1
|
Mirra D, Esposito R, Spaziano G, Rafaniello C, Panico F, Squillante A, Falciani M, Abrego-Guandique DM, Caiazzo E, Gallelli L, Cione E, D’Agostino B. miRNA Signatures in Alveolar Macrophages Related to Cigarette Smoke: Assessment and Bioinformatics Analysis. Int J Mol Sci 2025; 26:1277. [PMID: 39941045 PMCID: PMC11818525 DOI: 10.3390/ijms26031277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Cigarette smoke (CS) is a driver of many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). Tobacco causes oxidative stress, impaired phagocytosis of alveolar macrophages (AMs), and alterations in gene expression in the lungs of smokers. MicroRNAs (miRNAs) are small non-coding RNAs that influence several regulatory pathways. Previously, we monitored the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p, and 106a-5p in AMs derived from the bronchoalveolar lavage (BAL) of subjects with NSCLC, COPD, and smoker and non-smoker control groups. Here, we investigated the capability of CS conditionate media to modulate the abovementioned miRNAs in primary AMs obtained in the same 43 sex-matched subjects. The expressions of has-miR-34a-5p, 17-5p, 16-5p, 106a-5p, 223-5p, and 20a-5p were assessed before and after in vitro CS exposure by RT-PCR. In addition, a comprehensive bioinformatic analysis of miRNAs KEGGS and PPI linked to inflammation was performed. Distinct and common miRNA expression profiles were identified in response to CS, suggesting their possible role in smoking-related diseases. It is worth noting that, following exposure to CS, the expression levels of hsa-miR-34a-5p and 17-5p in both smokers and non-smokers, 106a-5p in non-smokers, and 20a-5p in smokers, shifted towards those found in individuals with COPD, suggesting them as a risk factor in developing this lung condition. Moreover, CS-focused sub-analysis identified miRNA which exhibited CS-dependent pattern and modulated mRNA involved in the immune system or AMs property regulation. In conclusion, our study uncovered miRNA signatures in AMs exposed to CS, indicating that CS might modify epigenetic patterns that contribute to macrophage activation and lung disease onset and progression.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Section of Pharmacology “L. Donatelli”, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Science of Health Department, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (F.P.); (D.M.A.-G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | | | - Eleonora Caiazzo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| |
Collapse
|
2
|
Mirra D, Esposito R, Spaziano G, Sportiello L, Panico F, Squillante A, Falciani M, Cerqua I, Gallelli L, Cione E, D’Agostino B. MicroRNA Monitoring in Human Alveolar Macrophages from Patients with Smoking-Related Lung Diseases: A Preliminary Study. Biomedicines 2024; 12:1050. [PMID: 38791013 PMCID: PMC11118114 DOI: 10.3390/biomedicines12051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that is commonly considered to be a potent driver of non-small cell lung cancer (NSCLC) development and related mortality. A growing body of evidence supports a role of the immune system, mainly played by alveolar macrophages (AMs), in key axes regulating the development of COPD or NSCLC phenotypes in response to harmful agents. MicroRNAs (miRNAs) are small non-coding RNAs that influence most biological processes and interfere with several regulatory pathways. The purpose of this study was to assess miRNA expression patterns in patients with COPD, NSCLC, and ever- or never-smoker controls to explore their involvement in smoking-related diseases. Bronchoalveolar lavage (BAL) specimens were collected from a prospective cohort of 43 sex-matched subjects to determine the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p and 106a-5p by RT-PCR. In addition, a bioinformatic analysis of miRNA target genes linked to cancer was performed. Distinct and common miRNA expression levels were identified in each pathological group, suggesting their possible role as an index of NSCLC or COPD microenvironment. Moreover, we identified miRNA targets linked to carcinogenesis using in silico analysis. In conclusion, this study identified miRNA signatures in AMs, allowing us to understand the molecular mechanisms underlying smoking-related conditions and potentially providing new insights for diagnosis or pharmacological treatment.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Department of Experimental Medicine-Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | - Ida Cerqua
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy;
| | - Luca Gallelli
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| |
Collapse
|
3
|
Wang K, Pan C, Yang Q, Ruan Q, Chen W, Lv M, Yang L, Zou Z, Ma H. Detection and quantification of biogenic amines in cephalopod using dansyl chloride pre-column derivatization-HPLC and their production. J Food Sci 2024; 89:2909-2920. [PMID: 38551034 DOI: 10.1111/1750-3841.16940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/24/2023] [Accepted: 12/31/2023] [Indexed: 05/19/2024]
Abstract
The accurate detection of biogenic amines (BAs) is an important means of ensuring the quality and safety of cephalopod seafood products. In this study, the pre-column derivatization of high-performance liquid chromatography (HPLC) was optimized using dansyl chloride (Dns-Cl) to detect BAs in octopus, cuttlefish, and squid. The reasons for the formation of BAs were investigated by assessing their decarboxylase activity and the rates of decomposition. The findings demonstrated that using Dns-Cl to optimize pre-column derivatization enabled the separation of nine different BAs. The detection limits ranged from 0.07 to 0.25 mg/L, and the results exhibited a high level of linearity (R2 ≥ 0.997). The decarboxylase activity and biodegradation rate positively correlated with the formation of BAs at temperatures below 0°C. Notably, the decarboxylase activity of octopus, cuttlefish, and squid exhibited a significant increase with prolonged storage time, and formyltransferase and carbamate kinase may be the key decarboxylase in cephalopod products. These findings serve as a valuable reference for further investigations into the mechanisms behind BAs production and the development of control technologies for BAs in cephalopod products. This study has successfully demonstrated the effectiveness of the Dns-Cl pre-column derivatization-HPLC method in accurately and efficiently detecting BAs in octopus, cuttlefish, and squid. Moreover, it highlights the influence of decarboxylase content and biodegradation rate on the formation of BAs. Importantly, this method can serve as a reference for detecting BAs in various seafood products.
Collapse
Affiliation(s)
- Kang Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Chuanyan Pan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qiong Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qiufeng Ruan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Weijie Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Min Lv
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Lifang Yang
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, China
| | - Zhiming Zou
- Development Research Institute of Agro-Animal Husbandry Industry, Guangxi University, Nanning, China
| | - Huawei Ma
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
4
|
Mirra D, Esposito R, Spaziano G, Rafaniello C, Iovino P, Cione E, Gallelli L, D'Agostino B. Association between Sex-Related ALOX5 Gene Polymorphisms and Lung Atopy Risk. J Clin Med 2023; 12:jcm12082775. [PMID: 37109111 PMCID: PMC10145460 DOI: 10.3390/jcm12082775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Atopy is an exaggerated IgE-mediated immune response to foreign antigens in which metabolic abnormalities of the leukotrienes (LTs) pathway play a crucial role. Recent studies have described sex as a key variable in LT biosynthesis, partly explaining why treatment with anti-LT drugs in atopic subjects leads to better control of symptoms in women. In addition, variability in LT production is often associated with single nucleotide polymorphisms (SNPs) in the arachidonate 5-lipoxygenase (ALOX5) gene, which encodes the leukotriene-synthesizing enzyme machinery, 5-lipoxygenase (5-LO). This study aimed to investigate whether two SNPs of ALOX5 are implicated in sex differences in allergic diseases in a prospective cohort of 150 age- and sex-matched atopic and healthy subjects. Rs2029253 and rs2115819 were genotyped using allele-specific RT-PCR, and serum levels of 5-LO and LTB4 were measured by ELISA. Both polymorphisms are significantly more common in women than in men, and their influences on LT production vary as a function of sex, leading to a decrease in men's and an increase in women's serum levels of 5-LO and LTB4. These data represent a new resource for understanding sex-related differences in lung inflammatory diseases, partly explaining why women are more likely to develop allergic disorders than men.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of Catanzaro, 88100 Catanzaro, Italy
| | - Bruno D'Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy
| |
Collapse
|
5
|
Lung microRNAs Expression in Lung Cancer and COPD: A Preliminary Study. Biomedicines 2023; 11:biomedicines11030736. [PMID: 36979715 PMCID: PMC10045129 DOI: 10.3390/biomedicines11030736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest diseases worldwide and represents an impending burden on the healthcare system. Despite increasing attention, the mechanisms underlying tumorigenesis in cancer-related diseases such as COPD remain unclear, making novel biomarkers necessary to improve lung cancer early diagnosis. MicroRNAs (miRNAs) are short non-coding RNA that interfere with several pathways and can act as oncogenes or tumor suppressors. This study aimed to compare miRNA lung expression between subjects with NSCLC and COPD and healthy controls to obtain the miRNA expression profile by analyzing shared pathways. Lung specimens were collected from a prospective cohort of 21 sex-matched subjects to determine the tissue miRNA expression of hsa-miR-34a-5p, 33a-5p, 149-3p, 197-3p, 199-5p, and 320a-3p by RT-PCR. In addition, an in silico prediction of miRNA target genes linked to cancer was performed. We found a specific trend for has-miR-149-3p, 197-3p, and 34a-5p in NSCLC, suggesting their possible role as an index of the tumor microenvironment. Moreover, we identified novel miRNA targets, such as the Cyclin-Dependent Kinase (CDK) family, linked to carcinogenesis by in silico analysis. In conclusion. this study identified lung miRNA signatures related to the tumorigenic microenvironment, suggesting their possible role in improving the evaluation of lung cancer onset.
Collapse
|
6
|
Esposito R, Mirra D, Sportiello L, Spaziano G, D’Agostino B. Overview of Antiviral Drug Therapy for COVID-19: Where Do We Stand? Biomedicines 2022; 10:2815. [PMID: 36359334 PMCID: PMC9687182 DOI: 10.3390/biomedicines10112815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 09/08/2024] Open
Abstract
The vaccine weapon has resulted in being essential in fighting the COVID-19 outbreak, but it is not fully preventing infection due to an alarming spreading of several identified variants of concern. In fact, the recent emergence of variants has pointed out how the SARS-CoV-2 pandemic still represents a global health threat. Moreover, oral antivirals also develop resistance, supporting the need to find new targets as therapeutic tools. However, cocktail therapy is useful to reduce drug resistance and maximize vaccination efficacy. Natural products and metal-drug-based treatments have also shown interesting antiviral activity, representing a valid contribution to counter COVID-19 outbreak. This report summarizes the available evidence which supports the use of approved drugs and further focuses on significant clinical trials that have investigated the safety and efficacy of repurposing drugs and new molecules in different COVID-19 phenotypes. To date, there are many individuals vulnerable to COVID-19 exhibiting severe symptoms, thus characterizing valid therapeutic strategies for better management of the disease is still a challenge.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy
- Department of Experimental Medicine—Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
7
|
Mirra D, Cione E, Spaziano G, Esposito R, Sorgenti M, Granato E, Cerqua I, Muraca L, Iovino P, Gallelli L, D’Agostino B. Circulating MicroRNAs Expression Profile in Lung Inflammation: A Preliminary Study. J Clin Med 2022; 11:jcm11185446. [PMID: 36143090 PMCID: PMC9500709 DOI: 10.3390/jcm11185446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Bronchial asthma is an inflammatory airway disease with an ever-increasing incidence. Therefore, innovative management strategies are urgently needed. MicroRNAs are small molecules that play a key role in lungs cellular functions and are involved in chronic inflammatory diseases, such as bronchial asthma. This study aims to compare microRNA serum expression between subjects with asthma, obesity, the most common co-morbidity in asthma, and healthy controls to obtain a specific expression profile specifically related to lung inflammation. Methods: We collected serum samples from a prospective cohort of 25 sex-matched subjects to determine circulating miRNAs through a quantitative RT-PCR. Moreover, we performed an in silico prediction of microRNA target genes linked to lung inflammation. Results: Asthmatic patients had a significant lower expression of hsa-miR-34a-5p, 181a-5p and 146a-5p compared to both obese and healthy ones suggesting microRNAs’ specific involvement in the regulation of lungs inflammatory response. Indeed, using in silico analysis, we identified microRNAs novel target genes as GATA family, linked to the inflammatory-related pathway. Conclusions: This study identifies a novel circulating miRNAs expression profile with promising potentials for asthma clinical evaluations and management. Further and larger investigations will be needed to confirm the potential role of microRNA as a clinical marker of bronchial asthma and eventually of pharmacological treatment response.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences-Department of Excellence 2018–2022, University of Calabria, 87036 Rende, CS, Italy
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Mario Sorgenti
- Respiratory Diseases in Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Elisabetta Granato
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Ida Cerqua
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Lucia Muraca
- Department of Primary Care, ASP Catanzaro, 88100 Catanzaro, Italy
| | - Pasquale Iovino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| |
Collapse
|
8
|
Esposito R, Spaziano G, Giannattasio D, Ferrigno F, Liparulo A, Rossi A, Roviezzo F, Sessa M, Falciani M, Berrino L, Polverino M, Polverino F, D'Agostino B. Montelukast Improves Symptoms and Lung Function in Asthmatic Women Compared With Men. Front Pharmacol 2019; 10:1094. [PMID: 31611790 PMCID: PMC6769077 DOI: 10.3389/fphar.2019.01094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: Gender differences exist in the prevalence of asthma and allergic diseases, partially due to the effects of sex hormones on the development of allergic manifestations. Women, compared with men, are more prone to suffer allergic asthma, experience difficulties in controlling asthma symptoms, and show adverse responses to drugs. However, there are knowledge gaps on the effectiveness of anti-leukotrienes drugs on lung function, symptoms, and pulmonary and systemic inflammation in adult asthmatic women compared with men. We conducted a prospective cohort study to characterize the effectiveness of an anti-leukotrienes drug, montelukast (MS), in asthmatic adult women and men. Methods: Twenty-one asthmatic subjects (11 women and 10 men), who were on low-dose inhaled corticosteroids (ICS), were treated with MS. The optimal control of the symptoms was achieved in both groups according to the Global Initiative for Asthma guidelines. At enrollment, and after 13 weeks from the beginning of MS, pulmonary function tests and asthma control tests were performed, and the fraction of exhaled nitric oxide and blood eosinophils levels were measured. Results: From baseline until the end of the study, women treated with MS + ICS had better control of the asthmatic symptoms, defined as higher asthma control test (ACT) score (17.00 ± 1.07 to 23.36 ± 0.45; p < 0.0015), improved pulmonary function [with higher forced expiratory volume in 1 s (from 77.25 ± 6.79 to 103.88 ± 6.24; p < 0.0077)], and forced vital capacity (from 91.95 ± 6.81 to 113.17 ± 4.79; p < 0.0183) compared with men. Interestingly, MS + ICS-treated women had significantly lower levels of blood eosinophils (from 5.27 ± 0.30 to 3.30 ± 0.31; p < 0.0449) and exhaled nitric oxide (from 44.70 ± 7.30 to 25.20 ± 3.90; p < 0.0294) compared with men. Conclusion: The treatment with MS, added to ICS, in women leads to better control of symptoms, better management of lung function, and decreased inflammation levels compared with ICS + MS treatment in men.
Collapse
Affiliation(s)
- Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | | | | | - Angela Liparulo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Fiorentina Roviezzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maurizio Sessa
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| | - Mario Polverino
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, Scafati, Italy
| | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
9
|
D'Agostino B, Sgambato M, Esposito R, Spaziano G. N/OFQ-NOP System and Airways. Handb Exp Pharmacol 2019; 254:313-322. [PMID: 30725285 DOI: 10.1007/164_2018_202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Asthma is a heterogeneous chronic inflammatory disease of the airways. The most prevalent form is atopic asthma, which is initiated by the exposure to (inhaled) allergens. Intermittent attacks of breathlessness, airways hyperresponsiveness, wheezing, coughing, and resultant allergen-specific immune responses characterize the disease. Nociceptin/OFQ-NOP receptor system is able to combine anti-hyperresponsiveness and immunomodulatory actions. In particular, N/OFQ is able to inhibit airways microvascular leakage and bronchoconstriction through a presynaptic and non-opioid mechanism of action that blocks tachykinin release. Moreover, it also acts on allergenic sensitization because it is able to modulate the immune response that triggers the development of airway hyperresponsiveness through an interaction on cell membranes of dendritic cells (DCs) that are generally responsible to start and sustain allergic T helper 2 (TH2)-cell responses to inhaled allergens in asthma. In asthmatic patients, sputum showed elevated N/OFQ levels that are related to increased eosinophil counts. The addition of exogenous N/OFQ in sputum obtained from patients with severe asthma attenuated eosinophils migration and release of inflammatory mediators. These observations confirmed that elevated endogenous N/OFQ levels in asthmatic sputum were lower than the ones required to exert beneficial effects, suggesting that supplementation with exogenous N/OFQ may need. In conclusion, the innovative role of N/OFQ in counteracting airways inflammation/hyperresponsiveness opens new potential targets/strategies in asthma treatment.
Collapse
Affiliation(s)
- Bruno D'Agostino
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy.
| | - Manuela Sgambato
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| | - Renata Esposito
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology L. Donatelli, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
10
|
Tartaglione G, Spaziano G, Sgambato M, Russo TP, Liparulo A, Esposito R, Mirra S, Filosa R, Roviezzo F, Polverino F, D'Agostino B. Nociceptin/Orphanin Fq in inflammation and remodeling of the small airways in experimental model of airway hyperresponsiveness. Physiol Rep 2018; 6:e13906. [PMID: 30370666 PMCID: PMC6204362 DOI: 10.14814/phy2.13906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
It is widely recognized that airway inflammation and remodeling play a key role not only in the central airway but also small airway pathology during asthma. Nociceptin/Orphanin FQ (N/OFQ), an endogenous peptide, and its receptor N/OFQ peptide (NOP) are involved in airway hyperresponsiveness (AHR). We studied a murine model of AHR in order to understand the role of N/OFQ in the inflammation and remodeling of the small airways. Balb/c mice were sensitized to ovalbumin (OVA). At days 0 and 7 (pre-OVA sensitization) or from day 21 to 23 (post-OVA sensitization), the mice were treated intraperitoneally with N/OFQ or saline solution. After the last OVA challenge, all OVA-sensitized mice were aerosol-challenged with 1% OVA in PBS for 48 h, and then euthanized. Small airway compliance (sCaw ) was measured and lung samples were collected for histological and molecular evaluations such as perimeter and diameter of small airway, total wall area, airway smooth muscle (ASM) thickness and number of alveolar attachments. Both pre- and post-OVA sensitization N/OFQ treatments induced: (1) increases in sCaw ; (2) reduction of the bronchial wall thickness; (3) attenuation of the hyperplastic phase of airway smooth muscle mass; and (4) protection against loss of alveolar attachments compared with saline solution treatments. These results suggest that N/OFQ protects against inflammation, and mechanical damage and remodeling of small airways caused by OVA sensitization, suggesting a new potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Gioia Tartaglione
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Giuseppe Spaziano
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Manuela Sgambato
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Teresa Palmira Russo
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Angela Liparulo
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Renata Esposito
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Salvatore Mirra
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | - Rosanna Filosa
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| | | | | | - Bruno D'Agostino
- Department of Experimental MedicineSchool of MedicineSection of PharmacologyUniversity of Campania “L. Vanvitelli”NaplesItaly
| |
Collapse
|
11
|
Spaziano G, Sorrentino R, Matteis M, Malgieri G, Sgambato M, Russo TP, Terlizzi M, Roviezzo F, Rossi F, Pinto A, Fattorusso R, D'Agostino B. Nociceptin reduces the inflammatory immune microenvironment in a conventional murine model of airway hyperresponsiveness. Clin Exp Allergy 2017; 47:208-216. [PMID: 27562660 DOI: 10.1111/cea.12808] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nociceptin/orphanin FQ (N/OFQ) and its receptor (NOP) are involved in airway hyperresponsiveness (AHR) and inflammation. However, the role of nociceptin at modulating the inflammatory immune microenvironment in asthma is still unclear. OBJECTIVE To understand the role of N/OFQ in the regulation of a Th2-like environment, we used a conventional murine model of AHR. METHODS Balb/c and CD1 mice were sensitized to ovalbumin (OVA) and treated with saline solution or N/OFQ, at days 0 and 7. A group of Balb/c mice were killed at 7 and 14 days from the first sensitization for the inflammatory profile evaluation while a group of Balb/c and CD1 mice were aerosol-challenged from day 21 to 23 with OVA and killed 24 h later for functional evaluations. RESULTS In OVA-sensitized mice, N/OFQ significantly reduced IL-4+ CD4+ T cells in lymph nodes (LN) and IL-13 in the lungs, while it induced IFN-γ increase in the lung. The efflux of dendritic cells (DCs) to the mediastinic LN and into the lung of OVA-sensitized mice was reduced in N/OFQ-treated and sensitized mice. N/OFQ reduced the expression of CD80 on DCs, indicating its ability to modulate the activation of DCs. In a less prone Th2-like environment mice strain, such as CD1 mice, N/OFQ did not modify lung resistances as observed in BALB/c mice. Finally, spectroscopic data showed the N/OFQ was able to interact onto the membrane of DCs obtained from Balb/c rather than CD1 mice, indicating its ability to modulate AHR in a Th2-like environment with a direct activity on DCs. CONCLUSIONS AND CLINICAL RELEVANCE Our data confirmed the capability of N/OFQ to modulate the immune microenvironment in the lung of Th2-biased, OVA-sensitized Balb/c mice, suggesting N/OFQ-NOP axis as a novel pharmacological tool to modulate the inflammatory immune microenvironment in asthma.
Collapse
Affiliation(s)
- G Spaziano
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - R Sorrentino
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy
| | - M Matteis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - G Malgieri
- Department of Environmental, Biological and Pharmaceutical Science and Technology, Second University of Naples, Caserta, Italy
| | - M Sgambato
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - T P Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - M Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy
| | - F Roviezzo
- Department of Experimental Pharmacology, University Federico II of Naples, Naples, Italy
| | - F Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - A Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy
| | - R Fattorusso
- Department of Environmental, Biological and Pharmaceutical Science and Technology, Second University of Naples, Caserta, Italy
| | - B D'Agostino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| |
Collapse
|
12
|
Gallelli L, Falcone D, Cannataro R, Perri M, Serra R, Pelaia G, Maselli R, Savino R, Spaziano G, D’Agostino B. Theophylline action on primary human bronchial epithelial cells under proinflammatory stimuli and steroidal drugs: a therapeutic rationale approach. Drug Des Devel Ther 2017; 11:265-272. [PMID: 28176948 PMCID: PMC5271379 DOI: 10.2147/dddt.s118485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Theophylline is a natural compound present in tea. Because of its property to relax smooth muscle it is used in pharmacology for the treatment of airway diseases (ie, chronic obstructive pulmonary disease, asthma). However, this effect on smooth muscle is dose dependent and it is related to the development of side effects. Recently, an increasing body of evidence suggests that theophylline, at low concentrations, also has anti-inflammatory effects related to the activation of histone deacetylases. In this study, we evaluated the effects of theophylline alone and in combination with corticosteroids on human bronchial epithelial cells under inflammatory stimuli. Theophylline administrated alone was not able to reduce growth-stimulating signaling via extracellular signal-regulated kinases activation and matrix metalloproteases release, whereas it strongly counteracts this biochemical behavior when administered in the presence of corticosteroids. These data provide scientific evidence for supporting the rationale for the pharmacological use of theophylline and corticosteroid combined drug.
Collapse
Affiliation(s)
- Luca Gallelli
- Department of Health Science, University of Catanzaro, Catanzaro
| | - Daniela Falcone
- Department of Health Science, University of Catanzaro, Catanzaro
| | - Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende
| | - Mariarita Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro
| | - Rosario Maselli
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro
| | - Rocco Savino
- Department of Health Science, University of Catanzaro, Catanzaro
| | - Giuseppe Spaziano
- Department of Experimental Medicine, School of Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Bruno D’Agostino
- Department of Experimental Medicine, School of Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- Correspondence: Bruno D’Agostino, Department of Experimental Medicine, School of Medicine, Section of Pharmacology, Second University of Naples, Via Costantinopoli 115, 80138 Naples, Italy, Tel +39 81 566 5882, Email
| |
Collapse
|
13
|
The Intriguing Role of Neuropeptides at the Ocular Surface. Ocul Surf 2017; 15:2-14. [DOI: 10.1016/j.jtos.2016.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 10/05/2016] [Accepted: 10/26/2016] [Indexed: 02/02/2023]
|
14
|
New Role of Adult Lung c-kit + Cells in a Mouse Model of Airway Hyperresponsiveness. Mediators Inflamm 2016; 2016:3917471. [PMID: 28090152 PMCID: PMC5206449 DOI: 10.1155/2016/3917471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 12/16/2022] Open
Abstract
Structural changes contribute to airway hyperresponsiveness and airflow obstruction in asthma. Emerging evidence points to the involvement of c-kit+ cells in lung homeostasis, although their potential role in asthma is unknown. Our aim was to isolate c-kit+ cells from normal mouse lungs and to test whether these cells can interfere with hallmarks of asthma in an animal model. Adult mouse GFP-tagged c-kit+ cells, intratracheally delivered in the ovalbumin-induced airway hyperresponsiveness, positively affected airway remodeling and improved airway function. In bronchoalveolar lavage fluid of cell-treated animals, a reduction in the number of inflammatory cells and in IL-4, IL-5, and IL-13 release, along with an increase of IL-10, was observed. In MSC-treated mice, the macrophage polarization to M2-like subset may explain, at least in part, the increment in the level of anti-inflammatory cytokine IL-10. After in vitro stimulation of c-kit+ cells with proinflammatory cytokines, the indoleamine 2,3-dioxygenase and TGFβ were upregulated. These data, together with the increased apoptosis of inflammatory cells in vivo, indicate that c-kit+ cells downregulate immune response in asthma by influencing local environment, possibly by cell-to-cell contact combined to paracrine action. In conclusion, intratracheally administered c-kit+ cells reduce inflammation, positively modulate airway remodeling, and improve function. These data document previously unrecognized properties of c-kit+ cells, able to impede pathophysiological features of experimental airway hyperresponsiveness.
Collapse
|
15
|
Urbanek K, De Angelis A, Spaziano G, Piegari E, Matteis M, Cappetta D, Esposito G, Russo R, Tartaglione G, De Palma R, Rossi F, D’Agostino B. Intratracheal Administration of Mesenchymal Stem Cells Modulates Tachykinin System, Suppresses Airway Remodeling and Reduces Airway Hyperresponsiveness in an Animal Model. PLoS One 2016; 11:e0158746. [PMID: 27434719 PMCID: PMC4951036 DOI: 10.1371/journal.pone.0158746] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/21/2016] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The need for new options for chronic lung diseases promotes the research on stem cells for lung repair. Bone marrow-derived mesenchymal stem cells (MSCs) can modulate lung inflammation, but the data on cellular processes involved in early airway remodeling and the potential involvement of neuropeptides are scarce. OBJECTIVES To elucidate the mechanisms by which local administration of MSCs interferes with pathophysiological features of airway hyperresponsiveness in an animal model. METHODS GFP-tagged mouse MSCs were intratracheally delivered in the ovalbumin mouse model with subsequent functional tests, the analysis of cytokine levels, neuropeptide expression and histological evaluation of MSCs fate and airway pathology. Additionally, MSCs were exposed to pro-inflammatory factors in vitro. RESULTS Functional improvement was observed after MSC administration. Although MSCs did not adopt lung cell phenotypes, cell therapy positively affected airway remodeling reducing the hyperplastic phase of the gain in bronchial smooth muscle mass, decreasing the proliferation of epithelium in which mucus metaplasia was also lowered. Decrease of interleukin-4, interleukin-5, interleukin-13 and increase of interleukin-10 in bronchoalveolar lavage was also observed. Exposed to pro-inflammatory cytokines, MSCs upregulated indoleamine 2,3-dioxygenase. Moreover, asthma-related in vivo upregulation of pro-inflammatory neurokinin 1 and neurokinin 2 receptors was counteracted by MSCs that also determined a partial restoration of VIP, a neuropeptide with anti-inflammatory properties. CONCLUSION Intratracheally administered MSCs positively modulate airway remodeling, reduce inflammation and improve function, demonstrating their ability to promote tissue homeostasis in the course of experimental allergic asthma. Because of a limited tissue retention, the functional impact of MSCs may be attributed to their immunomodulatory response combined with the interference of neuropeptide system activation and tissue remodeling.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/immunology
- Gene Expression
- Genes, Reporter
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-13/genetics
- Interleukin-13/immunology
- Interleukin-4/genetics
- Interleukin-4/immunology
- Interleukin-5/genetics
- Interleukin-5/immunology
- Intubation, Intratracheal
- Lung/immunology
- Lung/pathology
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/immunology
- Mice
- Mice, Inbred BALB C
- Ovalbumin
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/immunology
- Receptors, Neurokinin-2/genetics
- Receptors, Neurokinin-2/immunology
- Respiratory Hypersensitivity/chemically induced
- Respiratory Hypersensitivity/immunology
- Respiratory Hypersensitivity/pathology
- Respiratory Hypersensitivity/therapy
Collapse
Affiliation(s)
- Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- * E-mail: (AA); (BA)
| | - Giuseppe Spaziano
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Elena Piegari
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Maria Matteis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Grazia Esposito
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Rosa Russo
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Gioia Tartaglione
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Raffaele De Palma
- Department of Clinical and Experimental Medicine, Second University of Naples, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
| | - Bruno D’Agostino
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Naples, Italy
- * E-mail: (AA); (BA)
| |
Collapse
|
16
|
Heck S, Nguyen J, Le DD, Bals R, Dinh QT. Pharmacological Therapy of Bronchial Asthma: The Role of Biologicals. Int Arch Allergy Immunol 2016; 168:241-52. [PMID: 26895179 DOI: 10.1159/000443930] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 01/05/2016] [Indexed: 11/19/2022] Open
Abstract
Bronchial asthma is a heterogeneous, complex, chronic inflammatory and obstructive pulmonary disease driven by various pathways to present with different phenotypes. A small proportion of asthmatics (5-10%) suffer from severe asthma with symptoms that cannot be controlled by guideline therapy with high doses of inhaled steroids plus a second controller, such as long-acting β2 agonists (LABA) or leukotriene receptor antagonists, or even systemic steroids. The discovery and characterization of the pathways that drive different asthma phenotypes have opened up new therapeutic avenues for asthma treatment. The approval of the humanized anti-IgE antibody omalizumab for the treatment of severe allergic asthma has paved the way for other cytokine-targeting therapies, particularly those targeting interleukin (IL)-4, IL-5, IL-9, IL-13, IL-17, and IL-23 and the epithelium-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin. Knowledge of the molecular basis of asthma phenotypes has helped, and continues to help, the development of novel biologicals that target a diverse array of phenotype-specific molecular targets in patients suffering from severe asthma. This review summarizes potential therapeutic approaches that are likely to show clinical efficacy in the near future, focusing on biologicals as promising novel therapies for severe asthma.
Collapse
Affiliation(s)
- Sebastian Heck
- Department of Experimental Pneumology and Allergology, Saarland University Faculty of Medicine, Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|
17
|
Update on anticytokine treatment for asthma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:104315. [PMID: 23853765 PMCID: PMC3703384 DOI: 10.1155/2013/104315] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/07/2013] [Indexed: 12/18/2022]
Abstract
Current advances in the knowledge of asthma pathobiology suggest that anticytokine therapies can be potentially useful for the treatment of this complex and heterogeneous airway disease. Recent evidence is accumulating in support of the efficacy of anti-IL-4, anti-IL-5, and anti-IL-13 drugs. Therefore, these new developments are now changing the global scenario of antiasthma therapies, especially with regard to more severe disease. Current findings referring to variability of individual therapeutic responses highlight that the different asthma subtypes need to be well characterized, in order to implement phenotype-targeted treatments which in the near future will hopefully be mainly based on cytokine-directed biologics.
Collapse
|
18
|
Quinn JP, Kipar A, Hughes DJ, Bennett E, Cox H, McLaughlin L, Zimmer A, Hunt SP, Stewart JP. Altered host response to murine gammaherpesvirus 68 infection in mice lacking the tachykinin 1 gene and the receptor for substance P. Neuropeptides 2011; 45:49-53. [PMID: 21106239 DOI: 10.1016/j.npep.2010.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/22/2010] [Accepted: 10/16/2010] [Indexed: 11/29/2022]
Abstract
The tachykinins are implicated in neurogenic inflammation and the neuropeptide substance P in particular has been shown to be a proinflammatory mediator. A role for the tachykinins in host response to viral infection has been previously demonstrated using either TAC1- or NK1 receptor-deficient transgenic mice. However, due to redundancy in the peptide-receptor complexes we wished determine whether a deficiency in TAC1 and NK1(R) in combination exhibited an enhanced phenotype. TAC1 and NK1(R)-deficient mice were therefore crossed to generate transgenic mice in both (NK1(-/-)×TAC1(-/-)). As expected, after infection with the respiratory pathogen murine gammaherpesvirus (MHV-68), TAC1 and NK1(R)-deficient mice were more susceptible to infection than wild-type C57BL/6 controls. However, unexpectedly, NK1(-/-)×TAC1(-/-) mice were more resistant to infection arguing for a lack of feedback inhibition through alternative receptors in these mice. Histopathological examination did not show any great differences in the inflammatory responses between groups of infected animals, except for the presence of focal perivascular B cell accumulations in lungs of all the knockout mice. These were most pronounced in the NK1(-/-)×TAC1(-/-) mice. These results confirm an important role for TAC1 and NK1(R) in the control of viral infection but reinforce the complex nature of the peptide-receptor interactions.
Collapse
Affiliation(s)
- John P Quinn
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Protease-activated receptors as drug targets in inflammation and pain. Pharmacol Ther 2009; 123:292-309. [PMID: 19481569 DOI: 10.1016/j.pharmthera.2009.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 05/05/2009] [Indexed: 12/12/2022]
Abstract
Proteases have been shown to signal to cells through the activation of a novel class of receptors coupled to G proteins: the protease-activated receptors (PARs). Those receptors are expressed in a wide range of cells, which ultimately are all involved in mechanisms of inflammation and pain. Numerous studies have considered the role of PARs in cells, organ systems or in vivo, highlighting the fact that PAR activation results in signs of inflammation. A growing body of evidences discussed here suggests that these receptors, and the proteases that activate them, interfere with inflammation and pain processes. Whether a role for PARs has been clearly defined in inflammatory and pain pathologies is discussed in this review. Further, the pros and cons for considering PARs as targets for the development of therapeutic options for the treatment of inflammation and pain are discussed.
Collapse
|
20
|
Ferreira CM, Pereira ATM, Amaral FA, de Souza RS, Coelho FM, Souza DG, Negrão-Corrêa D, Teixeira MM. Mechanisms of the airway hyperresponsiveness induced by Strongyloides venezuelensis infection in rats: role of capsaicin-sensitive neurons. Microbes Infect 2009; 11:315-20. [DOI: 10.1016/j.micinf.2008.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 09/30/2008] [Accepted: 11/14/2008] [Indexed: 11/30/2022]
|
21
|
Stewart JP, Kipar A, Cox H, Payne C, Vasiliou S, Quinn JP. Induction of tachykinin production in airway epithelia in response to viral infection. PLoS One 2008; 3:e1673. [PMID: 18320026 PMCID: PMC2248620 DOI: 10.1371/journal.pone.0001673] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 01/29/2008] [Indexed: 11/18/2022] Open
Abstract
Background The tachykinins are implicated in neurogenic inflammation and the neuropeptide substance P in particular has been shown to be a proinflammatory mediator. A role for the tachykinins in host response to lung challenge has been previously demonstrated but has been focused predominantly on the release of the tachykinins from nerves innervating the lung. We have previously demonstrated the most dramatic phenotype described for the substance P encoding gene preprotachykinin-A (PPT-A) to date in controlling the host immune response to the murine gammaherpesvirus 68, in the lung. Methodology/Principal Findings In this study we have utilised transgenic mice engineered to co-ordinately express the beta-galactosidase marker gene along with PPT-A to facilitate the tracking of PPT-A expression. Using a combination of these mice and conventional immunohistology we now demonstrate that PPT-A gene expression and substance P peptide are induced in cells of the respiratory tract including tracheal, bronchiolar and alveolar epithelial cells and macrophages after viral infection. This induction was observed 24h post infection, prior to observable inflammation and the expression of pro-inflammatory chemokines in this model. Induced expression of the PPT-A gene and peptide persisted in the lower respiratory tract through day 7 post infection. Conclusions/Significance Non-neuronal PPT-A expression early after infection may have important clinical implications for the progression or management of lung disease or infection aside from the well characterised later involvement of the tachykinins during the inflammatory response.
Collapse
Affiliation(s)
- James P. Stewart
- Department of Medical Microbiology, The University of Liverpool, Liverpool, United Kingdom
- *E-mail: (JPS); (JPQ)
| | - Anja Kipar
- Department of Veterinary Pathology, The University of Liverpool, Liverpool, United Kingdom
| | - Helen Cox
- Department of Medical Microbiology, The University of Liverpool, Liverpool, United Kingdom
| | - Catherine Payne
- Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sylvia Vasiliou
- Divisions of Physiology & Human Anatomy Cell Biology, The University of Liverpool, Liverpool, United Kingdom
| | - John P. Quinn
- Divisions of Physiology & Human Anatomy Cell Biology, The University of Liverpool, Liverpool, United Kingdom
- *E-mail: (JPS); (JPQ)
| |
Collapse
|
22
|
D'Agostino B, Roviezzo F, De Palma R, Terracciano S, De Nardo M, Gallelli L, Abbate GF, D'Aiuto E, Russo M, Cirino G, Rossi F. Activation of protease-activated receptor-2 reduces airways inflammation in experimental allergic asthma. Clin Exp Allergy 2007; 37:1436-43. [PMID: 17883723 DOI: 10.1111/j.1365-2222.2007.02793.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Proteinase-activated receptors (PAR)-2 are members of the family of G-protein-coupled receptors activated by proteases. These receptors are widely expressed in several tissues and in virtually all cells involved in rhinitis and asthma. In particular, proteinases activating PAR-2 may affect airway functions and play a role in human diseases. OBJECTIVE Assessment of the role of PAR-2 in bronchoconstriction, airway responsiveness and immune response after allergic challenge, in rabbits sensitized to Par j 1, the major allergen of Parietaria judaica pollen. METHODS Evaluation of antigen challenge in rabbits treated with PAR-2-activating peptide (PAR-2AP) (SLIGRL) or the scrambled peptide LSIGRL or vehicle immediately before allergen exposure measuring airway responsiveness. Characterization of bronchoalveolar lavage (BAL) following histamine challenge and phenotype analysis of cells by flow cytometry and analysis of cytokine production by quantitative PCR. RESULTS PAR-2AP pre-treatment, but not the scrambled peptide, was able to significantly inhibit bronchoconstriction, airway hyper-responsiveness and to modulate the immune response induced by allergic challenge in sensitized rabbits. The phenotype analysis of the cells recovered from BAL showed an increase in RLA-DR-positive cells while RTLA-positive cells were unchanged. IFN-gamma and IL-2 production were inhibited, with a concomitant increase in IL-10 of about 10-fold over the control values. CONCLUSIONS In this experimental model, PAR-2 modulates bronchoconstriction interfering with antigen challenge-induced immune response in rabbits sensitized and challenged to Par j 1.
Collapse
Affiliation(s)
- B D'Agostino
- Department of Experimental Medicine, Section of Pharmacology, Faculty of Medicine and Surgery, Second University of Naples, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Altamura M, Manzini S, Lecci A. Tachykinin receptors in chronic inflammatory lower airway diseases. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.10.1241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Blanchard C, Mishra A, Saito-Akei H, Monk P, Anderson I, Rothenberg ME. Inhibition of human interleukin-13-induced respiratory and oesophageal inflammation by anti-human-interleukin-13 antibody (CAT-354). Clin Exp Allergy 2005; 35:1096-103. [PMID: 16120093 DOI: 10.1111/j.1365-2222.2005.02299.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Allergic asthma is a complex disorder characterized by local and systemic T helper type 2 -cell responses such as the production of IL-13, a cytokine associated with the induction of airway hyper-responsiveness (AHR), chronic pulmonary eosinophilia, airway mucus overproduction and eosinophilic oesophagitis. OBJECTIVE Our study aimed to address the therapeutic potential of a human anti-human IL-13 IgG4 monoclonal antibody (CAT-354) in a murine model of respiratory and oesophageal inflammation induced by intratracheal human IL-13. METHODS BALB/c mice were treated on days 1 and 3 with CAT-354 (intraperitoneal injection), and human IL-13 was injected intratracheally on days 2 and 4. AHR to methacholine, airway eosinophilia in bronchoalveolar lavage fluid, histologic analysis of goblet cell metaplasia and oesophageal eosinophilia were evaluated. RESULTS Human IL-13 induced airway eosinophilia and goblet cell metaplasia in mice in a dose-dependent manner. Moreover, intratracheal dosing with 25 microg of human IL-13 was sufficient to induce AHR, goblet cell metaplasia and oesophageal eosinophilia. Pretreatment with CAT-354 significantly reduced AHR, airway eosinophilia and oesophageal eosinophilia. CONCLUSION These results demonstrate that anti-human IL-13 (CAT-354) is a potential therapeutic treatment for allergic airway and oesophageal diseases.
Collapse
Affiliation(s)
- C Blanchard
- Department of Pediatrics, Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
25
|
Mukaiyama O, Morimoto K, Nosaka E, Takahashi S, Yamashita M. Involvement of enhanced neurokinin NK3 receptor expression in the severe asthma guinea pig model. Eur J Pharmacol 2005; 498:287-94. [PMID: 15364007 DOI: 10.1016/j.ejphar.2004.07.071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Accepted: 07/13/2004] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the involvement of neurokinin NK3 receptors in a severe asthma model prepared by administering ovalbumin via inhalation three times to systemically sensitized guinea pigs. [3H]senktide, a neurokinin NK3 receptor ligand, showed significant specific binding to the lungs from the model animals, but not to those from negative control animals. The airway responsiveness to intravenous neurokinin B, a neurokinin NK3 receptor agonist, was increased in the model, indicating an increase in functional NK3 receptors. Furthermore, SB 223956 ((-)-3-methoxy-2-phenyl-N-[(1S)-phenylpropyl]quinoline-4-carboxamide), a selective neurokinin NK3 receptor antagonist, significantly inhibited the ovalbumin-induced airway hyperresponsiveness to inhaled methacholine, but it did not show significant effects on the ovalbumin-induced airway narrowing and eosinophil accumulation. These results suggest that the expressed neurokinin NK3 receptors in the severe asthma model are involved in the development of airway hyperresponsiveness.
Collapse
Affiliation(s)
- Osamu Mukaiyama
- R&D Project Management Department, Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | |
Collapse
|
26
|
Alessandri AL, Pinho V, Souza DG, Castro MSDA, Klein A, Teixeira MM. Mechanisms underlying the inhibitory effects of tachykinin receptor antagonists on eosinophil recruitment in an allergic pleurisy model in mice. Br J Pharmacol 2004; 140:847-54. [PMID: 14585802 PMCID: PMC1574105 DOI: 10.1038/sj.bjp.0705515] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The activation of tachykinin NK receptors by neuropeptides may induce the recruitment of eosinophils in vivo. The aim of the present study was to investigate the effects and underlying mechanism(s) of the action of tachykinin receptor antagonists on eosinophil recruitment in a model of allergic pleurisy in mice. Pretreatment of immunized mice with capsaicin partially prevented the recruitment of eosinophils after antigen challenge, suggesting the potential contribution of sensory nerves for the recruitment of eosinophils Local (10-50 nmol per pleural cavity) or systemic (100-300 nmol per animal) pretreatment with the tachykinin NK1 receptor antagonist SR140333 prevented the recruitment of eosinophils induced by antigen challenge of immunized mice. Neither tachykinin NK2 nor NK3 receptor antagonists suppressed eosinophil recruitment. Pretreatment with SR140333 failed to prevent the antigen-induced increase of interleukin-5 concentrations in the pleural cavity. Similarly, SR140333 failed to affect the bone marrow eosinophilia observed at 48 h after antigen challenge of immunized mice. SR140333 induced a significant increase in the concentrations of antigen-induced eotaxin at 6 h after challenge. Antigen challenge of immunized mice induced a significant increase of Leucotriene B4 (LTB4) concentrations at 6 h after challenge. Pretreatment with SR140333 prevented the antigen-induced increase of LTB4 concentrations. Our data suggest an important role for NK1 receptor activation with consequent LTB4 release and eosinophil recruitment in a model of allergic pleurisy in the mouse. Tachykinins appear to be released mainly from peripheral endings of capsaicin-sensitive sensory neurons and may act on mast cells to facilitate antigen-driven release of LTB4.
Collapse
Affiliation(s)
- Ana Letícia Alessandri
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle G Souza
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Salete de A Castro
- Farmacologia, Instituto Ciências Biólogicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - André Klein
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento Morfofisiologia, Centro de Ciências Biológicas, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Mauro M Teixeira
- Departamento Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departmento Imunologia, Centro Pesquisa René Rachou, FIOCRUZ, Belo Horizonte, Brazil
- Author for correspondence:
| |
Collapse
|
27
|
Lecci A, Maggi CA. Peripheral tachykinin receptors as potential therapeutic targets in visceral diseases. Expert Opin Ther Targets 2003; 7:343-62. [PMID: 12783571 DOI: 10.1517/14728222.7.3.343] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
More than 10 years of intensive preclinical investigation of selective tachykinin (TK) receptor antagonists has provided a rationale to the speculation that peripheral neurokinin (NK)-1, -2 and -3 receptors may be involved in the pathophysiology of various human diseases at the visceral level. In the airways, despite promising effects in animal models of asthma, pilot clinical trials with selective NK-1 or -2 receptor antagonists in asthmatics have been ambiguous, whereas the potential antitussive effects of NK-1, -2 or -3 antagonists have not yet been verified in humans. In the gastrointestinal (GI) tract, irritable bowel syndrome (IBS) and pancreatitis are appealing targets for peripherally-acting NK-1 and -2 antagonists, respectively. In the genito-urinary tract, NK-1 receptor antagonists could offer some protection against nephrotoxicity and cytotoxicity induced by chemotherapeutic agents, whereas NK-2 receptor antagonists appear to be promising new agents for the treatment of neurogenic bladder hyperreflexia. Finally, there is preclinical evidence for hypothesising an effect of NK-3 receptor antagonists on the cardiovascular disturbance that characterises pre-eclampsia. Other more speculative applications are also mentioned.
Collapse
Affiliation(s)
- Alessandro Lecci
- Pharmacology Department of Menarini Ricerche, via Rismondo 12/A, 50131 Florence, Italy.
| | | |
Collapse
|
28
|
Gallelli L, D'Agostino B, Marrocco G, De Rosa G, Filippelli W, Rossi F, Advenier C. Role of tachykinins in the bronchoconstriction induced by HCl intraesophageal instillation in the rabbit. Life Sci 2003; 72:1135-42. [PMID: 12505544 DOI: 10.1016/s0024-3205(02)02372-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gastroesophageal acid reflux (GER) is a common disorder associated with the exacerbation of asthma. In this study we investigated the effects on the airways of intraoesophageal HCl instillation in the rabbit and the role of tachykinins in these effects. In anaesthetized New Zealand rabbits bronchopulmonary functions [total lung resistance (R(L)) and dynamic compliance (C(dyn))] were calculated before and after HCl intraoesophageal instillation. Infusion of HCl induced a significant bronchoconstriction (P < 0.05) in the terms of R(L) and C(dyn) changes, that were increased by phosphoramidon pre-treatment and reduced by capsaicin pre-treatment. Moreover, a pre-treatment with SR 48968, a tachykinin NK2 receptor antagonist, or SR 140333, a NK1 receptor antagonist, significantly inhibited the bronchoconstriction induced by intraoesophageal HCl infusion in terms of R(L) and C(dyn)changes. Finally, the HCl induced bronchoconstriction was unaffected by SR 142801, a tachykinin NK3 receptor antagonist. In conclusion these results suggest that bronchoconstriction induced by intraoesophageal HCl infusion is mainly dependent on the release of tachykinins and that both NK1 and NK2 tachykinin receptors are involved.
Collapse
Affiliation(s)
- L Gallelli
- Department of Experimental Medicine, Section of Pharmacology Leonardo Donatelli, Faculty of Medicine and Surgery, 2nd University of Naples, Via Costantinopoli 16-80138, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|