1
|
Sapkota S, Briski KP. Sex-Dimorphic Effects of Hypoglycemia on Metabolic Sensor mRNA Expression in Ventromedial Hypothalamic Nucleus-Dorsomedial Division (VMNdm) Growth Hormone-Releasing Hormone Neurons. ACS Chem Neurosci 2024; 15:2350-2358. [PMID: 38757688 DOI: 10.1021/acschemneuro.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024] Open
Abstract
Growth hormone-releasing hormone (Ghrh) neurons in the dorsomedial ventromedial hypothalamic nucleus (VMNdm) express the metabolic transcription factor steroidogenic factor-1 and hypoglycemia-sensitive neurochemicals of diverse chemical structures, transmission modes, and temporal signaling profiles. Ghrh imposes neuromodulatory control of coexpressed transmitters. Multiple metabolic sensory mechanisms are employed in the brain, including screening of the critical nutrient glucose or the energy currency ATP. Here, combinatory laser-catapult-microdissection/single-cell multiplex qPCR tools were used to investigate whether these neurons possess molecular machinery for monitoring cellular metabolic status and if these biomarkers exhibit sex-specific sensitivity to insulin-induced hypoglycemia. Data show that hypoglycemia up- (male) or downregulated (female) Ghrh neuron glucokinase (Gck) mRNA; Ghrh gene silencing decreased baseline and hypoglycemic patterns of Gck gene expression in each sex. Ghrh neuron glucokinase regulatory protein (Gckr) transcript levels were respectively diminished or augmented in hypoglycemic male vs female rats; this mRNA profile was decreased by Ghrh siRNA in both sexes. Gene transcripts encoding catalytic alpha subunits of the energy monitor 5-AMP-activated protein kinase (AMPK), i.e., Prkaa1 and 2, were increased by hypoglycemia in males, yet only the former mRNA was hypoglycemia-sensitive in females. Ghrh siRNA downregulated baseline and hypoglycemia-associated Prkaa subunit mRNAs in males but elicited divergent changes in Prkaa2 transcripts in eu- vs hypoglycemic females. Results provide unique evidence that VMNdm Ghrh neurons express the characterized metabolic sensor biomarkers glucokinase and AMPK and that the corresponding gene profiles exhibit distinctive sex-dimorphic transcriptional responses to hypoglycemia. Data further document Ghrh neuromodulation of baseline and hypoglycemic transcription patterns of these metabolic gene profiles.
Collapse
Affiliation(s)
- Subash Sapkota
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, United States
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
2
|
Alshamrani AA, Ibrahim MM, Briski KP. Effects of Short-Term Food Deprivation on Catecholamine and Metabolic-Sensory Biomarker Gene Expression in Hindbrain A2 Noradrenergic Neurons Projecting to the Forebrain Rostral Preoptic Area: Impact of Negative versus Positive Estradiol Feedback. IBRO Neurosci Rep 2022; 13:38-46. [PMID: 35711244 PMCID: PMC9193863 DOI: 10.1016/j.ibneur.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Hindbrain A2 noradrenergic neurons assimilate estrogenic and metabolic cues. In female mammals, negative- versus positive-feedback patterns of estradiol (E) secretion impose divergent regulation of the gonadotropin-releasing hormone (GnRH)-pituitary-gonadal (HPG) neuroendocrine axis. Current research used retrograde tracing, dual-label immunocytochemistry, single-cell laser-microdissection, and multiplex qPCR methods to address the premise that E feedback modes uniquely affect metabolic regulation of A2 neurons involved in HPG control. Ovariectomized female rats were given E replacement to replicate plasma hormone levels characteristic of positive (high-E dose) or negative (low-E dose) feedback. Animals were either full-fed (FF) or subjected to short-term, e.g., 18-h food deprivation (FD). After FF or FD, rostral preoptic area (rPO)-projecting A2 neurons were characterized by the presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunostaining. FD augmented or suppressed mRNAs encoding the catecholamine enzyme dopamine-beta-hydroxylase (DβH) and the metabolic-sensory biomarker glucokinase (GCK), relative to FF controls, in nGKRP-immunoreactive (ir)-positive A2 neurons from low-E or high-E animals, respectively. Yet, these transcript profiles were unaffected by FD in nGKRP-ir-negative A2 neurons at either E dosage level. FD altered estrogen receptor (ER)-alpha and ATP-sensitive potassium channel subunit sulfonylurea receptor-1 gene expression in nGKRP-ir-positive neurons from low-E, but not high-E animals. Results provide novel evidence that distinct hindbrain A2 neuron populations exhibit altered versus unaffected transmission to the rPO during FD-associated metabolic imbalance, and that the direction of change in this noradrenergic input is controlled by E feedback mode. These A2 cell types are correspondingly distinguished by FD-sensitive or -insensitive GCK, which correlates with the presence versus absence of nGKRP-ir. Further studies are needed to determine how E signal volume regulates neurotransmitter and metabolic sensor responses to FD in GKRP-expressing A2 neurons.
Collapse
Affiliation(s)
| | | | - Karen P. Briski
- Correspondence to: School of Basic Pharmaceutical and Toxicological Sciences College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
3
|
Majarune S, Nima P, Sugimoto A, Nagae M, Inoue N, Tsukamura H, Uenoyama Y. Ad libitum feeding triggers puberty onset associated with increases in arcuate Kiss1 and Pdyn expression in growth-retarded rats. J Reprod Dev 2019; 65:397-406. [PMID: 31155522 PMCID: PMC6815743 DOI: 10.1262/jrd.2019-048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence shows that puberty onset is largely dependent on body weight rather than chronological age. To investigate the mechanism involved in the energetic control of puberty
onset, the present study examined effects of chronic food restriction during the prepubertal period and the resumption of ad libitum feeding for 24 and 48 h on estrous
cyclicity, Kiss1 (kisspeptin gene), Tac3 (neurokinin B gene) and Pdyn (dynorphin A gene) expression in the hypothalamus, luteinizing
hormone (LH) secretion and follicular development in female rats. When animals weighed 75 g, they were subjected to a restricted feeding to retard growth to 70–80 g by 49 days of age. Then,
animals were subjected to ad libitum feeding or remained food-restricted. The growth-retarded rats did not show puberty onset associated with suppression of both
Kiss1 and Pdyn expression in the arcuate nucleus (ARC). 24-h ad libitum feeding increased tonic LH secretion and the number of Graafian
and non-Graafian tertiary follicles with an increase in the numbers of ARC Kiss1- and Pdyn-expressing cells. 48-h ad libitum feeding
induced the vaginal proestrus and a surge-like LH increase with an increase in Kiss1-expressing cells in the anteroventral periventricular nucleus (AVPV). These results
suggest that the negative energy balance causes pubertal failure with suppression of ARC Kiss1 and Pdyn expression and then subsequent gonadotropin
secretion and ovarian function, while the positive energetic cues trigger puberty onset via an increase in ARC Kiss1 and Pdyn expression and thus
gonadotropin secretion and follicular development in female rats.
Collapse
Affiliation(s)
- Sutisa Majarune
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Pelden Nima
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Arisa Sugimoto
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayuko Nagae
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Naoko Inoue
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa Uenoyama
- Laboratory of Animal Reproduction, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Deura C, Minabe S, Ikegami K, Inoue N, Uenoyama Y, Maeda KI, Tsukamura H. Morphological analysis for neuronal pathway from the hindbrain ependymocytes to the hypothalamic kisspeptin neurons. J Reprod Dev 2019; 65:129-137. [PMID: 30662010 PMCID: PMC6473108 DOI: 10.1262/jrd.2018-122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hindbrain ependymocytes are postulated to have a glucose-sensing role in regulating gonadal functions. Previous studies have suggested that malnutrition-induced suppression of gonadotropin
secretion is mediated by noradrenergic inputs from the A2 region in the solitary tract nucleus to the paraventricular nucleus (PVN), and by corticotropin-releasing hormone (CRH) release in
the hypothalamus. However, no morphological evidence to indicate the neural pathway from the hindbrain ependymocytes to hypothalamic kisspeptin neurons, a center for reproductive function in
mammals, currently exists. The present study aimed to examine the existence of a neuronal pathway from the hindbrain ependymocytes to kisspeptin neurons in the arcuate nucleus (ARC) and
anteroventral periventricular nucleus (AVPV). To determine this, wheat-germ agglutinin (WGA), a trans-synaptic tracer, was injected into the fourth ventricle (4V) in heterozygous
Kiss1-tandem dimer Tomato (tdTomato) rats, where kisspeptin neurons were visualized by tdTomato fluorescence. 48 h after the WGA injection, brain sections were taken from
the forebrain, midbrain and hindbrain and subjected to double immunohistochemistry for WGA and dopamine β-hydroxylase (DBH) or CRH. WGA immunoreactivities were found in
vimentin-immunopositive ependymocytes of the 4V and the central canal (CC), but not in the third ventricle. The WGA immunoreactivities were detected in some tdTomato-expressing cells in the
ARC and AVPV, DBH-immunopositive cells in the A1–A7 noradrenergic nuclei, and CRH-immunopositive cells in the PVN. These results suggest that the hindbrain ependymocytes have neuronal
connections with the kisspeptin neurons, most probably via hindbrain noradrenergic and CRH neurons to relay low energetic signals for regulation of reproduction.
Collapse
Affiliation(s)
- Chikaya Deura
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Shiori Minabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| |
Collapse
|
5
|
Shakya M, Shrestha PK, Briski KP. Hindbrain 5'-Adenosine Monophosphate-activated Protein Kinase Mediates Short-term Food Deprivation Inhibition of the Gonadotropin-releasing Hormone-Luteinizing Hormone Axis: Role of Nitric Oxide. Neuroscience 2018; 383:46-59. [PMID: 29746990 DOI: 10.1016/j.neuroscience.2018.04.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
Hindbrain-derived stimuli restrain the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) reproductive neuroendocrine axis during energy insufficiency. Interruption of food intake, planned or unplanned, is emblematic of modern life. This study investigated the premise that the hindbrain energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) inhibits reproductive neuroendocrine function in short term, e.g. 18-h food-deprived (FD) estradiol (E)-implanted ovariectomized female rats. Intra-caudal fourth ventricular administration of the AMPK inhibitor Compound C (Cc) reversed FD-induced inhibition of rostral preoptic (rPO) GnRH protein expression and LH release in animals given E to replicate proestrus (high-E dose-, but not metestrus (low-E dose)-stage plasma steroid levels. FD caused Cc-reversible augmentation or diminution of preoptic norepinephrine (NE) activity in high- versus low-E rats, respectively, and AMPK-independent reductions in hypothalamic NE accumulation in the latter. Nitric oxide (NO) and kisspeptin are key stimulatory signals for the preovulatory LH surge. Here, FD inhibited rPO neuronal nitric oxide synthase protein expression in high-, but not low-E-dosed animals. Lateral ventricular delivery of the NO donor 3-morpholinosydnonimine (SIN-1) reversed inhibitory GnRH and LH responses to FD in high-E rats, and normalized rPO Vglut2, anteroventral periventricular KiSS1, and dorsomedial hypothalamic RFRP-3 mRNA and/or protein profiles. Data show that FD curtails reproductive neuroendocrine outflow by hindbrain AMPK-dependent mechanisms in the presence of peak estrous cycle E levels. Results indicate that neural networks linking this sensor to GnRH neurons likely involve NO signaling, which may function upstream of one or more neurotransmitters identified here by SIN-1-reversible inhibitory responses to FD.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
6
|
Briski KP, Alhamami HN, Alshamrani A, Mandal SK, Shakya M, Ibrahim MHH. Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:359-383. [PMID: 29224103 DOI: 10.1007/978-3-319-70178-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body's far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Ayed Alshamrani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Mostafa H H Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
7
|
Briski KP, Shrestha PK. Hindbrain estrogen receptor-beta antagonism normalizes reproductive and counter-regulatory hormone secretion in hypoglycemic steroid-primed ovariectomized female rats. Neuroscience 2016; 331:62-71. [PMID: 27316550 DOI: 10.1016/j.neuroscience.2016.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Hindbrain dorsal vagal complex A2 noradrenergic signaling represses the pre-ovulatory luteinizing hormone (LH) surge in response to energy deficiency. Insulin-induced hypoglycemia augments A2 neuron adenosine 5'-monophosphate-activated protein kinase (AMPK) activity and estrogen receptor-beta (ERβ) expression, coincident with LH surge suppression. We hypothesized that ERβ is critical for hypoglycemia-associated patterns of LH secretion and norepinephrine (NE) activity in key reproduction-relevant forebrain structures. The neural mechanisms responsible for tight coupling of systemic energy balance and procreation remain unclear; here, we investigated whether ERβ-dependent hindbrain signals also control glucose counter-regulatory responses to hypoglycemia. Gonadal steroid-primed ovariectomized female rats were pretreated by caudal fourth ventricular administration of the ERβ antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol (PHTPP) or vehicle before insulin injection at LH surge onset. Western blot analysis of laser-microdissected A2 neurons revealed hypoglycemic intensification of AMPK activity and dopamine-β-hydroxylase protein expression; the latter response was attenuated by PHTPP pretreatment. PHTPP regularized LH release, but not preoptic GnRH-I precursor protein expression in insulin-injected rats, and reversed hypoglycemic stimulation of glucagon and corticosterone secretion. Hypoglycemia caused PHTPP-reversible changes in NE and prepro-kisspeptin protein content in the hypothalamic arcuate (ARH), but not anteroventral periventricular nucleus. Results provide novel evidence for ERβ-dependent caudal hindbrain regulation of LH and counter-regulatory hormone secretion during hypoglycemia. Observed inhibition of LH likely involves mechanisms at the axon terminal that impede GnRH neurotransmission. Data also show that caudal hindbrain ERβ exerts site-specific control of NE activity in forebrain projection sites during hypoglycemia, including the ARH where prepro-kisspeptin may be a target of that signaling.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71291, United States.
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71291, United States
| |
Collapse
|
8
|
Abstract
A well worked-out motivational system in laboratory animals produces estrogen-dependent female sex behavior. Here, we review (a) the logical definition of sexual motivation and (b) the basic neuronal and molecular mechanisms that allow the behavior to occur. Importantly, reproductive mechanisms in the female can be inhibited by stress. This is interesting because, in terms of the specificity of neuroendocrine dynamics in space and time, the two families of phenomena, sex and stress, are the opposite of each other. We cover papers that document stress effects on the underlying processes of reproductive endocrinology in the female. Not all of the mechanisms for such inhibition have been clearly laid out. Finally, as a current topic of investigation, this system offers several avenues for new investigation which we briefly characterize.
Collapse
Affiliation(s)
- Ana Maria Magariños
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA.
| | - Donald Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Shrestha PK, Briski KP. Hindbrain lactate regulates preoptic gonadotropin-releasing hormone (GnRH) neuron GnRH-I protein but not AMPK responses to hypoglycemia in the steroid-primed ovariectomized female rat. Neuroscience 2015; 298:467-74. [PMID: 25934033 DOI: 10.1016/j.neuroscience.2015.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/04/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
Steroid positive-feedback activation of the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) neuroendocrine axis propagates the pre ovulatory LH surge, a crucial component of female reproduction. Our work shows that this key event is restrained by inhibitory metabolic input from hindbrain A2 noradrenergic neurons. GnRH neurons express the ultra-sensitive energy sensor adenosine 5'-monophosphate-activated protein kinase (AMPK); here, we investigated the hypothesis that GnRH nerve cell AMPK and peptide neurotransmitter responses to insulin-induced hypoglycemia are controlled by hindbrain lack of the oxidizable glycolytic end-product L-lactate. Data show that hypoglycemic inhibition of LH release in steroid-primed ovariectomized female rats was reversed by coincident caudal hindbrain lactate infusion. Western blot analyses of laser-microdissected A2 neurons demonstrate hypoglycemic augmentation [Fos, estrogen receptor-beta (ER-β), phosphoAMPK (pAMPK)] and inhibition (dopamine-beta-hydroxylase, GLUT3, MCT2) of protein expression in these cells, responses that were normalized by insulin plus lactate treatment. Hypoglycemia diminished rostral preoptic GnRH nerve cell GnRH-I protein and pAMPK content; the former, but not the latter response was reversed by lactate. Results implicate caudal hindbrain lactoprivic signaling in hypoglycemia-induced suppression of the LH surge, demonstrating that lactate repletion of that site reverses decrements in A2 catecholamine biosynthetic enzyme and GnRH neuropeptide precursor protein expression. Lack of effect of lactate on hypoglycemic patterns of GnRH AMPK activity suggests that this sensor is uninvolved in metabolic-inhibition of positive-feedback-stimulated hypophysiotropic signaling to pituitary gonadotropes.
Collapse
Affiliation(s)
- P K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - K P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
10
|
Ibrahim BA, Briski KP. Role of dorsal vagal complex A2 noradrenergic neurons in hindbrain glucoprivic inhibition of the luteinizing hormone surge in the steroid-primed ovariectomized female rat: effects of 5-thioglucose on A2 functional biomarker and AMPK activity. Neuroscience 2014; 269:199-214. [PMID: 24631866 DOI: 10.1016/j.neuroscience.2014.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/30/2014] [Accepted: 02/17/2014] [Indexed: 11/30/2022]
Abstract
Neuro-glucostasis is required for normal expression of the steroid positive-feedback-induced preovulatory pituitary luteinizing hormone (LH) surge, a critical element of female reproduction. Glucoprivic signals from the caudal hindbrain restrain this surge, but the cellular source of this stimulus is unclear. Norepinephrine (NE) exerts well-defined stimulatory effects on the reproductive neuroendocrine axis. Our studies show that medullary A2 noradrenergic neurons are both estrogen- and glucoprivic-sensitive. Here, we investigated the premise that the LH surge is inhibited by A2 cell reactivity to hindbrain glucopenia and diminished preoptic NE neurotransmission. Estradiol- and progesterone-primed ovariectomized (OVX) female rats were injected into the caudal fourth ventricle (CV4) with the glucose anti-metabolite, 5-thioglucose (5TG) or saline (SAL) prior to onset of the LH surge. Pretreatment by intra-CV4 delivery of the selective catecholamine neurotoxin, 6-OHDA, attenuated LH output, but prevented inhibition by 5TG. 5TG modified patterns of steroid feedback-associated Fos staining of A2, but not other medullary catecholamine cell groups. Intra-preoptic administration of the alpha₁-adrenergic receptor agonist, methoxamine, elicited site-specific reversal of hindbrain glucoprivic suppression of gonadotropin-releasing hormone (GnRH) neuron Fos labeling and LH release. Western blotting of laser-microdissected A2 neurons revealed glucoprivic stimulation of Fos, but inhibition of the catecholamine synthetic enzyme, dopamine-β-hydroxylase; 5TG also diminished A2 estrogen receptor (ER)-α and progesterone receptor profiles, but augmented ER-β protein. Intriguingly, A2 AMPK activity was decreased in 5TG-treated rats, despite down-regulation of GLUT3 and no change in MCT2 protein expression. Rostral preoptic GnRH neurons also exhibited decreased AMPK activation simultaneous with apparent reduction of neuropeptide signaling to the pituitary. The present studies demonstrate that hindbrain glucoprivation inhibits the LH surge, in part, by reducing preoptic noradrenergic input, and furthermore implicate A2 neurons as a source of this altered signal. Results also suggest that AMPK sensor deactivation does not supersede the impact of pharmacological inhibition of glucose catabolism on A2 cell function nor afferent signaling of hindbrain glucopenia on GnRH neurons. Further studies are needed to determine if decreased AMPK activation in these cell populations reflect compensatory gain in positive energy balance and/or direct effects of estrogen on AMPK.
Collapse
Affiliation(s)
- B A Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - K P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
11
|
Ibrahim BA, Tamrakar P, Gujar AD, Cherian AK, Briski KP. Caudal fourth ventricular administration of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside regulates glucose and counterregulatory hormone profiles, dorsal vagal complex metabolosensory neuron function, and hypothalamic Fos expression. J Neurosci Res 2013; 91:1226-38. [PMID: 23825033 DOI: 10.1002/jnr.23230] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 01/02/2023]
Abstract
This study investigated the hypothesis that estrogen controls hindbrain AMP-activated protein kinase (AMPK) activity and regulation of blood glucose, counterregulatory hormone secretion, and hypothalamic nerve cell transcriptional status. Dorsal vagal complex A2 noradrenergic neurons were laser microdissected from estradiol benzoate (E)- or oil (O)-implanted ovariectomized female rats after caudal fourth ventricular (CV4) delivery of the AMPK activator 5-aminoimidazole-4-carboxamide-riboside (AICAR), for Western blot analysis. E advanced AICAR-induced increases in A2 phospho-AMPK (pAMPK) expression and in blood glucose levels and was required for augmentation of Fos, estrogen receptor-α (ERα), monocarboxylate transporter-2, and glucose transporter-3 protein in A2 neurons and enhancement of corticosterone secretion by this treatment paradigm. CV4 AICAR also resulted in site-specific modifications in Fos immunolabeling of hypothalamic metabolic structures, including the paraventricular, ventromedial, and arcuate nuclei. The current studies demonstrate that estrogen regulates AMPK activation in caudal hindbrain A2 noradrenergic neurons during pharmacological replication of energy shortage in this area of the brain, and that this sensor is involved in neural regulation of glucostasis, in part, through control of corticosterone secretion. The data provide unique evidence that A2 neurons express both ERα and -β proteins and that AMPK upregulates cellular sensitivity to ERα-mediated signaling during simulated energy insufficiency. The results also imply that estrogen promotes glucose and lactate uptake by these cells under those conditions. Evidence for correlation between hindbrain AMPK and hypothalamic nerve cell genomic activation provides novel proof for functional connectivity between this hindbrain sensor and higher order metabolic brain loci while demonstrating a modulatory role for estrogen in this interaction.
Collapse
Affiliation(s)
- Baher A Ibrahim
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, Louisiana, USA
| | | | | | | | | |
Collapse
|
12
|
Nedungadi TP, Briski KP. Site-specific effects of intracranial estradiol administration on recurrent insulin-induced hypoglycemia in the ovariectomized female rat. Neuroendocrinology 2012; 96:311-23. [PMID: 22572755 DOI: 10.1159/000338407] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023]
Abstract
Clinical and experimental studies reveal gender differences in susceptibility to dampening effects of precedent hypoglycemia on recurrent insulin-induced hypoglycemia (RIIH). Recent studies implicate the ovarian steroid, estradiol, in the regulation of RIIH, since systemic replacement of this hormone at basal estrous cycle levels maintains glucose profiles during serial insulin dosing and prevents RIIH-associated reductions in neuronal activation in key metabolic structures in the ovariectomized female rat brain. The present study investigated the hypothesis that these effects are achieved, in part, by estrogenic action within the central nervous system, including glucoregulatory structures characterized by high estrogen receptor (ER) expression. Initial experiments evaluated the impact of global intracranial administration of estradiol on RIIH. Ovariectomized rats were treated by continuous infusion of graded doses of 17β-estradiol-3-benzoate (EB) or vehicle into the lateral ventricle (LV), and injected subcutaneously with 1 or 4 doses of the intermediate-release insulin, Humulin N (HN), 1 dose per day. Animals infused with 5 or 10 µg EB/day exhibited uniform glycemic responses to 1 versus 4 doses of insulin, whereas rescue from hypoglycemia was delayed during repetitive HN injection of rats infused with either vehicle or 1 µg EB/day. Recovery from both single and multiple bouts of hypoglycemia was more rapid in rats infused with the higher EB doses, compared to other groups. Mapping of ERα immunoreactivity in animals treated by LV infusion of EB revealed variable nuclear staining in ER-expressing metabolic loci typified by estrogen-dependent sustenance of neuronal reactivity to hypoglycemia, with highest levels of ERα immunoreactivity observed in the arcuate (ARH) and ventromedial (VMH) hypothalamic nuclei, and moderate labeling of the caudal hindbrain dorsal vagal complex. EB delivery to the caudal hindbrain via the caudal fourth ventricle resulted in dose-dependent effects on RIIH, since glycemic profiles were either unchanged or diminished relative to acute NH-induced hypoglycemia, in high versus low EB-treated animals, respectively. Bilateral administration of 1.0 µg EB into the ARH or VMH elicited disparate effects on acute and chronic HN-induced hypoglycemia. Intra-VMH EB delayed recovery from both acute and chronic hypoglycemia, compared to non-estradiol-treated controls. In contrast, neither that dose nor a 10-fold lower dosage of EB delivered to the ARH modified acute HN-induced hypoglycemia, but RIIH was either attenuated or enhanced, respectively, in animals treated by intra-ARH delivery of 1.0 versus 0.1 µg EB, respectively. These results suggest that whole brain exposure to elevated estradiol may promote outflow that truncates hypoglycemia and maintains glucose profiles during RIIH, whereas actions of relatively low hormone levels on the central nervous system may result in adaptive adjustments that result in lower blood glucose levels during recurring versus acute hypoglycemia. The data also imply that, at a given concentration, estrogens may exert site-specific effects on acute and chronic HN-induced hypoglycemia. Further research is needed to identify the cellular substrates and physiological mechanisms that mediate caudal hindbrain-, ARH-, and VMH-specific actions of estradiol on acute and chronic hypoglycemia.
Collapse
Affiliation(s)
- T Prashant Nedungadi
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, The University of Louisiana at Monroe, Monroe, La 71201, USA
| | | |
Collapse
|
13
|
Roland AV, Moenter SM. Glucosensing by GnRH neurons: inhibition by androgens and involvement of AMP-activated protein kinase. Mol Endocrinol 2011; 25:847-58. [PMID: 21393446 DOI: 10.1210/me.2010-0508] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
GnRH neurons integrate steroidal and metabolic cues to regulate fertility centrally. Central glucoprivation reduces LH secretion, which is governed by GnRH release, suggesting GnRH neuron activity is modulated by glucose availability. Here we tested whether GnRH neurons can sense changes in extracellular glucose, and whether glucosensing is altered by the steroids dihydrotestosterone (DHT) and/or estradiol (E). Extracellular recordings were made from GnRH neurons in brain slices from ovariectomized (OVX) mice ± DHT and/or E implants. Firing rate was reduced by a switch from 4.5 to 0.2 mm glucose in cells from OVX, OVX+E, and OVX+DHT+E mice, but not OVX+DHT mice. This suggests that androgens reduce the sensitivity of GnRH neurons to changes in extracellular glucose, but E mitigates this effect. Next we investigated potential mechanisms. In the presence of the ATP-sensitive potassium channel antagonist tolbutamide, glucosensing persisted. In contrast, glucosensing was attenuated in the presence of compound C, an antagonist of AMP-activated protein kinase (AMPK), suggesting a role for AMPK in glucosensing. The AMPK activator N1-(b-D-ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR) mimicked the effect of low glucose and was less effective in cells from DHT-treated mice. The effect of DHT to diminish responses to low glucose and AICAR was abolished by blockade of fast synaptic transmission. Both AICAR and low glucose activated a current with a reversal potential near -50 mV, suggesting a nonspecific cation current. These studies indicate that glucosensing is one mechanism by which GnRH neurons sense fuel availability and point to a novel role for AMPK in the central regulation of fertility.
Collapse
Affiliation(s)
- Alison V Roland
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
14
|
Briski KP, Singh SR. Hindbrain neuroglucopenia elicits site-specific transcriptional activation of glutamate decarboxylase-immunopositive neurons in the septopreoptic area of female rat brain. Neuroendocrinology 2008; 87:113-20. [PMID: 17934249 DOI: 10.1159/000109663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 06/27/2007] [Indexed: 11/19/2022]
Abstract
Recent studies implicate the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), in septopreoptic (SPO) mechanisms that suppress preovulatory pituitary luteinizing hormone (LH) secretion during neuroglucopenia. Since Fos immunolabeling of the SPO of rats treated by caudal fourth ventricular (CV4) administration of the glucose antimetabolite, 5-thioglucose (5TG), parallels the distribution of GABA neuronal perikarya, the current studies investigated the genomic responsiveness of neuroanatomically-defined populations of glutamate decarboxylase (GAD)-immunoreactive (-ir) neurons in this region of the brain to hindbrain glucoprivation. In lieu of reports that CV4 5TG enhances SPO GABA turnover via mu opioid receptor (mu-R)-dependent mechanisms and evidence that GAD- and mu-R-ir are codistributed within the SPO, patterns of cellular colocalization of these antigens were also evaluated here. Neural tissue was obtained from groups of steroid-primed ovariectomized female rats 2 h after CV4 injection of vehicle or 5TG. Neuronal cell bodies in the lateral and medial septum, medial (MPN) and median preoptic nuclei (MEPO), and rostral medial preoptic area (rMPO) were immunostained for cytoplasmic GAD-ir, but only GAD-reactive neurons in the rMPO and MEPO exhibited robust nuclear colabeling for Fos in response to 5TG. SPO GABA neurons in the vehicle-treated controls were uniformly Fos-ir-negative. Dual immunolabeling for GAD- and mu-R revealed approximately 52% and 36% colabeling of this phenotype in the MEPO and MPN, and colocalization of lesser magnitude (18%) in the rMPO. These results demonstrate site-specific genomic activation of GABAergic neurons in the female rat SPO by CV4 glucose antimetabolite administration, and implicate MEPO and rMPO GABA cell populations in neural pathways that mediate regulatory effects of hindbrain glucoprivic signaling on CNS functions, including inhibition of the steroid positive feedback-activated gonadotropin-releasing hormone/LH neuroendocrine axis. The current studies also support the view that a proportion of neuroglucoprivic-sensitive GABA neurons in the MEPO and rMPO may be direct substrates for mu-R ligand modulatory actions during this state of central substrate imbalance.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, College of Health Sciences, University of Louisiana Monroe, Monroe, LA 71209, USA
| | | |
Collapse
|
15
|
Singh SR, Briski KP. Central GABAA but not GABAB receptors mediate suppressive effects of caudal hindbrain glucoprivation on the luteinizing hormone surge in steroid-primed, ovariectomized female rats. J Neuroendocrinol 2005; 17:407-12. [PMID: 15946158 DOI: 10.1111/j.1365-2826.2005.01310.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neurochemical mechanisms that link caudal hindbrain glucoprivic-'sensitive' neurones with the forebrain gonadotrophin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) axis remain unclear. Available studies indicate that the amino acid neurotransmitter, gamma-aminobutyric acid (GABA), inhibits reproductive neuroendocrine function, and that caudal fourth ventricular administration of the glucose antimetabolite, 5-thioglucose (5TG), enhances GABA turnover within discrete septopreoptic structures that regulate LH secretion. The current experiments utilized the selective GABA(A) and GABA(B) receptor antagonists, bicuculline and phaclofen, as pharmacological tools to investigate whether one or both receptor subtypes function within neural pathways that suppress GnRH neuronal transcriptional activation and LH release during central glucose deficiency. During the ascending phase of the afternoon LH surge, groups of steroid-primed, ovariectomized female Sprague-Dawley rats were pretreated by lateral ventricular administration of bicuculline, phaclofen, or vehicle only, before fourth ventricular injection of 5TG or vehicle. The data indicate that, 2 h after 5TG treatment, Fos immunoexpression by rostral preoptic GnRH neurones and plasma LH levels were diminished relative to the vehicle-treated controls, and that inhibitory effects of 5TG on these parameters were attenuated by pretreatment with bicuculline, but not phaclofen. These results demonstrate that central GABA(A), but not GABA(B) receptor stimulation during hindbrain glucoprivation, is required for maximal inhibition of reproductive neuroendocrine function by this metabolic challenge. The current studies thus reinforce the view that central GABAergic neurotransmission mediates regulatory effects of central glucoprivic signalling on the GnRH-pituitary LH axis.
Collapse
Affiliation(s)
- S R Singh
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health Sciences, University of Louisiana Monroe, Monroe, LA 71209, USA
| | | |
Collapse
|
16
|
Singh SR, Briski KP. Septopreoptic mu opioid receptor mediation of hindbrain glucoprivic inhibition of reproductive neuroendocrine function in the female rat. Endocrinology 2004; 145:5322-31. [PMID: 15308614 DOI: 10.1210/en.2004-0130] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Central glucostasis is a critical monitored variable in neuroendocrine regulation of pituitary LH secretion. Glucoprivic signals originating within the caudal hindbrain suppress LH. Septopreoptic mu opioid receptors (mu-R) function within neural pathways maintaining basal LH levels and mediate the effects of diverse physiological stimuli on hormone release. To identify potential sites in the septopreoptic area where ligand neuromodulatory actions may occur in response to hindbrain glucoprivic signaling, the present studies evaluated the distribution of mu-R-immunoreactive (-ir) neurons in the septopreoptic area that are genomically activated in response to caudal fourth ventricular (CV4) delivery of the glucose antimetabolite, 5-thioglucose (5TG). The effects of lateral ventricular pretreatment with the selective mu-R antagonist, d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP), on LH secretory and GnRH neuronal transcriptional responses to hindbrain glucoprivation were also evaluated. Estradiol benzoate- and progesterone-primed, ovariectomized female rats were treated by CV4 administration of 5TG or the vehicle, saline, at the onset of the afternoon LH surge. The inhibitory effects of hindbrain glucoprivation on mean plasma LH levels as well as colabeling of rostral preoptic GnRH neurons for Fos-ir were attenuated in animals pretreated by lateral ventricular delivery of CTOP. Dual immunocytochemical labeling for septopreoptic mu-R-ir and Fos-ir demonstrated a robust induction of Fos expression by receptor-positive neurons within discrete septopreoptic sites in response to CV4 5TG, a genomic response that was diminished by CTOP pretreatment. The current studies provide novel evidence for the transcriptional activation of neuroanatomically characterized, mu-R-expressing neurons by decreased hindbrain glucose utilization and show that the functional status of mu-R is critical for maximal induction of the Fos stimulus-transcription cascade in these cells by central glucoprivic signaling. The finding that receptor antagonist-mediated suppression of this genomic response is correlated with increased reproductive neuroendocrine output supports a role for these discrete mu-R-expressing neuron populations as substrates for ligand regulatory effects on the GnRH-pituitary LH axis during neuroglucopenia.
Collapse
Affiliation(s)
- Sushma R Singh
- School of Pharmacy, 580 University Avenue, Monroe, Louisiana 71209, USA
| | | |
Collapse
|
17
|
Singh SR, Sylvester PW, Briski KP. Caudal hindbrain glucoprivation enhances gamma-aminobutyric acid release in discrete septopreoptic structures in the steroid-primed ovariectomized rat brain: role of mu opioid receptors. Neuroendocrinology 2004; 80:201-9. [PMID: 15591795 DOI: 10.1159/000082544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 06/21/2004] [Indexed: 11/19/2022]
Abstract
The neurochemical mechanisms underlying hindbrain glucoprivic suppression of the luteinizing hormone (LH) surge are not known. A body of experimental evidence supports the view that gonadal steroid positive-feedback action on the reproductive neuroendocrine axis relieves tonic GABAergic inhibition of gonadotropin-releasing hormone neurons by diminishing preoptic release of this neurotransmitter. The present studies evaluated the hypothesis that hindbrain glucoprivic attenuation of the LH surge may be correlated with site-specific modifications in gonadal steroid suppression of gamma-aminobutyric acid release in this region of the brain. Individual septopreoptic loci were microdissected from the brains of estrogen, progesterone-primed ovariectomized female rats injected with the glucose antimetabolite, 5-thioglucose (5-TG), or vehicle into the caudal fourth ventricle during the ascending phase of the surge, and analyzed by high-performance liquid chromatography. The data show that 5- TG administration increased GABA release within the rostral preoptic area (rPO), anteroventral periventricular nucleus (AVPV), and median preoptic nucleus (MEPO), relative to the vehicle-treated controls, but did not alter neurotransmitter release in other structures evaluated. The rate of GABA turnover in each brain site was equivalent between animals injected with the mu opioid receptor antagonist CTOP and 5-TG versus their vehicle-treated controls. These results constitute novel evidence for site-specific modulation of steroid positive-feedback suppression of this inhibitory neurotransmitter by caudal hindbrain signaling of glucose insufficiency, and support the need for neurochemical characterization of glucoprivic-sensitive afferent input to GABAergic neurons terminating within the rPO, AVPV, and MEPO, as well as the relevance of enhanced local GABA release for reproductive neuroendocrine function.
Collapse
Affiliation(s)
- Sushma R Singh
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health Sciences, University of Louisiana, Monroe, LA 71209, USA
| | | | | |
Collapse
|
18
|
Temple JL. The Musk Shrew (Suncus murinus): A Model Species for Studies of Nutritional Regulation of Reproduction. ILAR J 2004; 45:25-34. [PMID: 14752205 DOI: 10.1093/ilar.45.1.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jennifer L Temple
- National Institute of Neurological Disorders and Stroke, Cellular and Developmental Neurobiology Section, Bethesda, MD, USA
| |
Collapse
|
19
|
Jones JE, Wade GN. Acute fasting decreases sexual receptivity and neural estrogen receptor-alpha in female rats. Physiol Behav 2002; 77:19-25. [PMID: 12213498 DOI: 10.1016/s0031-9384(02)00780-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acute food deprivation or chronic food restriction suppresses reproduction in female mammals. Although a link between undernutrition and ovarian function is well established in rats, a similar link with reproductive behavior in this species is yet to be described. Therefore, we compared the display of estrous behaviors induced by exogenous steroid hormone treatment in ovariectomized fed and fasted rats. In addition, estrogen receptor-alpha immunoreactivity (ERIR) was measured in fed and fasted animals to determine whether changes in behavior were associated with changes in the number of detectable ERIR-containing cells in several brain regions. Fasting for 74 h decreased lordosis quotients (LQ) and lordosis ratings (LR) in ovariectomized, steroid-primed rats. The number of detectable ERIR cells decreased after a 74-h fast in the mid-region of the arcuate (ARC), paraventricular (PVN) and ventromedial nuclei of the hypothalamus (VMH) and the ventral bed nucleus of the stria terminalis (BST) but did not change in a number of other areas examined. Taken together, these data demonstrate that, similar to the effect on the reproductive-endocrine axis, food deprivation for 74 h suppresses steroid-induced display of lordosis in adult, female rats. Furthermore, this suppression in sexual receptivity is associated with a decrease in ERIR in a number of areas, including the VMH, a region of the hypothalamus known to be critical for the display of reproductive behaviors in female rats.
Collapse
Affiliation(s)
- Juli E Jones
- Center for Neuroendocrine Studies, Tobin Hall, Box 37720, University of Massachusetts, Amherst, MA 01003-7720, USA.
| | | |
Collapse
|
20
|
Briski KP, Sylvester PW. Co-distribution of Fos- and mu opioid receptor immunoreactivity within the rat septopreoptic area and hypothalamus during acute glucose deprivation: effects of the mu receptor antagonist CTOP. Neurosci Lett 2001; 306:141-4. [PMID: 11406315 DOI: 10.1016/s0304-3940(01)01826-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mu opioid receptors occur throughout the brain, but central sites where ligand neuromodulatory effects occur during glucopenia have not been identified. The present studies investigated whether septal, preoptic, and hypothalamic neurons that express immunoreactivity for this receptor are transcriptionally activated in response to the glucose antimetabolite, 2-deoxy-D-glucose (2DG), and if intracerebroventricular (icv) administration of the selective mu receptor antagonist, CTOP, modifies this functional response to glucose substrate imbalance. Neurons labeled for mu receptor-immunoreactivity (-ir) were observed in the lateral septal nucleus (LS), medial septum (MS), anterior division of the stria terminalis (BSTa), median preoptic nucleus (MEPO), medial preoptic nucleus (MPN), parastrial nucleus (PS), anterior hypothalamic periventricular nucleus (PVa), and lateral hypothalamic area (LPO). 2DG injection (400 mg/kg i.p.) resulted in co-labeling of mu receptor-positive neurons in the LS, MS, BSTa, MEPO, PVa, and LPO for nuclear Fos-ir. Icv delivery of CTOP decreased mean numbers of co-labeled neurons in the LS, MS, BSTa, and MEPO. These results provide evidence for transactivational effects of glucopenia on mu opioid receptor-expressing neurons within the septum, preoptic area, and hypothalamus, and suggest that the functional status of these receptors within discrete septopreoptic sites may be critical for maximal glucoprivic induction of the Fos stimulus-transcription cascade within local cells. These results thus support the view that the neural loci described above may serve as substrates for regulatory effects of mu opioid receptor ligands on central compensatory activities during acute glucose deprivation.
Collapse
Affiliation(s)
- K P Briski
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0470, USA.
| | | |
Collapse
|
21
|
Jones JE, Lubbers LS. Suppression and recovery of estrous behavior in Syrian hamsters after changes in metabolic fuel availability. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1393-8. [PMID: 11294759 DOI: 10.1152/ajpregu.2001.280.5.r1393] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A reduction in the availability of oxidizable metabolic fuels inhibits reproduction. Forty-eight hours of metabolic fuel deprivation inhibits estrous behavior in ovariectomized, steroid-treated Syrian hamsters, but little is known about the time course of this inhibition. Likewise, refeeding reverses deprivation-induced suppression, but the rate of recovery has not been examined. In two experiments we determined 1) the rate at which estrous behavior declines in hamsters treated with metabolic inhibitors and 2) how rapidly sexual receptivity is restored when hamsters are refed after a 48-h fast. We also measured circulating levels of leptin and insulin in an attempt to determine their relationship to the inhibition and restoration of estrous behavior. More than 24 h of metabolic inhibitor administration were required to inhibit lordosis, whereas only 6 h of refeeding were sufficient to restore the display of sexual receptivity to normal levels. Neither plasma insulin nor leptin levels paralleled the changes in estrous behavior. We concluded that 1) suppression of estrous behavior occurs more slowly than recovery after a fast and 2) changes in circulating leptin and insulin probably do not have a critical role in these behavioral changes.
Collapse
Affiliation(s)
- J E Jones
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003-7720, USA.
| | | |
Collapse
|