lund, Sweden.
| |
Collapse
|
40
|
O'Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol 2016; 7:925. [PMID: 27379055 PMCID: PMC4908950 DOI: 10.3389/fmicb.2016.00925] [Citation(s) in RCA: 506] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Members of the genus Bifidobacterium are among the first microbes to colonize the human gastrointestinal tract and are believed to exert positive health benefits on their host. Due to their purported health-promoting properties, bifidobacteria have been incorporated into many functional foods as active ingredients. Bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract, such as the human oral cavity, the insect gut and sewage. To be able to survive in these particular ecological niches, bifidobacteria must possess specific adaptations to be competitive. Determination of genome sequences has revealed genetic attributes that may explain bifidobacterial ecological fitness, such as metabolic abilities, evasion of the host adaptive immune system and colonization of the host through specific appendages. However, genetic modification is crucial toward fully elucidating the mechanisms by which bifidobacteria exert their adaptive abilities and beneficial properties. In this review we provide an up to date summary of the general features of bifidobacteria, whilst paying particular attention to the metabolic abilities of this species. We also describe methods that have allowed successful genetic manipulation of bifidobacteria.
Collapse
Affiliation(s)
- Amy O'Callaghan
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| |
Collapse
|
41
|
Miller LE, Zimmermann AK, Ouwehand AC. Contemporary meta-analysis of short-term probiotic consumption on gastrointestinal transit. World J Gastroenterol 2016; 22:5122-5131. [PMID: 27275105 PMCID: PMC4886388 DOI: 10.3748/wjg.v22.i21.5122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/09/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the efficacy of probiotic supplementation on intestinal transit time (ITT) in adults and to identify factors that influence these outcomes.
METHODS: We conducted a systematic review of randomized controlled trials of probiotic supplementation that measured ITT in adults. Study quality was assessed using the Jadad scale. A random effects meta-analysis was performed with standardized mean difference (SMD) of ITT between probiotic and control groups as the primary outcome. Meta-regression and subgroup analyses examined the impact of moderator variables on SMD of ITT.
RESULTS: A total of 15 clinical trials with 17 treatment effects representing 675 subjects were included in this analysis. Probiotic supplementation was moderately efficacious in decreasing ITT compared to control, with an SMD of 0.38 (95%CI: 0.23-0.53, P < 0.001). Subgroup analyses demonstrated statistically greater reductions in ITT with probiotics in subjects with vs without constipation (SMD: 0.57 vs 0.22, P < 0.01) and in studies with high vs low study quality (SMD: 0.45 vs 0.00, P = 0.01). Constipation (R2 = 38%, P < 0.01), higher study quality (R2 = 31%, P = 0.01), older age (R2 = 27%, P = 0.02), higher percentage of female subjects (R2 = 26%, P = 0.02), and fewer probiotic strains (R2 = 20%, P < 0.05) were predictive of decreased ITT with probiotics in meta-regression. Medium to large treatment effects were identified with B. lactis HN019 (SMD: 0.67, P < 0.001) and B. lactis DN-173 010 (SMD: 0.54, P < 0.01) while other probiotic strains yielded negligible reductions in ITT relative to control.
CONCLUSION: Probiotic supplementation is moderately efficacious for reducing ITT in adults. Probiotics were most efficacious in constipated subjects, when evaluated in high-quality studies, and with certain probiotic strains.
Collapse
|
42
|
Martín R, Laval L, Chain F, Miquel S, Natividad J, Cherbuy C, Sokol H, Verdu EF, van Hylckama Vlieg J, Bermudez-Humaran LG, Smokvina T, Langella P. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice. Front Microbiol 2016; 7:608. [PMID: 27199937 PMCID: PMC4858658 DOI: 10.3389/fmicb.2016.00608] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 01/15/2023] Open
Abstract
Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4+ lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4+ Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.
Collapse
Affiliation(s)
- Rebeca Martín
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Laure Laval
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France; Danone Nutricia ResearchPalaiseau, France
| | - Florian Chain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Sylvie Miquel
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Jane Natividad
- Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Claire Cherbuy
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Harry Sokol
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France; ERL INSERM U 1057/UMR7203, Faculté de Médecine Saint-Antoine, Université Pierre et Marie CurieParis, France; Service de Gastroentérologie, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de ParisParis, France
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | | | - Luis G Bermudez-Humaran
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | | | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
43
|
Nyanzi R, Jooste PJ, Eloff JN. Multi-Loci Gene Sequencing and Identification of Bifidobacteria Strains Isolated from Dairy and Pharmaceutical Sources in South Africa. FOOD BIOTECHNOL 2016. [DOI: 10.1080/08905436.2015.1132228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Kamaladevi A, Ganguli A, Balamurugan K. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:19-28. [PMID: 26297616 DOI: 10.1016/j.cbpc.2015.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
Malathion, an organophosphorus insecticide, is renowned for its inhibitory action on acetylcholinesterase (AChE) enzyme that eventually leads to widespread disturbance in the normal physiological and behavioral activities of any organism. Lactic acid bacteria (LAB) are still an underexploited and inexhaustible source of significant pharmaceutical thrust. In the present study, Caenorhabditis elegans was employed to identify and characterize the indigenous LAB isolated from different traditional food against malathion-induced toxicity. The results demonstrated that malathion at its LD50 concentration decreased various C. elegans physiological parameters such as survival, feeding, and locomotion. Among the screened isolates, L. casei exhibited an excellent protective efficacy against malathion-induced toxicity by increasing the level of AChE and thereby rescued all physiological parameters of C. elegans. In addition, short-term exposure and food choice assay divulged that L. casei could serve as a better food to protect C. elegans from noxious environment. The expression analysis unveiled that L. casei gavage upregulated the phase-II detoxification enzymes coding genes metallothioneins (mtl-1 and mtl-2) and glutathione-S-transferase (gst-8) and thereby eliminated malathion from the host system. Furthermore, the upregulation of ace-3 along with down-regulation of cyp35a in the nematodes supplemented with L. casei could be attributed to attenuate the malathion-induced physiological defects in C. elegans. Thus, the present study reports that an indigenous LAB-L. casei could serve as a promising protective agent against the harmful effects of pesticide.
Collapse
Affiliation(s)
- Arumugam Kamaladevi
- Department of Biotechnology, Alagappa University, Science campus, Karaikudi, Tamil Nadu, India
| | - Abhijit Ganguli
- Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Panjab, India
| | | |
Collapse
|
45
|
Betz M, Uzueta A, Rasmussen H, Gregoire M, Vanderwall C, Witowich G. Knowledge, use and perceptions of probiotics and prebiotics in hospitalised patients. Nutr Diet 2015. [DOI: 10.1111/1747-0080.12177] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Melanie Betz
- Food and Nutrition; Rush University Medical Center; Chicago Illinois USA
| | - Anne Uzueta
- Clinical Nutrition; Advocate Christ Hospital; Chicago Illinois USA
| | - Heather Rasmussen
- Food and Nutrition; Rush University Medical Center; Chicago Illinois USA
| | - Mary Gregoire
- Food and Nutrition; Rush University Medical Center; Chicago Illinois USA
| | | | - Gretchen Witowich
- Food and Nutrition; Rush University Medical Center; Chicago Illinois USA
| |
Collapse
|
46
|
Lomonaco S, Furumoto EJ, Loquasto JR, Morra P, Grassi A, Roberts RF. Development of a rapid SNP-typing assay to differentiate Bifidobacterium animalis ssp. lactis strains used in probiotic-supplemented dairy products. J Dairy Sci 2015; 98:804-12. [DOI: 10.3168/jds.2014-8509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/18/2014] [Indexed: 12/19/2022]
|
47
|
Choi CH, Chang SK. Alteration of gut microbiota and efficacy of probiotics in functional constipation. J Neurogastroenterol Motil 2015; 21:4-7. [PMID: 25611063 PMCID: PMC4288092 DOI: 10.5056/jnm14142] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 12/13/2014] [Accepted: 12/14/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
- Chang Hwan Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Sae Kyung Chang
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Kim SE, Choi SC, Park KS, Park MI, Shin JE, Lee TH, Jung KW, Koo HS, Myung SJ. Change of Fecal Flora and Effectiveness of the Short-term VSL#3 Probiotic Treatment in Patients With Functional Constipation. J Neurogastroenterol Motil 2015; 21:111-20. [PMID: 25537674 PMCID: PMC4288088 DOI: 10.5056/jnm14048] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022] Open
Abstract
Background/Aims We investigated gut flora characteristics in patients with functional constipation (FC) and influences of short-term treatment with VSL#3 probiotic on flora and symptom improvement. Methods Thirty patients fulfilling Rome III criteria for FC and 30 controls were enrolled. Fecal samples were obtained before and after VSL#3 intake (one sachet twice daily for 2 weeks) and flora were examined by quantitative real-time polymerase chain reaction (qRT-PCR). Symptom changes were also investigated. Results The fold differences in Bifidobacterium and Bacteroides species were significantly lower in feces from FC, compared to in controls (P = 0.030 and P = 0.021). After taking VSL#3, the fold differences in Lactobacillus, Bifidobacterium and Bacteroides species increased in controls (P = 0.022, P = 0.018, and P = 0.076), but not in FC. Mean Bristol scores and complete spontaneous bowel movements (CSBMs)/week increased significantly in FC after ingesting VSL#3 (both P < 0.001). Relief of subjective CSBM frequency, stool consistency and abdominal bloating were reported in 70%, 60%, and 47% of patients. After VSL#3 cessation, 44.4% of patients with symptom improvement experienced constipation recurrence mostly within one month. Conclusions Bifidobacterium and Bacteroides species might be quantitatively altered in FC. A short-term VSL#3 treatment can improve clinical symptoms of FC. Further studies are needed to investigate VSL#3’s additional effects beyond altering gut flora to allevate constipation.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Ewha Womans University School of Medicine, Seoul, Korea
| | - Suck Chei Choi
- Wonkwang University School of Medicine, Iksan, Jeollabuk-do, Korea
| | | | - Moo In Park
- Kosin University College of Medicine, Busan, Korea
| | - Jeong Eun Shin
- Dankook University College of Medicine, Cheonan, Chungcheongnam-do, Korea
| | - Tae Hee Lee
- Soonchunhyang University College of Medicine, Seoul, Korea
| | - Kee Wook Jung
- University of Ulsan College of Medicine, Seoul, Korea
| | - Hoon Sup Koo
- Konyang University College of Medicine, Daejon, Korea
| | | | | |
Collapse
|
49
|
Viborg AH, Fredslund F, Katayama T, Nielsen SK, Svensson B, Kitaoka M, Lo Leggio L, Abou Hachem M. A β1-6/β1-3 galactosidase from Bifidobacterium animalis subsp. lactis Bl-04 gives insight into sub-specificities of β-galactoside catabolism within Bifidobacterium. Mol Microbiol 2014; 94:1024-1040. [PMID: 25287704 DOI: 10.1111/mmi.12815] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/20/2022]
Abstract
The Bifidobacterium genus harbours several health promoting members of the gut microbiota. Bifidobacteria display metabolic specialization by preferentially utilizing dietary or host-derived β-galactosides. This study investigates the biochemistry and structure of a glycoside hydrolase family 42 (GH42) β-galactosidase from the probiotic Bifidobacterium animalis subsp. lactis Bl-04 (BlGal42A). BlGal42A displays a preference for undecorated β1-6 and β1-3 linked galactosides and populates a phylogenetic cluster with close bifidobacterial homologues implicated in the utilization of N-acetyl substituted β1-3 galactosides from human milk and mucin. A long loop containing an invariant tryptophan in GH42, proposed to bind substrate at subsite + 1, is identified here as specificity signature within this clade of bifidobacterial enzymes. Galactose binding at the subsite - 1 of the active site induced conformational changes resulting in an extra polar interaction and the ordering of a flexible loop that narrows the active site. The amino acid sequence of this loop provides an additional specificity signature within this GH42 clade. The phylogenetic relatedness of enzymes targeting β1-6 and β1-3 galactosides likely reflects structural differences between these substrates and β1-4 galactosides, containing an axial galactosidic bond. These data advance our molecular understanding of the evolution of sub-specificities that support metabolic specialization in the gut niche.
Collapse
Affiliation(s)
- Alexander Holm Viborg
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Giannini L, Esposito L, Galbiati G, Folegatti C, Stabilini S, Bonaglia B, Maspero C. Il ruolo dei probiotici nella prevenzione delle pigmentazioni del cavo orale. DENTAL CADMOS 2014. [DOI: 10.1016/s0011-8524(14)70219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|