1
|
Zarei MH, Pourahmad J. Toxicity of Dibutyl phthalate (DBP) toward isolated human blood lymphocytes: Apoptosis initiated from intracellular calcium enhancement and mitochondrial/lysosomal cross talk. Toxicol Rep 2024; 13:101729. [PMID: 39295952 PMCID: PMC11409181 DOI: 10.1016/j.toxrep.2024.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Dibutyl phthalate (DBP) is a phthalate ester with wide application in industrial products, so human exposure can happen in workplaces and environment. Conflicting results have been acquired in researches which measured the influences of phthalates contact on immune responses in laboratory animals. Nevertheless, the straight influence of DBP on human lymphocytes and entire mechanisms of its effect against these cells continue to be unexplored. The major purpose of present research was to evaluate the mechanisms which lead to the DBP toxicity on human lymphocytes using accelerated cytotoxicity mechanisms screening (ACMS) technique. Cell viability was determined following12h incubation of lymphocytes with 0.05-1 mM DBP, and mechanistic parameters were assessed after 2, 4 and 6 h of lymphocyte treatment with ½ the IC5012h (0.3 mM), the IC5012h (0.6 mM) and twice the IC5012h (1.2 mM) of DBP. The IC5012 h of a chemical/toxicant is defined as concentration that kills 50 % of cells after 12 h of exposure. The results indicate that DBP exerts toxic effects on isolated human lymphocytes, probably through mitochondrial and lysosomal damage induced by glutathione depletion and oxidative stress. In this study, suppression of cytokines (IL2, INF-gamma and TNF-alpha) production and increase in intracellular calcium were also related to DBP induced lymphocyte toxicity.
Collapse
Affiliation(s)
- Mohammad Hadi Zarei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Jalal Pourahmad
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lara-Guzmán OJ, Arango-González Á, Rivera DA, Muñoz-Durango K, Sierra JA. The colonic polyphenol catabolite dihydroferulic acid (DHFA) regulates macrophages activated by oxidized LDL, 7-ketocholesterol, and LPS switching from pro- to anti-inflammatory mediators. Food Funct 2024; 15:10399-10413. [PMID: 39320081 DOI: 10.1039/d4fo02114b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Macrophage activation plays a central role in the development of atherosclerotic plaques. Interaction with oxidized low-density lipoprotein (oxLDL) leads to macrophage differentiation into foam cells and oxylipin production, contributing to plaque formation. 7-Ketocholesterol (7KC) is an oxidative byproduct of cholesterol found in oxLDL particles and is considered a factor contributing to plaque progression. During atherosclerotic lesion regression or stabilization, macrophages undergo a transformation from a pro-inflammatory phenotype to a reparative anti-inflammatory state. Interleukin-10 (IL-10) and PGE1 appear to be crucial in resolving both acute and chronic inflammatory processes. After coffee consumption, the gut microbiota processes non-absorbed chlorogenic acids producing various lower size phenolic acids. These colonic catabolites, including dihydroferulic acid (DHFA), may exert various local and systemic effects. We focused on DHFA's impact on inflammation and oxidative stress in THP-1 macrophages exposed to oxLDL, 7KC, and lipopolysaccharides (LPS). Our findings reveal that DHFA inhibits the release of several pro-inflammatory mediators induced by LPS in macrophages, such as CCL-2, CCL-3, CCL-5, TNF-α, IL-6, and IL-17. Furthermore, DHFA reduces IL-18 and IL-1β secretion in an inflammasome-like model. DHFA demonstrated additional benefits: it decreased oxLDL uptake and CD36 expression induced by oxLDL, regulated reactive oxygen species (ROS) and 8-isoprostane secretion (indicating oxidative stress modulation), and selectively increased IL-10 and PGE1 levels in the presence of inflammatory stimuli (LPS and 7KC). Finally, our study highlights the pivotal role of PGE1 in foam cell inhibition and inflammation regulation within activated macrophages. This study highlights DHFA's potential as an antioxidant and anti-inflammatory agent, particularly due to its ability to induce PGE1 and IL-10.
Collapse
Affiliation(s)
- Oscar J Lara-Guzmán
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Ángela Arango-González
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Diego A Rivera
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Katalina Muñoz-Durango
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| | - Jelver A Sierra
- Vidarium - Nutrition, Health and Wellness Research Center, Nutresa Business Group, Calle 8 Sur No. 50-67, Medellin, Colombia.
| |
Collapse
|
3
|
Jordan PM, Günther K, Nischang V, Ning Y, Deinhardt-Emmer S, Ehrhardt C, Werz O. Influenza A virus selectively elevates prostaglandin E 2 formation in pro-resolving macrophages. iScience 2024; 27:108775. [PMID: 38261967 PMCID: PMC10797193 DOI: 10.1016/j.isci.2023.108775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
Respiratory influenza A virus (IAV) infections are major health concerns worldwide, where bacterial superinfections substantially increase morbidity and mortality. The underlying mechanisms of how IAV impairs host defense remain elusive. Macrophages are pivotal for the innate immune response and crucially regulate the entire inflammatory process, occurring as inflammatory M1- or pro-resolving M2-like phenotypes. Lipid mediators (LM), produced from polyunsaturated fatty acids by macrophages, are potent immune regulators and impact all stages of inflammation. Using LM metabololipidomics, we show that human pro-resolving M2-macrophages respond to IAV infections with specific and robust production of prostaglandin (PG)E2 along with upregulation of cyclooxygenase-2 (COX-2), which persists after co-infection with Staphylococcus aureus. In contrast, cytokine/interferon production in macrophages was essentially unaffected by IAV infection, and the functionality of M1-macrophages was not influenced. Conclusively, IAV infection of M2-macrophages selectively elevates PGE2 formation, suggesting inhibition of the COX-2/PGE2 axis as strategy to limit IAV exacerbation.
Collapse
Affiliation(s)
- Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Vivien Nischang
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Yuping Ning
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Hans-Knoell-Str. 2, 07745 Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
4
|
Kianfar S, Salimi V, Jahangirifard A, Mirtajani SB, Vaezi MA, Yavarian J, Mokhtari-Azad T, Tavakoli-Yaraki M. 15-lipoxygenase and cyclooxygenase expression profile and their related modulators in COVID-19 infection. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102587. [PMID: 37716021 DOI: 10.1016/j.plefa.2023.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND The role of the lipoxygenase (LOX) and cyclooxygenase (COX) enzymes in maintaining cellular homeostasis and regulating immune responses promoted us in this study to analyze the pattern of changes in 15-lipoxygenase and cyclooxygenase isoforms and their related cytokines in SARS-CoV-2 infection. METHODS 15-LOX-1, 15-LOX-2, COX-1 and COX-2 gene expression levels were determined using qRT-PCR in nasopharynx specimens from patients with severe [N = 40] and non-severe [N = 40] confirmed SARS-CoV-2 infections and healthy controls. Circulating levels of lL-6, lL-10, PGE2, and IFN-γ were measured in patients and healthy controls using ELISA assay. The associations between the measured variables and the patient's clinic-pathological characteristics were assessed for all groups. RESULTS The expression level of 15-LOX-1 was elevated significantly in male patients with severe infection; although female patients showed a different expression profile. 15-LOX-2 expression level was considerably increased in male patients with severe infection; while changes in its expression remained inconclusive in female patients. The relationship between 15-LOX expression and the male gender was prominent. Both COX isoforms expression showed elevation in male and female patients that were correlated with disease severity. The simultaneous increase in lL-6, PGE2 and IFN-γ levels also decrease in lL-10 in patients with severe infection indicating the possible regulatory network related to the COX and 15-LOX enzymes in the output of the SARS-CoV-2 infection. CONCLUSION The results of this study determined the pattern of possible changes in key enzymes of prostaglandin and eicosanoids synthesis pathway and their mediators, which can be helpful in mapping the SARS-CoV-2 pathogenicity and pharmaceutical approaches.
Collapse
Affiliation(s)
- Sara Kianfar
- Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Jahangirifard
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Bashir Mirtajani
- Lung Transplant Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Antibiotic Stewardship & Antimicrobial Resistance, Tehran university of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Peng L, Chen L, Wan J, Liu W, Lou S, Shen Z. Single-cell transcriptomic landscape of immunometabolism reveals intervention candidates of ascorbate and aldarate metabolism, fatty-acid degradation and PUFA metabolism of T-cell subsets in healthy controls, psoriasis and psoriatic arthritis. Front Immunol 2023; 14:1179877. [PMID: 37492568 PMCID: PMC10363747 DOI: 10.3389/fimmu.2023.1179877] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/21/2023] [Indexed: 07/27/2023] Open
Abstract
Introduction The modulation of immunometabolic pathways is emerging as a promising therapeutic target for immune-mediated diseases. However, the immunometabolic features of psoriatic disease and the potential targets for immunometabolic intervention in the different T-cell subsets involved in its pathogenesis remain unclear. Methods In this study, we analyzed circulating blood single-cell data from healthy controls (HC), psoriasis (PSO), and psoriatic arthritis (PSA) patients, and revealed their metabolic features of T-cell subsets: CD4+ central memory T cells (TCMs), CD8+ effective memory T cells (TEMs), regulatory T cells (Tregs), mucosal-associated invariant T cells (MAITs ), and γδ T cells. Pearson test was performed to determine the linkages between differential metabolic and inflammatory pathways. Based on these results, we also analyzed the potential impacts of biological antibodies on differential metabolic pathways by comparing the immunometabolism differences between PSA patients without and with biological treatment. Results Our results suggest that upregulation of ascorbate and aldarate metabolism, as well as fatty acid degradation, may enhance the immune suppression of Tregs. Enhanced metabolism of alpha-linolenic acid, linoleic acid, and arachidonic acid may inhibit the pro-inflammatory functions of CD4+ TCMs and CD8+ TEMs in PSO and PSA, and protect the immune suppression of Tregs in PSA. We propose that supporting ascorbic acid and fatty acid metabolic pathways may be an adjunctive reprogramming strategy with adalimumab and etanercept therapy. Discussion These findings not only provide insights into immunometabolism characteristics of psoriatic disease, but also offer preliminary options for the auxiliary treatment of psoriasis.
Collapse
Affiliation(s)
- Lu Peng
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianji Wan
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqi Liu
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuang Lou
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Arsic A, Krstic P, Paunovic M, Nedovic J, Jakovljevic V, Vucic V. Anti-inflammatory effect of combining fish oil and evening primrose oil supplementation on breast cancer patients undergoing chemotherapy: a randomized placebo-controlled trial. Sci Rep 2023; 13:6449. [PMID: 37081029 PMCID: PMC10119093 DOI: 10.1038/s41598-023-28411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/18/2023] [Indexed: 04/22/2023] Open
Abstract
Breast cancer is the most common malignant tumor and one of the leading causes of cancer-related death in women throughout the world. This study is a parallel, randomized, double-blind, controlled, 12-week supplementation trial, investigating the anti-inflammatory effects of dietary intake of fish oil and evening primrose oil (EPO), in patients with breast cancer undergoing chemotherapy. The primary outcomes were changes in the nutritional status and inflammatory cytokines of patients during the study. The secondary outcomes were changes in hematological and biochemical parameters and fatty acid profile. Of the 32 eligible patients, half of them is randomly assigned to a treatment arm with fish oil and EPO (n = 16), or a control arm (n = 16) with mineral oil as a placebo. The intervention group was taking 2 gel capsules of fish oil and 3 gel capsules of EPO (400 mg eicosapentaenoic acid, 600 mg docosahexaenoic acid, and 351 mg gamma-linolenic acid) fish oil and evening primrose oil for 12 weeks, during their chemotherapy. The control/placebo group was taking 5 gel capsules of 1g of mineral oil. One of the patients dropped out due to discontinuation of the treatment (in the placebo group) and two did not show up at the post-treatment measurements (in the intervention group), thus, 29 women completed the study. The results showed an increase in plasma levels of docosapentaenoic acid (22:5n-3), docosahexaenoic acid (22:6n-3), total n-3PUFA, vaccenic acid (18:1n-7), and a decrease in n-6/n-3 PUFA ratio in the intervention group. An increase in the plasma level of dihomo-gamma-linolenic acid (20:3n-6) was observed in the placebo group. There was no difference in plasma levels of interleukin (IL) IL-8, IL-10, and tumor necrosis factor-alpha, while the level of IL-6 decreased in both groups and was significantly lower in the intervention group at the end of the study. In conclusion, this supplementation improved the PUFA status and decreased the level of IL-6 in breast cancer patients undergoing chemotherapy. Consequently, this treatment may help reduce cancer complications resulting from impaired lipid metabolism and inflammation. ClinicalTrials.gov Identifier: NCT03516253. Date of registration 04/05/2018.
Collapse
Affiliation(s)
- Aleksandra Arsic
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Predrag Krstic
- Department of Hematology, Military Medical Academy, Belgrade, Serbia
| | - Marija Paunovic
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jasmina Nedovic
- Clinical Centre of Kragujevac, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Kang CM, Chiang BL, Wang LC. Maternal Nutritional Status and Development of Atopic Dermatitis in Their Offspring. Clin Rev Allergy Immunol 2021; 61:128-155. [PMID: 32157654 DOI: 10.1007/s12016-020-08780-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Atopic dermatitis (AD) is the leading chronic skin inflammatory disease and the initial manifestation of atopic march. Available evidence supports the notion that primary prevention early in life leads to a decreased incidence of AD, thus possibly decreasing the subsequent occurrence of atopic march. Nutritional status is essential to a proper functioning immune system and is valued for its important role in AD. Essential nutrients, which include carbohydrates, proteins, lipids, vitamins, and minerals, are transferred from the mother to the fetus through the placenta during gestation. Various nutrients, such as polyunsaturated fatty acids (PUFAs) and vitamin D, were studied in relation to maternal status and offspring allergy. However, no strong evidence indicates that a single nutrient or food in mothers' diet significantly affects the risk of childhood AD. In the light of current evidence, mothers should not either increase nor avoid consuming these nutrients to prevent or ameliorate allergic diseases in their offspring. Each essential nutrient has an important role in fetal development, and current government recommendations suggest specific intake amounts for pregnant women. This review discusses evidence on how various nutrients, including lipids (monounsaturated fatty acids, PUFAs, saturated fatty acids, and short-chain fatty acids), carbohydrates (oligosaccharides and polysaccharides), proteins, vitamins (A, B, C, D, and E), and trace minerals (magnesium, iron, zinc, copper, selenium, and strontium) in maternal status are associated with the development of AD and their possible mechanisms.
Collapse
Affiliation(s)
- Chun-Min Kang
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei, 10002, Taiwan, Republic of China
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Luen Chiang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital, No. 7, Chung Shan South Road, Taipei, 10002, Taiwan, Republic of China.
| |
Collapse
|
8
|
Das UN. Bioactive lipid-based therapeutic approach to COVID-19 and other similar infections. Arch Med Sci 2021; 19:1327-1359. [PMID: 37732033 PMCID: PMC10507771 DOI: 10.5114/aoms/135703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/11/2021] [Indexed: 09/22/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 infection. Epithelial and T, NK, and other immunocytes release bioactive lipids especially arachidonic acid (AA) in response to microbial infections to inactivate them and upregulate the immune system. COVID-19 (coronavirus) and other enveloped viruses including severe acute respiratory syndrome (SARS-CoV-1 of 2002-2003) and Middle East respiratory syndrome (MERS; 2012-ongoing) and hepatitis B and C (HBV and HCV) can be inactivated by AA, γ-linolenic acid (GLA, dihomo-GLA (DGLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), which are precursors to several eicosanoids. Prostaglandin E1, lipoxin A4, resolvins, protectins and maresins enhance phagocytosis of macrophages and leukocytes to clear debris from the site(s) of infection and injury, enhance microbial clearance and wound healing to restore homeostasis. Bioactive lipids modulate the generation of M1 and M2 macrophages and the activity of other immunocytes. Mesenchymal and adipose tissue-derived stem cells secrete LXA4 and other bioactive lipids to bring about their beneficial actions in COVID-19. Bioactive lipids regulate vasomotor tone, inflammation, thrombosis, immune response, inactivate enveloped viruses, regulate T cell proliferation and secretion of cytokines, stem cell survival, proliferation and differentiation, and leukocyte and macrophage functions, JAK kinase activity and neutrophil extracellular traps and thus, have a critical role in COVID-19.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, Battle Ground, WA, USA
- Department of Medicine, Omega Hospitals, Gachibowli, Hyderabad, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, Saint-Petersburg, Russia
- Department of Biotechnology, Indian Institute of Technology-Hyderabad, Telangana, India
| |
Collapse
|
9
|
Das UN. "Cell Membrane Theory of Senescence" and the Role of Bioactive Lipids in Aging, and Aging Associated Diseases and Their Therapeutic Implications. Biomolecules 2021; 11:biom11020241. [PMID: 33567774 PMCID: PMC7914625 DOI: 10.3390/biom11020241] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are an essential constituent of the cell membrane of which polyunsaturated fatty acids (PUFAs) are the most important component. Activation of phospholipase A2 (PLA2) induces the release of PUFAs from the cell membrane that form precursors to both pro- and ant-inflammatory bioactive lipids that participate in several cellular processes. PUFAs GLA (gamma-linolenic acid), DGLA (dihomo-GLA), AA (arachidonic acid), EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) are derived from dietary linoleic acid (LA) and alpha-linolenic acid (ALA) by the action of desaturases whose activity declines with age. Consequently, aged cells are deficient in GLA, DGLA, AA, AA, EPA and DHA and their metabolites. LA, ALA, AA, EPA and DHA can also be obtained direct from diet and their deficiency (fatty acids) may indicate malnutrition and deficiency of several minerals, trace elements and vitamins some of which are also much needed co-factors for the normal activity of desaturases. In many instances (patients) the plasma and tissue levels of GLA, DGLA, AA, EPA and DHA are low (as seen in patients with hypertension, type 2 diabetes mellitus) but they do not have deficiency of other nutrients. Hence, it is reasonable to consider that the deficiency of GLA, DGLA, AA, EPA and DHA noted in these conditions are due to the decreased activity of desaturases and elongases. PUFAs stimulate SIRT1 through protein kinase A-dependent activation of SIRT1-PGC1α complex and thus, increase rates of fatty acid oxidation and prevent lipid dysregulation associated with aging. SIRT1 activation prevents aging. Of all the SIRTs, SIRT6 is critical for intermediary metabolism and genomic stability. SIRT6-deficient mice show shortened lifespan, defects in DNA repair and have a high incidence of cancer due to oncogene activation. SIRT6 overexpression lowers LDL and triglyceride level, improves glucose tolerance, and increases lifespan of mice in addition to its anti-inflammatory effects at the transcriptional level. PUFAs and their anti-inflammatory metabolites influence the activity of SIRT6 and other SIRTs and thus, bring about their actions on metabolism, inflammation, and genome maintenance. GLA, DGLA, AA, EPA and DHA and prostaglandin E2 (PGE2), lipoxin A4 (LXA4) (pro- and anti-inflammatory metabolites of AA respectively) activate/suppress various SIRTs (SIRt1 SIRT2, SIRT3, SIRT4, SIRT5, SIRT6), PPAR-γ, PARP, p53, SREBP1, intracellular cAMP content, PKA activity and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1-α). This implies that changes in the metabolism of bioactive lipids as a result of altered activities of desaturases, COX-2 and 5-, 12-, 15-LOX (cyclo-oxygenase and lipoxygenases respectively) may have a critical role in determining cell age and development of several aging associated diseases and genomic stability and gene and oncogene activation. Thus, methods designed to maintain homeostasis of bioactive lipids (GLA, DGLA, AA, EPA, DHA, PGE2, LXA4) may arrest aging process and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Undurti N. Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA 98604, USA; ; Tel.: +508-904-5376
- BioScience Research Centre and Department of Medicine, GVP Medical College and Hospital, Visakhapatnam 530048, India
- International Research Centre, Biotechnologies of the third Millennium, ITMO University, 191002 Saint-Petersburg, Russia
| |
Collapse
|
10
|
Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 2020; 143:111558. [PMID: 32640331 PMCID: PMC7335494 DOI: 10.1016/j.fct.2020.111558] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
Prevention and treatment of non-communicable diseases (NCDs), including cardiovascular disease, diabetes, obesity, cancer, Alzheimer's and Parkinson's disease, arthritis, non-alcoholic fatty liver disease and various infectious diseases; lately most notably COVID-19 have been in the front line of research worldwide. Although targeting different organs, these pathologies have common biochemical impairments - redox disparity and, prominently, dysregulation of the inflammatory pathways. Research data have shown that diet components like polyphenols, poly-unsaturated fatty acids (PUFAs), fibres as well as lifestyle (fasting, physical exercise) are important factors influencing signalling pathways with a significant potential to improve metabolic homeostasis and immune cells' functions. In the present manuscript we have reviewed scientific data from recent publications regarding the beneficial cellular and molecular effects induced by dietary plant products, mainly polyphenolic compounds and PUFAs, and summarize the clinical outcomes expected from these types of interventions, in a search for effective long-term approaches to improve the immune system response.
Collapse
|
11
|
Rogers LM, Anders AP, Doster RS, Gill EA, Gnecco JS, Holley JM, Randis TM, Ratner AJ, Gaddy JA, Osteen K, Aronoff DM. Decidual stromal cell-derived PGE 2 regulates macrophage responses to microbial threat. Am J Reprod Immunol 2018; 80:e13032. [PMID: 30084522 DOI: 10.1111/aji.13032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022] Open
Abstract
PROBLEM Bacterial chorioamnionitis causes adverse pregnancy outcomes, yet host-microbial interactions are not well characterized within gestational membranes. The decidua, the outermost region of the membranes, is a potential point of entry for bacteria ascending from the vagina to cause chorioamnionitis. We sought to determine whether paracrine communication between decidual stromal cells and macrophages shaped immune responses to microbial sensing. METHOD OF STUDY Decidual cell-macrophage interactions were modeled in vitro utilizing decidualized, telomerase-immortalized human endometrial stromal cells (dTHESCs) and phorbol ester-differentiated THP-1 macrophage-like cells. The production of inflammatory mediators in response to LPS was monitored by ELISA for both cell types, while phagocytosis of bacterial pathogens (Escherichia coli and Group B Streptococcus (GBS)) was measured in THP-1 cells or primary human placental macrophages. Diclofenac, a non-selective cyclooxygenase inhibitor, and prostaglandin E2 (PGE2 ) were utilized to interrogate prostaglandins as decidual cell-derived paracrine immunomodulators. A mouse model of ascending chorioamnionitis caused by GBS was utilized to assess the colocalization of bacteria and macrophages in vivo and assess PGE2 production. RESULTS In response to LPS, dTHESC and THP-1 coculture demonstrated enhancement of most inflammatory mediators, but a potent suppression of macrophage TNF-α generation was observed. This appeared to reflect a paracrine-mediated effect of decidual cell-derived PGE2 . In mice with GBS chorioamnionitis, macrophages accumulated at sites of bacterial invasion with increased PGE2 in amniotic fluid, suggesting such paracrine effects might hold relevance in vivo. CONCLUSION These data suggest key roles for decidual stromal cells in modulating tissue responses to microbial threat through release of PGE2 .
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anjali P Anders
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Ryan S Doster
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Juan S Gnecco
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob M Holley
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tara M Randis
- Department of Pediatrics, New York University School of Medicine, New York, New York.,Department of Microbiology, New York University School of Medicine, New York, New York
| | - Adam J Ratner
- Department of Pediatrics, New York University School of Medicine, New York, New York.,Department of Microbiology, New York University School of Medicine, New York, New York
| | - Jennifer A Gaddy
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veteran Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee
| | - Kevin Osteen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Veteran Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee
| | - David M Aronoff
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
12
|
Revathikumar P, Estelius J, Karmakar U, Le Maître E, Korotkova M, Jakobsson PJ, Lampa J. Microsomal prostaglandin E synthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One 2018; 13:e0193210. [PMID: 29470537 PMCID: PMC5823444 DOI: 10.1371/journal.pone.0193210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/06/2018] [Indexed: 01/17/2023] Open
Abstract
The cholinergic anti-inflammatory pathway (CAP) is an innate neural reflex where parasympathetic and sympathetic nerves work jointly to control inflammation. Activation of CAP by vagus nerve stimulation (VNS) has paved way for novel therapeutic strategies in treating inflammatory diseases. Recently, we discovered that VNS mediated splenic acetylcholine (ACh) release and subsequent immunosuppression in response to LPS associated inflammation is impaired in mice lacking microsomal prostaglandin E synthase-1 (mPGES-1) expression, a key enzyme responsible for prostaglandin E2 synthesis. Here, we have further investigated the consequences of mPGES-1 deficiency on various molecular/cellular events in the spleen which is critical for the optimal functioning of VNS in endotoxaemic mice. First, VNS induced splenic norepinephrine (NE) release in both mPGES-1 (+/+) and (-/-) mice. Compared to mPGES-1 (+/+), immunomodulatory effects of NE on cytokines were strongly compromised in mPGES-1 (-/-) splenocytes. Interestingly, while LPS increased choline acetyltransferase (ChAT) protein level in mPGES-1 (+/+) splenocytes, it failed to exert similar effects in mPGES-1 (-/-) splenocytes despite unaltered β2 AR protein expression. In addition, nicotine inhibited TNFα release by LPS activated mPGES-1 (+/+) splenocytes in vitro. However, such immunosuppressive effects of nicotine were reversed both in mPGES-1 (-/-) mouse splenocytes and human PBMC treated with mPGES-1 inhibitor. In summary, our data implicate PGE2 as an important mediator of ACh synthesis and noradrenergic/cholinergic molecular events in the spleen that constitute a crucial part of the CAP immune regulation. Our results suggest a possible link between cholinergic and PG system of CAP that may be of clinical significance in VNS treatment.
Collapse
Affiliation(s)
- Priya Revathikumar
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Estelius
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Utsa Karmakar
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Erwan Le Maître
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
13
|
Tsuruta K, Backus RC, DeClue AE, Fritsche KL, Mann FA. Effects of parenteral fish oil on plasma nonesterified fatty acids and systemic inflammatory mediators in dogs following ovariohysterectomy. J Vet Emerg Crit Care (San Antonio) 2017; 27:512-523. [DOI: 10.1111/vec.12635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 12/01/2015] [Accepted: 12/27/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Kaoru Tsuruta
- Department of Veterinary Medicine and Surgery; College of Veterinary Medicine
| | - Robert C. Backus
- Department of Veterinary Medicine and Surgery; College of Veterinary Medicine
| | - Amy E. DeClue
- Department of Veterinary Medicine and Surgery; College of Veterinary Medicine
| | - Kevin L. Fritsche
- Division of Animal Sciences; University of Missouri; Columbia MO 65203
| | - Fred A. Mann
- Department of Veterinary Medicine and Surgery; College of Veterinary Medicine
| |
Collapse
|
14
|
High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc Natl Acad Sci U S A 2016; 113:E997-1005. [PMID: 26858459 DOI: 10.1073/pnas.1514018113] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Collapse
|
15
|
Impaired vagus-mediated immunosuppression in microsomal prostaglandin E synthase-1 deficient mice. Prostaglandins Other Lipid Mediat 2015; 121:155-62. [DOI: 10.1016/j.prostaglandins.2015.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/17/2015] [Accepted: 05/08/2015] [Indexed: 01/14/2023]
|
16
|
Hansen JF, Nielsen CH, Brorson MM, Frederiksen H, Hartoft-Nielsen ML, Rasmussen ÅK, Bendtzen K, Feldt-Rasmussen U. Influence of phthalates on in vitro innate and adaptive immune responses. PLoS One 2015; 10:e0131168. [PMID: 26110840 PMCID: PMC4482536 DOI: 10.1371/journal.pone.0131168] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Phthalates are a group of endocrine disrupting chemicals, suspected to influence the immune system. The aim of this study was to investigate the influence of phthalates on cytokine secretion from human peripheral blood mononuclear cells. Escherichia coli lipopolysaccharide and phytohemagglutinin-P were used for stimulation of monocytes/macrophages and T cells, respectively. Cells were exposed for 20 to 22 hours to either di-ethyl, di-n-butyl or mono-n-butyl phthalate at two different concentrations. Both diesters were metabolised to their respective monoester and influenced cytokine secretion from both monocytes/macrophages and T cells in a similar pattern: the secretion of interleukin (IL)-6, IL-10 and the chemokine CXCL8 by monocytes/macrophages was enhanced, while tumour necrosis factor (TNF)-α secretion by monocytes/macrophages was impaired, as was the secretion of IL-2 and IL-4, TNF-α and interferon-γ by T cells. The investigated phthalate monoester also influenced cytokine secretion from monocytes/macrophages similar to that of the diesters. In T cells, however, the effect of the monoester was different compared to the diesters. The influence of the phthalates on the cytokine secretion did not seem to be a result of cell death. Thus, results indicate that both human innate and adaptive immunity is influenced in vitro by phthalates, and that phthalates therefore may affect cell differentiation and regenerative and inflammatory processes in vivo.
Collapse
Affiliation(s)
- Juliana Frohnert Hansen
- Department of Medical Endocrinology, PE 2132, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Claus Henrik Nielsen
- Institute for Inflammation Research, Section 7521, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Møller Brorson
- Department of Medical Endocrinology, PE 2132, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Åse Krogh Rasmussen
- Department of Medical Endocrinology, PE 2132, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bendtzen
- Institute for Inflammation Research, Section 7521, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Feldt-Rasmussen
- Department of Medical Endocrinology, PE 2132, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
17
|
Davidson J, Higgs W, Rotondo D. Eicosapentaenoic acid suppression of systemic inflammatory responses and inverse up-regulation of 15-deoxyΔ(12,14) prostaglandin J2 production. Br J Pharmacol 2015; 169:1130-9. [PMID: 23586396 DOI: 10.1111/bph.12209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 03/05/2013] [Accepted: 03/22/2013] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Eicosapentaenoic acid (EPA) has been shown to suppress immune cell responses, such as cytokine production and downstream PG production in vitro. Studies in vivo, however, have used EPA as a minor constituent of fish oil with variable results. We investigated the effects of EPA on systemic inflammatory responses as pure EPA has not been evaluated on immune/inflammatory responses in vivo. EXPERIMENTAL APPROACH Rabbits were administered polyinosinic: polycytidylic acid (poly I:C) i.v. before and after oral treatment with EPA for 42 days (given daily). The responses to IL-1β and TNF-α were also studied. Immediately following administration of poly I:C, body temperature was continuously monitored and blood samples were taken. Plasma levels of IL-1β, PGE2 (PGE2), and 15-deoxy-Δ(12,14)-PGJ2 (15d-PGJ2) were measured by enzyme immunoassay. KEY RESULTS Following EPA treatment, the fever response to poly I:C was markedly suppressed compared with pretreatment responses. This was accompanied by a parallel reduction in the poly I:C-stimulated elevation in plasma levels of IL-1β and PGE2. Paradoxically, the levels of 15d-PGJ2 were higher following EPA treatment. EPA treatment did not significantly alter the fever response or plasma levels of PGE2 in response to either IL-1β or TNF-α. CONCLUSION AND IMPLICATIONS Oral treatment with EPA can suppress immune/inflammatory responses in vivo via a suppression of upstream cytokine production resulting in a decreased fever response and indirectly reducing circulating levels of PGE2. EPA also enhances the production of the cytoprotective prostanoid 15d-PGJ2 indicating the therapeutic benefit of EPA.
Collapse
Affiliation(s)
- Jillian Davidson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | |
Collapse
|
18
|
Does PGE₁ vasodilator prevent orthopaedic implant-related infection in diabetes? Preliminary results in a mouse model. PLoS One 2014; 9:e94758. [PMID: 24718359 PMCID: PMC3981866 DOI: 10.1371/journal.pone.0094758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/19/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Implant-related infections are characterized by bacterial colonization and biofilm formation on the prosthesis. Diabetes represents one of the risk factors that increase the chances of prosthetic infections because of related severe peripheral vascular disease. Vasodilatation can be a therapeutic option to overcome diabetic vascular damages and increase the local blood supply. In this study, the effect of a PGE₁ vasodilator on the incidence of surgical infections in diabetic mice was investigated. METHODOLOGY A S. aureus implant-related infection was induced in femurs of diabetic mice, then differently treated with a third generation cephalosporin alone or associated with a PGE₁ vasodilator. Variations in mouse body weight were evaluated as index of animal welfare. The femurs were harvested after 28 days and underwent both qualitative and quantitative analysis as micro-CT, histological and microbiological analyses. RESULTS The analysis performed in this study demonstrated the increased host response to implant-related infection in diabetic mice treated with the combination of a PGE₁ and antibiotic. In this group, restrained signs of infections were identified by micro-CT and histological analysis. On the other hand, the diabetic mice treated with the antibiotic alone showed a severe infection and inability to successfully respond to the standard antimicrobial treatment. CONCLUSIONS The present study revealed interesting preliminary results in the use of a drug combination of antibiotic and vasodilator to prevent implant-related Staphylococcus aureus infections in a diabetic mouse model.
Collapse
|
19
|
Ashraf R, Vasiljevic T, Day S, Smith S, Donkor O. Lactic acid bacteria and probiotic organisms induce different cytokine profile and regulatory T cells mechanisms. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
20
|
de Mattos KA, Sarno EN, Pessolani MCV, Bozza PT. Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in Mycobacterium leprae pathogenesis. Mem Inst Oswaldo Cruz 2013; 107 Suppl 1:156-66. [PMID: 23283467 DOI: 10.1590/s0074-02762012000900023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/30/2012] [Indexed: 02/07/2023] Open
Abstract
Leprosy is an infectious disease caused by Mycobacterium leprae that affects the skin and nerves, presenting a singular clinical picture. Across the leprosy spectrum, lepromatous leprosy (LL) exhibits a classical hallmark: the presence of a collection of M. leprae-infected foamy macrophages/Schwann cells characterised by their high lipid content. The significance of this foamy aspect in mycobacterial infections has garnered renewed attention in leprosy due to the recent observation that the foamy aspect represents cells enriched in lipid droplets (LD) (also known as lipid bodies). Here, we discuss the contemporary view of LD as highly regulated organelles with key functions in M. leprae persistence in the LL end of the spectrum. The modern methods of studying this ancient disease have contributed to recent findings that describe M. leprae-triggered LD biogenesis and recruitment as effective mycobacterial intracellular strategies for acquiring lipids, sheltering and/or dampening the immune response and favouring bacterial survival, likely representing a fundamental aspect of M. leprae pathogenesis. The multifaceted functions attributed to the LD in leprosy may contribute to the development of new strategies for adjunctive anti-leprosy therapies.
Collapse
|
21
|
Gray S, Da Boit M. Marine n-3 polyunsaturated fatty acids: a potential role in the treatment of sarcopenia. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Mishina M, Kim K, Kominami S, Mizunari T, Kobayashi S, Katayama Y. Impact of polyunsaturated fatty acid consumption prior to ischemic stroke. Acta Neurol Scand 2013; 127:181-5. [PMID: 22694736 DOI: 10.1111/j.1600-0404.2012.01695.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The Japanese have higher levels of n-3 polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in their diets. These facts may contribute to the lower rates of atherosclerosis in Japanese. The purposes of this study were to assess the PUFA levels in patients with subtypes of acute ischemic stroke and to assess the relationship between severity and PUFA levels. MATERIAL AND METHODS We studied 75 patients with lacunar infarction (LI; n = 25), atherothrombotic infarction (AT; n = 32), and cardiogenic embolism (CE; n = 18). The patients underwent blood examinations in a fasting state next morning of hospitalization, including examination of low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), triglyceride (TG), blood glucose, hemoglobin A1c (HbA1c), uric acid, and fatty acid fractions of EPA, DHA, dihomo-γ-linolenic acid (DGLA), and arachidonic acid (AA). We used the modified Rankin Scale (mRS) to assess clinical severity at discharge. RESULTS There was no significant difference in the EPA/AA and DHA/AA ratio among the three stroke subgroups, although the DGLA/AA ratio was significantly higher in patients with LI than in patients with CE. Considering the confounding factors, the mRS was negatively correlated with EPA/AA and positively correlated with age, DHA/AA, and blood glucose. CONCLUSIONS High EPA/AA ratio was associated with good outcome in ischemic stroke. Our paper suggests that prestroke dietary habits affect the severity in patients with ischemic stroke.
Collapse
Affiliation(s)
| | - K. Kim
- Neurological Institute; Nippon Medical School; Chiba Hokusoh Hospital; Tokyo; Japan
| | - S. Kominami
- Neurological Institute; Nippon Medical School; Chiba Hokusoh Hospital; Tokyo; Japan
| | - T. Mizunari
- Neurological Institute; Nippon Medical School; Chiba Hokusoh Hospital; Tokyo; Japan
| | - S. Kobayashi
- Neurological Institute; Nippon Medical School; Chiba Hokusoh Hospital; Tokyo; Japan
| | - Y. Katayama
- The Second Department of Internal Medicine; Nippon Medical School; Tokyo; Japan
| |
Collapse
|
23
|
Tanaka T, Kakutani S, Horikawa C, Kawashima H, Kiso Y. Oral supplementation with dihomo-γ-linolenic acid (DGLA)-enriched oil increases serum DGLA content in healthy adults. Lipids 2012; 47:643-6. [PMID: 22411689 DOI: 10.1007/s11745-012-3664-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Dihomo-γ-linolenic acid (DGLA) is one of the polyunsaturated fatty acids, and is expected to show anti-allergic activity. We examined the effects of supplementation with DGLA-enriched oil (450 mg as free DGLA) for 4 weeks in healthy adults in a randomized controlled study. The DGLA composition in the total fatty acids of serum phospholipids increased from 2.0 to 3.4%, and returned to the initial level after a 4-week washout. No side effects or changes in blood biochemical parameters were observed. These results indicate that serum DGLA content can be safely increased by supplementation with 450 mg DGLA under these conditions.
Collapse
Affiliation(s)
- Takao Tanaka
- Institute for Health Care Science, Suntory Wellness Ltd., 1-1-1 Wakayamadai, Shimamoto, Osaka 618-8503, Japan
| | | | | | | | | |
Collapse
|
24
|
Inaba S, Nagahara S, Makita N, Tarumi Y, Ishimoto T, Matsuo S, Kadomatsu K, Takei Y. Atelocollagen-mediated systemic delivery prevents immunostimulatory adverse effects of siRNA in mammals. Mol Ther 2011; 20:356-66. [PMID: 22031237 DOI: 10.1038/mt.2011.221] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Short interfering RNA (siRNA) is a potent activator of the mammalian innate immune system. When considering possible clinical applications of siRNA for humans, the adverse immunostimulatory effects must also be taken into account. Here, we show that atelocollagen-mediated systemic delivery of siRNA without chemical modifications did not cause any immunostimulation in both animals and human peripheral blood mononuclear cells (PBMCs), even if the siRNA harbored an interferon (IFN)-inducible sequence. In contrast, systemic delivery of immunostimulatory RNA (isRNA)-mediated by a cationic lipid (such as Invivofectamine) induced potent type-I IFNs and inflammatory cytokines. Regarding the mechanism by which the isRNA/atelocollagen complex avoided adverse effects on immunostimulation, we revealed that this complex was not incorporated into PBMCs. On the other hand, Invivofectamine delivered isRNA into PBMCs. The use of either atelocollagen or Invivofectamine as a vehicle elicited significant and undistinguishable therapeutic effects in a contact hypersensitivity (CHS) inflammatory model mouse, when we intravenously injected the siRNA targeting monocyte chemoattractant protein-1 as the complex. For the goal of realizing siRNA-based medicines for humans, atelocollagen is an excellent and promising delivery vehicle, and it has the useful advantage of evading detection by the "radar" of innate immunity.
Collapse
Affiliation(s)
- Shinichiro Inaba
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fatty acids and inflammation: The cutting edge between food and pharma. Eur J Pharmacol 2011; 668 Suppl 1:S50-8. [DOI: 10.1016/j.ejphar.2011.05.085] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/16/2011] [Accepted: 05/23/2011] [Indexed: 11/17/2022]
|
26
|
Faber J, Berkhout M, Vos AP, Sijben JWC, Calder PC, Garssen J, van Helvoort A. Supplementation with a fish oil-enriched, high-protein medical food leads to rapid incorporation of EPA into white blood cells and modulates immune responses within one week in healthy men and women. J Nutr 2011; 141:964-70. [PMID: 21430245 DOI: 10.3945/jn.110.132985] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Immune modulatory effects of EPA and DHA are well described. However, these fatty acids must be effectively incorporated into cell membrane phospholipids to modify cell function. To address the absence of human data regarding short-term incorporation, the present study investigated the incorporation of EPA and DHA into white blood cells (WBC) at different time points during 1 wk of supplementation with a medical food, which is high in protein and leucine and enriched with fish oil and specific oligosaccharides. Additionally, the effects on ex vivo immune function were determined. In a single-arm, open label study, 12 healthy men and women consumed 2 × 200 mL of medical food providing 2.4 g EPA, 1.2 g DHA, 39.7 g protein (including 4.4 g L-leucine), and 5.6 g oligosaccharides daily. Blood samples were taken at d 0 (baseline), 1, 2, 4, and 7. Within 1 d of nutritional intervention, the percentage of EPA in phospholipids of WBC increased from 0.5% at baseline to 1.3% (P < 0.001). After 1 wk, the percentage of EPA rose to 2.8% (P < 0.001). Additionally, the production of proinflammatory cytokines in LPS-stimulated whole blood cultures was significantly increased within 1 wk. Nutritional supplementation with a fish oil-enriched medical food significantly increased the percentage of EPA in phospholipids of WBC within 1 wk. Simultaneously, ex vivo immune responsiveness to LPS increased significantly. These results hold promise for novel applications such as fast-acting nutritional interventions in cancer patients, which should be investigated in future studies.
Collapse
Affiliation(s)
- Joyce Faber
- Nutricia Advanced Medical Nutrition, Danone Research-Center for Specialized Nutrition, Wageningen 6704PH, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Interactions between immunity and metabolism - contributions from the metabolic profiling of parasite-rodent models. Parasitology 2010; 137:1451-66. [PMID: 20602847 DOI: 10.1017/s0031182010000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A combined interdisciplinary research strategy is even more crucial in immunology than in many other biological sciences in order to comprehend the closely linked interactions between cell proliferation, molecular signalling and gene rearrangements. Because of the multi-dimensional nature of the immune system, an abundance of different experimental approaches has developed, with a main focus on cellular and molecular mechanisms. The role of metabolism in immunity has been underexplored so far, and yet researchers have made important contributions in describing associations of immune processes and metabolic pathways, such as the central role of the l-arginine pathway in macrophage activation or the immune regulatory functions of the nucleotides. Furthermore, metabolite supplement studies, including nutritional administration and labelled substrates, have opened up new means of manipulating immune mechanisms. Metabolic profiling has introduced a reproducible platform for systemic assessment of changes at the small-molecule level within a host organism, and specific metabolic fingerprints of several parasitic infections have been characterized by 1H NMR spectroscopy. The application of multivariate statistical methods to spectral data has facilitated recovery of biomarkers, such as increased acute phase protein signals, and enabled direct correlation to the relative cytokine levels, which encourages further application of metabolic profiling to explore immune regulatory systems.
Collapse
|
28
|
Page TH, Turner JJO, Brown AC, Timms EM, Inglis JJ, Brennan FM, Foxwell BMJ, Ray KP, Feldmann M. Nonsteroidal anti-inflammatory drugs increase TNF production in rheumatoid synovial membrane cultures and whole blood. THE JOURNAL OF IMMUNOLOGY 2010; 185:3694-701. [PMID: 20713883 DOI: 10.4049/jimmunol.1000906] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase activity and hence PG production. However, the ability of NSAIDs to ameliorate pain and tenderness does not prevent disease progression in rheumatoid arthritis, a disease whose pathogenesis is linked to the presence of proinflammatory cytokines, such as TNF-alpha. To understand this observation, we have examined the effect of NSAIDs on the production of clinically validated proinflammatory cytokines. We show that a variety of NSAIDs superinduce production of TNF from human peripheral blood monocytes and rheumatoid synovial membrane cultures. A randomized, double-blinded, crossover, placebo-controlled trial in healthy human volunteers also revealed that the NSAID drug celecoxib increased LPS-induced TNF production in whole blood. NSAID-mediated increases in TNF are reversed by either the addition of exogenous PGE(2) or by a PGE(2) EP2 receptor agonist, revealing that PGE(2) signaling via its EP2 receptor provides a valuable mechanism for controlling excess TNF production. Thus, by reducing the level of PGE(2), NSAIDs can increase TNF production and may exacerbate the proinflammatory environment both within the rheumatoid arthritis joint and the systemic environment.
Collapse
Affiliation(s)
- Theresa H Page
- The Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients 2010; 2:355-374. [PMID: 22254027 PMCID: PMC3257651 DOI: 10.3390/nu2030355] [Citation(s) in RCA: 632] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022] Open
Abstract
Long chain fatty acids influence inflammation through a variety of mechanisms; many of these are mediated by, or at least associated with, changes in fatty acid composition of cell membranes. Changes in these compositions can modify membrane fluidity, cell signaling leading to altered gene expression, and the pattern of lipid mediator production. Cell involved in the inflammatory response are typically rich in the n-6 fatty acid arachidonic acid, but the contents of arachidonic acid and of the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) can be altered through oral administration of EPA and DHA. Eicosanoids produced from arachidonic acid have roles in inflammation. EPA also gives rise to eicosanoids and these often have differing properties from those of arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Increased membrane content of EPA and DHA (and decreased arachidonic acid content) results in a changed pattern of production of eicosanoids and resolvins. Changing the fatty acid composition of cells involved in the inflammatory response also affects production of peptide mediators of inflammation (adhesion molecules, cytokines etc.). Thus, the fatty acid composition of cells involved in the inflammatory response influences their function; the contents of arachidonic acid, EPA and DHA appear to be especially important. The anti-inflammatory effects of marine n-3 PUFAs suggest that they may be useful as therapeutic agents in disorders with an inflammatory component.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, MP887 Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| |
Collapse
|
30
|
Calder PC. Fatty acids and immune function: relevance to inflammatory bowel diseases. Int Rev Immunol 2010; 28:506-34. [PMID: 19954361 DOI: 10.3109/08830180903197480] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fatty acids may influence immune function through a variety of mechanisms; many of these are associated with changes in fatty acid composition of immune cell membranes. Eicosanoids produced from arachidonic acid have roles in inflammation and immunity. Increased membrane content of n-3 fatty acids results in a changed pattern of production of eicosanoids, resolvins, and cytokines. Changing the fatty acid composition of immune cells also affects T cell reactivity and antigen presentation. Little attention has been paid to the influence of fatty acids on the gut-associated lymphoid tissue. However, there has been considerable interest in fatty acids and gut inflammation.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom.
| |
Collapse
|
31
|
Luo J, Huang F, Xiao C, Chen W, Jiang S, Peng J. Effect of dietary supplementation of fish oil for lactating sows and weaned piglets on piglet Th polarization. Livest Sci 2009. [DOI: 10.1016/j.livsci.2009.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Abstract
The n-6 fatty acid arachidonic acid (AA; 20:4n-6) gives rise to eicosanoid mediators that have established roles in inflammation and AA metabolism is a long recognised target for commonly used anti-inflammatory therapies. It has generally been assumed that all AA-derived eicosanoids are pro-inflammatory. However this is an over-simplification since some actions of eicosanoids are anti-inflammatory (e.g. prostaglandin (PG) E(2) inhibits production of some inflammatory cytokines) and it has been discovered quite recently that PGE(2) inhibits production of inflammatory leukotrienes and induces production of inflammation resolving lipoxin A(4). The n-3 fatty acids from oily fish and "fish oils", eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), are incorporated into inflammatory cell phospholipids in a time- and dose-dependent manner. They are incorporated partly at the expense of AA, but also of other n-6 fatty acids. EPA and DHA inhibit AA metabolism. Thus production of AA-derived eicosanoids is decreased by these n-3 fatty acids; this occurs in a dose-dependent manner. EPA gives rise to an alternative family of eicosanoids (e.g. PGE(3)), which frequently, but not always, have lower potency than those produced from AA. Recently a new family of EPA- and DHA-derived lipid mediators called resolvins (E- and D-series) has been described. These have potent anti-inflammatory and inflammation resolving properties in model systems. It seems likely that these mediators will explain many of the antiinflammatory actions of n-3 fatty acids that have been described. In addition to modifying the profile of lipid-derived mediators, fatty acids can also influence peptide mediator (i.e. cytokine) production. To a certain extent this action may be due to the altered profile of regulatory eicosanoids, but it seems likely that eicosanoid-independent actions are a more important mechanism. Indeed effects on transcription factors that regulate inflammatory gene expression (e.g. nuclear factor kappaB) seem to be important.
Collapse
|
33
|
Omata J, Fukatsu K, Murakoshi S, Noguchi M, Miyazaki H, Moriya T, Okamoto K, Fukazawa S, Akase T, Saitoh D, Mochizuki H, Yamamoto J, Hase K. Enteral refeeding rapidly restores PN-induced reduction of hepatic mononuclear cell number through recovery of small intestine and portal vein blood flows. JPEN J Parenter Enteral Nutr 2009; 33:618-25; discussion 626. [PMID: 19675300 DOI: 10.1177/0148607109336598] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Absence of enteral nutrition (EN) reduces hepatic mononuclear cell (MNC) numbers and impairs their functions. However, enteral refeeding (ER) for as little as 12 hours following parenteral nutrition (PN) rapidly restores hepatic MNC numbers. We hypothesized that changes in small intestine and portal vein blood flows related to feeding route might be responsible for this phenomenon. METHODS In experiment 1, mice (n = 19) were randomized to Chow (n = 5), PN (n = 7) or ER (n = 7) groups. The Chow group was given chow ad libitum with intravenous (IV) saline for 5 days. The PN group was fed parenterally for 5 days, while the ER group was re-fed with chow for 12 hours following 5 days of PN. Then, small intestine and portal vein blood flows were monitored and hepatic MNCs were isolated and counted. In experiment 2, the effects of intravenous administration of prostaglandin E(1) (PGE(1)) on hepatic MNC numbers were examined in fasted mice for 12 hours. Mice (n = 28) were randomized to Control (n = 8), PG0 (n = 10), or PG1 (n = 10) groups. The Control group was fed chow ad libitum with IV saline, while the PG0 and PG1 groups were fasted for 12 hours with infusions, respectively, of saline and PGE(1) at 1 microg/kg/minute. Blood flows and hepatic MNC numbers were examined. RESULTS Experiment 1: ER restored PN-induced reductions in small intestine and portal vein blood flows and hepatic MNC number to the levels in the Chow group. Small intestine and portal vein blood flows correlated positively with hepatic MNC number. Experiment 2: Fasting decreased small intestine and portal vein blood flows and hepatic MNC number. However, PGE(1) restored portal vein blood flow to the level of the Control group, and moderately increased hepatic MNC number. There was a positive correlation between portal blood flow and hepatic MNC number. CONCLUSIONS Reduced small intestine and portal vein blood flows may contribute to impaired hepatic immunity in the absence of EN. ER quickly restores hepatic MNC number through recovery of blood flow in both the small intestine and the portal vein.
Collapse
Affiliation(s)
- Jiro Omata
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oral supplementation with dihomo-gamma-linolenic acid-enriched oil altered serum fatty acids in healthy men. Biosci Biotechnol Biochem 2009; 73:1453-5. [PMID: 19502748 DOI: 10.1271/bbb.90112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dihomo-gamma-linolenic acid (DGLA)-enriched oil (50 or 150 mg as free DGLA) was administered to healthy men for 4 weeks. The DGLA content in serum phospholipids dose-dependently increased and returned to the initial level after a 4-week washout. No side effects or changes in platelet aggregation were observed. These results indicate that oral supplementation with DGLA oil can safely increase serum DGLA content.
Collapse
|
35
|
Kawashima H, Toyoda-Ono Y, Suwa Y, Kiso Y. Subchronic (13-week) oral toxicity study of dihomo-gamma-linolenic acid (DGLA) oil in rats. Food Chem Toxicol 2009; 47:1280-6. [PMID: 19275928 DOI: 10.1016/j.fct.2009.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/26/2009] [Accepted: 03/02/2009] [Indexed: 11/28/2022]
Abstract
Dihomo-gamma-linolenic acid (DGLA) is one of the essential fatty acids, and has anti-inflammatory and anti-allergic effects. To assess the toxicity of a novel DGLA oil produced by the fungus Mortierella alpina, we examined it in the Ames test and in acute and subchronic oral toxicity tests in rats. In the Ames test, no mutagenicity was found up to 5000 microg/plate. The acute toxicity test revealed no toxicity related to DGLA oil at 10 g/kg. In the subchronic toxicity test, DGLA oil (500, 1000, and 2000 mg/kg) was orally administered. Water and soybean oil (2000 mg/kg) were used for the no-oil control and soybean oil control groups, respectively. There was no death in either sex. Because of administration of large amounts of oil, food consumption was low in the soybean oil control and the three test groups, which appeared to mildly decrease urinary excretion of Na, K, and Cl, as well as total serum protein, albumin, and blood urea nitrogen levels. There were no toxicological changes in body weight, food consumption, ophthalmological examination, urinalysis, hematological examination, blood biochemical examination, necropsy, organ weight, or histopathological examination. These findings show that the no-observed-adverse-effect level of the DGLA oil was 2000 mg/kg.
Collapse
Affiliation(s)
- Hiroshi Kawashima
- Institute for Health Care Science, Suntory Ltd., 1-1-1, Wakayamadai, Shimamoto-cho, Osaka 618-8503, Japan.
| | | | | | | |
Collapse
|
36
|
Xue G, Liu F, Wang Y, Huang K. Optimization of Synthetic Conditions for the Preparation of Dihomo-γ-Linolenic Acid from γ-Linolenic Acid. J AM OIL CHEM SOC 2008. [DOI: 10.1007/s11746-008-1320-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids 2008; 79:101-8. [PMID: 18951005 DOI: 10.1016/j.plefa.2008.09.016] [Citation(s) in RCA: 323] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The immune system, including its inflammatory components, is fundamental to host defence against pathogenic invaders. It is a complex system involving interactions amongst many different cell types dispersed throughout the body. Central to its actions are phagocytosis of bacteria, processing of antigens derived from intracellular and extracellular pathogens, activation of T cells with clonal expansion (proliferation) and production of cytokines that elicit effector cell functions such as antibody production and killing cell activity. Inappropriate immunologic activity, including inflammation, is a characteristic of many common human disorders. Eicosanoids produced from arachidonic acid have roles in inflammation and regulation of T and B lymphocyte functions. Eicosapentaenoic acid (EPA) also gives rise to eicosanoids and these may have differing properties from those of arachidonic acid-derived eicosanoids. EPA and docosahexaenoic acid (DHA) give rise to newly discovered resolvins which are anti-inflammatory and inflammation resolving. Human immune cells are typically rich in arachidonic acid, but arachidonic acid, EPA and DHA contents can be altered through oral administration of EPA and DHA. This results in a changed pattern of production of eicosanoids and probably also of resolvins, although the latter are not well examined in the human context. Changing the fatty acid composition of immune cells also affects phagocytosis, T cell signaling and antigen presentation capability. These effects appear to mediated at the membrane level suggesting important roles of fatty acids in membrane order, lipid raft structure and function, and membrane trafficking. Thus, the fatty acid composition of human immune cells influences their function and the cell membrane contents of arachidonic acid, EPA and DHA are important. Fatty acids influence immune cell function through a variety of complex mechanisms and these mechanisms are now beginning to be unraveled.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, IDS Building, MP887 Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
38
|
Prostaglandin E(2)-loaded microspheres as strategy to inhibit phagocytosis and modulate inflammatory mediators release. Eur J Pharm Biopharm 2008; 70:784-90. [PMID: 18640269 DOI: 10.1016/j.ejpb.2008.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/29/2008] [Accepted: 06/19/2008] [Indexed: 11/22/2022]
Abstract
PGE(2), an arachidonic acid metabolite produced by various type of cells regulates a broad range of physiological activities in the endocrine, cardiovascular, gastrointestinal, and immune systems, and is involved in maintaining the local homeostasis. In the immune system, PGE(2) is mainly produced by APCs and it can suppress the Th1-mediated immune responses. The aim of this study was to develop PGE(2)-loaded biodegradable MS that prolong and sustain the in vivo release of this mediator. An o/w emulsion solvent extraction-evaporation method was chosen to prepare the MS. We determined their diameters, evaluated the in vitro release of PGE(2), using enzyme immunoassay and MS uptake by peritoneal macrophages. To assess the preservation of biological activities of this mediator, we determined the effect of PGE(2) released from MS on LPS-induced TNF-alpha release by murine peritoneal macrophages. We also analyzed the effect of encapsulated PGE(2) on inflammatory mediators release from HUVECs. Finally, we studied the effect of PGE(2) released from biodegradable MS in sepsis animal model. The use of this formulation can provide an alternative strategy for treating infections, by modulating or inhibiting inflammatory responses, especially when they constitute an exacerbated profile.
Collapse
|
39
|
Willemsen LEM, Koetsier MA, Balvers M, Beermann C, Stahl B, van Tol EAF. Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro. Eur J Nutr 2008; 47:183-91. [PMID: 18497998 DOI: 10.1007/s00394-008-0712-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND The intestinal mucosa functions as a barrier against harmful dietary and microbial antigens. An intact gut barrier forms a prerequisite for protection against infection and allergy. Both allergic and inflammatory mediators (e.g. IL-4, IFN-gamma) are known to compromise the epithelial barrier integrity by enhancing permeability. Breast milk provides protection against infection and allergy and contains polyunsaturated fatty acids (PUFA). AIM OF THE STUDY Although PUFA are commonly used in infant formulas their effect on intestinal barrier is still poorly understood. Therefore the effects of distinct PUFA (n-6: LA, GLA, DGLA, AA; n-3: ALA, EPA, DHA) and a fat blend with PUFA composition similar to that of the human breast milk fat fraction, on barrier integrity were investigated. METHODS Human intestinal epithelial cells (T84) were pre-incubated with individual PUFA or a lipase treated fat blend, with or without subsequent IL-4 exposure. Barrier integrity was evaluated by measuring transepithelial resistance and permeability. Membrane phospholipid composition was determined by capillary gas chromatography. RESULTS DGLA, AA, EPA, DHA and to a lesser extend GLA enhanced basal TER and strongly reduced IL-4 mediated permeability, while LA and ALA were ineffective. Furthermore, the lipase treated fat blend effectively supported barrier function. PUFA were incorporated in the membrane phospholipid fraction of T84 cells. CONCLUSIONS Long chain PUFA DGLA, AA, EPA and DHA were particularly effective in supporting barrier integrity by improving resistance and reducing IL-4 mediated permeability. Fat blends that release specific PUFA upon digestion in the gastrointestinal tract may support natural resistance.
Collapse
|
40
|
Kawashima H, Tateishi N, Shiraishi A, Teraoka N, Tanaka T, Tanaka A, Matsuda H, Kiso Y. Oral administration of dihomo-gamma-linolenic acid prevents development of atopic dermatitis in NC/Nga mice. Lipids 2007; 43:37-43. [PMID: 17985168 DOI: 10.1007/s11745-007-3129-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 10/17/2007] [Indexed: 11/26/2022]
Abstract
Disorders of the metabolism of essential fatty acids (EFAs) are related to atopic dermatitis (AD). Concentrations of dihomo-gamma-linolenic acid (DGLA), an EFA, in the serum of AD patients are lower than those in healthy volunteers. Recently we developed a fermented DGLA oil, and examined whether oral administration of DGLA prevents development of dermatitis in NC/Nga mice, which spontaneously develop human AD-like skin lesions. NC/Nga mice were fed a diet either containing or not containing DGLA for 8 weeks under in air-uncontrolled conventional circumstances. Clinical skin severity scores were significantly lower in mice fed DGLA than in mice not fed it. Scratching behavior and plasma total IgE levels were also reduced in the DGLA group, in association with histological improvement. DGLA suppressed clinical severity of skin lesions dose-dependently, with an increase in DGLA contents in phospholipids of skin, spleen, and plasma. Discontinuation of DGLA administration resulted in the onset of dermatitis and a decrease in DGLA contents in skin, spleen, and plasma. These findings indicate that oral administration of DGLA effectively prevents the development of AD in NC/Nga mice, and that DGLA in phospholipids is a compound of key importance in the development and prevention of dermatitis.
Collapse
Affiliation(s)
- H Kawashima
- Institute for Health Care Science, Suntory Ltd, 1-1-1, Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The immune system, including its inflammatory components, is fundamental to host defense against pathogenic invaders. It is a complex system involving interactions amongst many different cell types dispersed throughout the body. Central to its actions are phagocytosis, processing of antigens derived from intracellular and extracellular pathogens, activation of T cells with proliferation and production of cytokines that elicit effector cell functions such as antibody production and killing cell activity. Inappropriate immunologic activity, including inflammation, is a characteristic of many common human disorders. Eicosanoids produced from arachidonic acid have roles in inflammation and regulation of T and B lymphocyte functions. Eicosapentaenoic acid (EPA) also gives rise to eicosanoids and docosahexaenoic acid (DHA) to docosanoids; these may have differing properties to arachidonic acid-derived eicosanoids. EPA and DHA give rise to newly discovered resolvins. Human immune cells are typically rich in arachidonic acid, but arachidonic acid, EPA and DHA contents can be altered through oral administration of those fatty acids. This results in a change pattern of production of eicosanoids and probably also of docosanoids and resolvins, although the latter are not well examined in the human context. Changing the fatty acid composition of immune cells also affects phagocytosis, T-cell signaling and antigen presentation capability. These effects appear to mediated at the membrane level suggesting important roles of fatty acids in membrane order, lipid raft structure and function and membrane trafficking.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition and School of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
42
|
Mullen A, Moloney F, Nugent AP, Doyle L, Cashman KD, Roche HM. Conjugated linoleic acid supplementation reduces peripheral blood mononuclear cell interleukin-2 production in healthy middle-aged males. J Nutr Biochem 2007; 18:658-66. [PMID: 17368881 DOI: 10.1016/j.jnutbio.2006.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 11/07/2006] [Accepted: 12/20/2006] [Indexed: 01/02/2023]
Abstract
Conjugated linoleic acid (CLA) refers to geometric and positional isomers of linoleic acid. Animal studies have shown that CLA modulates the immune system and suggest that it may have a therapeutic role in inflammatory disorders. This double-blind placebo-controlled intervention trial investigated the effects of CLA supplementation on indices of immunity relating to cardiovascular disease (CVD) in a cohort of healthy middle-aged male volunteers. Subjects were randomly assigned to supplement their diet with 2.2 g 50:50 isomeric blend of cis 9, trans 11 (c9, t11)-CLA and trans 10, cis 12 (t10, c12)-CLA or placebo daily for 8 weeks. Interleukin (IL) 2, IL-10 and tumour necrosis factor (TNF) alpha were measured in the supernatant of cultured unstimulated and concanavalin A (Con A)-stimulated peripheral blood mononuclear cells (PBMC) by ELISA. Serum IL-6 and plasma CRP were measured by ELISA and plasma fibrinogen by automated clotting assay. Gene expression was investigated by real-time RT-PCR. CLA supplementation significantly reduced Con A-stimulated PBMC IL-2 secretion (37.1%; P=.02). CLA supplementation had no significant effect on transcription of IL-2. CLA supplementation had no direct significant effects on PBMC TNFalpha or IL-10 secretion. Other inflammatory markers associated with CVD, including IL-6, CRP and fibrinogen, were not affected by CLA supplementation. This study showed that CLA supplementation reduced PBMC IL-2 secretion from Con A-stimulated PBMC but lacked effect on other markers of the human inflammatory response.
Collapse
Affiliation(s)
- Anne Mullen
- Nutrigenomics Research Group, Department of Clinical Medicine and Institute of Molecular Medicine, St. James's Hospital, Dublin 8, Ireland
| | | | | | | | | | | |
Collapse
|
43
|
Sijben JWC, Calder PC. Differential immunomodulation with long-chain n-3 PUFA in health and chronic disease. Proc Nutr Soc 2007; 66:237-59. [PMID: 17466105 DOI: 10.1017/s0029665107005472] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The balance of intake of n-6 and n-3 PUFA, and consequently their relative incorporation into immune cells, is important in determining the development and severity of immune and inflammatory responses. Some disorders characterised by exaggerated inflammation and excessive formation of inflammatory markers have become among the most important causes of death and disability in man in modern societies. The recognition that long-chain n-3 PUFA have the potential to inhibit (excessive) inflammatory responses has led to a large number of clinical investigations with these fatty acids in inflammatory conditions as well as in healthy subjects. The present review explores the presence of dose-related effects of long-chain n-3 PUFA supplementation on immune markers and differences between healthy subjects and those with inflammatory conditions, because of the important implications for the transfer of information gained from studies with healthy subjects to patient populations, e.g. for establishing dose levels for specific applications. The effects of long-chain n-3 PUFA supplementation on ex vivo lymphocyte proliferation and cytokine production by lymphocytes and monocytes in healthy subjects have been studied in twenty-seven, twenty-five and forty-six treatment cohorts respectively, at intake levels ranging from 0.2 g EPA+DHA/d to 7.0 g EPA+DHA/d. Most studies, particularly those with the highest quality study design, have found no effects on these immune markers. Significant effects on lymphocyte proliferation are decreased responses in seven of eight cohorts, particularly in older subjects. The direction of the significant changes in cytokine production by lymphocytes is inconsistent and only found at supplementation levels > or =2.0 g EPA+DHA/d. Significant changes in inflammatory cytokine production by monocytes are decreases in their production in all instances. Overall, these studies fail to reveal strong dose-response effects of EPA+DHA on the outcomes measured and suggest that healthy subjects are relatively insensitive to immunomodulation with long-chain n-3 PUFA, even at intake levels that substantially raise their concentrations in phospholipids of immune cells. In patients with inflammatory conditions cytokine concentrations or production are influenced by EPA+DHA supplementation in a relatively large number of studies. Some of these studies suggest that local effects at the site of inflammation might be more pronounced than systemic effects and disease-related markers are more sensitive to the immunomodulatory effects, indicating that the presence of inflamed tissue or 'sensitised' immune cells in inflammatory disorders might increase sensitivity to the immunomodulatory effects of long-chain n-3 PUFA. In a substantial number of these studies clinical benefits related to the inflammatory state of the condition have been observed in the absence of significant effects on immune markers of inflammation. This finding suggests that condition-specific clinical end points might be more sensitive markers of modulation by EPA+DHA than cytokines. In general, the direction of immunomodulation in healthy subjects (if any) and in inflammatory conditions is the same, which indicates that studies in healthy subjects are a useful tool to describe the general principles of immunomodulation by n-3 PUFA. However, the extent of the effect might be very different in inflammatory conditions, indicating that studies in healthy subjects are not particularly suitable for establishing dose levels for specific applications in inflammatory conditions. The reviewed studies provide no indications that the immunomodulatory effects of long-chain n-3 PUFA impair immune function or infectious disease resistance. In contrast, in some conditions the immunomodulatory effects of EPA+DHA might improve immune function.
Collapse
Affiliation(s)
- John W C Sijben
- Numico Research, Bosrandweg 20, 6704 PH Wageningen, The Netherlands.
| | | |
Collapse
|
44
|
Abstract
BACKGROUND In some neonates suffering from ductus arteriosus dependent congenital heart defect, a Prostaglandin E(1) (PGE1) therapy longer than 2 weeks may be needed. However, PGE1 analogue compounds may produce several adverse effects. METHODS The authors retrospectively analyzed the data of nine patients who underwent a PGE1 treatment lasting longer than 14 days. RESULTS The leukocyte count of the patients remained high throughout the treatment period, and the proportion of neutrophils was over 50%. Transient feeding difficulty and abdominal distension, and possible signs of gastric-outlet obstruction, were observed in two cases. In the case of three patients, cortical hyperostosis developed after different cumulative doses (1584, 3384 and 4320 microg). Significant correlations were found between the doses of PGE1 and serum K(+) levels (r=-0.770, P < 0.05) and between the blood standard bicarbonate levels and PGE1 doses (r= 0.889, P < 0.01). Bartter syndrome-like condition developed in those three patients who received the largest cumulative doses. CONCLUSIONS Fluid-electrolyte parameters must be controlled frequently in the case of each patient treated with PGE1 for longer than 2 weeks. Although the dose, the length of the therapy and individual susceptibility may be equally important, fluid-electrolyte disturbances and the development of pseudo-Bartter syndrome seem to be more dose-dependent than cortical hyperostosis.
Collapse
Affiliation(s)
- Gyula Tálosi
- Department of Paediatrics, University of Szeged, Szeged, Hungary.
| | | | | |
Collapse
|
45
|
Levy O, Coughlin M, Cronstein BN, Roy RM, Desai A, Wessels MR. The adenosine system selectively inhibits TLR-mediated TNF-alpha production in the human newborn. THE JOURNAL OF IMMUNOLOGY 2006; 177:1956-66. [PMID: 16849509 PMCID: PMC2881468 DOI: 10.4049/jimmunol.177.3.1956] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human newborns are susceptible to microbial infection and mount poor vaccine responses, yet the mechanisms underlying their susceptibility are incompletely defined. We have previously reported that despite normal basal expression of TLRs and associated signaling intermediates, human neonatal cord blood monocytes demonstrate severe impairment in TNF-alpha production in response to triacylated (TLR 2/1) and diacylated (TLR 2/6) bacterial lipopeptides (BLPs). We now demonstrate that in marked contrast, BLP-induced synthesis of IL-6, a cytokine with anti-inflammatory and Th2-polarizing properties, is actually greater in neonates than adults. Remarkably, newborn blood plasma confers substantially reduced BLP-induced monocyte synthesis of TNF-alpha, while preserving IL-6 synthesis, reflecting the presence in neonatal blood plasma of a soluble, low molecular mass inhibitory factor (<10 kDa) that we identify as adenosine, an endogenous purine metabolite with immunomodulatory properties. The neonatal adenosine system also inhibits TNF-alpha production in response to whole microbial particles known to express TLR2 agonist activity, including Listeria monocytogenes, Escherichia coli (that express BLPs), and zymosan particles. Selective inhibition of neonatal TNF-alpha production is due to the distinct neonatal adenosine system, including relatively high adenosine concentrations in neonatal blood plasma and heightened sensitivity of neonatal mononuclear cells to adenosine A3 receptor-mediated accumulation of cAMP, a second messenger that inhibits TLR-mediated TNF-alpha synthesis but preserves IL-6 production. We conclude that the distinct adenosine system of newborns polarizes TLR-mediated cytokine production during the perinatal period and may thereby modulate their innate and adaptive immune responses.
Collapse
Affiliation(s)
- Ofer Levy
- Infectious Diseases, Children's Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Okano M, Sugata Y, Fujiwara T, Matsumoto R, Nishibori M, Shimizu K, Maeda M, Kimura Y, Kariya S, Hattori H, Yokoyama M, Kino K, Nishizaki K. E prostanoid 2 (EP2)/EP4-mediated suppression of antigen-specific human T-cell responses by prostaglandin E2. Immunology 2006; 118:343-52. [PMID: 16827895 PMCID: PMC1782299 DOI: 10.1111/j.1365-2567.2006.02376.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator that displays important immunomodulatory properties, such as polarization of cytokine production by T cells. Recent investigations have revealed that the effect of PGE2 on cytokine production is greatly influenced by external stimuli; however, it is unclear whether PGE2 plays a significant role in major histocompatibility complex-mediated antigen-specific T-cell responses via binding to one of four subtypes of E prostanoid (EP) receptor alone or in combination. In the present study, we sought to determine the effect of PGE2 on antigen-specific CD4+ T-cell responses in humans, especially in terms of receptor specificity. We used purified protein derivative (PPD) and Cry j 1 as T helper type 1 (Th1) and Th2-inducing antigens, respectively. We generated several different Cry j 1- and PPD-specific T-cell lines (TCLs). PGE2 significantly and dose-dependently inhibited the proliferation and subsequent production of interleukin-4 by Cry j 1-specific TCLs and of interferon-gamma by PPD-specific TCLs upon antigen stimulation. Administration of EP2 receptor agonist and EP4 receptor agonist suppressed these responses in an adenylate cyclase-dependent manner, while EP1 and EP3 receptor agonists did not. Messenger RNA for EP2, EP3 and EP4, but not EP1, receptors were detected in Cry j 1- and PPD-specific TCLs, and no differences in EP receptor expression were observed between them. Furthermore, PGE2 and EP2 receptor agonist significantly inhibited interleukin-5 and interferon-gamma production by peripheral blood mononuclear cells in response to Cry j 1 and PPD stimulation, respectively. These results suggest that PGE2 suppresses both Th1- and Th2-polarized antigen-specific human T-cell responses via a cAMP-dependent EP2/EP4-mediated pathway.
Collapse
MESH Headings
- Adenylyl Cyclase Inhibitors
- Adolescent
- Adult
- Allergens/immunology
- Antigens, Plant
- Cell Proliferation
- Cells, Cultured
- Cytokines/biosynthesis
- Dinoprostone/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- Immune Tolerance/immunology
- Immunity, Cellular
- Male
- Middle Aged
- Plant Proteins/immunology
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/immunology
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Prostaglandin E, EP4 Subtype
- Reverse Transcriptase Polymerase Chain Reaction/methods
- T-Lymphocyte Subsets/immunology
- Tuberculin/immunology
Collapse
Affiliation(s)
- Mitsuhiro Okano
- Department of Otolaryngology-Head & Neck Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
van Meeteren ME, Baron W, Beermann C, Dijkstra CD, van Tol EAF. Polyunsaturated fatty acid supplementation stimulates differentiation of oligodendroglia cells. Dev Neurosci 2006; 28:196-208. [PMID: 16679766 DOI: 10.1159/000091917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 07/08/2005] [Indexed: 11/19/2022] Open
Abstract
Dietary polyunsaturated fatty acids (PUFAs) have been postulated as alternative supportive treatment for multiple sclerosis, since they may promote myelin repair. We set out to study the effect of supplementation with n-3 and n-6 PUFAs on OLN-93 oligodendroglia and rat primary oligodendrocyte differentiation in vitro. It appeared that OLN-93 cells actively incorporate and metabolise the supplemented PUFAs in their cell membrane. The effect of PUFAs on OLN-93 differentiation was further assessed by morphological and Western blot evaluation of markers of oligodendroglia differentiation: 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), zonula occludens-1 (ZO-1) and myelin-associated glycoprotein (MAG). Supplementation of the OLN-93 cells with n-3 and n-6 PUFAs increased the degree of differentiation determined by morphological analysis. Moreover, CNP protein expression was significantly increased by gamma-linolenic acid (GLA, 18:3n-6) supplementation. In accordance with the OLN-93 results, studies with rat primary oligodendrocytes, a more advanced model of cell differentiation, showed GLA supplementation to promote oligodendrocyte differentiation. Following GLA supplementation, increased numbers of proteolipid protein (PLP)-positive oligodendrocytes and increased myelin sheet formation was observed during differentiation of primary oligodendrocytes. Moreover, increased CNP, and enhanced PLP and myelin basic protein expression were found after GLA administration. These studies provide support for the dietary supplementation of specific PUFAs to support oligodendrocyte differentiation and function.
Collapse
Affiliation(s)
- M E van Meeteren
- Biomedical Research Department, Numico Research B.V., Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Abstract
Inflammation is part of the normal host response to infection and injury. However, excessive or inappropriate inflammation contributes to a range of acute and chronic human diseases and is characterized by the production of inflammatory cytokines, arachidonic acid-derived eicosanoids (prostaglandins, thromboxanes, leukotrienes, and other oxidized derivatives), other inflammatory agents (e.g., reactive oxygen species), and adhesion molecules. At sufficiently high intakes, long-chain n-3 polyunsaturated fatty acids (PUFAs), as found in oily fish and fish oils, decrease the production of inflammatory eicosanoids, cytokines, and reactive oxygen species and the expression of adhesion molecules. Long-chain n-3 PUFAs act both directly (e.g., by replacing arachidonic acid as an eicosanoid substrate and inhibiting arachidonic acid metabolism) and indirectly (e.g., by altering the expression of inflammatory genes through effects on transcription factor activation). Long-chain n-3 PUFAs also give rise to a family of antiinflammatory mediators termed resolvins. Thus, n-3 PUFAs are potentially potent antiinflammatory agents. As such, they may be of therapeutic use in a variety of acute and chronic inflammatory settings. Evidence of their clinical efficacy is reasonably strong in some settings (e.g., in rheumatoid arthritis) but is weak in others (e.g., in inflammatory bowel diseases and asthma). More, better designed, and larger trials are required to assess the therapeutic potential of long-chain n-3 PUFAs in inflammatory diseases. The precursor n-3 PUFA alpha-linolenic acid does not appear to exert antiinflammatory effects at achievable intakes.
Collapse
Affiliation(s)
- Philip C Calder
- Institute of Human Nutrition, School of Medicine, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
49
|
Katsuno G, Takahashi HK, Iwagaki H, Sugita S, Mori S, Saito S, Yoshino T, Nishibori M, Tanaka N. THE EFFECT OF CIPROFLOXACIN ON CD14 AND TOLL-LIKE RECEPTOR-4 EXPRESSION ON HUMAN MONOCYTES. Shock 2006; 25:247-53. [PMID: 16552356 DOI: 10.1097/01.shk.0000208803.50914.a2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
CD14/toll-like receptor (TLR)-4 complex on monocytes/macrophages can bind lipopolysaccharide (LPS) and transduce the signals intracellularly. An antibacterial drug, ciprofloxacin (CIP), has been reported to modulate the inflammatory and immune responses. In the present study, we examined the effects of CIP on the LPS-induced activation of monocytes isolated from human peripheral blood mononuclear cells (PBMC). CIP suppressed the expression of CD14, TLR-4, intercellular adhesion molecule (ICAM)-1, B7.1, B7.2, and CD40 and the production of tumor necrosis factor (TNF)-alpha induced by LPS in monocytes. CIP induced the production of prostaglandin (PG)E2 and increased intracellular cyclic adenosine monophosphate (cAMP) levels. Cyclooxygenase (COX)-2 inhibitors, NS398 and indomethacin, reversed the effects of CIP on TNF-alpha production and reduced the levels of different surface antigens, whereas a protein kinase A (PKA) inhibitor, H89, did not. Therefore, CIP might regulate the TNF-alpha production induced by LPS by inhibiting the expression of LPS receptor complex, which seems to be mediated by COX-2 but not the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Goutaro Katsuno
- Department of Gastroenterological Surgery, Transplant, and Surgical Oncology, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Gold DR, Willwerth BM, Tantisira KG, Finn PW, Schaub B, Perkins DL, Tzianabos A, Ly NP, Schroeter C, Gibbons F, Campos H, Oken E, Gillman MW, Palmer LJ, Ryan LM, Weiss ST. Associations of cord blood fatty acids with lymphocyte proliferation, IL-13, and IFN-gamma. J Allergy Clin Immunol 2006; 117:931-8. [PMID: 16630954 PMCID: PMC1508138 DOI: 10.1016/j.jaci.2005.12.1322] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 12/09/2005] [Accepted: 12/12/2005] [Indexed: 11/17/2022]
Abstract
BACKGROUND N-3 and n-6 polyunsaturated fatty acids (PUFAs) have been hypothesized to have opposing influences on neonatal immune responses that might influence the risk of allergy or asthma. However, both n-3 eicosapentaenoic acid (EPA) and n-6 arachidonic acid (AA) are required for normal fetal development. OBJECTIVE We evaluated whether cord blood fatty acid levels were related to neonatal immune responses and whether n-3 and n-6 PUFA responses differed. METHODS We examined the relation of cord blood plasma n-3 and n-6 PUFAs (n = 192) to antigen- and mitogen-stimulated cord blood lymphocyte proliferation (n = 191) and cytokine (IL-13 and IFN-gamma; n = 167) secretion in a US birth cohort. RESULTS Higher levels of n-6 linoleic acid were correlated with higher IL-13 levels in response to Bla g 2 (cockroach, P = .009) and Der f 1 (dust mite, P = .02). Higher n-3 EPA and n-6 AA levels were each correlated with reduced lymphocyte proliferation and IFN-gamma levels in response to Bla g 2 and Der f 1 stimulation. Controlling for potential confounders, EPA and AA had similar independent effects on reduced allergen-stimulated IFN-gamma levels. If neonates had either EPA or AA levels in the highest quartile, their Der f 1 IFN-gamma levels were 90% lower (P = .0001) than those with both EPA and AA levels in the lowest 3 quartiles. Reduced AA/EPA ratio was associated with reduced allergen-stimulated IFN-gamma level. CONCLUSION Increased levels of fetal n-3 EPA and n-6 AA might have similar effects on attenuation of cord blood lymphocyte proliferation and IFN-gamma secretion. CLINICAL IMPLICATIONS The implications of these findings for allergy or asthma development are not yet known.
Collapse
Affiliation(s)
- Diane R Gold
- Channing Laboratory, Department of Medicine, Brigham & Women's Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|