1
|
Pehar M, Hewitt M, Wagner A, Sandhu JK, Khalili A, Wang X, Cho JY, Sim VL, Kulka M. Histamine stimulates human microglia to alter cellular prion protein expression via the HRH2 histamine receptor. Sci Rep 2024; 14:25519. [PMID: 39462031 PMCID: PMC11513956 DOI: 10.1038/s41598-024-75982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Although the cellular prion protein (PrPC) has been evolutionarily conserved, the role of this protein remains elusive. Recent evidence indicates that PrPC may be involved in neuroinflammation and the immune response in the brain, and its expression may be modified via various mechanisms. Histamine is a proinflammatory mediator and neurotransmitter that stimulates numerous cells via interactions with histamine receptors 1-4 (HRH1-4). Since microglia are the innate immune cells of the central nervous system, we hypothesized that histamine-induced stimulation regulates the expression of PrPC in human-derived microglia. The human microglial clone 3 (HMC3) cell line was treated with histamine, and intracellular calcium levels were measured via a calcium flux assay. Cytokine production was monitored by enzyme-linked immunosorbent assay (ELISA). Western blotting and quantitative reverse transcription-polymerase chain reaction were used to determine protein and gene expression of HRH1-4. Flow cytometry and western blotting were used to measure PrPC expression levels. Fluorescence microscopy was used to examine Iba-1 and PrPC localization. HMC3 cells stimulated by histamine exhibited increased intracellular calcium levels and increased release of IL-6 and IL-8, while also modifying PrPC localization. HMC3 stimulated with histamine for 6 and 24 hours exhibited increased surface PrPC expression. Specifically, we found that stimulation of the HRH2 receptor was responsible for changes in surface PrPC. Histamine-induced increases in surface PrPC were attenuated following inhibition of the HRH2 receptor via the HRH2 antagonist ranitidine. These changes were unique to HRH2 activation, as stimulation of HRH1, HRH3, or HRH4 did not alter surface PrPC. Prolonged stimulation of HMC3 decreased PrPC expression following 48 and 72 hours of histamine stimulation. HMC3 cells can be stimulated by histamine to undergo intracellular calcium influx. Surface expression levels of PrPC on HMC3 cells are altered by histamine exposure, primarily mediated by HRH2. While histamine exposure also increases release of IL-6 and IL-8 in these cells, this cytokine release is not fully dependent on PrPC levels, as IL-6 release is only partially reduced and IL-8 release is unchanged under the conditions of HRH2 blockade that prevent PrPC changes. Overall, this suggests that PrPC may play a role in modulating microglial responses.
Collapse
Affiliation(s)
- Marcus Pehar
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Ashley Wagner
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Aria Khalili
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Xinyu Wang
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Jae-Young Cho
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Valerie L Sim
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Marianna Kulka
- Quantum and Nanotechnologies Research Centre, National Research Council Canada, Edmonton, AB, Canada.
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Willows SD, Vliagoftis H, Sim VL, Kulka M. PrP is cleaved from the surface of mast cells by ADAM10 and proteases released during degranulation. J Leukoc Biol 2024; 116:838-853. [PMID: 38725289 DOI: 10.1093/jleuko/qiae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 10/03/2024] Open
Abstract
While several functions of the endogenous prion protein have been studied, the homeostatic function of prion protein is still debated. Notably, prion protein is highly expressed on mast cells, granular immune cells that regulate inflammation. When activated, mast cells shed prion protein, although the mechanism and consequences of this are not yet understood. First, we tested several mast cell lines and found that, while prion protein was almost always present, the total amount differed greatly. Activation of mast cells induced a cleavage of the N-terminal region of prion protein, and this was reduced by protease inhibitors. Exogenous mast cell proteases caused a similar loss of the prion protein N-terminus. Additionally, mast cells shed prion protein in an ADAM10-dependent fashion, even in the absence of activation. Our results suggest that prion protein is cleaved from resting mast cells by ADAM10 and from activated mast cells by mast cell proteases. Prion protein also appears to affect mast cell function, as Prnp-/- bone marrow-derived mast cells showed lower levels of degranulation and cytokine release, as well as lower levels of both FcεRI and CD117. Finally, we sought to provide clinical relevance by measuring the levels of prion protein in bodily fluids of asthmatic patients, a disease that involves the activation of mast cells. We found an N-terminal fragment of prion protein could be detected in human sputum and serum, and the amount of this prion protein fragment was decreased in the serum of patients with asthma.
Collapse
Affiliation(s)
- Steven D Willows
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, Alberta, T6G 2M9, Canada
| | - Harissios Vliagoftis
- Department of Medicine, and Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, 11350 83rd Ave, T6G 2G3, Canada
| | - Valerie L Sim
- Department of Medicine, and Neurosciences and Mental Health Institute, University of Alberta, Li Ka Shing Centre for Health Research Innovation, Edmonton, Alberta, T6G 2E1, Canada
- Centre for Prions & Protein Folding Diseases, University of Alberta, 8710 - 112 St NW, Edmonton, Alberta, T6G 2M8, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Dr, Edmonton, Alberta, T6G 2M9, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Katz Group Centre, Edmonton, Alberta, T6G 2E1, Canada
| |
Collapse
|
3
|
Karner D, Kvestak D, Kucan Brlic P, Cokaric Brdovcak M, Lisnic B, Brizic I, Juranic Lisnic V, Golemac M, Tomac J, Krmpotic A, Karkeni E, Libri V, Mella S, Legname G, Altmeppen HC, Hasan M, Jonjic S, Lenac Rovis T. Prion protein alters viral control and enhances pathology after perinatal cytomegalovirus infection. Nat Commun 2024; 15:7754. [PMID: 39237588 PMCID: PMC11377837 DOI: 10.1038/s41467-024-51931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Cytomegalovirus (CMV) infection poses risks to newborns, necessitating effective therapies. Given that the damage includes both viral infection of brain cells and immune system-related damage, here we investigate the involvement of cellular prion protein (PrP), which plays vital roles in neuroprotection and immune regulation. Using a murine model, we show the role of PrP in tempering neonatal T cell immunity during CMV infection. PrP-null mice exhibit enhanced viral control through elevated virus-specific CD8 T cell responses, leading to reduced viral titers and pathology. We further unravel the molecular mechanisms by showing CMV-induced upregulation followed by release of PrP via the metalloproteinase ADAM10, impairing CD8 T cell response specifically in neonates. Additionally, we confirm PrP downregulation in human CMV (HCMV)-infected fibroblasts, underscoring the broader relevance of our observations beyond the murine model. Furthermore, our study highlights how PrP, under the stress of viral pathogenesis, reveals its impact on neonatal immune modulation.
Collapse
Affiliation(s)
- Dubravka Karner
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Daria Kvestak
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Paola Kucan Brlic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | | | - Berislav Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Ilija Brizic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Vanda Juranic Lisnic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Mijo Golemac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Tomac
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Astrid Krmpotic
- Department of Histology and Embryology; Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Esma Karkeni
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Sebastien Mella
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Giuseppe Legname
- Department of Neuroscience, Prion Biology Laboratory, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Milena Hasan
- Cytometry and Biomarkers Unit of Technology and Service (CB TechS); Institut Pasteur, Université Paris Cité, Paris, France
| | - Stipan Jonjic
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia
| | - Tihana Lenac Rovis
- Center for Proteomics; Faculty of Medicine; University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
4
|
Wang SS, Meng ZL, Zhang YW, Yan YS, Li LB. Prion protein E219K polymorphism: from the discovery of the KANNO blood group to interventions for human prion disease. Front Neurol 2024; 15:1392984. [PMID: 39050130 PMCID: PMC11266091 DOI: 10.3389/fneur.2024.1392984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
KANNO is a new human blood group that was recently discovered. The KANNO antigen shares the PRNP gene with the prion protein and the prion protein E219K polymorphism determines the presence or absence of the KANNO antigen and the development of anti-KANNO alloantibodies. These alloantibodies specifically react with prion proteins, which serve as substrates for conversion into pathological isoforms in some prion diseases and may serve as effective targets for resisting prion infection. These findings establish a potential link between the KANNO blood group and human prion disease via the prion protein E219K polymorphism. We reviewed the interesting correlation between the human PRNP gene's E219K polymorphism and the prion proteins it expresses, as well as human red blood cell antigens. Based on the immune serological principles of human blood cells, the prion protein E219K polymorphism may serve as a foundation for earlier molecular diagnosis and future drug development for prion diseases.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Li Meng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Wen Zhang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Shuang Yan
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ling-Bo Li
- Aikang MedTech Co., Ltd., Shenzhen, China
| |
Collapse
|
5
|
Cha S, Kim MY. The role of cellular prion protein in immune system. BMB Rep 2023; 56:645-650. [PMID: 37817440 PMCID: PMC10761747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
Numerous studies have investigated the cellular prion protein (PrPC) since its discovery. These investigations have explained that its structure is predominantly composed of alpha helices and short beta sheet segments, and when its abnormal scrapie isoform (PrPSc) is infected, PrPSc transforms the PrPC, leading to prion diseases, including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Given its ubiquitous distribution across a variety of cellular types, the PrPC manifests a diverse range of biological functions, including cell-cell adhesion, neuroprotection, signalings, and oxidative stress response. PrPC is also expressed in immune tissues, and its functions in these tissues include the activation of immune cells and the formation of secondary lymphoid tissues, such as the spleen and lymph nodes. Moreover, high expression of PrPC in immune cells plays a crucial role in the pathogenesis of prion diseases. In addition, it affects inflammation and the development and progression of cancer via various mechanisms. In this review, we discuss the studies on the role of PrPC from various immunological perspectives. [BMB Reports 2023; 56(12): 645-650].
Collapse
Affiliation(s)
- Seunghwa Cha
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
6
|
Cha S, Kim MY. The role of cellular prion protein in immune system. BMB Rep 2023; 56:645-650. [PMID: 37817440 PMCID: PMC10761747 DOI: 10.5483/bmbrep.2023-0151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2024] Open
Abstract
Numerous studies have investigated the cellular prion protein (PrPC) since its discovery. These investigations have explained that its structure is predominantly composed of alpha helices and short beta sheet segments, and when its abnormal scrapie isoform (PrPSc) is infected, PrPSc transforms the PrPC, leading to prion diseases, including Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy in cattle. Given its ubiquitous distribution across a variety of cellular types, the PrPC manifests a diverse range of biological functions, including cell-cell adhesion, neuroprotection, signalings, and oxidative stress response. PrPC is also expressed in immune tissues, and its functions in these tissues include the activation of immune cells and the formation of secondary lymphoid tissues, such as the spleen and lymph nodes. Moreover, high expression of PrPC in immune cells plays a crucial role in the pathogenesis of prion diseases. In addition, it affects inflammation and the development and progression of cancer via various mechanisms. In this review, we discuss the studies on the role of PrPC from various immunological perspectives. [BMB Reports 2023; 56(12): 645-650].
Collapse
Affiliation(s)
- Seunghwa Cha
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| | - Mi-Yeon Kim
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
7
|
Silva De Castro I, Granato A, Mariante RM, Lima MA, Leite ACC, Espindola ODM, Pise-Masison CA, Franchini G, Linden R, Echevarria-Lima J. HTLV-1 p12 modulates the levels of prion protein (PrP C) in CD4 + T cells. Front Microbiol 2023; 14:1175679. [PMID: 37637115 PMCID: PMC10449582 DOI: 10.3389/fmicb.2023.1175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Infection with human T cell lymphotropic virus type 1 (HTLV-1) is endemic in Brazil and is linked with pro-inflammatory conditions including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a chronic neuroinflammatory incapacitating disease that culminates in loss of motor functions. The mechanisms underlying the onset and progression of HAM/TSP are incompletely understood. Previous studies have demonstrated that inflammation and infectious agents can affect the expression of cellular prion protein (PrPC) in immune cells. Methods Here, we investigated whether HTLV-1 infection affected PrPC content in cell lines and primary CD4+cells in vitro using flow cytometry and western blot assays. Results We found that HTLV-1 infection decreased the expression levels of PrPC and HTLV-1 Orf I encoded p12, an endoplasmic reticulum resident protein also known to affect post-transcriptionally cellular proteins such as MHC-class I and the IL-2 receptor. In addition, we observed a reduced percentage of CD4+ T cells from infected individuals expressing PrPC, which was reflected by IFN type II but not IL-17 expression. Discussion These results suggested that PrPC downregulation, linked to both HTLV-1 p12 and IFN-γ expression in CD4+ cells, may play a role in the neuropathogenesis of HTLV-1 infection.
Collapse
Affiliation(s)
- Isabela Silva De Castro
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Alessandra Granato
- Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Rafael Meyer Mariante
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Marco Antonio Lima
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Ana Claudia Celestino Leite
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Otávio de Melo Espindola
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, Bethesda, MD, United States
| | - Rafael Linden
- Laboratório de Neurogenesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Grimaldi I, Leser FS, Janeiro JM, da Rosa BG, Campanelli AC, Romão L, Lima FRS. The multiple functions of PrP C in physiological, cancer, and neurodegenerative contexts. J Mol Med (Berl) 2022; 100:1405-1425. [PMID: 36056255 DOI: 10.1007/s00109-022-02245-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
Cellular prion protein (PrPC) is a highly conserved glycoprotein, present both anchored in the cell membrane and soluble in the extracellular medium. It has a diversity of ligands and is variably expressed in numerous tissues and cell subtypes, most notably in the central nervous system (CNS). Its importance has been brought to light over the years both under physiological conditions, such as embryogenesis and immune system homeostasis, and in pathologies, such as cancer and neurodegenerative diseases. During development, PrPC plays an important role in CNS, participating in axonal growth and guidance and differentiation of glial cells, but also in other organs such as the heart, lung, and digestive system. In diseases, PrPC has been related to several types of tumors, modulating cancer stem cells, enhancing malignant properties, and inducing drug resistance. Also, in non-neoplastic diseases, such as Alzheimer's and Parkinson's diseases, PrPC seems to alter the dynamics of neurotoxic aggregate formation and, consequently, the progression of the disease. In this review, we explore in detail the multiple functions of this protein, which proved to be relevant for understanding the dynamics of organism homeostasis, as well as a promising target in the treatment of both neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Izabella Grimaldi
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Saceanu Leser
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bárbara Gomes da Rosa
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Clara Campanelli
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luciana Romão
- Cell Morphogenesis Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Flavia Regina Souza Lima
- Glial Cell Biology Laboratory, Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Mantuano E, Azmoon P, Banki MA, Sigurdson CJ, Campana WM, Gonias SL. A Soluble PrP C Derivative and Membrane-Anchored PrP C in Extracellular Vesicles Attenuate Innate Immunity by Engaging the NMDA-R/LRP1 Receptor Complex. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:85-96. [PMID: 34810220 PMCID: PMC8702456 DOI: 10.4049/jimmunol.2100412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Nonpathogenic cellular prion protein (PrPC) demonstrates anti-inflammatory activity; however, the responsible mechanisms are incompletely defined. PrPC exists as a GPI-anchored membrane protein in diverse cells; however, PrPC may be released from cells by ADAM proteases or when packaged into extracellular vesicles (EVs). In this study, we show that a soluble derivative of PrPC (S-PrP) counteracts inflammatory responses triggered by pattern recognition receptors in macrophages, including TLR2, TLR4, TLR7, TLR9, NOD1, and NOD2. S-PrP also significantly attenuates the toxicity of LPS in mice. The response of macrophages to S-PrP is mediated by a receptor assembly that includes the N-methyl-d-aspartate receptor (NMDA-R) and low-density lipoprotein receptor-related protein-1 (LRP1). PrPC was identified in EVs isolated from human plasma. These EVs replicated the activity of S-PrP, inhibiting cytokine expression and IκBα phosphorylation in LPS-treated macrophages. The effects of plasma EVs on LPS-treated macrophages were blocked by PrPC-specific Ab, by antagonists of LRP1 and the NMDA-R, by deleting Lrp1 in macrophages, and by inhibiting Src family kinases. Phosphatidylinositol-specific phospholipase C dissociated the LPS-regulatory activity from EVs, rendering the EVs inactive as LPS inhibitors. The LPS-regulatory activity that was lost from phosphatidylinositol-specific phospholipase C-treated EVs was recovered in solution. Collectively, these results demonstrate that GPI-anchored PrPC is the essential EV component required for the observed immune regulatory activity of human plasma EVs. S-PrP and EV-associated PrPC regulate innate immunity by engaging the NMDA-R/LRP1 receptor system in macrophages. The scope of pattern recognition receptors antagonized by S-PrP suggests that released forms of PrPC may have broad anti-inflammatory activity.
Collapse
Affiliation(s)
| | - Pardis Azmoon
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Michael A Banki
- Department of Pathology, University of California San Diego, La Jolla, CA
| | | | - Wendy M Campana
- Department of Anesthesiology and Program in Neurosciences, University of California San Diego, La Jolla, CA; and
- Veterans Administration San Diego Healthcare System, San Diego, CA
| | - Steven L Gonias
- Department of Pathology, University of California San Diego, La Jolla, CA;
| |
Collapse
|
10
|
Marques CMS, Pedron T, Batista BL, Cerchiaro G. Cellular prion protein activates Caspase 3 for apoptotic defense mechanism in astrocytes. Mol Cell Biochem 2021; 476:2149-2158. [PMID: 33547547 DOI: 10.1007/s11010-021-04078-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
The cellular prion protein (PrPC) is anchored in the plasma membrane of cells, and it is highly present in cells of brain tissue, exerting numerous cellular and cognitive functions. The present study proves the importance of PrPC in the cellular defense mechanism and metal homeostasis in astrocytes cells. Through experimental studies using cell lines of immortalized mice astrocytes (wild type and knockout for PrPC), we showed that PrPc is involved in the apoptosis cell death process by the activation of Caspase 3, downregulation of p53, and cell cycle maintenance. Metal homeostasis was determined by inductively coupled plasma mass spectrometry technique, indicating the crucial role of PrPC to lower intracellular calcium. The lowered calcium concentration and the Caspase 3 downregulation in the PrPC-null astrocytes resulted in a faster growth rate in cells, comparing with PrPC wild-type one. The presence of PrPC shows to be essential to cell death and healthy growth. In conclusion, our results show for the first time that astrocyte knockout cells for the cellular prion protein could modulate apoptosis-dependent cell death pathways.
Collapse
Affiliation(s)
- Caroline M S Marques
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Tatiana Pedron
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Bruno L Batista
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil
| | - Giselle Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), Avenida dos Estados, 5001, Bl.B, Santo André, SP, 09210-580, Brazil.
| |
Collapse
|
11
|
Zhang B, Shen P, Yin X, Dai Y, Ding M, Cui L. Expression and functions of cellular prion proteins in immunocytes. Scand J Immunol 2019; 91:e12854. [PMID: 31785109 DOI: 10.1111/sji.12854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Prion diseases are fatal neurodegenerative processes caused by the accumulation of the pathological prion protein, PrPSc . While pathological lesions are limited to the central nervous system (CNS), disease-specific proteins accumulate and replicate in secondary lymphoid organs prior to neuroinvasion, and their replication there depends on the abundance of cellular prion protein (PrPC ). PrPC is expressed in both central and peripheral lymphoid tissues, and up- or downregulates innate and adaptive immune responses. In addition to prion diseases, PrPC is also immunologically involved in other neurological disorders and infectious diseases, including Alzheimer's disease and human immunodeficiency virus infection. Herein, we summarize the expression and functions of PrPC in various immunocytes, as well as its immunological and pathological roles in neurodegeneration and infection.
Collapse
Affiliation(s)
- Baizhuo Zhang
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Pingping Shen
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yanyuan Dai
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingxuan Ding
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Centre, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
12
|
Chida J, Sakaguchi S. Cellular prion protein-mediated protection against influenza A virus infection. Future Virol 2019. [DOI: 10.2217/fvl-2018-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cellular prion protein, termed PrPC, is a glycoprotein abundantly expressed in brains and to a lesser extent in non-neuronal tissues including lungs. It was reported that PrPC is expressed by lung epithelial cells in mice, and that it may play a protective role against lethal infection with influenza A viruses (IAVs). This may occur by regulating Cu content and superoxide dismutase (SOD) activity, eventually reducing oxidative stress in infected lungs. Antioxidative therapeutics have been demonstrated to protect mice from lethal infection with IAVs. Therefore, PrPC might be a new target molecule for development of IAV therapeutics. Here, we introduce the antiviral mechanism of PrPC against IAV infection and discuss perspectives of PrPC-targeting therapeutics against IAV infection.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Suehiro Sakaguchi
- Division of Molecular Neurobiology, The Institute for Enzyme Research (KOSOKEN), Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
13
|
Salvesen Ø, Tatzelt J, Tranulis MA. The prion protein in neuroimmune crosstalk. Neurochem Int 2018; 130:104335. [PMID: 30448564 DOI: 10.1016/j.neuint.2018.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 01/11/2023]
Abstract
The cellular prion protein (PrPC) is a medium-sized glycoprotein, attached to the cell surface by a glycosylphosphatidylinositol anchor. PrPC is encoded by a single-copy gene, PRNP, which is abundantly expressed in the central nervous system and at lower levels in non-neuronal cells, including those of the immune system. Evidence from experimental knockout of PRNP in rodents, goats, and cattle and the occurrence of a nonsense mutation in goat that prevents synthesis of PrPC, have shown that the molecule is non-essential for life. Indeed, no easily recognizable phenotypes are associate with a lack of PrPC, except the potentially advantageous trait that animals without PrPC cannot develop prion disease. This is because, in prion diseases, PrPC converts to a pathogenic "scrapie" conformer, PrPSc, which aggregates and eventually induces neurodegeneration. In addition, endogenous neuronal PrPC serves as a toxic receptor to mediate prion-induced neurotoxicity. Thus, PrPC is an interesting target for treatment of prion diseases. Although loss of PrPC has no discernable effect, alteration of its normal physiological function can have very harmful consequences. It is therefore important to understand cellular processes involving PrPC, and research of this topic has advanced considerably in the past decade. Here, we summarize data that indicate the role of PrPC in modulating immune signaling, with emphasis on neuroimmune crosstalk both under basal conditions and during inflammatory stress.
Collapse
Affiliation(s)
- Øyvind Salvesen
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Sandnes, Norway.
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany.
| | - Michael A Tranulis
- Faculty of Veterinary Medicine, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway.
| |
Collapse
|
14
|
Abstract
The cellular prion protein, PrPC, is a small, cell surface glycoprotein with a function that is currently somewhat ill defined. It is also the key molecule involved in the family of neurodegenerative disorders called transmissible spongiform encephalopathies, which are also known as prion diseases. The misfolding of PrPC to a conformationally altered isoform, designated PrPTSE, is the main molecular process involved in pathogenesis and appears to precede many other pathologic and clinical manifestations of disease, including neuronal loss, astrogliosis, and cognitive loss. PrPTSE is also believed to be the major component of the infectious "prion," the agent responsible for disease transmission, and preparations of this protein can cause prion disease when inoculated into a naïve host. Thus, understanding the biochemical and biophysical properties of both PrPC and PrPTSE, and ultimately the mechanisms of their interconversion, is critical if we are to understand prion disease biology. Although entire books could be devoted to research pertaining to the protein, herein we briefly review the state of knowledge of prion biochemistry, including consideration of prion protein structure, function, misfolding, and dysfunction.
Collapse
Affiliation(s)
- Andrew C Gill
- School of Chemistry, Joseph Banks Laboratories, University of Lincoln, Lincoln, United Kingdom; Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| | - Andrew R Castle
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Abstract
Currently all prion diseases are without effective treatment and are universally fatal. It is increasingly being recognized that the pathogenesis of many neurodegenerative diseases, such as Alzheimer disease (AD), includes "prion-like" properties. Hence, any effective therapeutic intervention for prion disease could have significant implications for other neurodegenerative diseases. Conversely, therapies that are effective in AD might also be therapeutically beneficial for prion disease. AD-like prion disease has no effective therapy. However, various vaccine and immunomodulatory approaches have shown great success in animal models of AD, with numerous ongoing clinical trials of these potential immunotherapies. More limited evidence suggests that immunotherapies may be effective in prion models and in naturally occurring prion disease. In particular, experimental data suggest that mucosal vaccination against prions can be effective for protection against orally acquired prion infection. Many prion diseases, including natural sheep scrapie, bovine spongiform encephalopathy, chronic wasting disease, and variant Creutzfeldt-Jakob disease, are thought to be acquired peripherally, mainly by oral exposure. Mucosal vaccination would be most applicable to this form of transmission. In this chapter we review various immunologically based strategies which are under development for prion infection.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States.
| | - Fernando Goñi
- Center for Cognitive Neurology, New York University School of Medicine, New York, NY, United States; Department of Neurology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Wu GR, Mu TC, Gao ZX, Wang J, Sy MS, Li CY. Prion protein is required for tumor necrosis factor α (TNFα)-triggered nuclear factor κB (NF-κB) signaling and cytokine production. J Biol Chem 2017; 292:18747-18759. [PMID: 28900035 PMCID: PMC5704461 DOI: 10.1074/jbc.m117.787283] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/10/2017] [Indexed: 12/18/2022] Open
Abstract
The expression of normal cellular prion protein (PrP) is required for the pathogenesis of prion diseases. However, the physiological functions of PrP remain ambiguous. Here, we identified PrP as being critical for tumor necrosis factor (TNF) α-triggered signaling in a human melanoma cell line, M2, and a pancreatic ductal cell adenocarcinoma cell line, BxPC-3. In M2 cells, TNFα up-regulates the expression of p-IκB-kinase α/β (p-IKKα/β), p-p65, and p-JNK, but down-regulates the IκBα protein, all of which are downstream signaling intermediates in the TNF receptor signaling cascade. When PRNP is deleted in M2 cells, the effects of TNFα are no longer detectable. More importantly, p-p65 and p-JNK responses are restored when PRNP is reintroduced into the PRNP null cells. TNFα also activates NF-κB and increases TNFα production in wild-type M2 cells, but not in PrP-null M2 cells. Similar results are obtained in the BxPC-3 cells. Moreover, TNFα activation of NF-κB requires ubiquitination of receptor-interacting serine/threonine kinase 1 (RIP1) and TNF receptor-associated factor 2 (TRAF2). TNFα treatment increases the binding between PrP and the deubiquitinase tumor suppressor cylindromatosis (CYLD), in these treated cells, binding of CYLD to RIP1 and TRAF2 is reduced. We conclude that PrP traps CYLD, preventing it from binding and deubiquitinating RIP1 and TRAF2. Our findings reveal that PrP enhances the responses to TNFα, promoting proinflammatory cytokine production, which may contribute to inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Gui-Ru Wu
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China.,the University of Chinese Academy of Sciences, Beijing 100000, China
| | - Tian-Chen Mu
- the Department of Life Sciences, Wuhan University, Wuhan 430010, China
| | - Zhen-Xing Gao
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Jun Wang
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China
| | - Man-Sun Sy
- the Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, and
| | - Chao-Yang Li
- From the Wuhan Institute of Virology, Chinese Academy of Sciences, State Key Laboratory of Virology, 44 Xiao Hong Shan Zhong Qu, Wuhan 430071, China, .,the Wuhan Brain Hospital, No. 5 Huiji Road, Jiang'an District, Wuhan 430010, China
| |
Collapse
|
17
|
Malachin G, Reiten MR, Salvesen Ø, Aanes H, Kamstra JH, Skovgaard K, Heegaard PMH, Ersdal C, Espenes A, Tranulis MA, Bakkebø MK. Loss of prion protein induces a primed state of type I interferon-responsive genes. PLoS One 2017. [PMID: 28651013 PMCID: PMC5484497 DOI: 10.1371/journal.pone.0179881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The cellular prion protein (PrPC) has been extensively studied because of its pivotal role in prion diseases; however, its functions remain incompletely understood. A unique line of goats has been identified that carries a nonsense mutation that abolishes synthesis of PrPC. In these animals, the PrP-encoding mRNA is rapidly degraded. Goats without PrPC are valuable in re-addressing loss-of-function phenotypes observed in Prnp knockout mice. As PrPC has been ascribed various roles in immune cells, we analyzed transcriptomic responses to loss of PrPC in peripheral blood mononuclear cells (PBMCs) from normal goat kids (n = 8, PRNP+/+) and goat kids without PrPC (n = 8, PRNPTer/Ter) by mRNA sequencing. PBMCs normally express moderate levels of PrPC. The vast majority of genes were similarly expressed in the two groups. However, a curated list of 86 differentially expressed genes delineated the two genotypes. About 70% of these were classified as interferon-responsive genes. In goats without PrPC, the majority of type I interferon-responsive genes were in a primed, modestly upregulated state, with fold changes ranging from 1.4 to 3.7. Among these were ISG15, DDX58 (RIG-1), MX1, MX2, OAS1, OAS2 and DRAM1, all of which have important roles in pathogen defense, cell proliferation, apoptosis, immunomodulation and DNA damage response. Our data suggest that PrPC contributes to the fine-tuning of resting state PBMCs expression level of type I interferon-responsive genes. The molecular mechanism by which this is achieved will be an important topic for further research into PrPC physiology.
Collapse
Affiliation(s)
- Giulia Malachin
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Malin R. Reiten
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Øyvind Salvesen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Håvard Aanes
- Department of Microbiology, Division of diagnostics and intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jorke H. Kamstra
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kerstin Skovgaard
- Innate Immunology Group, Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter M. H. Heegaard
- Innate Immunology Group, Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Cecilie Ersdal
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Michael A. Tranulis
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
- * E-mail:
| | - Maren K. Bakkebø
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
18
|
Megra BW, Eugenin EA, Berman JW. The Role of Shed PrP c in the Neuropathogenesis of HIV Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:224-232. [PMID: 28533442 DOI: 10.4049/jimmunol.1601041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/21/2017] [Indexed: 01/02/2023]
Abstract
HIV-1 enters the CNS soon after peripheral infection and causes chronic neuroinflammation and neuronal damage that leads to cognitive impairment in 40-70% of HIV-infected people. The nonpathogenic cellular isoform of the human prion protein (PrPc) is an adhesion molecule constitutively expressed in the CNS. Previously, our laboratory showed that shed PrPc (sPrPc) is increased in the cerebrospinal fluid of HIV-infected people with cognitive deficits as compared with infected people with no impairment. In this article, we demonstrate that CCL2 and TNF-α, inflammatory mediators that are elevated in the CNS of HIV-infected people, increase shedding of PrPc from human astrocytes by increasing the active form of the metalloprotease ADAM10. We show that the consequence of this shedding can be the production of inflammatory mediators, because treatment of astrocytes with rPrPc increased secretion of CCL2, CXCL-12, and IL-8. Supernatants from rPrPc-treated astrocytes containing factors produced in response to this treatment, but not rPrPc by itself, cause increased chemotaxis of both uninfected and HIV-infected human monocytes, suggesting a role for sPrPc in monocyte recruitment into the brain. Furthermore, we examined whether PrPc participates in glutamate uptake and found that rPrPc decreased uptake of this metabolite in astrocytes, which could lead to neurotoxicity and neuronal loss. Collectively, our data characterize mediators involved in PrPc shedding and the effect of this sPrPc on monocyte chemotaxis and glutamate uptake from astrocytes. We propose that shedding of PrPc could be a potential target for therapeutics to limit the cognitive impairment characteristic of neuroAIDS.
Collapse
Affiliation(s)
- Bezawit W Megra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Eliseo A Eugenin
- Public Health Research Institute, Newark, NJ 07103.,Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461; .,Department of Microbiology, Albert Einstein College of Medicine, Bronx, NY 10461; and.,Department of Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
19
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
20
|
Prion Protein Family Contributes to Tumorigenesis via Multiple Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:207-224. [PMID: 29052140 DOI: 10.1007/978-981-10-5765-6_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A wealth of evidence suggests that proteins from prion protein (PrP) family contribute to tumorigenesis in many types of cancers, including pancreatic ductal adenocarcinoma (PDAC), breast cancer, glioblastoma, colorectal cancer, gastric cancer, melanoma, etc. It is well documented that PrP is a biomarker for PDAC, breast cancer, and gastric cancer. However, the underlying mechanisms remain unclear. The major reasons for cancer cell-caused patient death are metastasis and multiple drug resistance, both of which connect to physiological functions of PrP expressing in cancer cells. PrP enhances tumorigenesis by multiple pathways. For example, PrP existed as pro-PrP in most of the PDAC cell lines, thus increasing cancer cell motility by binding to cytoskeletal protein filamin A (FLNa). Using PDAC cell lines BxPC-3 and AsPC-1 as model system, we identified that dysfunction of glycosylphosphatidylinositol (GPI) anchor synthesis machinery resulted in the biogenesis of pro-PrP. In addition, in cancer cells without FLNa expression, pro-PrP can modify cytoskeleton structure by affecting cofilin/F-actin axis, thus influencing cancer cell movement. Besides pro-PrP, we showed that GPI-anchored unglycosylated PrP can elevate cell mobility by interacting with VEGFR2, thus stimulating cell migration under serum-free condition. Besides affecting cancer cell motility, overexpressed PrP or doppel (Dpl) in cancer cells has been shown to increase cell proliferation, multiple drug resistance, and angiogenesis, thus, proteins from PrP gene family by affecting important processes via multiple pathways for cancer cell growth exacerbating tumorigenesis.
Collapse
|
21
|
Paltrinieri S, Comazzi S, Spagnolo V, Rondena M, Ponti W, Ceciliani F. Bovine Doppel (Dpl) and Prion Protein (PrP) Expression on Lymphoid Tissue and Circulating Leukocytes. J Histochem Cytochem 2016; 52:1639-45. [PMID: 15557218 DOI: 10.1369/jhc.4a6441.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Doppel (Dpl) protein shares some structural features with prion protein (PrP), whose pathologic isoform (PrPsc) is considered to be the causative agent of transmissible spongiform encephalopathies. Dpl is mainly expressed in testes but, when ectopically expressed in the central nervous system, is neurotoxic. We have examined the expression pattern of Dpl and PrP on bovine lymphoid tissues and circulating leukocytes. A polyclonal anti-Dpl antibody along with a panel of monoclonal antibodies specific for leukocyte membrane antigens or PrP were used to examine frozen sections from spleen, lymph nodes, and bone marrow by immunohistochemistry. Blood was analyzed by flow cytometry. Double staining was used to study the possible coexpression of the two proteins and to characterize cells expressing Dpl and/or PrP. Dpl was expressed in B-cells, in dendritic cells within lymphoid follicles, bone marrow, circulating myeloid cells, and circulating B-cells. The distribution of Dpl was quite similar to that of PrP. The only differences in expression observed concerned the low number of Dpl + cells in lymph nodes and the strong Dpl positivity of circulating granulocytes. The two proteins were rarely co-expressed, suggesting an independent expression mechanism in resting cells. The role of Dpl+ leukocytes in the pathogenesis of Dpl- or PrP-induced diseases merits further investigation.
Collapse
Affiliation(s)
- Saverio Paltrinieri
- Department of Veterinary Pathology, Hygiene and Health, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
22
|
Bakkebø MK, Mouillet-Richard S, Espenes A, Goldmann W, Tatzelt J, Tranulis MA. The Cellular Prion Protein: A Player in Immunological Quiescence. Front Immunol 2015; 6:450. [PMID: 26388873 PMCID: PMC4557099 DOI: 10.3389/fimmu.2015.00450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrP(C)) remains elusive. Here, we present a novel concept suggesting that PrP(C) contributes to immunological quiescence in addition to cell protection. PrP(C) is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrP(C) serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrP(C) physiology in view of this concept.
Collapse
Affiliation(s)
- Maren K. Bakkebø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Wilfred Goldmann
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jörg Tatzelt
- Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael A. Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway,*Correspondence: Michael A. Tranulis, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Campus Adamstuen, Oslo 0033, Norway,
| |
Collapse
|
23
|
Reiten MR, Bakkebø MK, Brun-Hansen H, Lewandowska-Sabat AM, Olsaker I, Tranulis MA, Espenes A, Boysen P. Hematological shift in goat kids naturally devoid of prion protein. Front Cell Dev Biol 2015. [PMID: 26217662 PMCID: PMC4495340 DOI: 10.3389/fcell.2015.00044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The physiological role of the cellular prion protein (PrPC) is incompletely understood. The expression of PrPC in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrPC knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrPC. Here we report hematological and immunological analyses of homozygous goat kids lacking PrPC (PRNPTer/Ter) compared to heterozygous (PRNP+/Ter) and normal (PRNP+/+) kids. Levels of cell surface PrPC and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNPTer/Ter, intermediate in PRNP+/Ter and high in PRNP+/+ kids. The PRNPTer/Ter animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrPC has a role in bone marrow physiology and warrant further studies of PrPC in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrPC-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrPC.
Collapse
Affiliation(s)
- Malin R Reiten
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Maren K Bakkebø
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Hege Brun-Hansen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Anna M Lewandowska-Sabat
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Ingrid Olsaker
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Michael A Tranulis
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Arild Espenes
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| | - Preben Boysen
- Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences Oslo, Norway
| |
Collapse
|
24
|
Seong YJ, Sung PS, Jang YS, Choi YJ, Park BC, Park SH, Park YW, Shin EC. Activation of human natural killer cells by the soluble form of cellular prion protein. Biochem Biophys Res Commun 2015; 464:512-8. [PMID: 26159919 DOI: 10.1016/j.bbrc.2015.06.172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 01/19/2023]
Abstract
Cellular prion protein (PrP(C)) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP(C) in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP(C) protein on human natural killer (NK) cells. Recombinant soluble PrP(C) protein was generated by fusion of human PrP(C) with the Fc portion of human IgG1 (PrP(C)-Fc). PrP(C)-Fc binds to the surface of human NK cells, particularly to CD56(dim) NK cells. PrP(C)-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP(C)-Fc facilitated the IL-15-induced proliferation of NK cells. PrP(C)-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP(C)-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP(C)-Fc protein activates human NK cells via the ERK and JNK signaling pathways.
Collapse
Affiliation(s)
- Yeon-Jae Seong
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea; Hafis Clinic, Seoul, Republic of Korea
| | - Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young-Soon Jang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young Joon Choi
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Bum-Chan Park
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Young Woo Park
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
25
|
Schmitz M, Hermann P, Oikonomou P, Stoeck K, Ebert E, Poliakova T, Schmidt C, Llorens F, Zafar S, Zerr I. Cytokine profiles and the role of cellular prion protein in patients with vascular dementia and vascular encephalopathy. Neurobiol Aging 2015; 36:2597-606. [PMID: 26170132 DOI: 10.1016/j.neurobiolaging.2015.05.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/28/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Understanding inflammatory mechanisms in vascular dementia (VD) is pivotal for achieving better insights into changes in brain metabolism. We performed cytokine profiling and measured levels of the cellular prion protein (PrP(C)) in serum and cerebrospinal fluid (CSF) samples from patients with VD and with vascular encephalopathy (VE). Significant changes were observed for interleukin (IL)-1β, IL-4, IL-5, tumor necrosis factor alpha, interferon gamma, granulocyte-colony stimulating factor, monocyte chemotactic protein 1, and macrophage inflammatory protein 1 beta in serum and for IL-6 and granulocyte macrophage colony-stimulating factor in CSF of VD and VE patients, suggesting that most of immune markers depend on vascular lesions, while only IL-6 was related to dementia. In VD patients, the severity of dementia as defined by the Mini-Mental Status Test or Cambridge Cognitive Examination battery test was significantly correlated with the levels of IL-8 (CSF) and macrophage inflammatory protein 1 beta (serum and CSF). Additionally, in CSF of VD patients, our data revealed a correlation between immune and neurodegenerative marker proteins. Both indicate an association of neuroinflammation and cognitive decline. Levels of PrP(C) were regulated differentially in VD and VE patients compared with Alzheimer's disease patients and controls. Moreover, we observed a significant negative correlation between cytokine levels and PrP(C) in VD patients in CSF and serum, as well as a correlation between PrP(C) expression with levels of neurodegenerative marker proteins in CSF (in VD and VE patients). Our data suggest that immunological modifiers play a role in VD and VE patients and provide evidence for an association of PrP(C) with immune and neurodegenerative markers.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany.
| | - Peter Hermann
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Pantelis Oikonomou
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Katharina Stoeck
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Elisabeth Ebert
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | | | - Christian Schmidt
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, and German Center for Neurodegenerative Diseases (DZNE)-site Göttingen, Göttingen, Germany
| |
Collapse
|
26
|
Ingham V, Williams A, Bate C. Glimepiride reduces CD14 expression and cytokine secretion from macrophages. J Neuroinflammation 2014; 11:115. [PMID: 24952384 PMCID: PMC4080699 DOI: 10.1186/1742-2094-11-115] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022] Open
Abstract
Background Activated microglia are associated with deposits of aggregated proteins within the brains of patients with Alzheimer’s disease (AD), Parkinson’s disease (PD) and prion diseases. Since the cytokines secreted from activated microglia are thought to contribute to the pathogenesis of these neurodegenerative diseases, compounds that suppress cytokine production have been identified as potential therapeutic targets. CD14 is a glycosylphosphatidylinositol (GPI)- anchored protein that is part of a receptor complex that mediates microglial responses to peptides that accumulate in prion disease (PrP82-146), AD (amyloid-β (Aβ)42) and PD (α-synuclein (αSN)). As some GPI-anchored proteins are released from cells by treatment with glimepiride, a sulphonylurea used for the treatment of diabetes, the effects of glimepiride upon CD14 expression and cytokine production from cultured macrophages were studied. Methods RAW 264 cells and microglial cells were treated with glimepiride or phosphatidylinositol (PI)-phospholipase C (PLC) and the expression of cell receptors was analysed by ELISA and immunoblot. Treated cells were subsequently incubated with Aβ42, αSN, PrP82-146 or lipopolysaccharide (LPS) and the amounts of Toll-like receptor (TLR)-4, tumour necrosis factor (TNF), interleukin (IL)-1 and IL-6 measured. Results Glimepiride released CD14 from RAW 264 cells and microglial cells. Pre-treatment with glimepiride significantly reduced TNF, IL-1 and IL-6 secretion from RAW 264 and microglial cells incubated with LPS, Aβ42, αSN and PrP82-146. Glimepiride also reduced the LPS, Aβ42, αSN and PrP82-146-induced translocation of TLR-4 into membrane rafts that is associated with cell activation. These effects of glimepiride were also seen after digestion of RAW 264 cells with PI-phospholipase C (PLC). In addition, the effects of glimepiride were blocked by pharmacological inhibition of GPI-PLC. The cytokine production was CD14-dependent; it was reduced in microglia from CD14 knockout mice and was blocked by antiserum to CD14. Conclusions RAW 264 and microglial cell responses to Aβ1–42, αSN, PrP82-146 and LPS are dependent upon CD14 expression. Glimepiride induced the shedding of CD14 from cells by activation of GPI-PLC and consequently reduced cytokine production in response to Aβ42, αSN, PrP82-146 and LPS. These results suggest that glimepiride acts as a novel anti-inflammatory agent that could modify the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, London, UK.
| |
Collapse
|
27
|
Qualtieri A, Urso E, Pera ML, Sprovieri T, Bossio S, Gambardella A, Quattrone A. Proteomic profiling of cerebrospinal fluid in Creutzfeldt–Jakob disease. Expert Rev Proteomics 2014; 7:907-17. [DOI: 10.1586/epr.10.80] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Jeon JW, Park BC, Jung JG, Jang YS, Shin EC, Park YW. The Soluble Form of the Cellular Prion Protein Enhances Phagocytic Activity and Cytokine Production by Human Monocytes Via Activation of ERK and NF-κB. Immune Netw 2013; 13:148-56. [PMID: 24009542 PMCID: PMC3759712 DOI: 10.4110/in.2013.13.4.148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 02/01/2023] Open
Abstract
The PrP(C) is expressed in many types of immune cells including monocytes and macrophages, however, its function in immune regulation remains to be elucidated. In the present study, we examined a role for PrP(C) in regulation of monocyte function. Specifically, the effect of a soluble form of PrP(C) was studied in human monocytes. A recombinant fusion protein of soluble human PrP(C) fused with the Fc portion of human IgG1 (designated as soluble PrP(C)-Fc) bound to the cell surface of monocytes, induced differentiation to macrophage-like cells, and enhanced adherence and phagocytic activity. In addition, soluble PrP(C)-Fc stimulated monocytes to produce pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6. Both ERK and NF-κB signaling pathways were activated in soluble PrP(C)-treated monocytes, and inhibitors of either pathway abrogated monocyte adherence and cytokine production. Taken together, we conclude that soluble PrP(C)-Fc enhanced adherence, phagocytosis, and cytokine production of monocytes via activation of the ERK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jae-Won Jeon
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | |
Collapse
|
29
|
A proautophagic antiviral role for the cellular prion protein identified by infection with a herpes simplex virus 1 ICP34.5 mutant. J Virol 2013; 87:5882-94. [PMID: 23487467 DOI: 10.1128/jvi.02559-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The cellular prion protein (PrP) often plays a cytoprotective role by regulating autophagy in response to cell stress. The stress of infection with intracellular pathogens can stimulate autophagy, and autophagic degradation of pathogens can reduce their replication and thus help protect the infected cells. PrP also restricts replication of several viruses, but whether this activity is related to an effect on autophagy is not known. Herpes simplex virus 1 (HSV-1) effectively counteracts autophagy through binding of its ICP34.5 protein to the cellular proautophagy protein beclin-1. Autophagy can reduce replication of an HSV-1 mutant, Δ68H, which is incapable of binding beclin-1. We found that deletion of PrP in mice complements the attenuation of Δ68H, restoring its capacity to replicate in the central nervous system (CNS) to wild-type virus levels after intracranial or corneal infection. Cultured primary astrocytes but not neurons derived from PrP(-/-) mice also complemented the attenuation of Δ68H, enabling Δ68H to replicate at levels equivalent to wild-type virus. Ultrastructural analysis showed that normal astrocytes exhibited an increase in the number of autophagosomes after infection with Δ68H compared with wild-type virus, but PrP(-/-) astrocytes failed to induce autophagy in response to Δ68H infection. Redistribution of EGFP-LC3 into punctae occurred more frequently in normal astrocytes infected with Δ68H than with wild-type virus, but not in PrP(-/-) astrocytes, corroborating the ultrastructural analysis results. Our results demonstrate that PrP is critical for inducing autophagy in astrocytes in response to HSV-1 infection and suggest that PrP positively regulates autophagy in the mouse CNS.
Collapse
|
30
|
Mariante RM, Nóbrega A, Martins RAP, Areal RB, Bellio M, Linden R. Neuroimmunoendocrine regulation of the prion protein in neutrophils. J Biol Chem 2012; 287:35506-35515. [PMID: 22910907 DOI: 10.1074/jbc.m112.394924] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The prion protein (PrP(C)) is a cell surface protein expressed mainly in the nervous system. In addition to the role of its abnormal conformer in transmissible spongiform encephalopathies, normal PrP(C) may be implicated in other degenerative conditions often associated with inflammation. PrP(C) is also present in cells of hematopoietic origin, including T cells, dendritic cells, and macrophages, and it has been shown to modulate their functions. Here, we investigated the impact of inflammation and stress on the expression and function of PrP(C) in neutrophils, a cell type critically involved in both acute and chronic inflammation. We found that systemic injection of LPS induced transcription and translation of PrP(C) in mouse neutrophils. Up-regulation of PrP(C) was dependent on the serum content of TGF-β and glucocorticoids (GC), which, in turn, are contingent on the activation of the hypothalamic-pituitary-adrenal axis in response to systemic inflammation. GC and TGF-β, either alone or in combination, directly up-regulated PrP(C) in neutrophils, and accordingly, the blockade of GC receptors in vivo curtailed the LPS-induced increase in the content of PrP(C). Moreover, GC also mediated up-regulation of PrP(C) in neutrophils following noninflammatory restraint stress. Finally, neutrophils with up-regulated PrP(C) presented enhanced peroxide-dependent cytotoxicity to endothelial cells. The data demonstrate a novel interplay of the nervous, endocrine, and immune systems upon both the expression and function of PrP(C) in neutrophils, which may have a broad impact upon the physiology and pathology of various organs and systems.
Collapse
Affiliation(s)
- Rafael M Mariante
- Institutes of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Alberto Nóbrega
- Institutes of Microbiology, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Rodrigo A P Martins
- Institutes of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Rômulo B Areal
- Institutes of Microbiology, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Maria Bellio
- Institutes of Microbiology, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Rafael Linden
- Institutes of Biophysics, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Glier H, Holada K. Blood storage affects the detection of cellular prion protein on peripheral blood leukocytes and circulating dendritic cells in part by promoting platelet satellitism. J Immunol Methods 2012; 380:65-72. [DOI: 10.1016/j.jim.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
|
32
|
Strychalski J, Czarnik U, Zabolewicz T. Abnormal segregation of alleles and haplotypes at the polymorphic site of the PRNP gene within promoter and intron 1 regions in Polish Holstein-Friesian cattle. Biochem Genet 2012; 50:520-8. [PMID: 22258312 PMCID: PMC3392501 DOI: 10.1007/s10528-012-9496-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 12/09/2011] [Indexed: 11/29/2022]
Abstract
Allele and haplotype segregation at the polymorphic sites within the promoter (23indel) and intron 1 (12indel) regions of the PRNP gene was analyzed in Polish Holstein-Friesian cattle. More 23del/del homozygotes and fewer 23ins/ins homozygotes than expected were observed in the offspring of ♂ 23ins/del × ♀ 23ins/del parents. In the offspring of ♂ 23ins/del × ♀ 23del/del parents and ♂ 23del/del × ♀ 23ins/del parents, a trend toward more 23del/del animals and fewer 23ins/del animals than expected was noted. At the 12indel polymorphic site, the only trend found was one toward fewer 12ins/ins genotypes and more 12ins/del and 12del/del genotypes than expected in the offspring of ♂ 12ins/del × ♀ 12ins/del parents. An analysis of haplotype segregation revealed more 23del-12del/23del-12del diplotypes and fewer 23ins-12ins/23ins-12ins diplotypes at the significance threshold than expected in the offspring of ♂ 23ins-12ins/23del-12del × ♀ 23ins-12ins/23del-12del parents.
Collapse
Affiliation(s)
- Janusz Strychalski
- Department of Animal Genetics, University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 5, 10-957 Olsztyn, Poland.
| | | | | |
Collapse
|
33
|
Williams SK, Fairless R, Weise J, Kalinke U, Schulz-Schaeffer W, Diem R. Neuroprotective effects of the cellular prion protein in autoimmune optic neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2823-31. [PMID: 21641403 DOI: 10.1016/j.ajpath.2011.02.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 02/15/2011] [Accepted: 02/23/2011] [Indexed: 10/18/2022]
Abstract
Although the pathologic role of the prion protein in transmissible spongiform encephalopathic diseases has been widely investigated, the physiologic role of the cellular prion protein (PrP(C)) is not known. Among the many functions attributed to PrP(C), there is increasing evidence that it is involved in cell survival and mediates neuroprotection. A potential role in the immune response has also been suggested. However, how these two functions interplay in autoimmune disease is unclear. To address this, autoimmune optic neuritis, a model of multiple sclerosis, was induced in C57Bl/6 mice, and up-regulation of PrP(C) was observed throughout the disease course. In addition, compared with wild-type mice, in PrP(C)-deficient mice and mice overexpressing PrP(C), histopathologic analysis demonstrated that optic neuritis was exacerbated, as indicated by axonal degeneration, inflammatory infiltration, and demyelination. However, significant neuroprotection of retinal ganglion cells, the axons of which form the optic nerve, was observed in mice that overexpressed PrP(C). Conversely, mice lacking PrP(C) demonstrated significantly more neurodegeneration. This suggests that PrP(C) may have a neuroprotective function independent of its role in regulating the immune response.
Collapse
Affiliation(s)
- Sarah K Williams
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Kuczius T, Kleinert J, Karch H, Sibrowski W, Kelsch R. Cellular prion proteins in human platelets show a phenotype different to those in brain tissues. J Cell Biochem 2011; 112:954-62. [PMID: 21328470 DOI: 10.1002/jcb.23012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prion diseases are characterized by high accumulation of infectious prion proteins (PrP(Sc)) in brains. PrP(Sc) are propagated by the conversion of host-encoded cellular prion proteins (PrP(C)) which are essential for developing the disease but are heterogeneously expressed in brains. The disease can be transmitted to humans and animals through blood and blood products, however, little attention has been given to molecular characterization of PrP(C) in blood cells. In this presented study, we characterized phenotypically PrP(C) of platelets (plt) and characterized the proteins regarding their glycobanding profiles by quantitative immunoblotting using a panel of monoclonal antibodies. The glycosylation patterns of plt and brain PrP(C) were compared using the ratios of di-, mono-, and non-glycosylated prions. The detergent solubility of plt and brain PrP(C) was also analyzed. The distinct banding patterns and detergent solubility of plt PrP(C) differed clearly from the glycosylation profiles and solubility characteristics of brain PrP(C). Plt PrP(C) exhibited single or only few prion protein types, whereas brain PrP(C) showed more extensive banding patterns and lower detergent solubility. Plt PrP(C) are post-translational modified differently from PrP(C) in brain. These findings suggest other or less physiological functions of plt PrP(C) than in brain.
Collapse
Affiliation(s)
- Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany.
| | | | | | | | | |
Collapse
|
35
|
Roberts TK, Eugenin EA, Morgello S, Clements JE, Zink MC, Berman JW. PrPC, the cellular isoform of the human prion protein, is a novel biomarker of HIV-associated neurocognitive impairment and mediates neuroinflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1848-60. [PMID: 20724601 DOI: 10.2353/ajpath.2010.091006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Of the 33 million people infected with the human immunodeficiency virus (HIV) worldwide, 40-60% of individuals will eventually develop neurocognitive sequelae that can be attributed to the presence of HIV-1 in the central nervous system (CNS) and its associated neuroinflammation despite antiretroviral therapy. PrP(C) (protease resistant protein, cellular isoform) is the nonpathological cellular isoform of the human prion protein that participates in many physiological processes that are disrupted during HIV-1 infection. However, its role in HIV-1 CNS disease is unknown. We demonstrate that PrP(C) is significantly increased in both the CNS of HIV-1-infected individuals with neurocognitive impairment and in SIV-infected macaques with encephalitis. PrP(C) is released into the cerebrospinal fluid, and its levels correlate with CNS compromise, suggesting it is a biomarker of HIV-associated neurocognitive impairment. We show that the chemokine (c-c Motif) Ligand-2 (CCL2) increases PrP(C) release from CNS cells, while HIV-1 infection alters PrP(C) release from peripheral blood mononuclear cells. Soluble PrP(C) mediates neuroinflammation by inducing astrocyte production of both CCL2 and interleukin 6. This report presents the first evidence that PrP(C) dysregulation occurs in cognitively impaired HIV-1-infected individuals and that PrP(C) participates in the pathogenesis of HIV-1-associated CNS disease.
Collapse
Affiliation(s)
- Toni K Roberts
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hu W, Nessler S, Hemmer B, Eagar TN, Kane LP, Leliveld SR, Müller-Schiffmann A, Gocke AR, Lovett-Racke A, Ben LH, Hussain RZ, Breil A, Elliott JL, Puttaparthi K, Cravens PD, Singh MP, Petsch B, Stitz L, Racke MK, Korth C, Stüve O. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling. ACTA ACUST UNITED AC 2010; 133:375-88. [PMID: 20145049 PMCID: PMC2822628 DOI: 10.1093/brain/awp298] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein1–11 T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central nervous system. Our data identify cellular prion protein as a regulator of cellular immunological homoeostasis and suggest cellular prion protein as a novel potential target for therapeutic immunomodulation.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Holznagel E, Yutzy B, Schulz-Schaeffer W, Hanschman KM, Stuke A, Hahmann U, Törner M, Coulibaly C, Hoffmann A, Hunsmann G, Löwer J. Increase in CD230 (cellular prion protein) fluorescence on blood lymphocytes in bovine spongiform encephalopathy-infected nonhuman primates. Transfusion 2010; 50:452-66. [DOI: 10.1111/j.1537-2995.2009.02437.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Ingram RJ, Isaacs JD, Kaur G, Lowther DE, Reynolds CJ, Boyton RJ, Collinge J, Jackson GS, Altmann DM. A role of cellular prion protein in programming T‐cell cytokine responses in disease. FASEB J 2009; 23:1672-84. [DOI: 10.1096/fj.08-116087] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rebecca J. Ingram
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
| | - Jeremy D. Isaacs
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
- MRC Prion UnitDepartment of Neurodegenerative DiseaseInstitute of NeurologyUniversity College LondonQueen SquareLondonUK
| | - Gurman Kaur
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
| | - Daniel E. Lowther
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
| | - Catherine J. Reynolds
- Lung Immunology GroupImmunology and InfectionNHLISir Alexander Fleming Building, South Kensington CampusLondonUK
| | - Rosemary J. Boyton
- Lung Immunology GroupImmunology and InfectionNHLISir Alexander Fleming Building, South Kensington CampusLondonUK
| | - John Collinge
- MRC Prion UnitDepartment of Neurodegenerative DiseaseInstitute of NeurologyUniversity College LondonQueen SquareLondonUK
| | - Graham S. Jackson
- MRC Prion UnitDepartment of Neurodegenerative DiseaseInstitute of NeurologyUniversity College LondonQueen SquareLondonUK
| | - Daniel M. Altmann
- Human Disease Immunogenetics GroupDepartment of Infectious Diseases and ImmunityHammersmith HospitalImperial College LondonLondonUK
| |
Collapse
|
39
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
40
|
Jensen K, Paxton E, Waddington D, Talbot R, Darghouth MA, Glass EJ. Differences in the transcriptional responses induced by Theileria annulata infection in bovine monocytes derived from resistant and susceptible cattle breeds. Int J Parasitol 2008; 38:313-25. [DOI: 10.1016/j.ijpara.2007.08.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 07/06/2007] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
|
41
|
Hu W, Kieseier B, Frohman E, Eagar TN, Rosenberg RN, Hartung HP, Stüve O. Prion proteins: Physiological functions and role in neurological disorders. J Neurol Sci 2008; 264:1-8. [PMID: 17707411 DOI: 10.1016/j.jns.2007.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 05/01/2007] [Accepted: 06/08/2007] [Indexed: 02/01/2023]
Abstract
Stanley Prusiner was the first to promote the concept of misfolded proteins as a cause for neurological disease. It has since been shown by him and other investigators that the scrapie isoform of prion protein (PrP(Sc)) functions as an infectious agent in numerous human and non-human disorders of the central nervous system (CNS). Interestingly, other organ systems appear to be less affected, and do not appear to lead to major co-morbidities. The physiological function of the endogenous cellular form of the prion protein (PrP(C)) is much less clear. It is intriguing that PrP(c) is expressed on most tissues in mammals, suggesting not only biological functions outside the CNS, but also a role other than the propagation of its misfolded isotype. In this review, we summarize accumulating in vitro and in vivo evidence regarding the physiological functions of PrP(C) in the nervous system, as well as in lymphoid organs.
Collapse
Affiliation(s)
- Wei Hu
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX 75390-9036, United States
| | | | | | | | | | | | | |
Collapse
|
42
|
Gilch S, Schmitz F, Aguib Y, Kehler C, Bülow S, Bauer S, Kremmer E, Schätzl HM. CpG and LPS can interfere negatively with prion clearance in macrophage and microglial cells. FEBS J 2007; 274:5834-44. [PMID: 17944938 DOI: 10.1111/j.1742-4658.2007.06105.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cells of the innate immune system play important roles in the progression of prion disease after peripheral infection. It has been found in vivo and in vitro that the expression of the cellular prion protein (PrP(c)) is up-regulated on stimulation of immune cells, also indicating the functional importance of PrP(c) in the immune system. The aim of our study was to investigate the impact of cytosine-phosphate-guanosine- and lipopolysaccharide-induced PrP(c) up-regulation on the uptake and processing of the pathological prion protein (PrP(Sc)) in phagocytic innate immune cells. For this purpose, we challenged the macrophage cell line J774, the microglial cell line BV-2 and primary bone marrow-derived macrophages in a resting or stimulated state with various prion strains, and monitored the uptake and clearance of PrP(Sc). Interestingly, stimulation led either to a transient increase in the level of PrP(Sc) relative to unstimulated cells or to a decelerated degradation of PrP(Sc). These features were dependent on cell type and prion strain. Our data indicate that the stimulation of innate immune cells may be able to support transient prion propagation, possibly explained by an increased PrP(c) cell surface expression in stimulated cells. We suggest that stimulation of innate immune cells can lead to an imbalance between the propagation and degradation of PrP(Sc).
Collapse
Affiliation(s)
- Sabine Gilch
- Institute of Virology, Prion Research Group, Technical University of Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
44
|
Holada K, Simak J, Brown P, Vostal JG. Divergent expression of cellular prion protein on blood cells of human and nonhuman primates. Transfusion 2007; 47:2223-32. [PMID: 17714417 DOI: 10.1111/j.1537-2995.2007.01451.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Four recent transmissions of variant Creutzfeldt-Jakob disease infection by transfusion highlight the need for detailed understanding of blood-related prion pathogenesis. Nonhuman primates are the most relevant models of human prion diseases. STUDY DESIGN AND METHODS Quantitative flow cytometry with monoclonal antibodies FH11, 3F4, and 6H4 against different parts of the normal cellular form of the prion protein (PrP(C)) was used to evaluate its expression on blood cells of humans, chimpanzees, cynomolgus macaques, rhesus macaques, squirrel monkeys, and microcebe lemurs. RESULTS Chimpanzees, rhesus macaques, and squirrel monkeys displayed a much higher quantity of total blood cell membrane PrP(C) than humans, due to a markedly higher expression of PrP(C) on their red blood cells (RBCs). In contrast, cynomolgus macaques and lemurs demonstrated substantially lower levels of membrane PrP(C) due to the lack of significant PrP(C) expression on RBCs and platelets (PLTs). All species displayed PrP(C) on white blood cells (WBCs), with the highest levels found on human cells. Only humans, chimpanzees, and to a lesser degree rhesus macaques expressed PrP(C) on PLTs. CONCLUSION If PrP(C) contributes to the propagation or transport of prion infectivity in blood, the differences reported here need to be considered when extrapolating results of transmission studies in primate models to blood and blood components in humans.
Collapse
Affiliation(s)
- Karel Holada
- Department of Immunology and Microbiology, 1st Medical Faculty, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
45
|
Gains MJ, LeBlanc AC. Canadian Association of Neurosciences Review: prion protein and prion diseases: the good and the bad. Can J Neurol Sci 2007; 34:126-45. [PMID: 17598589 DOI: 10.1017/s0317167100005953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the 1700's a strange new disease affecting sheep was recognized in Europe. The disease later became known as "Scrapie" and was the first of a family of similar diseases affecting a number of species that are now known as the Transmissible Spongiform Encephalopathies (TSEs). The appearance of a new disease in humans linked to the consumption of meat products from infected cattle has stimulated widespread public concern and scientific interest in the prion protein and related diseases. Nearly 300 years after the first report, these diseases still merit the descriptor "strange". This family of diseases is characterized by a unique profile of histological changes, can be transmitted as inherited or acquired diseases, as well as apparent sporadic spontaneous generation of the disease. These diseases are believed by many, to be caused by a unique protein only infectious agent. The "prion protein" (PrPC), a term first coined by Stanley Prusiner in 1982 is crucial to the development of these diseases, apparently by acting as a substrate for an abnormal disease associated form. However, aside from being critical to the pathogenesis of the disease, the function of PrPC, which is expressed in all mammals, has defied definitive description. Several roles have been proposed on the basis of in vitro studies, however, thus far, in vivo confirmation has not been forthcoming. The biological features of PrPC also seem to be unusual. Numerous mouse models have been generated in an attempt to understand the pathogenesis of these diseases. This review summarizes the current state of histological features, the etiologic agent, the normal metabolism and the function of the prion protein, as well as the limitations of the mouse models.
Collapse
Affiliation(s)
- Malcolm J Gains
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | | |
Collapse
|
46
|
Abstract
The biological role of the scrapie isoform of prion protein (PrP(Sc)) as an infectious agent in numerous human and non-human disorders of the central nervous system is well established. In contrast, and despite decades of intensive research, the physiological function of the endogenous cellular form of the prion protein (PrP(C)) remains elusive. In mammals, the ubiquitous expression of PrP(C) suggests biological functions other than its pathological role in propagating the accumulation of its misfolded isotype. Other functions that have been attributed to PrP(C) include signal transduction, synaptic transmission and protection against cell death through the apoptotic pathway. More recently, immunoregulatory properties of PrP(C) have been reported. We review accumulating in vitro and in vivo evidence regarding physiological functions of PrP(C).
Collapse
Affiliation(s)
- W Hu
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Dallas, TX 75390-9036, USA
| | | | | |
Collapse
|
47
|
Rocchi MS, Anderson MJ, Eaton SL, Hamilton S, Finlayson J, Steele P, Barclay GR, Chianini F. Three-colour flow cytometric detection of PrP in ovine leukocytes. Vet Immunol Immunopathol 2007; 116:172-81. [PMID: 17320973 DOI: 10.1016/j.vetimm.2007.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/10/2007] [Accepted: 01/24/2007] [Indexed: 11/22/2022]
Abstract
PrP(c) (cellular prion protein, CD230) expression by subpopulations of lymphoid cells has been widely investigated in a variety of species, possibly because of the possible link between transmissible spongiform encephalopathies (TSE) transmission and blood transfusion. However, the role of the immune cells in the transmission of the disease is still unclear. Here we describe the optimisation and standardisation of a three-colour staining procedure to detect PrP in association with phenotypic and activation markers in ovine immune cells. We demonstrate a reproducible, flexible and sensitive method and that the combination of isotype-specific antibodies and Fab fragments is feasible. To our knowledge, this is the first report of such labelling of ovine cells. Using this method, we were able to detect differences in levels of PrP expression between blood and lymph node cells of the same animal, and considerable variability between animals. Moreover, we were able to explore possible associations between PrP expression and cellular activation and to identify cell subsets with different labelling patterns. We are currently employing this approach to evaluate variations in immunological parameters during experimental infection in sheep.
Collapse
Affiliation(s)
- Mara S Rocchi
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Scotland EH26 0PZ, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Cancer immunotherapy is a growing field that aims at restoring and enhancing immune function to combat oncogenic conditions. One target of this field is natural killer (NK) cells. Part of innate immunity, NK cells are able to kill tumor cells without previous priming. Results from stem cell transplants containing alloreactive donor NK cells and in vitro work have evidenced a great antitumor potential. In addition, NK cells are likely to interact with dendritic cells, potent antigen-presenting cells, thus forming a bridge between innate and adaptive immunity. This review aims to provide an overview of NK cells with particular emphasis on properties that can and are being targeted in order to potentiate the antitumor activity of these cells.
Collapse
Affiliation(s)
- Karrune Woan
- University of Florida College of Medicine, Gainesville, FL 32608, USA.
| | | |
Collapse
|
49
|
Pasquali P, Nonno R, Mandara MT, Di Bari MA, Ricci G, Petrucci P, Capuccini S, Cartoni C, Macrì A, Agrimi U. Intracerebral administration of interleukin-12 (IL-12) and IL-18 modifies the course of mouse scrapie. BMC Vet Res 2006; 2:37. [PMID: 17192191 PMCID: PMC1769363 DOI: 10.1186/1746-6148-2-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 12/27/2006] [Indexed: 11/10/2022] Open
Abstract
Background Prion diseases are characterised by a neurodegenerative pattern in which the function of immune system remains still elusive. In the present study, we evaluate if an exogenous treatment with Interleukin-12 (IL-12) and IL-18, able to activate microglia, is able to affect scrapie pathogenesis. Results Cytokines injected intracranially, induced a strong inflammatory response characterised by TNF-α production and microglia activation. Two groups of mice were injected intracerebrally with high dose of ME7 strain of scrapie containing IL-12 and IL-18 or sterile saline. Cytokines-treated mice showed a more pronounced accumulation of PrPSc in brain tissues at 90 days post-inoculation and a shorter mean survival times than untreated mice. Conclusion We can conclude that intracerebral administration of IL-12 and IL-18 can modulate scrapie pathogenesis possibly through a microglia-mediated pattern.
Collapse
Affiliation(s)
- Paolo Pasquali
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Maria Teresa Mandara
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Michele Angelo Di Bari
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Giovanni Ricci
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Paola Petrucci
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Silvia Capuccini
- Department of Biopathological Veterinary Science, Veterinary Medicine School, Università degli Studi di Perugia, Perugia, Italy
| | - Claudia Cartoni
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Agostino Macrì
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| | - Umberto Agrimi
- Department of Food Safety and Animal Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
50
|
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed widely in the immune system, in haematopoietic stem cells and mature lymphoid and myeloid compartments in addition to cells of the central nervous system. It is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocyte. Furthermore, antibody cross-linking of surface PrP modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signalling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Although PrP(-/-) mice have been reported to have only minor alterations in immune function, recent work has suggested that PrP is required for self-renewal of haematopoietic stem cells. Here, we consider the evidence for a distinctive role for PrP(C) in the immune system and what the effects of anti-prion therapeutics may be on immune function.
Collapse
Affiliation(s)
- J D Isaacs
- Human Disease Immunogenetics Group, Department of Infectious Diseases and Immunity, Imperial College London, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|