1
|
Minabe S, Nakamura S, Fukushima E, Sato M, Ikegami K, Goto T, Sanbo M, Hirabayashi M, Tomikawa J, Imamura T, Inoue N, Uenoyama Y, Tsukamura H, Maeda KI, Matsuda F. Inducible Kiss1 knockdown in the hypothalamic arcuate nucleus suppressed pulsatile secretion of luteinizing hormone in male mice. J Reprod Dev 2020; 66:369-375. [PMID: 32336702 PMCID: PMC7470898 DOI: 10.1262/jrd.2019-164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that kisspeptin-GPR54 signaling is indispensable for gonadotropin-releasing hormone (GnRH)/gonadotropin secretion and consequent reproductive functions in mammals. Conventional Kiss1 knockout (KO) mice and rats are reported to be infertile. To date, however, no study has investigated the effect of inducible central Kiss1 KO/knockdown on pulsatile gonadotropin release in male mammals. Here we report an in vivo analysis of inducible conditional Kiss1 knockdown male mice. The mice were generated by a bilateral injections of either adeno-associated virus (AAV) vectors driving Cre recombinase (AAV-Cre) or AAV vectors driving GFP (AAV-GFP, control) into the hypothalamic arcuate nucleus (ARC) of Kiss1-floxed male mice, in which exon 3 of the Kiss1 gene were floxed with loxP sites. Four weeks after the AAV-Cre injection, the mice showed a profound decrease in the both number of ARC Kiss1-expressing cells and the luteinizing hormone (LH) pulse frequency. Interestingly, pulsatile LH secretion was apparent 8 weeks after the AAV-Cre injection despite the suppression of ARC Kiss1 expression. The control Kiss1-floxed mice infected with AAV-GFP showed apparent LH pulses and Kiss1 expression in the ARC at both 4 and 8 weeks after the AAV-GFP injection. These results with an inducible conditional Kiss1 knockdown in the ARC of male mice suggest that ARC kisspeptin neurons are responsible for pulsatile LH secretion in male mice, and indicate the possibility of a compensatory mechanism that restores GnRH/LH pulse generation.
Collapse
Affiliation(s)
- Shiori Minabe
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sho Nakamura
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Eri Fukushima
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Marimo Sato
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Kana Ikegami
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8787, Japan
| | - Junko Tomikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Takuya Imamura
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Naoko Inoue
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yoshihisa Uenoyama
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Hiroko Tsukamura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Kei-Ichiro Maeda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Fuko Matsuda
- Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Reproductive status-dependent dynorphin and neurokinin B gene expression in female Damaraland mole-rats. J Chem Neuroanat 2019; 102:101705. [DOI: 10.1016/j.jchemneu.2019.101705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 11/23/2022]
|
3
|
Naftolin F, Garcia-Segura LM, Horvath TL, Zsarnovszky A, Demir N, Fadiel A, Leranth C, Vondracek-Klepper S, Lewis C, Chang A, Parducz A. Estrogen-Induced Hypothalamic Synaptic Plasticity and Pituitary Sensitization in the Control of the Estrogen-Induced Gonadotrophin Surge. Reprod Sci 2016; 14:101-16. [PMID: 17636222 DOI: 10.1177/1933719107301059] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proper gonadal function requires coordinated (feedback) interactions between the gonads, adenohypophysis, and brain: the gonads elaborate sex steroids (progestins, androgens, and estrogens) and proteins (inhibin-activin family) during gamete development. In both sexes, the brain-pituitary gonadotrophin-regulating interaction is coordinated by estradiol through its opposing actions on pituitary gonadotrophs (sensitization of the response to gonadotrophin-releasing hormone [GnRH]) versus hypothalamic neurons (inhibition of GnRH secretion). This dynamic tension between the gonadotrophs and the GnRH cells in the brain regulates the circulating gonadotrophins and is termed reciprocal/negative feedback. In females, reciprocal/negative feedback dominates approximately 90% of the ovarian cycle. In a spectacular exception, the dynamic tension is broken during the surge of circulating estrogen that marks follicle and oocyte(s) maturation. The cause is an estradiol-induced disinhibition of the GnRH neurons that releases GnRH secretion to the highly sensitized pituitary gonadotrophs that in turn release the gonadotrophin surge (the estrogen-induced gonadotrophin surge [EIGS], also known as positive feedback). Studies during the past 4 decades have shown this disinhibition to result from estrogen-induced synaptic plasticity (EISP), including a reversible approximately 50% loss in arcuate nucleus synapses. The disinhibited GnRH secretion occurs during maximal gonadotroph sensitization and results in the EIGS. Specific immunoneutralization of estradiol blocks the EISP and EIGS. The EISP is accompanied by increases in insulinlike growth factor 1, polysialylated neural cell adhesion molecule, and ezrin, 3 proteins that the authors believe are the links between estrogen-induced astroglial extension and the EISP that releases GnRH secretion at the moment of maximal sensitization of the pituitary gonadotrophs. The result is the paradoxical surge of gonadotrophins at the peak of ovarian estrogen secretion and the triggering of ovulation. This enhanced understanding of the mechanics of gonadotrophin control clarifies elements of the involved feedback loops and opens the way to a better understanding of the neurobiology of reproduction.
Collapse
Affiliation(s)
- Frederick Naftolin
- Reproductive Neuroscience Unit, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Fabre-Nys C, Chanvallon A, Dupont J, Lardic L, Lomet D, Martinet S, Scaramuzzi RJ. The "Ram Effect": A "Non-Classical" Mechanism for Inducing LH Surges in Sheep. PLoS One 2016; 11:e0158530. [PMID: 27384667 PMCID: PMC4934854 DOI: 10.1371/journal.pone.0158530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/17/2016] [Indexed: 11/18/2022] Open
Abstract
During spring sheep do not normally ovulate but exposure to a ram can induce ovulation. In some ewes an LH surge is induced immediately after exposure to a ram thus raising questions about the control of this precocious LH surge. Our first aim was to determine the plasma concentrations of oestradiol (E2) E2 in anoestrous ewes before and after the “ram effect” in ewes that had a “precocious” LH surge (starting within 6 hours), a “normal” surge (between 6 and 28h) and “late» surge (not detected by 56h). In another experiment we tested if a small increase in circulating E2 could induce an LH surge in anoestrus ewes. The concentration of E2 significantly was not different at the time of ram introduction among ewes with the three types of LH surge. “Precocious” LH surges were not preceded by a large increase in E2 unlike “normal” surges and small elevations of circulating E2 alone were unable to induce LH surges. These results show that the “precocious” LH surge was not the result of E2 positive feedback. Our second aim was to test if noradrenaline (NA) is involved in the LH response to the “ram effect”. Using double labelling for Fos and tyrosine hydroxylase (TH) we showed that exposure of anoestrous ewes to a ram induced a higher density of cells positive for both in the A1 nucleus and the Locus Coeruleus complex compared to unstimulated controls. Finally, the administration by retrodialysis into the preoptic area, of NA increased the proportion of ewes with an LH response to ram odor whereas treatment with the α1 antagonist Prazosin decreased the LH pulse frequency and amplitude induced by a sexually active ram. Collectively these results suggest that in anoestrous ewes NA is involved in ram-induced LH secretion as observed in other induced ovulators.
Collapse
Affiliation(s)
- Claude Fabre-Nys
- UMR 7247 Physiologie de la Reproduction et des Comportements, CNRS, INRA, Université de Tours, Institut français du cheval et de l’équitation, 37380 Nouzilly, France
- * E-mail:
| | - Audrey Chanvallon
- UMR 7247 Physiologie de la Reproduction et des Comportements, CNRS, INRA, Université de Tours, Institut français du cheval et de l’équitation, 37380 Nouzilly, France
| | - Joëlle Dupont
- UMR 7247 Physiologie de la Reproduction et des Comportements, CNRS, INRA, Université de Tours, Institut français du cheval et de l’équitation, 37380 Nouzilly, France
| | - Lionel Lardic
- UMR 7247 Physiologie de la Reproduction et des Comportements, CNRS, INRA, Université de Tours, Institut français du cheval et de l’équitation, 37380 Nouzilly, France
| | - Didier Lomet
- UMR 7247 Physiologie de la Reproduction et des Comportements, CNRS, INRA, Université de Tours, Institut français du cheval et de l’équitation, 37380 Nouzilly, France
| | - Stéphanie Martinet
- UMR 7247 Physiologie de la Reproduction et des Comportements, CNRS, INRA, Université de Tours, Institut français du cheval et de l’équitation, 37380 Nouzilly, France
| | - Rex J. Scaramuzzi
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Hawkshead Lane South Mimms, Hertfordshire AL9 7TA, United Kingdom
| |
Collapse
|
5
|
A new pathway mediating social effects on the endocrine system: female presence acting via norepinephrine release stimulates gonadotropin-inhibitory hormone in the paraventricular nucleus and suppresses luteinizing hormone in quail. J Neurosci 2014; 34:9803-11. [PMID: 25031417 DOI: 10.1523/jneurosci.3706-13.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rapid effects of social interactions on transient changes in hormonal levels are known in a wide variety of vertebrate taxa, ranging from fish to humans. Although these responses are mediated by the brain, neurochemical pathways that translate social signals into reproductive physiological changes are unclear. In this study, we analyzed how a female presence modifies synthesis and/or release of various neurochemicals, such as monoamines and neuropeptides, in the brain and downstream reproductive hormones in sexually active male Japanese quail. By viewing a female bird, sexually active males rapidly increased norepinephrine (NE) release in the paraventricular nucleus (PVN) of the hypothalamus, in which gonadotropin-inhibitory hormone (GnIH) neuronal cell bodies exist, increased GnIH precursor mRNA expression in the PVN, and decreased luteinizing hormone (LH) concentration in the plasma. GnIH is a hypothalamic neuropeptide that inhibits gonadotropin secretion from the pituitary. It was further shown that GnIH can rapidly suppress LH release after intravenous administration in this study. Centrally administered NE decreased plasma LH concentration in vivo. It was also shown that NE stimulated the release of GnIH from diencephalic tissue blocks in vitro. Fluorescence double-label immunohistochemistry indicated that GnIH neurons received noradrenergic innervations, and immunohistochemistry combined with in situ hybridization have further shown that GnIH neurons expressed α2A-adrenergic receptor mRNA. These results indicate that a female presence increases NE release in the PVN and stimulates GnIH release, resulting in the suppression of LH release in sexually active male quail.
Collapse
|
6
|
MINABE S, UENOYAMA Y, TSUKAMURA H, MAEDA KI. Analysis of Pulsatile and Surge-like Luteinizing Hormone Secretion with Frequent Blood Sampling in Female Mice. J Reprod Dev 2011; 57:660-4. [DOI: 10.1262/jrd.11-078s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shiori MINABE
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Yoshihisa UENOYAMA
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Hiroko TSUKAMURA
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Kei-ichiro MAEDA
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
7
|
Involvement of opioids and catecholamines in stress modulation of LH secretion in the male pig. Anim Reprod Sci 2010; 121:152-8. [PMID: 20462709 DOI: 10.1016/j.anireprosci.2010.04.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 03/16/2010] [Accepted: 04/20/2010] [Indexed: 11/20/2022]
Abstract
The effects of different acute stressors on LH secretion and their possible interactions with opioidergic and catecholaminergic-modulation of LH secretion were investigated using gonadectomized male miniature pigs. Nose-snare (NS) or high intensity cracker blast (CB) or ACTH (1 iu/kg BW) was administered 3h after start of blood sampling. Animals also received either naloxone (Nal; 1 mg/kg BW) or propranolol-a beta-adrenergic antagonist (Pro; 0.5 mg/kg BW) or saline. Naloxone and propranolol were given 30 (Nal) or 15 min (Pro), before the application of stressor or ACTH. Blood samples were collected every 10 min for 6h. Neither the acute stress of NS nor CB altered the LH secretion. ACTH increased the mean plasma LH concentrations and the LH pulse amplitude (p< or =0.01) but not the pulse frequency. Naloxone elevated the mean LH values in controls, but had no effects on LH pulse frequency or pulse amplitude. Naloxone-induced increase in LH concentrations was attenuated by NS and ACTH. There was an increase in mean plasma LH values (p< or =0.05), LH pulse amplitude (p< or =0.01) and pulse frequency (p< or =0.05) after treatment with propranolol. Nose-snare caused a reduction in the propranolol-induced increase of LH pulse frequency and pulse amplitude. In conclusion, although, the transient painful stress of NS does not affect the LH values, it alters the opioidergic and catecholaminergic-modulation of LH secretion. The interference with opioid system is possibly mediated by ACTH.
Collapse
|
8
|
Correlation between ovarian steroidogenesis and beta-endorphin in the Lizard Uromastyx acanthinura: Immunohistochemical approach. Folia Histochem Cytobiol 2010; 47:S95-S100. [PMID: 20067902 DOI: 10.2478/v10042-009-0050-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
9
|
Frye CA. Hormonal influences on seizures: basic neurobiology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 83:27-77. [PMID: 18929075 DOI: 10.1016/s0074-7742(08)00003-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
There are sex differences and effects of steroid hormones, such as androgens, estrogens, and progestogens, that influence seizures. Androgens exert early organizational and later activational effects that can amplify sex/gender differences in the expression of some seizure disorders. Female-typical sex steroids, such as estrogen (E2) and progestins, can exert acute activational effects to reduce convulsive seizures and these effects are mediated in part by the actions of steroids in the hippocampus. Some of these anticonvulsive effects of sex steroids are related to their formation of ligands which have agonist-like actions at gamma-aminobutyric acid (GABAA) receptors or antagonist actions at glutamatergic receptors. Differences in stress, developmental phase, reproductive status, endocrine status, and treatments, such as anti-epileptic drugs (AEDs), may alter levels of these ligands and/or the function of target sites, which may mitigate differences in sensitivity to, and/or tolerance of, steroids among some individuals. The evidence implicating sex steroids in differences associated with hormonal, reproductive, developmental, stress, seizure type, and/or therapeutics are discussed.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany-State University of New York, New York 12222, USA
| |
Collapse
|
10
|
Black cohosh has central opioid activity in postmenopausal women: evidence from naloxone blockade and positron emission tomography neuroimaging. Menopause 2009; 15:832-40. [PMID: 18521048 DOI: 10.1097/gme.0b013e318169332a] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To test whether black cohosh (BC) exhibits an action on the central endogenous opioid system in postmenopausal women. DESIGN This was a mechanistic study conducted in the same individuals of luteinizing hormone pulsatility with a saline/naloxone challenge (n = 6) and positron emission tomography with [C]carfentanil, a selective micro-opioid receptor radioligand (n = 5), before and after 12 weeks of unblinded treatment with a popular BC daily supplement. RESULTS BC treatment for 12 weeks at a standard dose (Remifemin, 40 mg/day) had no effect on spontaneous luteinizing hormone pulsatility or estrogen concentrations. With naloxone blockade, there was an unexpected suppression of mean luteinizing hormone pulse frequency (saline vs naloxone = 9.0 +/- 0.6 vs 6.0 +/- 0.7 pulses/16 h; P = 0.056), especially during sleep when the mean interpulse interval was prolonged by approximately 90 minutes (saline night interpulse interval = 103 +/- 9 min vs naloxone night interpulse interval = 191 +/- 31 min, P = 0.03). There were significant increases in mu-opioid receptor binding potential in the posterior and subgenual cingulate, temporal and orbitofrontal cortex, thalamus, and nucleus accumbens ranging from 10% to 61% across brain regions involved in emotional and cognitive function. In contrast, binding potential reductions of lesser magnitude were observed in regions known to be involved in the placebo response (anterior cingulate and anterior insular cortex). CONCLUSIONS Using two different challenge paradigms for the examination of central opioid function, a neuropharmacologic action of BC treatment was demonstrated in postmenopausal women.
Collapse
|
11
|
Huang W, Acosta-Martínez M, Levine JE. Ovarian steroids stimulate adenosine triphosphate-sensitive potassium (KATP) channel subunit gene expression and confer responsiveness of the gonadotropin-releasing hormone pulse generator to KATP channel modulation. Endocrinology 2008; 149:2423-32. [PMID: 18258681 PMCID: PMC2329280 DOI: 10.1210/en.2007-0830] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ATP-sensitive potassium (K(ATP)) channels couple intracellular metabolism to membrane potential. They are composed of Kir6.x and sulfonylurea receptor (SUR) subunits and are expressed in hypothalamic neurons that project to GnRH neurons. However, their roles in regulating GnRH secretion have not been determined. The present study first tested whether K(ATP) channels regulate pulsatile GnRH secretion, as indirectly reflected by pulsatile LH secretion. Ovariectomized rats received sc capsules containing oil, 17beta-estradiol (E(2)), progesterone (P), or E(2)+P at 24 h before blood sampling. Infusion of the K(ATP) channel blocker tolbutamide into the third ventricle resulted in increased LH pulse frequency in animals treated with E(2)+P but was without effect in all other groups. Coinfusion of tulbutamide and the K(ATP) channel opener diazoxide blocked this effect, whereas diazoxide alone suppressed LH. Effects of steroids on Kir6.2 and SUR1 mRNA expression were then evaluated. After 24hr treatment, E(2)+P produced a modest but significant increase in Kir6.2 expression in the preoptic area (POA), which was reversed by P receptor antagonism with RU486. Neither SUR1 in the POA nor both subunits in the mediobasal hypothalamus were altered by any steroid treatment. After 8 d treatment, Kir6.2 mRNA levels were again enhanced by E(2)+P but to a greater extent in the POA. Our findings demonstrate that 1) blockade of preoptic/hypothalamic K(ATP) channels produces an acceleration of the GnRH pulse generator in a steroid-dependent manner and 2) E(2)+P stimulate Kir6.2 gene expression in the POA. These observations are consistent with the hypothesis that the negative feedback actions of ovarian steroids on the GnRH pulse generator are mediated, in part, by their ability to up-regulate K(ATP) channel subunit expression in the POA.
Collapse
Affiliation(s)
- Wenyu Huang
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
12
|
Dickerson SM, Walker DM, Reveron ME, Duvauchelle CL, Gore AC. The recreational drug ecstasy disrupts the hypothalamic-pituitary-gonadal reproductive axis in adult male rats. Neuroendocrinology 2008; 88:95-102. [PMID: 18309234 PMCID: PMC2753463 DOI: 10.1159/000119691] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022]
Abstract
Reproductive function involves an interaction of three regulatory levels: hypothalamus, pituitary, and gonad. The primary drive upon this system comes from hypothalamic gonadotropin-releasing hormone (GnRH) neurosecretory cells, which receive afferent inputs from other neurotransmitter systems in the central nervous system to result in the proper coordination of reproduction and the environment. Here, we hypothesized that the recreational drug (+/-)-3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy'), which acts through several of the neurotransmitter systems that affect GnRH neurons, suppresses the hypothalamic-pituitary-gonadal reproductive axis of male rats. Adult male Sprague-Dawley rats self-administered saline or MDMA either once (acute) or for 20 days (chronic) and were euthanized 7 days following the last administration. We quantified hypothalamic GnRH mRNA, serum luteinizing hormone concentrations, and serum testosterone levels as indices of hypothalamic, pituitary, and gonadal functions, respectively. The results indicate that the hypothalamic and gonadal levels of the hypothalamic-pituitary-gonadal axis are significantly altered by MDMA, with GnRH mRNA and serum testosterone levels suppressed in rats administered MDMA compared to saline. Furthermore, our finding that hypothalamic GnRH mRNA levels are suppressed in the context of low testosterone concentrations suggests that the central GnRH neurosecretory system may be a primary target of inhibitory regulation by MDMA usage.
Collapse
Affiliation(s)
- Sarah M. Dickerson
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Box A1915, Austin, TX 78712, USA
| | - Deena M. Walker
- Institute for Neuroscience, The University of Texas at Austin, Box A1915, Austin, TX 78712, USA
| | - Maria E. Reveron
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Box A1915, Austin, TX 78712, USA
| | - Christine L. Duvauchelle
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Box A1915, Austin, TX 78712, USA
- Institute for Neuroscience, The University of Texas at Austin, Box A1915, Austin, TX 78712, USA
| | - Andrea C. Gore
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Box A1915, Austin, TX 78712, USA
- Institute for Neuroscience, The University of Texas at Austin, Box A1915, Austin, TX 78712, USA
- Institute for Cell & Molecular Biology, The University of Texas at Austin, Box A1915, Austin, TX 78712, USA
- Corresponding Author: Andrea C. Gore, Ph.D., Division of Pharmacology & Toxicology, The University of Texas at Austin, PHAR- Pharmacology, 1 University Station A1915, Austin, TX 78712-0125, USA, , Telephone: (512) 471-3669, Fax: (512) 471-5002
| |
Collapse
|
13
|
Centeno ML, Sanchez RL, Cameron JL, Bethea CL. Hypothalamic gonadotrophin-releasing hormone expression in female monkeys with different sensitivity to stress. J Neuroendocrinol 2007; 19:594-604. [PMID: 17620101 DOI: 10.1111/j.1365-2826.2007.01566.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Psychosocial stress, combined with mild dieting and moderate exercise, are observed in women seeking treatment for hypothalamic amenorrhea. Using female cynomolgus macaques, we previously reported that the same combination of mild stresses suppressed reproductive hormone secretion and menstrual cycles in some individuals (stress-sensitive, SS), but not in others (highly stress-resilient, HSR). Compared to HSR monkeys, SS monkeys exhibited lower oestradiol and progesterone levels at the midcycle peak and decreased gene expression in the central serotonergic system during nonstressed cycles. Because steroids and serotonin impinge upon the hypothalamic-pituitary-gonadal (HPG) axis, we hypothesised that the differences between SS and HSR monkeys in the sensitivity of the HPG axis to stress may ultimately manifest in differences in the gonadotrophin-releasing hormone (GnRH) system. GnRH in situ hybridisation and immunohistochemistry were performed with hypothalamic sections from SS and HSR animals, euthanised in the early follicular phase of a nonstressed menstrual cycle. Compared to HSR monkeys, SS monkeys exhibited a significantly higher number and density of GnRH cell bodies, as well as a higher number of soma with extremely robust expression of GnRH mRNA, but SS monkeys exhibited a lower density of immunostained GnRH fibres in the median eminence. We suggest that neuronal mechanisms involved in the control of GnRH synthesis, transport and release differ in SS compared to HSR animals.
Collapse
Affiliation(s)
- M-L Centeno
- Division of Reproductive Sciences, Oregon National Primate Research Centre, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
14
|
Foradori CD, Amstalden M, Goodman RL, Lehman MN. Colocalisation of dynorphin a and neurokinin B immunoreactivity in the arcuate nucleus and median eminence of the sheep. J Neuroendocrinol 2006; 18:534-41. [PMID: 16774502 DOI: 10.1111/j.1365-2826.2006.01445.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Dynorphin A (DYN)-containing cells play a key role in conveying the negative feedback influence of progesterone upon pulsatile gonadotrophin-releasing hormone (GnRH) secretion in the ewe. A very high percentage of DYN cells in the arcuate nucleus express the progesterone receptor; another population of arcuate nucleus cells that also express steroid receptors in the sheep are those that express the tachykinin peptide, neurokinin B (NKB). Both DYN and NKB fibres have been shown to form close contacts with ovine GnRH cells. Therefore, the present study tested the hypothesis that neurones expressing NKB and DYN represent the same neuronal population in the arcuate nucleus. Confocal microscopic analysis of brain sections processed for dual immunofluorescence revealed that a large majority of DYN neurones in the arcuate nucleus were also immunoreactive for NKB. Likewise, a similar majority of NKB neurones in the arcuate nucleus were immunoreactive for DYN. By contrast, DYN cells in the preoptic area and anterior hypothalamus did not colocalise with NKB, nor did DYN cells in the paraventricular or supraoptic nuclei. Fibres that stained positively for both DYN and NKB were seen in the arcuate nucleus, where they formed close appositions with DYN/NKB-positive neurones, and in the external zone of the median eminence. Taken together with previous findings, these data suggest that a subpopulation of arcuate nucleus neurones coexpressing DYN and NKB mediate the negative feedback influence of progesterone on pulsatile GnRH secretion in the ewe and may also be involved in other feedback actions of gonadal steroids.
Collapse
Affiliation(s)
- C D Foradori
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
15
|
Clarke IJ, Scott CJ, Pereira A, Pompolo S. The role of noradrenaline in the generation of the preovulatory LH surge in the ewe. Domest Anim Endocrinol 2006; 30:260-75. [PMID: 16139986 DOI: 10.1016/j.domaniend.2005.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 07/20/2005] [Accepted: 07/22/2005] [Indexed: 11/23/2022]
Abstract
Increasing plasma estrogen (E) levels during the follicular phase of the estrous cycle trigger the pre-ovulatory surge of gonadotropin-releasing hormone (GnRH)/LH. Noradrenaline (NA)-producing cells of the brain stem are involved in regulating GnRH cells and project to the preoptic area (POA) and bed nucleus of stria terminalis (BnST). Input to GnRH cells may be direct or indirect, via relay neurons in the POA/BnST. To investigate this, we ascertained whether an alpha(1)-adrenergic antagonist would block/delay the LH surge in ovariectomised (OVX), E-treated ewes. E benzoate (EB) (50microg) was injected (i.m.) and Doxazosin (100nmol/h) or vehicle was infused into the third ventricle 2-26h after EB injection. Doxazosin reduced the magnitude of the LH surge, but did not affect timing. To determine if NA is released in the POA/BnST of cyclic ewes, we immunostained dopamine-beta-hydroxylase (DBH) in terminal fields. Reduced numbers of varicosities staining for DBH indicates release of NA. The number of varicosities immunostained for DBH was reduced in the dorsal and lateral BnST during the follicular phase and during the preovulatory LH surge compared to the luteal phase. These data suggest that noradrenergic mechanisms are involved in generation of the GnRH/LH surge via projections to the BnST and relay to GnRH cells. Since Doxasozin reduced the magnitude of the LH surge in the E-treated OVX ewe, and release of NA in cyclic ewes occurred during the follicular phase of the estrous cycle, we speculate that NA is a permissive factor in surge generation. Thus, increased noradrenergic activity is not a trigger mechanism for initiation of the surge.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Vic. 3168, Australia.
| | | | | | | |
Collapse
|
16
|
Fawley JA, Pouliot WA, Dudek FE. Epilepsy and reproductive disorders: the role of the gonadotropin-releasing hormone network. Epilepsy Behav 2006; 8:477-82. [PMID: 16504591 DOI: 10.1016/j.yebeh.2006.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 01/17/2006] [Accepted: 01/21/2006] [Indexed: 11/28/2022]
Abstract
Individuals with temporal lobe epilepsy have an increased incidence of reproductive dysfunction. The comorbidity may be due to the acute effects of the seizures, the chronic effects of the epilepsy, and/or the use of antiepileptic drugs on the gonadotropin-releasing hormone network and the hypothalamic-pituitary-gonadal axis. This review provides a brief overview of evidence from experimental animal and clinical studies exploring the basis for epilepsy-associated reproductive abnormalities.
Collapse
Affiliation(s)
- Jessica A Fawley
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
17
|
Abstract
Comprehensive studies have provided a clear understanding of the effects of gonadal steroids on the secretion of gonadotropin releasing hormone (GnRH), but some inconsistent results exist with regard to effects on synthesis. It is clear that regulation of both synthesis and the secretion of GnRH are effected by neurotransmitter systems in the brain. Thus, steroid regulation of GnRH synthesis and secretion can be direct, but the predominant effects are transmitted through steroid-responsive neuronal systems in various parts of the brain. There is also emerging evidence of direct effects on GnRH cells. Overriding effects on synthesis and secretion of GnRH can be observed during aging, in undernutrition and under stressful situations; these involve various neuronal systems, which may have serial or parallel effects on GnRH cells. The effect of aging is accompanied by changes in GnRH synthesis, but comprehensive studies of synthesis during undernutrition and stress are less well documented. Altered GnRH and gonadotropin secretion that occurs in seasonal breeding animals and during the pubertal transition is not generally accompanied by changes in GnRH synthesis. Secretion of GnRH from the brain is a reflection of the inherent function of GnRH cells and the inputs that integrate all of the central regulatory elements. Ultimately, the pattern of secretion dictates the reproductive status of the organism. In order to fully understand the central mechanisms that control reproduction, more extensive studies are required on the neuronal circuitry that provides input to GnRH cells.
Collapse
Affiliation(s)
- Iain J Clarke
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton 3168, Australia.
| | | |
Collapse
|
18
|
Krajnak K, Rosewell KL, Duncan MJ, Wise PM. Aging, estradiol and time of day differentially affect serotonin transporter binding in the central nervous system of female rats. Brain Res 2004; 990:87-94. [PMID: 14568333 DOI: 10.1016/s0006-8993(03)03441-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Estrogen-related changes in serotonergic neuronal transmission, including changes in the number of serotonin transporter (SERT) binding sites, have been cited as a possible cause for changes in mood, memory and sleep that occur during the menopausal transition. However, both aging and estradiol regulate SERT binding sites in the brain. The goal of this experiment was to determine how aging and estrogen interact to regulate SERT levels in the forebrain of young and reproductively senescent female Sprague-Dawley rats using [3H]paroxetine. The density of specific [3H]paroxetine binding in various brain regions was compared in young (2-4 months) and reproductively senescent (10-12 months) female rats at three times of day. In most brain regions examined, estrogen and aging independently increased the number of [3H]paroxetine binding sites. The only region that displayed a reduction in [3H]paroxetine binding with age was the suprachiasmatic nucleus (SCN). Time of day influenced [3H]paroxetine binding in the SCN and the paraventricular thalamus (PVT), two regions known to be involved in the regulation of circadian rhythms. Aging and/or estrogen also altered the pattern of binding in these regions. Thus, based on the results of this study, we conclude that aging and estrogen both act to regulate SERT binding sites in the forebrain of female rats, and that this regulation is region specific.
Collapse
Affiliation(s)
- Kristine Krajnak
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
20
|
Grove-Strawser D, Sower SA, Ronsheim PM, Connolly JB, Bourn CG, Rubin BS. Guinea pig GnRH: localization and physiological activity reveal that it, not mammalian GnRH, is the major neuroendocrine form in guinea pigs. Endocrinology 2002; 143:1602-12. [PMID: 11956141 DOI: 10.1210/endo.143.5.8803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The isolation of GnRH cDNA from guinea pig hypothalamus predicted a novel form of GnRH with two unique amino acid substitutions relative to all known forms of this essential decapeptide. The predicted substitution at amino acid 2 in guinea pig (gp) GnRH was particularly intriguing because of the proposed importance of position 2 for binding and activation of the GnRH receptor. In the present study, gpGnRH was synthesized, and a specific antibody was generated and used to assess translation of the gpGnRH transcript. The localization of intensely labeled gpGnRH-positive cell bodies and processes in tissue sections through the preoptic area and hypothalamus argue that gpGnRH is the major neuroendocrine form of GnRH in guinea pigs. Guinea pig GnRH stimulated LH release in guinea pigs and increased LH output from guinea pig pituitary fragments, thus demonstrating biological activity in this species. In contrast, gpGnRH demonstrated little ability to stimulate LH release in rats, a species known to possess the highly conserved mammalian GnRH receptor. These findings suggest that: (1) the amino acid substitutions in gpGnRH impede binding to and/or activation of the mammalian GnRH receptor, and (2) the unique amino acid substitutions in gpGnRH are accompanied by changes in the guinea pig GnRH receptor.
Collapse
Affiliation(s)
- Danielle Grove-Strawser
- Department of Anatomy and Cellular Biology, Tufts Medical School, 136 Harrison Avenue, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|