1
|
Becht JM, Kohlleppel H, Schins RPF, Kämpfer AAM. Effect of Butyrate on Food-Grade Titanium Dioxide Toxicity in Different Intestinal In Vitro Models. Chem Res Toxicol 2024; 37:1501-1514. [PMID: 39213652 PMCID: PMC11409378 DOI: 10.1021/acs.chemrestox.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Short-chain fatty acids (SCFA) are an important energy source for colonocytes and crucial messenger molecules both locally in the intestine and systemically. Butyrate, one of the most prominent and best-studied SCFA, was demonstrated to exert anti-inflammatory effects, improve barrier integrity, enhance mucus synthesis in the intestine, and promote cell differentiation of intestinal epithelial cells in vitro. While the physiological relevance is undisputed, it remains unclear if and to what extent butyrate can influence the effects of xenobiotics, such as food-grade titanium dioxide (E171, fgTiO2), in the intestine. TiO2 has been controversially discussed for its DNA-damaging potential and banned as a food additive within the European Union (EU) since 2022. First, we used enterocyte Caco-2 monocultures to test if butyrate affects the cytotoxicity and inflammatory potential of fgTiO2 in a pristine state or following pretreatment under simulated gastric and intestinal pH conditions. We then investigated pretreated fgTiO2 in intestinal triple cultures of Caco-2, HT29-MTX-E12, and THP-1 cells in homeostatic and inflamed-like state for cytotoxicity, barrier integrity, cytokine release as well as gene expression of mucins, oxidative stress markers, and DNA repair. In Caco-2 monocultures, butyrate had an ambivalent role: pretreated but not pristine fgTiO2 induced cytotoxicity in Caco-2 cells, which was not observed in the presence of butyrate. Conversely, fgTiO2 induced the release of interleukin 8 in the presence but not in the absence of butyrate. In the advanced in vitro models, butyrate did not affect the characteristics of the healthy or inflamed states and caused negligible effects in the investigated end points following fgTiO2 exposure. Taken together, the effects of fgTiO2 strongly depend on the applied testing approach. Our findings underline the importance of the experimental setup, including the choice of in vitro model and the physiological relevance of the exposure scenario, for the hazard testing of food-grade pigments like TiO2.
Collapse
Affiliation(s)
- Janine M Becht
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Hendrik Kohlleppel
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Roel P F Schins
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Angela A M Kämpfer
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| |
Collapse
|
2
|
Chakraborty P, Gamage HKAH, Laird AS. Butyrate as a potential therapeutic agent for neurodegenerative disorders. Neurochem Int 2024; 176:105745. [PMID: 38641025 DOI: 10.1016/j.neuint.2024.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Maintaining an optimum microbial community within the gastrointestinal tract is intricately linked to human metabolic, immune and brain health. Disturbance to these microbial populations perturbs the production of vital bioactive compounds synthesised by the gut microbiome, such as short-chain fatty acids (SCFAs). Of the SCFAs, butyrate is known to be a major source of energy for colonocytes and has valuable effects on the maintenance of intestinal epithelium and blood brain barrier integrity, gut motility and transit, anti-inflammatory effects, and autophagy induction. Inducing endogenous butyrate production is likely to be beneficial for gut-brain homeostasis and for optimal neuronal function. For these reasons, butyrate has gained interest as a potential therapy for not only metabolic and immunological disorders, but also conditions related to the brain, including neurodegenerative diseases. While direct and indirect sources of butyrate, including prebiotics, probiotics, butyrate pro-drugs and glucosidase inhibitors, offer a promising therapeutic avenue, their efficacy and dosage in neurodegenerative conditions remain largely unknown. Here, we review current literature on effects of butyrate relevant to neuronal function, the impact of butyrate in a range of neurodegenerative diseases and related treatments that may have potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Prapti Chakraborty
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Hasinika K A H Gamage
- School of Natural Sciences, Macquarie University, NSW, 2109, Australia; ARC Training Centre for Facilitated Advancement of Australia's Bioactives, Macquarie University, NSW, 2109, Australia
| | - Angela S Laird
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
3
|
Wang X, Wan M, Wang Z, Zhang H, Zhu S, Cao X, Xu N, Zheng J, Bu X, Xu W, Mai K, Ai Q. Effects of Tributyrin Supplementation on Growth Performance, Intestinal Digestive Enzyme Activity, Antioxidant Capacity, and Inflammation-Related Gene Expression of Large Yellow Croaker ( Larimichthys crocea) Fed with a High Level of Clostridium autoethanogenum Protein. AQUACULTURE NUTRITION 2023; 2023:2687734. [PMID: 36860969 PMCID: PMC9973137 DOI: 10.1155/2023/2687734] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
An 8-week growth experiment was conducted to investigate effects of tributyrin (TB) supplementation on growth performance, intestinal digestive enzyme activity, antioxidant capacity, and inflammation-related gene expression of juvenile large yellow croaker (Larimichthys crocea) (initial weight of 12.90 ± 0.02 g) fed diets with high level of Clostridium autoethanogenum protein (CAP). In the negative control diet, 40% fish meal was used as the major source of protein (named as FM), while 45% fish meal protein of FM was substituted with CAP (named as FC) to form a positive control diet. Based on the FC diet, grade levels of 0.05%, 0.1%, 0.2%, 0.4%, and 0.8% tributyrin were added to formulate other five experimental diets. Results showed that fish fed diets with high levels of CAP significantly decreased the weight gain rate (WGR) and specific growth rate (SGR) compared with fish fed the FM diet (P < 0.05). WGR and SGR were significantly higher than in fish fed diets with 0.05% and 0.1% tributyrin that fed the FC diet (P < 0.05). Supplementation of 0.1% tributyrin significantly elevated fish intestinal lipase and protease activities compared to FM and FC diets (P < 0.05). Meanwhile, compared to fish fed the FC diet, fish fed diets with 0.05% and 0.1% tributyrin showed remarkably higher intestinal total antioxidant capacity (T-AOC). Malondialdehyde (MDA) content in the intestine of fish fed diets with 0.05%-0.4% tributyrin was remarkably lower than those in the fish fed the FC diet (P < 0.05). The mRNA expressions of tumor necrosis factor α (tnfα), interleukin-1β (il-1β), interleukin-6 (il-6), and interferon γ (ifnγ) were significantly downregulated in fish fed diets with 0.05%-0.2% tributyrin, and the mRNA expression of il-10 was significantly upregulated in fish fed the 0.2% tributyrin diet (P < 0.05). In regard to antioxidant genes, as the supplementation of tributyrin increased from 0.05% to 0.8%, the mRNA expression of nuclear factor erythroid 2-related factor 2 (nrf2) demonstrated a trend of first rising and then decreasing. However, the mRNA expression of Kelch-like ECH-associated protein 1 (keap1) was remarkably lower in fish fed the FC diet than that fed diets with tributyrin supplementation (P < 0.05). Overall, fish fed tributyrin supplementation diets can ameliorate the negative effects induced by high proportion of CAP in diets, with an appropriate supplementation of 0.1%.
Collapse
Affiliation(s)
- Xiuneng Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Min Wan
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Haitao Zhang
- Guangdong Evergreen Feed Industry Co., Ltd., Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524000, China
| | - Si Zhu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xiufei Cao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Xianyong Bu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
| | - Wei Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266003, China
| |
Collapse
|
4
|
Interaction between Butyrate and Tumor Necrosis Factor α in Primary Rat Colonocytes. Biomolecules 2023; 13:biom13020258. [PMID: 36830627 PMCID: PMC9953264 DOI: 10.3390/biom13020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Butyrate, a short-chain fatty acid, is utilized by the gut epithelium as energy and it improves the gut epithelial barrier. More recently, it has been associated with beneficial effects on immune and cardiovascular homeostasis. Conversely, tumor necrosis factor alpha (TNFα) is a pro-inflammatory and pro-hypertensive cytokine. While butyrate and TNFα are both linked with hypertension, studies have not yet addressed their interaction in the colon. Here, we investigated the capacity of butyrate to modulate a host of effects of TNFα in primary rodent colonic cells in vitro. We measured ATP levels, cell viability, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial oxidative phosphorylation, and glycolytic activity in colonocytes following exposure to either butyrate or TNFα, or both. To address the potential mechanisms, transcripts related to oxidative stress, cell fate, and cell metabolism (Pdk1, Pdk2, Pdk4, Spr, Slc16a1, Slc16a3, Ppargc1a, Cs, Lgr5, Casp3, Tnfr2, Bax, Bcl2, Sod1, Sod2, and Cat) were measured, and untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was employed to profile the metabolic responses of colonocytes following exposure to butyrate and TNFα. We found that both butyrate and TNFα lowered cellular ATP levels towards a quiescent cell energy phenotype, characterized by decreased oxygen consumption and extracellular acidification. Co-treatment with butyrate ameliorated TNFα-induced cytotoxicity and the reduction in cell viability. Butyrate also opposed the TNFα-mediated decrease in MMP and mitochondrial-to-intracellular calcium ratios, suggesting that butyrate may protect colonocytes against TNFα-induced cytotoxicity by decreasing mitochondrial calcium flux. The relative expression levels of pyruvate dehydrogenase kinase 4 (Pdk4) were increased via co-treatment of butyrate and TNFα, suggesting the synergistic inhibition of glycolysis. TNFα alone reduced the expression of monocarboxylate transporters slc16a1 and slc16a3, suggesting effects of TNFα on butyrate uptake into colonocytes. Of the 185 metabolites that were detected with LC-MS, the TNFα-induced increase in biopterin produced the only significant change, suggesting an alteration in mitochondrial biogenesis in colonocytes. Considering the reports of elevated colonic TNFα and reduced butyrate metabolism in many conditions, including in hypertension, the present work sheds light on cellular interactions between TNFα and butyrate in colonocytes that may be important in understanding conditions of the colon.
Collapse
|
5
|
Park CH, Lee EJ, Kim HL, Lee YT, Yoon KJ, Kim HN. Sex-specific associations between gut microbiota and skeletal muscle mass in a population-based study. J Cachexia Sarcopenia Muscle 2022; 13:2908-2919. [PMID: 36218092 PMCID: PMC9745450 DOI: 10.1002/jcsm.13096] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A gut-muscle axis through which the microbiome influences skeletal muscle has been hypothesized. However, sex-specific association between the characteristics of gut microbiota and skeletal muscle mass has not yet been reported. Herein, we performed sex-specific analyses of faecal microbiota composition for the skeletal muscle mass in a population-based cohort. METHODS We collected faecal samples of 1052 middle-aged participants (621 men and 431 women) who attended health screenings, and we analysed the intestinal microbiota using 16S rRNA gene sequencing. Relative muscle mass was calculated using a bioelectrical impedance analysis and presented as the skeletal muscle mass index [SMI (%) = total appendicular muscle mass (kg)/weight (kg) × 100]. We categorized the subjects into four groups by the quartile of the SMI. Association tests between gut microbiota and SMI were conducted according to the microbial diversity, taxonomic profiling and functional inference in a sex-stratified manner. RESULTS The mean age and SMI of the total participants were 44.8 years (standard deviation [SD], 8.2) and 41.4% (SD, 3.9), respectively. After adjustments for possible covariates such as age, body mass index and regular physical activity, the highest quartile (Q4) group of SMI had higher alpha diversity than the lowest quartile (Q1) group in male participants (coefficient = 10.79, P < 0.05, linear regression model), whereas there was no difference in diversity among SMI groups in females. At the species level, Haemophilus parainfluenzae (coefficient = 1.910) and Roseburia faecis (coefficient = 1.536) were more abundant in the highest SMI (Q4) group than in the lowest SMI (Q1) group in males. However, no significant taxon was observed along the SMI groups in females. The gut microbiota of the lowest SMI group (Q1) was enriched with genes involved in biosynthesis of amino acids and energy generation compared with that of the highest SMI group (Q4) in both sexes, although the significance of the inferred pathways was weak (P < 0.05 but the false discovery rate q > 0.05). CONCLUSIONS In this large sample of middle-aged individuals, this study highlights fundamental sex-specific differences in the microbial diversity, composition and metabolic pathways inferred from gut microbiota according to SMI. The gut microbiota may provide novel insights into the potential mechanisms underlying the sex dependence of skeletal muscle mass.
Collapse
Affiliation(s)
- Chul-Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Eun-Ju Lee
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyung-Lae Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Yong-Taek Lee
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyung Jae Yoon
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.,Biomedical Institute for Convergence at SKKU, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Han-Na Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Chopra D, Arens RA, Amornpairoj W, Lowes MA, Tomic-Canic M, Strbo N, Lev-Tov H, Pastar I. Innate immunity and microbial dysbiosis in hidradenitis suppurativa - vicious cycle of chronic inflammation. Front Immunol 2022; 13:960488. [PMID: 35967376 PMCID: PMC9368759 DOI: 10.3389/fimmu.2022.960488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Hidradenitis Suppurativa (HS) is a chronic multifactorial inflammatory skin disease with incompletely understood mechanisms of disease pathology. HS is characterized by aberrant activation of the innate immune system, resulting in activation of pathways that aim to protect against pathogenic microorganisms, and also contribute to failure to resolve inflammation. Imbalance in innate immunity is evident in deregulation of host antimicrobial peptides (AMPs) and the complement system associated with the microbiome dysbiosis. The pathology is further complicated by ability of pathogens associated with HS to overcome host immune response. Potential roles of major AMPs, cathelicidin, defensins, dermcidin, S100 proteins, RNAse 7 and complement proteins are discussed. Dysregulated expression pattern of innate immunity components in conjunction with bacterial component of the disease warrants consideration of novel treatment approaches targeting both host immunity and pathogenic microbiome in HS.
Collapse
Affiliation(s)
- Divya Chopra
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rachel A. Arens
- College of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Watcharee Amornpairoj
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michelle A. Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hadar Lev-Tov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
7
|
Engelking LE, Ambrose DJ, Oba M. Effects of dietary butyrate supplementation and oral nonsteroidal anti-inflammatory drug administration on serum inflammatory markers and productivity of dairy cows during the calving transition. J Dairy Sci 2022; 105:4144-4155. [PMID: 35307174 DOI: 10.3168/jds.2021-21553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/07/2022] [Indexed: 01/12/2023]
Abstract
Dairy cattle experience inflammation during the calving transition period, and butyrate and nonsteroidal anti-inflammatory drugs (NSAID) are expected to reduce the inflammation. Our objective was to evaluate the effects of dietary butyrate supplementation and oral NSAID administration on feed intake, serum inflammatory markers, plasma metabolites, and milk production of dairy cows during the calving transition period. Eighty-three Holstein cows were used in the experiment with a 2 × 2 factorial arrangement of treatments. The cows were blocked by parity and calving date, and randomly assigned to a dietary butyrate or control supplement, and NSAID or a placebo oral administration. Experimental diets were iso-energetic containing calcium butyrate at 1.42% of diet dry matter (DM) or the control supplement (1.04% commercial fat supplement and 0.38% calcium carbonate of diet DM). The close-up diets contained 13.3% starch and 42.4% neutral detergent fiber on a DM basis, and were fed from 28 d before expected calving date until calving. The postpartum diets contained 22.1% starch and 34.1% neutral detergent fiber on a DM basis and were fed from calving to 24 d after calving. Oral NSAID (1 mg of meloxicam/kg of body weight) or placebo (food dye) was administered 12 to 24 h after calving. Dietary butyrate supplementation and oral NSAID administration did not affect milk yield or postpartum serum concentrations of amyloid A and haptoglobin. However, butyrate-fed cows increased plasma fatty acid concentration on d -4 relative to calving (501 vs. 340 μEq/L) and tended to increase serum haptoglobin concentration (0.23 vs. 0.10 mg/mL). There was a supplement by drug interaction effect on plasma glucose concentration on d 4; in cows administered the placebo drug, butyrate supplementation decreased plasma glucose concentration compared with control-fed cows (62.8 vs. 70.1 mg/dL). Butyrate-fed cows tended to have lower milk crude protein yield compared with cows fed the control diet (1.21 vs. 1.27 kg/d). Dietary butyrate supplementation and oral NSAID administration did not have overall positive effects on production performance of dairy cows during the calving transition period.
Collapse
Affiliation(s)
- L E Engelking
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - D J Ambrose
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - M Oba
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
8
|
Souders CL, Zubcevic J, Martyniuk CJ. Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension. Cell Mol Neurobiol 2022; 42:419-437. [PMID: 33594519 PMCID: PMC8364923 DOI: 10.1007/s10571-021-01044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The colonic epithelium is the site of production and transport of many vasoactive metabolites and neurotransmitters that can modulate the immune system, affect cellular metabolism, and subsequently regulate blood pressure. As an important interface between the microbiome and its host, the colon can contribute to the development of hypertension. In this critical review, we highlight the role of colonic inflammation and microbial metabolites on the gut brain axis in the pathology of hypertension, with special emphasis on the interaction between tumor necrosis factor α (TNFα) and short chain fatty acid (SCFA) metabolites. Here, we review the current literature and identify novel pathways in the colonic epithelium related to hypertension. A network analysis on transcriptome data previously generated in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats reveals differences in several pathways associated with inflammation involving TNFα (NF-κB and STAT Expression Targets) as well as oxidative stress. We also identify down-regulation of networks associated with gastrointestinal function, cardiovascular function, enteric nervous system function, and cholinergic and adrenergic transmission. The analysis also uncovered transcriptome responses related to glycolysis, butyrate oxidation, and mitochondrial function, in addition to gut neuropeptides that serve as modulators of blood pressure and metabolic function. We present a model for the role of TNFα in regulating bacterial metabolite transport and neuropeptide signaling in the gastrointestinal system, highlighting the complexity of host-microbiota interactions in hypertension.
Collapse
Affiliation(s)
- Christopher L. Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA. .,Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO BOX 100274, Gainesville, FL, 32611, USA.
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA,Corresponding authors contact information: Department of Physiological Sciences, College of Veterinary Medicine, University of Florida PO BOX 100274 GAINESVILLE FL 326100274 United States; and
| |
Collapse
|
9
|
The Complement System in the Central Nervous System: From Neurodevelopment to Neurodegeneration. Biomolecules 2022; 12:biom12020337. [PMID: 35204837 PMCID: PMC8869249 DOI: 10.3390/biom12020337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022] Open
Abstract
The functions of the complement system to both innate and adaptive immunity through opsonization, cell lysis, and inflammatory activities are well known. In contrast, the role of complement in the central nervous system (CNS) which extends beyond immunity, is only beginning to be recognized as important to neurodevelopment and neurodegeneration. In addition to protecting the brain against invasive pathogens, appropriate activation of the complement system is pivotal to the maintenance of normal brain function. Moreover, overactivation or dysregulation may cause synaptic dysfunction and promote excessive pro-inflammatory responses. Recent studies have provided insights into the various responses of complement components in different neurological diseases and the regulatory mechanisms involved in their pathophysiology, as well as a glimpse into targeting complement factors as a potential therapeutic modality. However, there remain significant knowledge gaps in the relationship between the complement system and different brain disorders. This review summarizes recent key findings regarding the role of different components of the complement system in health and pathology of the CNS and discusses the therapeutic potential of anti-complement strategies for the treatment of neurodegenerative conditions.
Collapse
|
10
|
Gasaly N, Hermoso MA, Gotteland M. Butyrate and the Fine-Tuning of Colonic Homeostasis: Implication for Inflammatory Bowel Diseases. Int J Mol Sci 2021; 22:ijms22063061. [PMID: 33802759 PMCID: PMC8002420 DOI: 10.3390/ijms22063061] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
This review describes current evidence supporting butyrate impact in the homeostatic regulation of the digestive ecosystem in health and inflammatory bowel diseases (IBDs). Butyrate is mainly produced by bacteria from the Firmicutes phylum. It stimulates mature colonocytes and inhibits undifferentiated malignant and stem cells. Butyrate oxidation in mature colonocytes (1) produces 70–80% of their energetic requirements, (2) prevents stem cell inhibition by limiting butyrate access to crypts, and (3) consumes oxygen, generating hypoxia and maintaining luminal anaerobiosis favorable to the microbiota. Butyrate stimulates the aryl hydrocarbon receptor (AhR), the GPR41 and GPR109A receptors, and inhibits HDAC in different cell types, thus stabilizing the gut barrier function and decreasing inflammatory processes. However, some studies indicate contrary effects according to butyrate concentrations. IBD patients exhibit a lower abundance of butyrate-producing bacteria and butyrate content. Additionally, colonocyte butyrate oxidation is depressed in these subjects, lowering luminal anaerobiosis and facilitating the expansion of Enterobacteriaceae that contribute to inflammation. Accordingly, gut dysbiosis and decreased barrier function in IBD seems to be secondary to the impaired mitochondrial disturbance in colonic epithelial cells.
Collapse
Affiliation(s)
- Naschla Gasaly
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Marcela A. Hermoso
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
| | - Martín Gotteland
- Department of Nutrition, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile;
- Department of Human Nutrition, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Santiago 7830490, Chile
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago 8380453, Chile
- Correspondence: ; Tel.: +56-989-059-222
| |
Collapse
|
11
|
Fukumori R, Oba M, Izumi K, Otsuka M, Suzuki K, Gondaira S, Higuchi H, Oikawa S. Effects of butyrate supplementation on blood glucagon-like peptide-2 concentration and gastrointestinal functions of lactating dairy cows fed diets differing in starch content. J Dairy Sci 2020; 103:3656-3667. [PMID: 32089297 DOI: 10.3168/jds.2019-17677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023]
Abstract
The objective of this study was to evaluate effects of butyrate supplementation on plasma concentration of glucagon-like peptide-2 (GLP-2), apparent total-tract digestibility, and responses to a grain challenge of lactating dairy cows fed diets differing in starch content. Eight Holstein cows averaging 58.6 ± 9.96 d in milk (4 primiparous cows fitted with rumen cannula and 4 multiparous intact cows) were blocked by parity and assigned to one of two 4 × 4 Latin squares balanced for carryover effects with a 2 × 2 factorial arrangement of treatments. Treatments were dietary starch content [20.6 vs. 27.5%, respectively, for low starch (LS) and high starch (HS)] and butyrate supplementation (butyrate vs. control) with 21-d periods. Butyrate was provided as Gustor BP70 WS (Norel, S.A., Madrid, Spain), containing 70% sodium butyrate and 30% fatty acid mixture, at 2% of dietary dry matter (providing butyrate at 1.1% of dietary dry matter), and control premix contained 70% wheat bran and 30% fatty acid mixture. Feeds, orts, and fecal samples were collected from d 17 to 19 to determine apparent total-tract nutrient digestibility. Blood and rumen fluid samples were collected on d 19. The baseline of dry matter intake (DMI) was determined as average DMI from d 17 to 19 for each cow, and cows were feed-restricted at 60% of the baseline DMI on d 20, and a grain challenge was conducted by providing steam-flaked corn grain at 0.6% of body weight, on an as-fed basis, in addition to each treatment diet on d 21, and blood and ruminal fluid samples were collected. The interaction of dietary starch content by butyrate supplementation was significant for plasma GLP-2 concentration, being greater for cows fed butyrate with the HS diet than those fed the other 3 diets. Cows fed butyrate increased n-butyrate concentration in the ruminal fluid and tended to increase dry matter and organic matter digestibility compared with the control. During the grain challenge, rumen endotoxin concentration increased over time and was higher for cows fed the HS diets compared with those fed LS diets. However, response variables related to inflammation were not affected by the grain challenge. However, serum haptoglobin, lipopolysaccharide-binding protein, and serum amyloid-A concentrations were greater for cows fed butyrate with the LS diet, but not for those fed the HS diet. These results indicate that butyrate supplementation may increase plasma GLP-2 concentration for cows fed HS diets, and total-tract digestibility regardless of dietary starch content. However, butyrate supplementation did not mitigate inflammation in this study.
Collapse
Affiliation(s)
- R Fukumori
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan 069-8501
| | - M Oba
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| | - K Izumi
- Department of Sustainable Agriculture, College of Agriculture, Food and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan 069-8501
| | - M Otsuka
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan 069-8501
| | - K Suzuki
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan 069-8501
| | - S Gondaira
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan 069-8501
| | - H Higuchi
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan 069-8501
| | - S Oikawa
- Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan 069-8501
| |
Collapse
|
12
|
Liu CF, Tang WW. Epigenetics in Cardiac Hypertrophy and Heart Failure. JACC Basic Transl Sci 2019; 4:976-993. [PMID: 31909304 PMCID: PMC6938823 DOI: 10.1016/j.jacbts.2019.05.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is a complex syndrome affecting millions of people around the world. Over the past decade, the therapeutic potential of targeting epigenetic regulators in HF has been discussed extensively. Recent advances in next-generation sequencing techniques have contributed substantial progress in our understanding of the role of DNA methylation, post-translational modifications of histones, adenosine triphosphate (ATP)-dependent chromatin conformation and remodeling, and non-coding RNAs in HF pathophysiology. In this review, we summarize epigenomic studies on human and animal models in HF.
Collapse
Key Words
- BET, bromodomain
- EZH2, Enhancer of zeste homolog 2
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDM, histone demethylase
- HF, heart failure
- HMT, histone methyltransferase
- PRC2, polycomb repressor complex 2
- PTMs, post-translational modifications
- TAD, topologically associating domains
- TMAO, trimethylamine N-oxide
- cardiac hypertrophy
- epigenetics
- heart failure
- lnc-RNAs, long ncRNAs
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - W.H. Wilson Tang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
13
|
Xiao T, Wu S, Yan C, Zhao C, Jin H, Yan N, Xu J, Wu Y, Li C, Shao Q, Xia S. Butyrate upregulates the TLR4 expression and the phosphorylation of MAPKs and NK-κB in colon cancer cell in vitro. Oncol Lett 2018; 16:4439-4447. [PMID: 30214578 PMCID: PMC6126326 DOI: 10.3892/ol.2018.9201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Microbiota and its induced inflammation in colorectal mucosa have been considered risk factors for the development of colorectal carcinogenesis. Previous studies demonstrated that the coexisting elements of microbiota in the gut, such as short chain fatty acids (SCFAs) and lipopolysaccharides (LPS), which exhibited regulatory effects on the intestinal epithelial cells individually. Unfortunately, the association between butyrate and the toll-like receptor (TLR) signaling pathway in the development of colon cancer is not fully elucidated. In the present study, by culturing human colon cancer SW480 cells or mouse colon cancer CT26 cells with butyrate and/or TLR4 ligand LPS in vitro, it was identified that butyrate suppressed the growth and promoted apoptosis of these cancer cells. Notably, the expression levels of TLR4 and CD14 were markedly increased on these butyrate-treated cells, but not on LPS-alone treated cells. Additionally, butyrate treatment induced the phosphorylation of extracellular signal-regulated kinase, tumor protein 38, c-Jun NH2-terminal kinase and nuclear factor-κB (NF-κB) p65, and then promoted the pro-inflammatory cytokine tumor necrosis factor-α, but not interleukin 6 secretion in SW480 and CT26 cells. Therefore, butyrate treatment regulates the expression of TLR4, mitogen-activated protein kinase and NF-κB signal pathway activation and pro-inflammatory response in vitro. Although the exact mechanisms have not been fully explored, these results suggested that butyrate and LPS-TLR4 signaling mediated innate immunity in colon cancer cells through two distinct but inter-regulated pathways. Thus, butyrate can further initiate innate immunity against tumor cells by upregulating the TLR4 expression and activation to preserve intestinal homeostasis.
Collapse
Affiliation(s)
- Tengfei Xiao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Shuiyun Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Clinical Laboratory, The Second People's Hospital of Wuhu, Wuhu, Anhui 241000, P.R. China
| | - Cheng Yan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Chuanxiang Zhao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Huimin Jin
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Nannan Yan
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jie Xu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yi Wu
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ci Li
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Institute of Laboratory Clinical Diagnostics, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
14
|
Su YN, Wu P, Feng L, Jiang WD, Jiang J, Zhang YA, Figueiredo-Silva C, Zhou XQ, Liu Y. The improved growth performance and enhanced immune function by DL-methionyl-DL-methionine are associated with NF-κB and TOR signalling in intestine of juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 74:101-118. [PMID: 29292200 DOI: 10.1016/j.fsi.2017.12.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effects of dietary DL-methionyl-DL-methionine (Met-Met) on growth performance, intestinal immune function and the underlying signalling molecules in juvenile grass carp (Ctenopharyngodon idella). Fish were fed one DL-methionine (DL-Met) group (2.50 g/kg diet) and six graded levels of Met-Met groups (0, 0.79, 1.44, 1.84, 2.22 and 2.85 g/kg diet) for 10 weeks, and then challenged with Aeromonas hydrophila for 14 days. Results indicated that the optimal Met-Met supplementation: (1) increased fish growth performance, intestinal lysozyme (LZ) and acid phosphatase (ACP) activities, complement (C3 and C4) and immunoglobulin M (IgM) contents, up-regulated hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, β-defensin-1 and Mucin2 mRNA levels; (2) down-regulated tumour necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-8 [only in the distal intestine (DI)], IL-12p35, IL-12p40 and IL-15 (not IL-17D) mRNA levels partially related to the down-regulation of IκB kinase β (IKKβ) and IKKγ (rather than IKKα), nuclear factor kappa B (NF-κB) p65 and c-Rel (rather than NF-κB p52) mRNA levels and the up-regulation of inhibitor of κBα (IκBα) mRNA levels; (3) up-regulated IL-4/13A, IL-4/13B, IL-6, IL-10, IL-11 and transforming growth factor (TGF)-β1 (not TGF-β2) mRNA levels partially associated with the target of rapamycin (TOR) signalling pathway [TOR/ribosomal protein S6 kinases 1 (S6K1), eIF4E-binding proteins (4E-BP)] in three intestinal segments of juvenile grass carp. These results suggest that Met-Met supplementation improves growth and intestinal immune function in fish. Furthermore, according to a positive effect, the optimal Met-Met supplementation was superior to the optimal DL-Met supplementation at improving the growth performance and enhancing the intestinal immune function in fish. Finally, based on percent weight gain (PWG), protection against enteritis morbidity and immune index (LZ activity), the optimal Met-Met supplementation for juvenile grass carp was estimated as 1.61, 1.64 and 1.68 g/kg diet, respectively, as the basal diet contains 8.03 g/kg total sulfur amino acids (TSAA) (4.26 g methionine/kg and 3.77 g cysteine/kg).
Collapse
Affiliation(s)
- Yue-Ning Su
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Claudia Figueiredo-Silva
- Evonik Nutrition & Care GmbH, NC, 10-B531, Postfach 1345, Rodenbacher Chausse 4, 63404 Hanau, Germany
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
15
|
Kanauchi O, Mitsuyama K, Araki Y. Development of a Functional Germinated Barley Foodstuff from Brewer's Spent Grain for the Treatment of Ulcerative Colitis. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-59-0059] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Osamu Kanauchi
- Applied Bioresearch CTR, Corporated R&D DIV, Kirin Brewery Co., Ltd. 3-Miyahara, Takasaki, Gunma, 370-1295, Japan
| | - Keiichi Mitsuyama
- Second Department of Medicine, Kurume University School of Medicine, Asahi-machi 67, Kurume 830, Japan
| | - Yoshio Araki
- Department of Internal Medicine, Shiga University of Medical Science, STsukinowa-cho, Seta, Otsu, Shiga, 520-21, Japan
| |
Collapse
|
16
|
Andoh A. Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion 2017; 93:176-81. [PMID: 26859303 DOI: 10.1159/000444066] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND The human body is colonized by an extremely complex and abundant aggregation of microbes, collectively referred to as the gut microbiota. Recent studies have focused on the link between these microbes and our health. SUMMARY Diet contributes to shaping the gut microbial structure and influences metabolic functions of the host. Alteration of the microbial structure and function (dysbiosis) is associated with the pathogenesis of various disorders. Fermentation is the process by which anaerobic bacteria (Firmicutes and Bacteroidetes) break down indigestible carbohydrates to short-chain fatty acids (SCFAs; acetate, propionate and butyrate), collaborating with species specialized in oligosaccharide fermentation (e.g. Bifidobacteria). Butyrate and propionate can regulate intestinal physiology and immune function, while acetate acts as a substrate for lipogenesis and gluconeogenesis. The gut microbiota regulates immune homeostasis via the induction of regulatory T cells and Th17 cells. In addition, butyrate has strong anti-inflammatory effects possibly through the inhibition of histone deacetylase activity. Metabolic products generated by the gut microbiota, such as SCFAs, GABA, tryptophan, serotonin and catecholamine, transmit a signal to resident cells in the gut. KEY MESSAGE Advances made in the DNA sequencing technology and bioinformatics have revolutionized our understanding of the microbes in the gut.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Japan
| |
Collapse
|
17
|
Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, Inatomi O, Bamba S, Sugimoto M, Andoh A. Reduced Abundance of Butyrate-Producing Bacteria Species in the Fecal Microbial Community in Crohn's Disease. Digestion 2016; 93:59-65. [PMID: 26789999 DOI: 10.1159/000441768] [Citation(s) in RCA: 481] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The global alteration of the gut microbial community (dysbiosis) plays an important role in the pathogenesis of inflammatory bowel diseases (IBDs). However, bacterial species that characterize dysbiosis in IBD remain unclear. In this study, we assessed the alteration of the fecal microbiota profile in patients with Crohn's disease (CD) using 16S rRNA sequencing. SUMMARY Fecal samples from 10 inactive CD patients and 10 healthy individuals were subjected to 16S rRNA sequencing. The V3-V4 hypervariable regions of 16S rRNA were sequenced by the Illumina MiSeq™II system. The average of 62,201 reads per CD sample was significantly lower than the average of 73,716 reads per control sample. The genera Bacteroides, Eubacterium, Faecalibacterium and Ruminococcus significantly decreased in CD patients as compared to healthy controls. In contrast, the genera Actinomyces and Bifidobacterium significantly increased in CD patients. At the species level, butyrate-producing bacterial species, such as Blautia faecis, Roseburia inulinivorans, Ruminococcus torques, Clostridium lavalense, Bacteroides uniformis and Faecalibacterium prausnitzii were significantly reduced in CD patients as compared to healthy individuals (p < 0.05). These results of 16S rRNA sequencing were confirmed in additional CD patients (n = 68) and in healthy controls (n = 46) using quantitative PCR. The abundance of Roseburia inulinivorans and Ruminococcus torques was significantly lower in C-reactive protein (CRP)-positive CD patients as compared to CRP-negative CD patients (p < 0.05). KEY MESSAGE The dysbiosis of CD patients is characterized by reduced abundance of multiple butyrate-producing bacteria species.
Collapse
Affiliation(s)
- Kenichiro Takahashi
- Department of Medicine, Shiga University of Medical Science, Seta-Tukinowa, Otsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zou F, Zeng D, Wen B, Sun H, Zhou Y, Yang M, Peng Z, Xu S, Wang H, Fu X, Du D, Zeng Y, Zhu H, Pan K, Jing B, Wang P, Ni X. Illumina Miseq platform analysis caecum bacterial communities of rex rabbits fed with different antibiotics. AMB Express 2016; 6:100. [PMID: 27770389 PMCID: PMC5074941 DOI: 10.1186/s13568-016-0273-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/14/2016] [Indexed: 12/15/2022] Open
Abstract
Antibiotics have been widely used for the prevention and the treatment of diseases to humans and animals, and they have fed additives for agricultural animals to promote growth. However, there is a growing concern over the practice due to its side effects on intestinal microbial communities which plays a vital role in animals' health. To investigate the effect of antibiotics on the bacterial population of the caecum in rex rabbits, 80 rex rabbits were randomly divided into four groups: control group (B, basal diet), chlortetracycline group (C, 50 mg/kg), colistin sulfate group (S, 20 mg/kg) and zinc bacitracin group (Z, 40 mg/kg). Caecum microbial communities of rex rabbits from the four groups were analyzed through Illumina Miseq platform after being fed 28 days. The results showed that most obtained sequences belongs to Firmicutes followed by Bacteroidetes, and the ratio of Bacteroidetes/Firmicutes in C group (42.31 %) was higher than that in Z group (21.84 %). Zinc bacitracin supplementation caused a significant decreased of the Proteobacteria phylum and Lactobacillus spp. (P < 0.05), while the Lactobacillus spp. significantly increased in S group (P < 0.05). In addition, Ruminococcus spp., especially Ruminococcus albus were the predominant bacterial species found in both S and Z groups. The proportion of Coprococcus spp. significantly increased in Z group (P < 0.05). These findings suggested that the antibiotics used may cause significant changes in the caecum microbiota of rex rabbits, and we also found C group had a similarity caecum bacteria structure with B group which was probably due to the high levels of chlortetracycline resistance.
Collapse
|
19
|
Asarat M, Vasiljevic T, Apostolopoulos V, Donkor O. Short-Chain Fatty Acids Regulate Secretion of IL-8 from Human Intestinal Epithelial Cell Linesin vitro. Immunol Invest 2015; 44:678-93. [DOI: 10.3109/08820139.2015.1085389] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Yoshimatsu Y, Yamada A, Furukawa R, Sono K, Osamura A, Nakamura K, Aoki H, Tsuda Y, Hosoe N, Takada N, Suzuki Y. Effectiveness of probiotic therapy for the prevention of relapse in patients with inactive ulcerative colitis. World J Gastroenterol 2015; 21:5985-5994. [PMID: 26019464 PMCID: PMC4438034 DOI: 10.3748/wjg.v21.i19.5985] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/15/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effectiveness of probiotic therapy for suppressing relapse in patients with inactive ulcerative colitis (UC).
METHODS: Bio-Three tablets, each containing 2 mg of lactomin (Streptococcus faecalis T-110), 10 mg of Clostridium butyricum TO-A, and 10 mg of Bacillus mesentericus TO-A, were used as probiotic therapy. Sixty outpatients with UC in remission were randomly assigned to receive 9 Bio-Three tablets/day (Bio-Three group) or 9 placebo tablets/day (placebo group) for 12 mo in addition to their ongoing medications. Clinical symptoms were evaluated monthly or on the exacerbation of symptoms or need for additional medication. Fecal samples were collected to analyze bacterial DNA at baseline and 3-mo intervals. Terminal restriction fragment length polymorphism and cluster analyses were done to examine bacterial components of the fecal microflora.
RESULTS: Forty-six patients, 23 in each group, completed the study, and 14 were excluded. The relapse rates in the Bio-Three and placebo groups were respectively 0.0% vs 17.4% at 3 mo (P = 0.036), 8.7% vs 26.1% at 6 mo (P = 0.119), and 21.7% vs 34.8% (P = 0.326) at 9 mo. At 12 mo, the remission rate was 69.5% in the Bio-Three group and 56.6% in the placebo group (P = 0.248). On cluster analysis of fecal flora, 7 patients belonged to cluster I, 32 to cluster II, and 7 to cluster III.
CONCLUSION: Probiotics may be effective for maintaining clinical remission in patients with quiescent UC, especially those who belong to cluster I on fecal bacterial analysis.
Collapse
|
21
|
Kasama Y, Mizukami T, Kusunoki H, Peveling-Oberhag J, Nishito Y, Ozawa M, Kohara M, Mizuochi T, Tsukiyama-Kohara K. B-cell-intrinsic hepatitis C virus expression leads to B-cell-lymphomagenesis and induction of NF-κB signalling. PLoS One 2014; 9:e91373. [PMID: 24651473 PMCID: PMC3961254 DOI: 10.1371/journal.pone.0091373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection leads to the development of hepatic diseases, as well as extrahepatic disorders such as B-cell non-Hodgkin's lymphoma (B-NHL). To reveal the molecular signalling pathways responsible for HCV-associated B-NHL development, we utilised transgenic (Tg) mice that express the full-length HCV genome specifically in B cells and develop non-Hodgkin type B-cell lymphomas (BCLs). The gene expression profiles in B cells from BCL-developing HCV-Tg mice, from BCL-non-developing HCV-Tg mice, and from BCL-non-developing HCV-negative mice were analysed by genome-wide microarray. In BCLs from HCV-Tg mice, the expression of various genes was modified, and for some genes, expression was influenced by the gender of the animals. Markedly modified genes such as Fos, C3, LTβR, A20, NF-κB and miR-26b in BCLs were further characterised using specific assays. We propose that activation of both canonical and alternative NF-κB signalling pathways and down-regulation of miR-26b contribute to the development of HCV-associated B-NHL.
Collapse
Affiliation(s)
- Yuri Kasama
- Department of Experimental Phylaxiology, Faculty of Life Sciences, Kumamoto University, Kumamoto-shi, Kumamoto, Japan
| | - Takuo Mizukami
- Department of Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama-shi, Tokyo, Japan
| | - Hideki Kusunoki
- Department of Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama-shi, Tokyo, Japan
| | | | - Yasumasa Nishito
- Center for Microarray Analysis, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Tokyo, Japan
| | - Makoto Ozawa
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Tokyo, Japan
| | - Toshiaki Mizuochi
- Department of Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama-shi, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
22
|
Havenaar R. Intestinal health functions of colonic microbial metabolites: a review. Benef Microbes 2013; 2:103-14. [PMID: 21840809 DOI: 10.3920/bm2011.0003] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review tries to find a scientific answer on the following two questions: (1) to what extent do we understand the specific role of colonic microbial metabolites, especially short-chain fatty acids (SCFA), in maintaining the health status and prevention of diseases of the colon and the host; (2) to what extent can we influence or even control the formation of colonic microbial metabolites which are beneficial for the health status. The review focuses on the following topics: energy source, intestinal motility, defence barrier, oxidative stress with special attention for antiinflammatory and anti-carcinogen functions, and satiety. Also the risk of overproduction of SCFA is discussed. Reviewing the literature as present today, it can be concluded that physiological levels of SCFA are vital for the health and well-being of the host and that the presence of carbohydrates (dietary fibre, prebiotics) is essential to favour the metabolic activity in the direction of carbohydrate fermentation. For optimal motor activity of the ileum and colon, to regulate the physiological intestinal mobility, steadily fermentable dietary fibres or prebiotics are crucial. The formation of SCFA, especially propionate and butyrate, up to high physiological levels in the colon, much likely also contributes to the defence mechanisms of the intestinal wall. No final answer can be given yet about the role of SCFA in anti-inflammation and anti-carcinogenicity, but recently published research shows possible mechanisms in this field. The intake of prebiotics or specific dietary fibres promotes the formation of SCFA within the physiological range, and more or less specifically increases the levels of propionate and butyrate. In this way, they provide benefit to the host, especially the natural regulation of the digestive system.
Collapse
|
23
|
Fujimoto T, Imaeda H, Takahashi K, Kasumi E, Bamba S, Fujiyama Y, Andoh A. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol 2013; 28:613-9. [PMID: 23216550 DOI: 10.1111/jgh.12073] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Dysbiosis is thought to be relevant to the etiology and pathogenesis of Crohn's disease (CD). In this study, we investigated the abundance of Faecalibacterium prausnitzii, as well as Bilophila wadsworthia, in the gut microbiota of Japanese CD patients. METHODS Forty-seven CD patients and 20 healthy controls were enrolled. Abundance of F. prausnitzii in fecal samples was quantified by real-time polymerase chain reaction. The gut microbiota profile was evaluated by terminal restriction fragment length polymorphisms. RESULTS The abundance of F. prausnitzii significantly decreased in CD patients compared with healthy subjects. B. wadsworthia was scarcely detected in the same samples. Among CD patients, the Crohn's Disease Activity Index, C-reactive protein levels, and erythrocyte sedimentation rate were significantly lower, and serum albumin levels were significantly higher in the high F. prausnitzii group compared with the low group. Terminal restriction fragment length polymorphisms analysis showed that fecal bacterial communities of CD patients differed from those of healthy individuals. The changes in simulated bacterial composition indicated that class Clostridia, including genus Faecalibacterium, was significantly less abundant in CD patients as compared with healthy individuals. The bacterial diversity measured by the Shannon Diversity Index was significantly reduced in CD patients compared with healthy individuals. CONCLUSION The decreased abundance of class Clostridia, including F. prausnitzii, may translate into a reduction of commensal bacteria-mediated, anti-inflammatory activities in the mucosa, which are relevant to the pathophysiology of CD. In contrast, the role of B. wadsworthia was suspected to be minimal.
Collapse
Affiliation(s)
- Takehide Fujimoto
- Division of Mucosal Immunology, Graduate School, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Iwaya H, Lee JS, Yamagishi S, Shinoki A, Lang W, Thawornkuno C, Kang HK, Kumagai Y, Suzuki S, Kitamura S, Hara H, Okuyama M, Mori H, Kimura A, Ishizuka S. The delay in the development of experimental colitis from isomaltosyloligosaccharides in rats is dependent on the degree of polymerization. PLoS One 2012; 7:e50658. [PMID: 23209802 PMCID: PMC3510184 DOI: 10.1371/journal.pone.0050658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 10/23/2012] [Indexed: 12/25/2022] Open
Abstract
Background Isomaltosyloligosaccharides (IMO) and dextran (Dex) are hardly digestible in the small intestine and thus influence the luminal environment and affect the maintenance of health. There is wide variation in the degree of polymerization (DP) in Dex and IMO (short-sized IMO, S-IMO; long-sized IMO, L-IMO), and the physiological influence of these compounds may be dependent on their DP. Methodology/Principal Findings Five-week-old male Wistar rats were given a semi-purified diet with or without 30 g/kg diet of the S-IMO (DP = 3.3), L-IMO (DP = 8.4), or Dex (DP = 1230) for two weeks. Dextran sulfate sodium (DSS) was administered to the rats for one week to induce experimental colitis. We evaluated the clinical symptoms during the DSS treatment period by scoring the body weight loss, stool consistency, and rectal bleeding. The development of colitis induced by DSS was delayed in the rats fed S-IMO and Dex diets. The DSS treatment promoted an accumulation of neutrophils in the colonic mucosa in the rats fed the control, S-IMO, and L-IMO diets, as assessed by a measurement of myeloperoxidase (MPO) activity. In contrast, no increase in MPO activity was observed in the Dex-diet-fed rats even with DSS treatment. Immune cell populations in peripheral blood were also modified by the DP of ingested saccharides. Dietary S-IMO increased the concentration of n-butyric acid in the cecal contents and the levels of glucagon-like peptide-2 in the colonic mucosa. Conclusion/Significance Our study provided evidence that the physiological effects of α-glucosaccharides on colitis depend on their DP, linkage type, and digestibility.
Collapse
Affiliation(s)
- Hitoshi Iwaya
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jae-Sung Lee
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shinya Yamagishi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Aki Shinoki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Weeranuch Lang
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | - Hee-Kwon Kang
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuya Kumagai
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shiho Suzuki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Shinichi Kitamura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Hiroshi Hara
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Satoshi Ishizuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
25
|
Raqib R, Sarker P, Mily A, Alam NH, Arifuzzaman ASM, Rekha RS, Andersson J, Gudmundsson GH, Cravioto A, Agerberth B. Efficacy of sodium butyrate adjunct therapy in shigellosis: a randomized, double-blind, placebo-controlled clinical trial. BMC Infect Dis 2012; 12:111. [PMID: 22574737 PMCID: PMC3447723 DOI: 10.1186/1471-2334-12-111] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/02/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Treatment of shigellosis in rabbits with butyrate reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. Here, we aimed to evaluate whether butyrate can be used as an adjunct to antibiotics in the treatment of shigellosis in patients. METHODS A randomized, double-blind, placebo-controlled, parallel-group designed clinical trial was conducted. Eighty adult patients with shigellosis were randomized to either the Intervention group (butyrate, n = 40) or the Placebo group (normal saline, n = 40). The Intervention group was given an enema containing sodium butyrate (80 mM), twice daily for 3 days, while the Placebo group received the same dose of normal saline. The primary endpoint of the trial was to assess the efficacy of butyrate in improving clinical, endoscopic and histological features of shigellosis. The secondary endpoint was to study the effect of butyrate on the induction of antimicrobial peptides in the rectum. Clinical outcomes were assessed and concentrations of antimicrobial peptides (LL-37, human beta defensin1 [HBD-1] and human beta defensin 3 [HBD-3]) and pro-inflammatory cytokines (interleukin-1β [IL-1β] and interleukin-8 [IL-8]) were measured in the stool. Sigmoidoscopic and histopathological analyses, and immunostaining of LL-37 in the rectal mucosa were performed in a subgroup of patients. RESULTS Compared with placebo, butyrate therapy led to the early reduction of macrophages, pus cells, IL-8 and IL-1β in the stool and improvement in rectal histopathology. Butyrate treatment induced LL-37 expression in the rectal epithelia. Stool concentration of LL-37 remained significantly higher in the Intervention group on days 4 and 7. CONCLUSION Adjunct therapy with butyrate during shigellosis led to early reduction of inflammation and enhanced LL-37 expression in the rectal epithelia with prolonged release of LL-37 in the stool. TRIAL REGISTRATION ClinicalTrials.gov, NCT00800930.
Collapse
Affiliation(s)
- Rubhana Raqib
- International Centre for Diarrheal Disease Research, Dhaka, Bangladesh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Andoh A, Imaeda H, Aomatsu T, Inatomi O, Bamba S, Sasaki M, Saito Y, Tsujikawa T, Fujiyama Y. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn's disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol 2011; 46:479-86. [PMID: 21253779 DOI: 10.1007/s00535-010-0368-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/21/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Terminal restriction fragment length polymorphism (T-RFLP) analysis is a powerful tool to assess the diversity of a microbial community. In this study, we performed T-RFLP analysis of the fecal microbiota from patients with ulcerative colitis (UC) and those with Crohn's disease (CD). METHODS Thirty-one patients with UC, 31 patients with CD, and 30 healthy individuals were enrolled. The polymerase chain reaction (PCR) products obtained from the 16S rRNA genes of fecal samples were digested with BslI, and T-RF lengths were determined. RESULTS The fecal microbial communities were classified into 5 clusters. Twenty-eight of the 30 healthy individuals and 17 of the 18 patients with inactive UC were classified into clusters I, II, and III, but these clusters included a small number of patients with active UC and inactive/active CD. In contrast, 8 of the 13 patients with active UC and the majority of CD patients (12 of the 16 patients with inactive CD, and 11 of the 15 patients with active CD) were included in clusters IV and V. Based on the BslI-digested T-RFLP database, the bacteria showed a significant decrease in the Clostridium family in patients with active UC and inactive/active CD. In contrast, Bacteroides were significantly increased in CD patients. No significant differences were observed between patients with active UC and those with active CD. CONCLUSION The fecal microbial communities of IBD patients were different from those of healthy individuals. The gut microbiota of patients with inactive UC tended to be closer to that of healthy individuals, suggesting different roles for the fecal microbiota in the pathophysiology of UC and CD.
Collapse
Affiliation(s)
- Akira Andoh
- Division of Mucosal Immunology, Graduate School of Medicine, Shiga University of Medical Science, Seta Tsukinowa, Otsu 520-2192, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Faghfoori Z, Navai L, Shakerhosseini R, Somi MH, Nikniaz Z, Norouzi MF. Effects of an oral supplementation of germinated barley foodstuff on serum tumour necrosis factor-alpha, interleukin-6 and -8 in patients with ulcerative colitis. Ann Clin Biochem 2011; 48:233-7. [PMID: 21367884 DOI: 10.1258/acb.2010.010093] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The efficacy of germinated barley foodstuff (GBF) on tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and -8 (IL-8) in patients with ulcerative colitis (UC) has not yet been examined. The aim of the present study was to determine the effect of administration of GBF on serum TNF-α, IL-6 and -8 levels in UC patients in remission. METHODS Forty-one patients with UC were divided into two groups, namely control and GBF group. Twenty-one patients in the control group received standard treatment while 20 patients in the GBF group received 30 g of GBF daily by oral administration during two months of the study along with standard drug therapy. RESULTS Levels of TNF-α, IL-6 and -8 all decreased in the GBF group compared with baseline during the two-month study, while in the control group all values rose. For IL-6 and -8 this effect was significant, P = 0.034 and 0.013, respectively. CONCLUSIONS The results of the present study showed that the consumption of GBF may reduce the level of serum TNF-α, IL-6 and -8 in patients with UC. This investigation was designed as a pilot study and the results may provide a basis for more future clinical trials.
Collapse
Affiliation(s)
- Zeinab Faghfoori
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | | | | | | | | | | |
Collapse
|
28
|
Kobori A, Bamba S, Imaeda H, Ban H, Tsujikawa T, Saito Y, Fujiyama Y, Andoh A. Butyrate stimulates IL-32α expression in human intestinal epithelial cell lines. World J Gastroenterol 2010; 16:2355-61. [PMID: 20480520 PMCID: PMC2874139 DOI: 10.3748/wjg.v16.i19.2355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the effects of butyrate on interleukin (IL)-32α expression in epithelial cell lines.
METHODS: The human intestinal epithelial cell lines HT-29, SW480, and T84 were used. Intracellular IL-32α was determined by Western blotting analyses. IL-32α mRNA expression was analyzed by real-time polymerase chain reaction.
RESULTS: Acetate and propionate had no effects on IL-32α mRNA expression. Butyrate significantly enhanced IL-32α expression in all cell lines. Butyrate also up-regulated IL-1β-induced IL-32α mRNA expression. Butyrate did not modulate the activation of phosphatidylinositol 3-kinase (PI3K), a mediator of IL-32α expression. Like butyrate, trichostatin A, a histone deacetylase inhibitor, also enhanced IL-1β-induced IL-32α mRNA expression.
CONCLUSION: Butyrate stimulated IL-32α expression in epithelial cell lines. An epigenetic mechanism, such as histone hyperacetylation, might be involved in the action of butyrate on IL-32α expression.
Collapse
|
29
|
Cao Q, Zhang L, Yang G, Xu C, Wang R. Butyrate-stimulated H2S production in colon cancer cells. Antioxid Redox Signal 2010; 12:1101-9. [PMID: 19803745 DOI: 10.1089/ars.2009.2915] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Butyrate is a short-chain fatty acid that arrests growth of various types of cells. H(2)S can be endogenously produced by cystathionine gamma-lyase (CSE) or cystathionine beta-synthase (CBS) or both in colonic tissues. In this study, we observed endogenous H(2)S production in a colon cancer cell line (WiDr) and colonic tissues through the activity of both CSE and CBS. After 24 h of incubation of WiDr cells, butyrate increased cell production of H(2)S and upregulated CBS and CSE expressions. Both butyrate and NaHS (a H(2)S donor) decreased cell viability in a dose-dependent manner. Blockade of CBS, but not CSE, decreased butyrate-stimulated H(2)S production and reversed butyrate-inhibited cell viability. In addition, NaHS treatment stimulated the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), but not c-Jun N-terminal kinase (JNK). Inhibition of the phosphorylation of either p38 MAPK or ERK did not abolish NaHS-induced cell death. Butyrate treatment increased the phosphorylation of ERK, not p38 MAPK and JNK, but inhibition of ERK and p38 MAPK phosphorylation did not inhibit butyrate-reduced cell viability. In conclusion, butyrate regulates endogenous H(2)S production by stimulating CBS expression in colon cancer cells, but butyrate and H(2)S inhibit cancer cell growth through different mechanisms.
Collapse
Affiliation(s)
- Qiuhui Cao
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Nishimura T, Andoh A, Hashimoto T, Kobori A, Tsujikawa T, Fujiyama Y. Cellobiose Prevents the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis. J Clin Biochem Nutr 2010; 46:105-10. [PMID: 20216942 PMCID: PMC2831088 DOI: 10.3164/jcbn.09-72] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 09/08/2009] [Indexed: 02/06/2023] Open
Abstract
Cellobiose is produced from cellulose using specific bacterial enzymes, and is hydrolyzed into glucose by the enzymes cellobiosidase and cellulase. In this study, we examined the effects of cellobiose on colonic mucosal damage in a dextran sulfate sodium (DSS) colitis model. BALB/c mice were divided into two groups. In the first group, the mice were fed 3.5% DSS mixed with normal chow. In the second group, the mice were fed 3.5% DSS plus 6.0 or 9.0% (weight/weight) cellobiose mixed with normal chow. The development of colitis was assessed on day 21. Mucosal cytokine expression was analyzed by RT-PCR. Body weight loss was significantly attenuated in the 9.0% cellobiose-fed DSS mice as compared to the DSS mice. Colonic weight/length ratio, a maker of tissue edema, was significantly higher in the DSS mice than in the 9.0% cellobiose-fed DSS mice. The disease activity index and histological colitis score were also significantly higher in the DSS mice than in the 9.0% cellobiose-fed DSS mice. Mucosal mRNA expression for IL-1β, TNF-α, IL-17 and IP-10 were markedly reduced in the 9.0% cellobiose-fed DSS mice. In conclusion, a preventive effect of cellobiose against DSS colitis suggests its clinical use for inflammatory bowel diseases patients.
Collapse
Affiliation(s)
- Takashi Nishimura
- Department of Medicine, Shiga University of Medical Science, Seta Tukinowa, Otsu 520-2192, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Sugihara T, Kobori A, Imaeda H, Tsujikawa T, Amagase K, Takeuchi K, Fujiyama Y, Andoh A. The increased mucosal mRNA expressions of complement C3 and interleukin-17 in inflammatory bowel disease. Clin Exp Immunol 2010; 160:386-93. [PMID: 20089077 DOI: 10.1111/j.1365-2249.2010.04093.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent studies have demonstrated that the complement system participates in the regulation of T cell functions. To address the local biosynthesis of complement components in inflammatory bowel disease (IBD) mucosa, we investigated C3 and interleukin (IL)-17 mRNA expression in mucosal samples obtained from patients with IBD. The molecular mechanisms underlying C3 induction were investigated in human colonic subepithelial myofibroblasts (SEMFs). IL-17 and C3 mRNA expressions in the IBD mucosa were evaluated by real-time polymerase chain reaction. The C3 levels in the supernatant were determined by enzyme-linked immunosorbent assay. IL-17 and C3 mRNA expressions were elevated significantly in the active lesions from ulcerative colitis (UC) and Crohn's disease (CD) patients. There was a significant positive correlation between IL-17 and C3 mRNA expression in the IBD mucosa. IL-17 stimulated a dose- and time-dependent increase in C3 mRNA expression and C3 secretion in colonic SEMFs. The C3 molecules secreted by colonic SEMFs were a 115-kDa alpha-chain linked to a 70-kDa beta-chain by disulphide bonds, which was identical to serum C3. The IL-17-induced C3 mRNA expression was blocked by p42/44 mitogen-activated protein kinase (MAPK) inhibitors (PD98059 and U0216) and a p38 MAPK inhibitor (SB203580). Furthermore, IL-17-induced C3 mRNA expression was inhibited by an adenovirus containing a stable mutant form of I kappaB alpha. C3 and IL-17 mRNA expressions are enhanced, with a strong correlation, in the inflamed mucosa of IBD patients. Part of these clinical findings was considered to be mediated by the colonic SEMF response to IL-17.
Collapse
Affiliation(s)
- T Sugihara
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mason KL, Huffnagle GB. Control of mucosal polymicrobial populations by innate immunity. Cell Microbiol 2009; 11:1297-305. [DOI: 10.1111/j.1462-5822.2009.01347.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Inhibitory effects of short-chain fatty acids on matrix metalloproteinase secretion from human colonic subepithelial myofibroblasts. Dig Dis Sci 2009; 54:238-45. [PMID: 18629644 DOI: 10.1007/s10620-008-0348-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 05/15/2008] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Short-chain fatty acids (SCFAs), such as acetate, propionate and butyrate, are the major by-product of bacterial fermentation of dietary fiber in the colon. In this report, we investigated how SCFAs modulate matrix metalloproteinase (MMP) secretion from human colonic subepithelial myofibroblasts (SEMFs). MATERIALS AND METHODS SEMFs were identified by expression of alpha-smooth muscle actin and vimentin. Cytokine-induced MMP-1 and MMP-3 levels were determined by enzyme-linked immunosorbent assay. Cytokine-induced MMP mRNA expression was analyzed by RT-PCR and real-time PCR methods. RESULTS Acetate had no effect on MMP secretion. Propionate and butyrate significantly attenuated IL-1 beta- and TNF-alpha-induced MMP-1 and MMP-3 secretion. Similar responses were also observed at the mRNA levels. Propionate and butyrate did not modulate IL-1 beta- and TNF-alpha-induced activation of mitogen-activated protein kinases (MAPKs), which play a crucial role in MMP induction. Trichostatin A, a histone-deacetylase inhibitor, reduced IL-1 beta-induced MMP-1 and MMP-3 mRNA expression, and suppressed TNF-alpha-induced MMP-3 mRNA expression. CONCLUSION SCFAs play an anti-inflammatory role through suppression of MMP secretion in the colon. Inhibitory effects of SCFAs on MMP secretion might be associated with their action of histone hyperacetylation.
Collapse
|
34
|
Andoh A, Tsujikawa T, Sasaki M, Mitsuyama K, Suzuki Y, Matsui T, Matsumoto T, Benno Y, Fujiyama Y. Faecal microbiota profile of Crohn's disease determined by terminal restriction fragment length polymorphism analysis. Aliment Pharmacol Ther 2009; 29:75-82. [PMID: 18945264 DOI: 10.1111/j.1365-2036.2008.03860.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Terminal restriction fragment length polymorphism (T-RFLP) analyses are powerful tools to assess the diversity of complex microbiota. T-RFLPs permit rapid comparisons of microbiota from many samples. AIM To perform T-RFLP analyses of faecal microbiota in Crohn's disease (CD) patients to investigate potential alterations in faecal microbial communities and furthermore to analyse the effects of elemental diet on faecal microbiota profiles. METHODS Thirty-four patients with CD and 30 healthy individuals were enrolled in the study. DNA was extracted from stool samples and 16S rRNA genes were amplified by PCR. PCR products were digested with BslI restriction enzymes and T-RF lengths were determined. RESULTS Faecal microbial communities were classified into seven clusters. Almost all healthy individuals (28/30) were included in cluster I, II and III, but the majority of CD patients (25/34) could be divided into another four clusters (cluster IV-VII). Prediction of bacteria based on the BslI-digested T-RFLP database showed a significant decrease in Clostridium cluster IV, Clostridium cluster XI and subcluster XIVa in CD patients. In contrast, Bacteroides significantly increased in CD patients. Significant increases in Enterobacteriales were also observed in CD patients. Furthermore, elemental diets modulated faecal bacterial communities in CD patients. CONCLUSIONS Terminal restriction fragment length polymorphism analyses showed that the diversity of faecal microbiota in patients with CD differed from that of healthy individuals. Furthermore, elemental diets modulated faecal microbiota composition, and this effect may be involved in mechanisms of clinical effects of elemental diet.
Collapse
Affiliation(s)
- A Andoh
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The protective potency of probiotic bacteria and their microbial products against enteric infections-review. Folia Microbiol (Praha) 2008; 53:189-94. [DOI: 10.1007/s12223-008-0023-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/17/2008] [Indexed: 01/01/2023]
|
36
|
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27:104-19. [PMID: 17973645 DOI: 10.1111/j.1365-2036.2007.03562.x] [Citation(s) in RCA: 1748] [Impact Index Per Article: 109.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Butyrate, a short-chain fatty acid, is a main end-product of intestinal microbial fermentation of mainly dietary fibre. Butyrate is an important energy source for intestinal epithelial cells and plays a role in the maintenance of colonic homeostasis. AIM To provide an overview on the present knowledge of the bioactivity of butyrate, emphasizing effects and possible mechanisms of action in relation to human colonic function. METHODS A PubMed search was performed to select relevant publications using the search terms: 'butyrate, short-chain fatty acid, fibre, colon, inflammation, carcinogenesis, barrier, oxidative stress, permeability and satiety'. RESULTS Butyrate exerts potent effects on a variety of colonic mucosal functions such as inhibition of inflammation and carcinogenesis, reinforcing various components of the colonic defence barrier and decreasing oxidative stress. In addition, butyrate may promote satiety. Two important mechanisms include the inhibition of nuclear factor kappa B activation and histone deacetylation. However, the observed effects of butyrate largely depend on concentrations and models used and human data are still limited. CONCLUSION Although most studies point towards beneficial effects of butyrate, more human in vivo studies are needed to contribute to our current understanding of butyrate-mediated effects on colonic function in health and disease.
Collapse
Affiliation(s)
- H M Hamer
- TI Food and Nutrition, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Inflammatory bowel disease (IBD) is characterized by an exaggerated immune response that involves pro-inflammatory cytokines including IL-8. Production of these pro-inflammatory cytokines is triggered by pathogen-associated molecular patterns (PAMP). Butyrate, a product of bacterial fermentation of carbohydrates, has been reported to modulate inflammation in IBD, possibly by regulating production of pro-inflammatory cytokines. However, this effect of butyrate is controversial. In this study, we used Pam3CSK4 (Pam3CysSerLys4), the acylated NH2-terminus of the bacterial lipoprotein (a PAMP), to mimic in vivo infection of pathogens. Butyrate transiently down-regulated expression of IL-8 stimulated by Pam3CSK4. Treatment of cells with butyrate before Pam3CSK4, however, enhanced production of IL-8. Furthermore, butyrate induced expression of A20, a negative regulator of the nuclear factor-kappaB pathway. Over-expression of A20 inhibited Pam3CSK4-triggered IL-8 expression. Our data suggest that the inflammatory modulation of butyrate in IBD is mediated by A20 and a short pulse rather than continuous administration of butyrate may provide a protective effect on IBD.
Collapse
Affiliation(s)
- Meiqian Weng
- Department of Pediatrics, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
38
|
Amin MR, Dudeja PK, Ramaswamy K, Malakooti J. Involvement of Sp1 and Sp3 in differential regulation of human NHE3 promoter activity by sodium butyrate and IFN-gamma/TNF-alpha. Am J Physiol Gastrointest Liver Physiol 2007; 293:G374-82. [PMID: 17540780 DOI: 10.1152/ajpgi.00128.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we reported that IFN-gamma and TNF-alpha downregulate the expression of the human Na(+)/H(+) exchanger (NHE)3 gene by modulating Sp1/Sp3 transcription factors in C2BBe1 cells. It is reported that butyrate inhibits IFN-gamma and TNF-alpha signaling pathways. In this study, we have investigated the effect of sodium butyrate (NaB) and IFN-gamma/TNF-alpha on human NHE3 promoter activity. In transient transfection studies, NaB (5 mM) led to 10-fold stimulation of NHE3 promoter activity after incubation for 24 h. With 5'-deletion analysis, the NaB-responsive region was mapped to the NHE3 core promoter, bp -95 to + 5, which we had shown previously to confer responsiveness to IFN-gamma/TNF-alpha. The stimulatory effect of NaB on the NHE3 promoter was reduced by 60% in the presence of IFN-gamma/TNF-alpha. Mutually, the repressive effect of these cytokines was attenuated by NaB. Knockdown of Sp1 and Sp3 expression with small interfering RNA (siRNA) resulted in a significant resistance to NaB effects. NaB treatment showed no effect on Sp1 and Sp3 protein expression as assessed by Western blot analyses. Gel mobility shift assays with nuclear proteins from NaB-treated cells showed enhanced binding of Sp1 and Sp3 to the NHE3 promoter. The phosphatase inhibitor okadaic acid (200 nM) blocked the stimulatory effect of NaB on the NHE3 promoter. NaB effects on the NHE3 promoter were significantly attenuated by protein phosphatase (PP)1alpha- and PP2Aalpha-specific siRNA transfection. Our data suggest that the differential regulation of NHE3 gene expression by NaB and IFN-gamma/TNF-alpha is mediated through alternative pathways that converge on Sp1/Sp3.
Collapse
Affiliation(s)
- Md Ruhul Amin
- Department of Medicine, Section of Digestive Diseases and Nutrition, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
39
|
Blais M, Seidman EG, Asselin C. Dual effect of butyrate on IL-1beta--mediated intestinal epithelial cell inflammatory response. DNA Cell Biol 2007; 26:133-47. [PMID: 17417942 DOI: 10.1089/dna.2006.0532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Butyrate (NaBu), a product of intestinal microbial metabolism, has been proposed as an anti-inflammatory agent for treating inflammatory bowel diseases. However, the molecular mechanisms implicated in the modulation of intestinal epithelial cell inflammatory response to NaBu remain unknown. Here, microarray analysis performed on nontransformed human crypt intestinal epithelial cells (HIEC) shows that NaBu regulated specifically the short-term IL-1beta -dependent induction of different inflammatory genes. While NaBu significantly increased the IL-1beta -induction of genes like SAA2, C3, and IL-1alpha , other inflammatory genes like CXCL5, CXCL11, and IL-1beta were decreased. Induction of various genes such as CXCL8, CCL20, and IL-6 was unaffected by NaBu. We show that, compared to genes that are upregulated or downregulated by NaBu, genes that are unaffected by NaBu were induced more rapidly after IL-1beta treatment and contained a higher concentration of transcription factor binding sites in their promoter region. In addition, transient treatment with IL-1beta was sufficient for subsequent induction of NaBu-upregulated and NaBu-unaffected classes of genes, while a continuous presence of IL-1beta was required for NaBu-downregulated gene expression. In conclusion, our results suggest that fundamental differences predispose inflammatory genes to specific regulation by NaBu in intestinal epithelial cells, thereby allowing precise control of inflammation.
Collapse
Affiliation(s)
- Mylène Blais
- Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | |
Collapse
|
40
|
Choi EY, Park ZY, Choi EJ, Oh HM, Lee S, Choi SC, Lee KM, Im SH, Chun JS, Jun CD. Transcriptional regulation of IL-8 by iron chelator in human epithelial cells is independent from NF-κB but involves ERK1/2- and p38 kinase-dependent activation of AP-1. J Cell Biochem 2007; 102:1442-57. [PMID: 17471497 DOI: 10.1002/jcb.21367] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have shown that the bacterial iron chelator, deferoxamine (DFO), triggers inflammatory signals including the production of CXC chemokine IL-8, in human intestinal epithelial cells (IECs) by activating the ERK1/2 and p38 kinase pathways. In this study we investigated the mechanisms involved in IL-8 generation by DFO, focusing on the transcription factors involved and the roles of both mitogen-activated protein kinases (MAPKs) in the transcription factor activation. Treatment of human epithelial HT-29 cells with DFO markedly up-regulated the expression of the essential components of the transcription factor AP-1 at a transcriptional level, while it minimally affected the expression of the NF-kappaB subunits. DFO also induced AP-1-dependent transcriptional activity in HT-29 cells, and this activity was further augmented by the wild-type c-Jun transfection. In contrast, the AP-1 activity by DFO was markedly decreased by the dominant-negative c-Jun transfection. Electrophoretic mobility shift assays revealed that DFO increases the specific binding of AP-1 but not of NF-kappaB. Such AP-1 binding and transcriptional activities were blocked by the inhibitors of the ERK1/2 and p38 kinase pathways, suggesting that both mitogen-activated protein kinases (MAPKs) lie upstream of AP-1. Besides its action on AP-1, DFO also induced the specific binding of other transcription factors such as CREB and Egr-1. In summary, our results indicate that iron chelator-induced IL-8 generation in IECs involves activation of ERK1/2 and p38 kinase and downstream activation of AP-1. A possible link between iron status and two additional transcription factors, that is, CREB and Egr-1, rather than NF-kappaB, was also suggested.
Collapse
Affiliation(s)
- Eun-Young Choi
- Department of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ohkawara S, Furuya H, Nagashima K, Asanuma N, Hino T. Effect of oral administration of Butyrivibrio fibrisolvens MDT-1 on experimental enterocolitis in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:1231-6. [PMID: 16988006 PMCID: PMC1656548 DOI: 10.1128/cvi.00267-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 08/17/2006] [Accepted: 09/12/2006] [Indexed: 01/17/2023]
Abstract
Butyrivibrio fibrisolvens MDT-1, a butyrate-producing strain, was evaluated for use as a probiotic to prevent enterocolitis. Oral administration of the MDT-1 strain (10(9) CFU/dose) alleviated the symptoms of colitis (including body weight loss, diarrhea, bloody stool, organic disorder, and mucosal damage) that are induced in mice drinking water that contains 3.0% dextran sulfate sodium. In addition, myeloperoxidase (MPO) activity levels in colonic tissue were reduced, suggesting that MDT-1 mitigates bowel inflammation. The addition of MDT-1 culture supernatant inhibited the growth of nine clinical isolates of Campylobacter jejuni and Campylobacter coli that could potentially cause enterocolitis. Infection of mice with C. coli 11580-3, one of the isolates inhibited by MDT-1 in vitro, resulted in diarrhea, mucosal damage, increased MPO activity levels in colonic tissue, increased numbers of C. coli in the cecum, and decreased body weight gain. However, administration of MDT-1 to mice, prior to and during C. coli infection, reduced these effects. These results suggest that Campylobacter-induced enterocolitis can be alleviated by using B. fibrisolvens as a probiotic.
Collapse
Affiliation(s)
- Sou Ohkawara
- Department of Life Science, College of Agriculture, Meiji University, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | | | | | | | | |
Collapse
|
42
|
Abstract
Inflammatory bowel diseases, ulcerative colitis, and Crohn’s disease, are chronic intestinal disorders of unknown etiology in which in genetically susceptible individuals, the mucosal immune system shows an aberrant response towards commensal bacteria. The gastrointestinal tract has developed ingenious mechanisms to coexist with its autologous microflora, but rapidly responds to invading pathogens and then returns to homeostasis with its commensal bacteria after the pathogenic infection is cleared. In case of disruption of this tightly-regulated homeostasis, chronic intestinal inflammation may be induced. Previous studies showed that some commensal bacteria are detrimental while others have either no influence or have a protective action. In addition, each host has a genetically determined response to detrimental and protective bacterial species. These suggest that therapeutic manipulation of imbalance of microflora can influence health and disease. This review focuses on new insights into the role of commensal bacteria in gut health and disease, and presents recent findings in innate and adaptive immune interactions. Therapeutic approaches to modulate balance of intestinal microflora and their potential mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Akira Andoh
- Department of Internal Medicine, Shiga University of Medical Science, Seta Tukinowa, Otsu 520-2192, Japan.
| | | |
Collapse
|
43
|
Okada Y, Tsuzuki Y, Miyazaki J, Matsuzaki K, Hokari R, Komoto S, Kato S, Kawaguchi A, Nagao S, Itoh K, Watanabe T, Miura S. Propionibacterium freudenreichii component 1.4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing. Gut 2006; 55:681-8. [PMID: 16299037 PMCID: PMC1856113 DOI: 10.1136/gut.2005.070490] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS 1.4-Dihydroxy-2-naphthoic acid (DHNA), a bifidogenic growth stimulator from Propionibacterium freudenreichii, is thought to have a beneficial effect as a prebiotic; however, its in vivo effect on intestinal inflammation remains unknown. The aim of this study was to determine whether oral administration of DHNA can ameliorate dextran sodium sulphate (DSS) induced colitis and to determine the possible underlying mechanisms. METHOD Colitis was induced in mice by treatment with 2.0% DSS for seven days. DHNA (0.6 or 2.0 mg/kg) was given in drinking water prior to (preventive study) or after (therapeutic study) DSS administration. Colonic damage was histologically scored, and mucosal addressin cell adhesion molecule 1 (MAdCAM-1) expression and beta7 positive cell infiltration were determined by immunohistochemistry. mRNA levels of proinflammatory cytokines (interleukin (IL)-1beta, IL-6 and tumour necrosis factor alpha (TNF-alpha)) were determined by quantitative real time polymerase chain reaction. In addition, bacterial flora in the caecum, concentrations of short chain acids, and luminal pH were examined. RESULTS DHNA improved survival rate and histological damage score in mice administered DSS in both the preventive and therapeutic studies. DHNA significantly attenuated the enhanced expression of MAdCAM-1, the increased beta7 positive cell number, and the increased mRNA levels of IL-1beta, IL-6, and TNF-alpha in DSS treated colon. In addition, the decreased number of Lactobacillus and Enterobacteriaceae induced by DSS was recovered by DHNA. Preventive effects on decrease in butyrate concentration and decrease in pH level in mice administered DSS were also observed in the DHNA preventive study. CONCLUSION DHNA, a novel type of prebiotic, attenuates colonic inflammation not only by balancing intestinal bacterial flora but also by suppressing lymphocyte infiltration through reduction of MAdCAM-1.
Collapse
Affiliation(s)
- Y Okada
- Second Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa City, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Malago JJ, Koninkx JFJG, Tooten PCJ, van Liere EA, van Dijk JE. Anti-inflammatory properties of heat shock protein 70 and butyrate on Salmonella-induced interleukin-8 secretion in enterocyte-like Caco-2 cells. Clin Exp Immunol 2005; 141:62-71. [PMID: 15958071 PMCID: PMC1809404 DOI: 10.1111/j.1365-2249.2005.02810.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Intestinal epithelial cells secrete the chemokine interleukin (IL)-8 in the course of inflammation. Because heat shock proteins (Hsps) and butyrate confer protection to enterocytes, we investigated whether they modulate Salmonella enterica serovar Enteritidis (S. serovar Enteritidis)-induced secretion of IL-8 in enterocyte-like Caco-2 cells. Caco-2 cells incubated with or without butyrate (0-20 m M, 48 h) were infected with S. serovar Enteritidis after (1 h at 42 degrees C, 6 h at 37 degrees C) or without prior heat shock (37 degrees C). Levels of Hsp70 production and IL-8 secretion were analysed using immunostaining of Western blots and enzyme-linked immunosorbent assay (ELISA), respectively. The cells secreted IL-8 in response to S. serovar Enteritidis and produced Hsp70 after heat shock or incubation with butyrate. The IL-8 secretion was inhibited by heat shock and butyrate concentrations as low as 0.2 m M for crypt-like and 1 m M for villous-like cells. In a dose-dependent manner, higher butyrate concentrations enhanced IL-8 secretion to maximal levels followed by a gradual but stable decline. This decline was associated with increasing production of Hsp70 and was more vivid in crypt-like cells. In addition, the higher concentrations abolished the heat shock inhibitory effect. Instead, they promoted the IL-8 production in heat-shocked cells even in the absence of S. serovar Enteritidis. We conclude that heat shock and low concentrations of butyrate inhibit IL-8 production by Caco-2 cells exposed to S. serovar Enteritidis. Higher butyrate concentrations stimulate the chemokine production and override the inhibitory effect of the heat shock. The IL-8 down-regulation could in part be mediated via production of Hsp70.
Collapse
Affiliation(s)
- J J Malago
- Department of Pathobiology, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Galvez J, Rodríguez-Cabezas ME, Zarzuelo A. Effects of dietary fiber on inflammatory bowel disease. Mol Nutr Food Res 2005; 49:601-8. [PMID: 15841496 DOI: 10.1002/mnfr.200500013] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The chronic idiopathic inflammatory bowel diseases (IBDs), namely Crohn's disease and ulcerative colitis, appear to be derived from an inappropriate reaction towards a luminal agent, most probably driven by the intestinal microflora, which upregulates the synthesis and release of different pro-inflammatory mediators, thus contributing to tissue damage that characterizes these intestinal conditions. Several studies have reported that IBD is associated with impairment in short-chain fatty acid (SCFA) production, mainly acetate, propionate, and butyrate. They are produced in the large bowel by anaerobic bacterial fermentation of undigested dietary carbohydrates and fiber polysaccharides, with butyrate being considered as the major fuel source for colonocytes. These SCFAs have been proposed to play a key role in the maintenance of colonic homeostasis. Therefore, it is reasonable to consider therapeutic approaches that increase colonic SCFA production, as it can be achieved by administration of dietary fiber to IBD patients. Unfortunately, there is quite limited documentation of efficacy of dietary fiber in properly designed trials. This review discusses the rationale, available evidence for the use of dietary fiber and its mechanisms of action in the treatment and prevention of IBDs.
Collapse
Affiliation(s)
- Julio Galvez
- Department of Pharmacology, School of Pharmacy, University of Granada, Spain.
| | | | | |
Collapse
|
46
|
Blais M, Désilets A, Asselin C. Synergy between deacetylase inhibitors and IL-1beta in activation of the serum amyloid A2 gene promoter. DNA Cell Biol 2005; 24:209-17. [PMID: 15812237 DOI: 10.1089/dna.2005.24.209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Butyrate (NaBu) regulates intestinal inflammatory gene expression in part through inhibition of deacetylase activity, but the exact mechanisms involved remain to be determined. In this study, we showed by Northern blot a synergistic induction of the acute phase protein gene SAA2 with a combination of deacetylase inhibitors (Trichostatin A or NaBu) and IL-1beta in the colon carcinoma cell line Caco-2. While the NF-kappa B DNA-binding site was essential for SAA2 regulation by IL-1beta and deacetylase inhibitors, the C/EBP DNA-binding site modulated SAA2 expression levels, as assessed by transient transfection assays and mutagenesis studies. NaBu was sufficient to induce SAA2 expression after transient treatment with IL-1beta and, conversely, IL-1beta induced SAA2 after transient treatment with NaBu. These data suggest that pretreatment with either NaBu or IL-1beta predisposes the SAA2 promoter to further stimulation. Indeed, both NaBu and IL-1beta led to increased recruitment of NF-kappa B p65, C/EBPbeta, and C/EBP delta, and decreased NF-kappa B p50 and C/EBP alpha DNA-binding to the proximal SAA2 promoter, as assessed by chromatin immunoprecipitation assays. Interestingly, while IL-1beta, in contrast to NaBu, induced histone H4 acetylation, addition of IL-1beta and NaBu increased histone H4 acetylation and both C/EBPbeta and NF-kappa B p65 DNA-binding. Therefore, these results suggest that NaBu and IL- 1beta mediate SAA2 synergistic induction by establishing and maintaining similar and complementary chromatin modifications and transcription factor recruitment as well. In addition to global effects, NaBu specifically regulate gene expression, as exemplified by SAA2.
Collapse
Affiliation(s)
- Mylène Blais
- CIHR Group on Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
47
|
Kim M, Murakami A, Kawabata K, Ohigashi H. (-)-Epigallocatechin-3-gallate promotes pro-matrix metalloproteinase-7 production via activation of the JNK1/2 pathway in HT-29 human colorectal cancer cells. Carcinogenesis 2005; 26:1553-62. [PMID: 15860507 DOI: 10.1093/carcin/bgi104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinase (MMP)-7 (matrilysin-1) plays significant roles in the growth, invasion, and metastasis of colorectal tumors, while (-)-epigallocatechin-3-gallate (EGCG), a green tea polyphenol with chemopreventive properties, has been shown to be an inhibitor of MMP-2 and MMP-9. In the present study, HT-29 human colorectal cancer cells were treated with EGCG to examine its effects on pro-MMP-7 induction and production using RT-PCR and western blot analyses. Surprisingly, EGCG (10-100 microM) treatment increased both intracellular and extracellular pro-MMP-7 protein levels (2.6-8.4-fold and 1.9-6.4-fold, respectively) in dose- and time-dependent manner, with a significant upregulation of its mRNA expression. EGCG also activated extracellular signal-regulated protein kinase (ERK)1/2, c-JUN NH2-terminal kinase (JNK)1/2 and p38 mitogen-activated protein kinase (MAPK), as previously reported. In addition, the polyphenol triggered the phosphorylation of c-JUN (Ser63 and Ser73) and induced c-JUN/c-FOS, thereby increasing the DNA binding activity of activator protein-1 (AP-1), as shown by an AP-1 luciferase reporter assay. Pharmacological blockade of MAPK activities suggested that pro-MMP-7 expression was induced via JNK1/2 activation, but not in the case of ERK1/2 or p38 MAPK. N-Acetyl-L-cysteine, superoxide (O2-) dismutase and catalase attenuated the EGCG-induced pro-MMP-7 production, suggesting an involvement of oxidative stress in these events. Conversely, EGCG spontaneously generated O2- in a cell-free system that utilized a cytochrome C reduction method. Further, (-)-epicatechin-3-gallate (25 and 100 microM) and green tea polyphenols (33 and 132 microg/ml) induced pro-MMP-7 expression, whereas (-)-epicatechin and (-)-epigallocatechin (100 microM each) did not. Induction of pro-MMP-7 expression by EGCG was also shown in another human colorectal adenocarcinoma cell line, Caco-2. Our results suggest that some green tea catechins induce pro-MMP-7 production via O2- production and the activation of JNK1/2, c-JUN, c-FOS and AP-1 in HT-29 cells.
Collapse
Affiliation(s)
- Mihye Kim
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
48
|
Malago JJ, Koninkx JFJG, van Dijk JE. The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperones 2003. [PMID: 12380687 DOI: 10.1379/1466-1268(2002)007%3c0191:thsrac%3e2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Following heat stress, the mammalian intestinal epithelial cells respond by producing heat shock proteins that confer protection under stressful conditions, which would otherwise lead to cell damage or death. Some of the noxious processes against which the heat shock response protects cells include heat stress, infection, and inflammation. The mechanisms of heat shock response-induced cytoprotection involve inhibition of proinflammatory cytokine production and induction of cellular proliferation for restitution of the damaged epithelium. This can mean selective interference of pathways, such as nuclear factor kappa B (NF-kappaB) and mitogen-activated protein kinase (MAPK), that mediate cytokine production and growth responses. Insight into elucidating the exact protective mechanisms could have therapeutic significance in treating intestinal inflammations and in aiding maintenance of intestinal integrity. Herein we review findings on heat shock response-induced intestinal epithelial protection involving regulation of NF-kappaB and MAPK cytokine production.
Collapse
Affiliation(s)
- Joshua J Malago
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | | | |
Collapse
|
49
|
Affiliation(s)
- Tadao Bamba
- Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Japan
| |
Collapse
|
50
|
Araki Y, Andoh A, Fujiyama Y, Kanauchi O, Takenaka K, Higuchi A, Bamba T. Germinated barley foodstuff exhibits different adsorption properties for hydrophilic versus hydrophobic bile acids. Digestion 2002; 64:248-54. [PMID: 11842282 DOI: 10.1159/000048869] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Germinated barley foodstuff (GBF), a type of dietary fiber, exhibits therapeutic effects in ulcerative colitis (UC) patients. However, the precise mechanisms responsible for these effects are still under investigation. On the other hand, it has been suggested that bile salts in the gut lumen play an important role in the integrity of the intestinal mucosa. The aim of the present study was to investigate the ability of GBF to adsorb bile salts in vitro. METHODS The binding capacities of GBF, enzymatically digested GBF (GBF-fiber), and alpha-cellulose for unconjugated and conjugated bile salts were measured using Langmuir's method. The morphology of these fibers was observed by light and fluorescence microscopy. RESULTS GBF adsorbed bile salts very strongly, especially hydrophobic bile salts. Even after enzymatic digestion, the GBF fiber still exhibited strong binding capacity, whereas alpha-cellulose exhibited very low binding capacity. Microscopically, GBF consists mainly of aleurone, a lattice-like cell wall with cytoplasm enclosed. After enzymatic digestion, the cytoplasm was also digested. CONCLUSION GBF possesses a great capacity to adsorb bile salts. This may be part of the mechanism for the therapeutic effects of GBF in UC patients.
Collapse
Affiliation(s)
- Y Araki
- Department of Internal Medicine, Nagahama Red Cross Hospital, Nagahama, Japan
| | | | | | | | | | | | | |
Collapse
|