1
|
Patel AH, Koysombat K, Pierret A, Young M, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in functional hypothalamic amenorrhea: Pathophysiology and therapeutic potential. Ann N Y Acad Sci 2024; 1540:21-46. [PMID: 39287750 DOI: 10.1111/nyas.15220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Functional hypothalamic amenorrhea (FHA) is one of the most common causes of secondary amenorrhea, resulting in anovulation and infertility, and is a low estrogen state that increases the risk of cardiovascular disease and impairs bone health. FHA is characterized by acquired suppression of physiological pulsatile gonadotropin-releasing hormone (GnRH) release by the hypothalamus in the absence of an identifiable structural cause, resulting in a functional hypogonadotropic hypogonadism. FHA results from either decreased energy intake and/or excessive exercise, leading to low energy availability and weight loss-often in combination with psychological stress on top of a background of genetic susceptibility. The hypothalamic neuropeptide kisspeptin is a key component of the GnRH pulse generator, tightly regulating pulsatile GnRH secretion and the downstream reproductive axis. Here, we review the physiological regulation of pulsatile GnRH secretion by hypothalamic kisspeptin neurons and how their activity is modulated by signals of energy status to affect reproductive function. We explore endocrine factors contributing to the suppression of GnRH pulsatility in the pathophysiology of FHA and how hypothalamic kisspeptin neurons likely represent a final common pathway through which these factors affect GnRH pulse generation. Finally, we discuss the therapeutic potential of kisspeptin as a novel treatment for women with FHA.
Collapse
Affiliation(s)
- Aaran H Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Chelsea and Westminster Hospital, London, UK
| | - Kanyada Koysombat
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Aureliane Pierret
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Megan Young
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, UK
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
2
|
Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol 2021; 63:100928. [PMID: 34171353 PMCID: PMC8605987 DOI: 10.1016/j.yfrne.2021.100928] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/27/2023]
Abstract
Reproduction is controlled by a sequential regulation of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis integrates multiple inputs to maintain proper reproductive functions. It has long been demonstrated that stress alters fertility. Nonetheless, the central mechanisms of how stress interacts with the reproductive system are not fully understood. One of the major pathways that is activated during the stress response is the hypothalamo-pituitary-adrenal (HPA) axis. In this review, we discuss several aspects of the interactions between these two neuroendocrine systems to offer insights to mechanisms of how the HPA and HPG axes interact. We have also included discussions of other systems, for example GABA-producing neurons, where they are informative to the overall picture of stress effects on reproduction.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
3
|
Coen CW, Bennett NC, Holmes MM, Faulkes CG. Neuropeptidergic and Neuroendocrine Systems Underlying Eusociality and the Concomitant Social Regulation of Reproduction in Naked Mole-Rats: A Comparative Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:59-103. [PMID: 34424513 DOI: 10.1007/978-3-030-65943-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The African mole-rat family (Bathyergidae) includes the first mammalian species identified as eusocial: naked mole-rats. Comparative studies of eusocial and solitary mole-rat species have identified differences in neuropeptidergic systems that may underlie the phenomenon of eusociality. These differences are found in the oxytocin, vasopressin and corticotrophin-releasing factor (CRF) systems within the nucleus accumbens, amygdala, bed nucleus of the stria terminalis and lateral septal nucleus. As a corollary of their eusociality, most naked mole-rats remain pre-pubertal throughout life because of the presence of the colony's only reproductive female, the queen. To elucidate the neuroendocrine mechanisms that mediate this social regulation of reproduction, research on the hypothalamo-pituitary-gonadal axis in naked mole-rats has identified differences between the many individuals that are reproductively suppressed and the few that are reproductively mature: the queen and her male consorts. These differences involve gonadal steroids, gonadotrophin-releasing hormone-1 (GnRH-1), kisspeptin, gonadotrophin-inhibitory hormone/RFamide-related peptide-3 (GnIH/RFRP-3) and prolactin. The comparative findings in eusocial and solitary mole-rat species are assessed with reference to a broad range of studies on other mammals.
Collapse
Affiliation(s)
- Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Canada.,Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
4
|
Raftogianni A, Roth LC, García-González D, Bus T, Kühne C, Monyer H, Spergel DJ, Deussing JM, Grinevich V. Deciphering the Contributions of CRH Receptors in the Brain and Pituitary to Stress-Induced Inhibition of the Reproductive Axis. Front Mol Neurosci 2018; 11:305. [PMID: 30214395 PMCID: PMC6125327 DOI: 10.3389/fnmol.2018.00305] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023] Open
Abstract
Based on pharmacological studies, corticotropin-releasing hormone (CRH) and its receptors play a leading role in the inhibition of the hypothalamic–pituitary–gonadal (HPG) axis during acute stress. To further study the effects of CRH receptor signaling on the HPG axis, we generated and/or employed male mice lacking CRH receptor type 1 (CRHR1) or type 2 (CRHR2) in gonadotropin-releasing hormone neurons, GABAergic neurons, or in all central neurons and glia. The deletion of CRHRs revealed a preserved decrease of plasma luteinizing hormone (LH) in response to either psychophysical or immunological stress. However, under basal conditions, central infusion of CRH into mice lacking CRHR1 in all central neurons and glia, or application of CRH to pituitary cultures from mice lacking CRHR2, failed to suppress LH release, unlike in controls. Our results, taken together with those of the earlier pharmacological studies, suggest that inhibition of the male HPG axis during acute stress is mediated by other factors along with CRH, and that CRH suppresses the HPG axis at the central and pituitary levels via CRHR1 and CRHR2, respectively.
Collapse
Affiliation(s)
- Androniki Raftogianni
- Schaller Group on Neuropeptides, German Cancer Research Center, Heidelberg - Central Institute of Mental Health, Mannheim, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Lena C Roth
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Diego García-González
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg, University of Heidelberg - German Cancer Research Center, Heidelberg, Germany
| | - Thorsten Bus
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany.,Max Planck Research Group at the Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Kühne
- Molecular Neurogenetics Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, Medical Faculty of Heidelberg, University of Heidelberg - German Cancer Research Center, Heidelberg, Germany
| | - Daniel J Spergel
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Jan M Deussing
- Molecular Neurogenetics Research Group, Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Valery Grinevich
- Schaller Group on Neuropeptides, German Cancer Research Center, Heidelberg - Central Institute of Mental Health, Mannheim, Germany.,Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
5
|
Yeo SH, Colledge WH. The Role of Kiss1 Neurons As Integrators of Endocrine, Metabolic, and Environmental Factors in the Hypothalamic-Pituitary-Gonadal Axis. Front Endocrinol (Lausanne) 2018; 9:188. [PMID: 29755406 PMCID: PMC5932150 DOI: 10.3389/fendo.2018.00188] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023] Open
Abstract
Kisspeptin-GPR54 signaling in the hypothalamus is required for reproduction and fertility in mammals. Kiss1 neurons are key regulators of gonadotropin-releasing hormone (GnRH) release and modulation of the hypothalamic-pituitary-gonadal (HPG) axis. Arcuate Kiss1 neurons project to GnRH nerve terminals in the median eminence, orchestrating the pulsatile secretion of luteinizing hormone (LH) through the intricate interaction between GnRH pulse frequency and the pituitary gonadotrophs. Arcuate Kiss1 neurons, also known as KNDy neurons in rodents and ruminants because of their co-expression of neurokinin B and dynorphin represent an ideal hub to receive afferent inputs from other brain regions in response to physiological and environmental changes, which can regulate the HPG axis. This review will focus on studies performed primarily in rodent and ruminant species to explore potential afferent inputs to Kiss1 neurons with emphasis on the arcuate region but also considering the rostral periventricular region of the third ventricle (RP3V). Specifically, we will discuss how these inputs can be modulated by hormonal, metabolic, and environmental factors to control gonadotropin secretion and fertility. We also summarize the methods and techniques that can be used to study functional inputs into Kiss1 neurons.
Collapse
|
6
|
Phumsatitpong C, Moenter SM. Estradiol-Dependent Stimulation and Suppression of Gonadotropin-Releasing Hormone Neuron Firing Activity by Corticotropin-Releasing Hormone in Female Mice. Endocrinology 2018; 159:414-425. [PMID: 29069304 PMCID: PMC5761586 DOI: 10.1210/en.2017-00747] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are the final central regulators of reproduction, integrating various inputs that modulate fertility. Stress typically inhibits reproduction but can be stimulatory; stress effects can also be modulated by steroid milieu. Corticotropin-releasing hormone (CRH) released during the stress response may suppress reproduction independent of downstream glucocorticoids. We hypothesized CRH suppresses fertility by decreasing GnRH neuron firing activity. To test this, mice were ovariectomized (OVX) and either implanted with an estradiol capsule (OVX+E) or not treated further to examine the influence of estradiol on GnRH neuron response to CRH. Targeted extracellular recordings were used to record firing activity from green fluorescent protein-identified GnRH neurons in brain slices before and during CRH treatment; recordings were done in the afternoon when estradiol has a positive feedback effect to increase GnRH neuron firing. In OVX mice, CRH did not affect the firing rate of GnRH neurons. In contrast, CRH exhibited dose-dependent stimulatory (30 nM) or inhibitory (100 nM) effects on GnRH neuron firing activity in OVX+E mice; both effects were reversible. The dose-dependent effects of CRH appear to result from activation of different receptor populations; a CRH receptor type-1 agonist increased firing activity in GnRH neurons, whereas a CRH receptor type-2 agonist decreased firing activity. CRH and specific agonists also differentially regulated short-term burst frequency and burst properties, including burst duration, spikes/burst, and/or intraburst interval. These results indicate that CRH alters GnRH neuron activity and that estradiol is required for CRH to exert both stimulatory and inhibitory effects on GnRH neurons.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Suzanne M. Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
7
|
Sominsky L, Hodgson DM, McLaughlin EA, Smith R, Wall HM, Spencer SJ. Linking Stress and Infertility: A Novel Role for Ghrelin. Endocr Rev 2017; 38:432-467. [PMID: 28938425 DOI: 10.1210/er.2016-1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws. Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.,School of Environmental & Life Sciences, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Lookout Road, New Lambton Heights, New South Wales 2305, Australia.,Priority Research Centre in Reproductive Science, The University of Newcastle, New South Wales 2308, Australia
| | - Hannah M Wall
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
8
|
Li XF, Hu MH, Hanley BP, Lin YS, Poston L, Lightman SL, O'Byrne KT. The Posterodorsal Medial Amygdala Regulates the Timing of Puberty Onset in Female Rats. Endocrinology 2015; 156:3725-36. [PMID: 26252061 PMCID: PMC4588820 DOI: 10.1210/en.2015-1366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Obesity is the major risk factor for early puberty, but emerging evidence indicates other factors including psychosocial stress. One key brain region notable for its role in controlling calorie intake, stress, and behavior is the amygdala. Early studies involving amygdala lesions that included the medial nucleus advanced puberty in rats. More recently it was shown that a critical site for lesion-induced hyperphagia and obesity is the posterodorsal subnucleus of the medial amygdala (MePD), which may explain the advancement of puberty. Glutamatergic activity also increases in the MePD during puberty without a corresponding γ-aminobutyric acid (GABA)ergic change, suggesting an overall activation of this brain region. In the present study, we report that neurotoxic lesioning of the MePD advances puberty and increases weight gain in female rats fed a normal diet. However, MePD lesioned rats fed a 25% nonnutritive bulk diet also showed the dramatic advancement of puberty but without the increase in body weight. In both dietary groups, MePD lesions resulted in an increase in socialization and a decrease in play fighting behavior. Chronic GABAA receptor antagonism in the MePD from postnatal day 21 for 14 days also advanced puberty, increased socialization, and decreased play fighting without altering body weight, whereas glutamate receptor antagonism delayed puberty and decreased socialization without affecting play fighting. In conclusion, our results suggest the MePD regulates the timing of puberty via a novel mechanism independent of change in body weight and caloric intake. MePD glutamatergic systems advance the timing of puberty whereas local GABAergic activation results in a delay.
Collapse
Affiliation(s)
- X F Li
- Division of Women's Health (X.F.L., M.H.L., B.P.H., Y.S.L., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS1 3NY, United Kingdom
| | - M H Hu
- Division of Women's Health (X.F.L., M.H.L., B.P.H., Y.S.L., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS1 3NY, United Kingdom
| | - B P Hanley
- Division of Women's Health (X.F.L., M.H.L., B.P.H., Y.S.L., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS1 3NY, United Kingdom
| | - Y S Lin
- Division of Women's Health (X.F.L., M.H.L., B.P.H., Y.S.L., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS1 3NY, United Kingdom
| | - L Poston
- Division of Women's Health (X.F.L., M.H.L., B.P.H., Y.S.L., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS1 3NY, United Kingdom
| | - S L Lightman
- Division of Women's Health (X.F.L., M.H.L., B.P.H., Y.S.L., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS1 3NY, United Kingdom
| | - K T O'Byrne
- Division of Women's Health (X.F.L., M.H.L., B.P.H., Y.S.L., L.P., K.T.O.), Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (S.L.L.), University of Bristol, Bristol BS1 3NY, United Kingdom
| |
Collapse
|
9
|
Li X, Shao B, Lin C, O'Byrne KT, Lin Y. Stress-induced inhibition of LH pulses in female rats: role of GABA in arcuate nucleus. J Mol Endocrinol 2015; 55:9-19. [PMID: 25999179 DOI: 10.1530/jme-15-0084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Stress exerts profound inhibitory effects on reproductive function by suppression of the pulsatile release of GnRH and therefore LH. Besides the corticotrophin-releasing factor (CRF), this effect also might be mediated via GABAergic signaling within the arcuate nucleus (ARC) since its inhibitory effects on LH pulses and increased activity during stress. In the present study, we investigated the role of endogenous GABAergic signaling within the ARC in stress-induced suppression of LH pulses. Ovariectomised oestradiol-replaced rats were implanted with bilateral and unilateral cannulae targeting toward the ARC and lateral cerebral ventricle respectively. Blood samples (25 μl) were taken via chronically implanted cardiac catheters every 5 min for 6 h for measurement of LH pulses. Intra-ARC infusion of GABAA receptor antagonist, bicuculline (0.2 pmol in 200 nl artificial cerebrospinal fluid (aCSF) each side, three times at 20-min intervals) markedly attenuated the inhibitory effect of lipopolysaccharide (LPS; 25 μg/kg i.v.) but not restraint (1 h) stress on pulsatile LH secretion. In contrast, restraint but not LPS stress-induced suppression of LH pulse frequency was reversed by intra-ARC administration of GABABR antagonist, CGP-35348 (1.5 nmol in 200 nl aCSF each side, three times at 20-min intervals). Moreover, intra-ARC application of either bicuculline or CGP-35348 attenuated the inhibitory effect of CRF (1 nmol in 4 μl aCSF, i.c.v.) on the LH pulses. These data indicate a pivotal and differential role of endogenous GABAA and GABAB signaling mechanisms in the ARC with respect to mediating immunological and psychological stress-induced suppression of the GnRH pulse generator respectively.
Collapse
Affiliation(s)
- XiaoFeng Li
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bei Shao
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - ChengCheng Lin
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kevin T O'Byrne
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - YuanShao Lin
- First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China First Department of NeurologyFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaDivision of Women's HealthSchool of Medicine, King's College London, Guy's Campus, London, UKDepartment of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
10
|
Coen CW, Kalamatianos T, Oosthuizen MK, Poorun R, Faulkes CG, Bennett NC. Sociality and the telencephalic distribution of corticotrophin-releasing factor, urocortin 3, and binding sites for CRF type 1 and type 2 receptors: A comparative study of eusocial naked mole-rats and solitary Cape mole-rats. J Comp Neurol 2015; 523:2344-71. [PMID: 25921928 DOI: 10.1002/cne.23796] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023]
Abstract
Various aspects of social behavior are influenced by the highly conserved corticotrophin-releasing factor (CRF) family of peptides and receptors in the mammalian telencephalon. This study has mapped and compared the telencephalic distribution of the CRF receptors, CRF1 and CRF2 , and two of their ligands, CRF and urocortin 3, respectively, in African mole-rat species with diametrically opposed social behavior. Naked mole-rats live in large eusocial colonies that are characterized by exceptional levels of social cohesion, tolerance, and cooperation in burrowing, foraging, defense, and alloparental care for the offspring of the single reproductive female. Cape mole-rats are solitary; they tolerate conspecifics only fleetingly during the breeding season. The telencephalic sites at which the level of CRF1 binding in naked mole-rats exceeds that in Cape mole-rats include the basolateral amygdaloid nucleus, hippocampal CA3 subfield, and dentate gyrus; in contrast, the level is greater in Cape mole-rats in the shell of the nucleus accumbens and medial habenular nucleus. For CRF2 binding, the sites with a greater level in naked mole-rats include the basolateral amygdaloid nucleus and dentate gyrus, but the septohippocampal nucleus, lateral septal nuclei, amygdalostriatal transition area, bed nucleus of the stria terminalis, and medial habenular nucleus display a greater level in Cape mole-rats. The results are discussed with reference to neuroanatomical and behavioral studies of various species, including monogamous and promiscuous voles. By analogy with findings in those species, we speculate that the abundance of CRF1 binding in the nucleus accumbens of Cape mole-rats reflects their lack of affiliative behavior.
Collapse
Affiliation(s)
- Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, School of Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Theodosis Kalamatianos
- Reproductive Neurobiology, Division of Women's Health, School of Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Maria K Oosthuizen
- Reproductive Neurobiology, Division of Women's Health, School of Medicine, King's College London, London SE1 1UL, United Kingdom.,Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa
| | - Ravi Poorun
- Reproductive Neurobiology, Division of Women's Health, School of Medicine, King's College London, London SE1 1UL, United Kingdom
| | - Christopher G Faulkes
- School of Biological and Chemical Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa
| |
Collapse
|
11
|
Comninos AN, Anastasovska J, Sahuri-Arisoylu M, Li X, Li S, Hu M, Jayasena CN, Ghatei MA, Bloom SR, Matthews PM, O'Byrne KT, Bell JD, Dhillo WS. Kisspeptin signaling in the amygdala modulates reproductive hormone secretion. Brain Struct Funct 2015; 221:2035-47. [PMID: 25758403 PMCID: PMC4853463 DOI: 10.1007/s00429-015-1024-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/02/2015] [Indexed: 12/27/2022]
Abstract
Kisspeptin (encoded by KISS1) is a crucial activator of reproductive function. The role of kisspeptin has been studied extensively within the hypothalamus but little is known about its significance in other areas of the brain. KISS1 and its cognate receptor are expressed in the amygdala, a key limbic brain structure with inhibitory projections to hypothalamic centers involved in gonadotropin secretion. We therefore hypothesized that kisspeptin has effects on neuronal activation and reproductive pathways beyond the hypothalamus and particularly within the amygdala. To test this, we mapped brain neuronal activity (using manganese-enhanced MRI) associated with peripheral kisspeptin administration in rodents. We also investigated functional relevance by measuring the gonadotropin response to direct intra-medial amygdala (MeA) administration of kisspeptin and kisspeptin antagonist. Peripheral kisspeptin administration resulted in a marked decrease in signal intensity in the amygdala compared to vehicle alone. This was associated with an increase in luteinizing hormone (LH) secretion. In addition, intra-MeA administration of kisspeptin resulted in increased LH secretion, while blocking endogenous kisspeptin signaling within the amygdala by administering intra-MeA kisspeptin antagonist decreased both LH secretion and LH pulse frequency. We provide evidence for the first time that neuronal activity within the amygdala is decreased by peripheral kisspeptin administration and that kisspeptin signaling within the amygdala contributes to the modulation of gonadotropin release and pulsatility. Our data suggest that kisspeptin is a 'master regulator' of reproductive physiology, integrating limbic circuits with the regulation of gonadotropin-releasing hormone neurons and reproductive hormone secretion.
Collapse
Affiliation(s)
- Alexander N Comninos
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Jelena Anastasovska
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Meliz Sahuri-Arisoylu
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Xiaofeng Li
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Shengyun Li
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Minghan Hu
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Channa N Jayasena
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Mohammad A Ghatei
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Stephen R Bloom
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Paul M Matthews
- Division of Brain Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Kevin T O'Byrne
- Division of Women's Health, School of Medicine, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Jimmy D Bell
- Metabolic and Molecular Imaging Group, MRC Clinical Science Centre, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | - Waljit S Dhillo
- Department of Investigative Medicine, Imperial College London, 6th Floor Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
12
|
Li XF, Hu MH, Li SY, Geach C, Hikima A, Rose S, Greenwood MP, Greenwood M, Murphy D, Poston L, Lightman SL, O'Byrne KT. Overexpression of corticotropin releasing factor in the central nucleus of the amygdala advances puberty and disrupts reproductive cycles in female rats. Endocrinology 2014; 155:3934-44. [PMID: 25051447 DOI: 10.1210/en.2014-1339] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prolonged exposure to environmental stress activates the hypothalamic-pituitary-adrenal (HPA) axis and generally disrupts the hypothalamic-pituitary-gonadal axis. Because CRF expression in the central nucleus of the amygdala (CeA) is a key modulator in adaptation to chronic stress, and central administration of CRF inhibits the hypothalamic GnRH pulse generator, we tested the hypothesis that overexpression of CRF in the CeA of female rats alters anxiety behavior, dysregulates the HPA axis response to stress, changes pubertal timing, and disrupts reproduction. We used a lentiviral vector to increase CRF expression site specifically in the CeA of preweaning (postnatal day 12) female rats. Overexpression of CRF in the CeA increased anxiety-like behavior in peripubertal rats shown by a reduction in time spent in the open arms of the elevated plus maze and a decrease in social interaction. Paradoxically, puberty onset was advanced but followed by irregular estrous cyclicity and an absence of spontaneous preovulatory LH surges associated with proestrous vaginal cytology in rats overexpressing CRF. Despite the absence of change in basal corticosterone secretion or induced by stress (lipopolysaccharide or restraint), overexpression of CRF in the CeA significantly decreased lipopolysaccharide, but not restraint, stress-induced suppression of pulsatile LH secretion in postpubertal ovariectomized rats, indicating a differential stress responsivity of the GnRH pulse generator to immunological stress and a potential adaptation of the HPA axis to chronic activation of amygdaloid CRF. These data suggest that the expression profile of this key limbic brain CRF system might contribute to the complex neural mechanisms underlying the increasing incidence of early onset of puberty on the one hand and infertility on the other attributed to chronic stress in modern human society.
Collapse
Affiliation(s)
- X F Li
- Division of Women's Health (X.F.L., M.H.H., S.Y.L., C.G., L.P., K.T.O.) and Neurodegenerative Disease Research Group (A.H., S.R.), School of Medicine, King's College London, Guy's Campus, London SE1 1UL, United Kingdom; and Henry Wellcome Laboratory for Integrative Neuroscience and Endocrinology (M.P.G., M.G., D.M., S.L.L.), University of Bristol, Bristol BS13NY, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Panagiotakopoulos L, Neigh GN. Development of the HPA axis: where and when do sex differences manifest? Front Neuroendocrinol 2014; 35:285-302. [PMID: 24631756 DOI: 10.1016/j.yfrne.2014.03.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/22/2014] [Accepted: 03/04/2014] [Indexed: 01/21/2023]
Abstract
Sex differences in the response to stress contribute to sex differences in somatic, neurological, and psychiatric diseases. Despite a growing literature on the mechanisms that mediate sex differences in the stress response, the ontogeny of these differences has not been comprehensively reviewed. This review focuses on the development of the hypothalamic-pituitary-adrenal (HPA) axis, a key component of the body's response to stress, and examines the critical points of divergence during development between males and females. Insight gained from animal models and clinical studies are presented to fully illustrate the current state of knowledge regarding sex differences in response to stress over development. An appreciation for the developmental timelines of the components of the HPA axis will provide a foundation for future areas of study by highlighting both what is known and calling attention to areas in which sex differences in the development of the HPA axis have been understudied.
Collapse
Affiliation(s)
| | - Gretchen N Neigh
- Emory University, Department of Physiology, United States; Emory University, Department of Psychiatry & Behavioral Sciences, United States.
| |
Collapse
|
14
|
Grachev P, Li XF, Hu MH, Li SY, Millar RP, Lightman SL, O'Byrne KT. Neurokinin B signaling in the female rat: a novel link between stress and reproduction. Endocrinology 2014; 155:2589-601. [PMID: 24708241 DOI: 10.1210/en.2013-2038] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Acute systemic stress disrupts reproductive function by inhibiting pulsatile gonadotropin secretion. The underlying mechanism involves stress-induced suppression of the GnRH pulse generator, the functional unit of which is considered to be the hypothalamic arcuate nucleus kisspeptin/neurokinin B/dynorphin A neurons. Agonists of the neurokinin B (NKB) receptor (NK3R) have been shown to suppress the GnRH pulse generator, in a dynorphin A (Dyn)-dependent fashion, under hypoestrogenic conditions, and Dyn has been well documented to mediate several stress-related central regulatory functions. We hypothesized that the NKB/Dyn signaling cascade is required for stress-induced suppression of the GnRH pulse generator. To investigate this ovariectomized rats, iv administered with Escherichia coli lipopolysaccharide (LPS) following intracerebroventricular pretreatment with NK3R or κ-opioid receptor (Dyn receptor) antagonists, were subjected to frequent blood sampling for hormone analysis. Antagonism of NK3R, but not κ-opioid receptor, blocked the suppressive effect of LPS challenge on LH pulse frequency. Neither antagonist affected LPS-induced corticosterone secretion. Hypothalamic arcuate nucleus NKB neurons project to the paraventricular nucleus, the major hypothalamic source of the stress-related neuropeptides CRH and arginine vasopressin (AVP), which have been implicated in the stress-induced suppression of the hypothalamic-pituitary-gonadal axis. A separate group of ovariectomized rats was, therefore, used to address the potential involvement of central CRH and/or AVP signaling in the suppression of LH pulsatility induced by intracerebroventricular administration of a selective NK3R agonist, senktide. Neither AVP nor CRH receptor antagonists affected the senktide-induced suppression of the LH pulse; however, antagonism of type 2 CRH receptors attenuated the accompanying elevation of corticosterone levels. These data indicate that the suppression of the GnRH pulse generator by acute systemic stress requires hypothalamic NKB/NK3R signaling and that any involvement of CRH therewith is functionally upstream of NKB.
Collapse
Affiliation(s)
- P Grachev
- Division of Women's Health (P.G., X.F.L., M.H.H., S.Y.L., K.T.O.), School of Medicine, King's College London, United Kingdom; Mammal Research Institute (R.P.M.), University of Pretoria, Pretoria, South Africa; Medical Research Council Receptor Biology Unit, University of Cape Town, Cape Town, South Africa; Centre for Integrative Physiology, University of Edinburgh, Scotland; and Henry Wellcome Laboratory for Integrative Neuroscience & Endocrinology (S.L.L.), University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhou S, Holmes MM, Forger NG, Goldman BD, Lovern MB, Caraty A, Kalló I, Faulkes CG, Coen CW. Socially regulated reproductive development: Analysis of GnRH-1 and kisspeptin neuronal systems in cooperatively breeding naked mole-rats (Heterocephalus glaber). J Comp Neurol 2013; 521:3003-29. [DOI: 10.1002/cne.23327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/20/2013] [Accepted: 02/26/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Shuzhi Zhou
- Reproductive Neurobiology; Division of Women's Health; School of Medicine; King's College London; London; UK
| | | | | | | | | | - Alain Caraty
- INRA; Physiology of Reproduction; Nouzilly; France
| | | | | | - Clive W. Coen
- Reproductive Neurobiology; Division of Women's Health; School of Medicine; King's College London; London; UK
| |
Collapse
|
16
|
Fukushima A, Furuta M, Kimura F, Akema T, Funabashi T. Testosterone exposure during the critical period decreases corticotropin-releasing hormone-immunoreactive neurons in the bed nucleus of the stria terminalis of female rats. Neurosci Lett 2013; 534:64-8. [DOI: 10.1016/j.neulet.2012.11.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 10/16/2012] [Accepted: 11/16/2012] [Indexed: 11/25/2022]
|
17
|
Stress regulation of kisspeptin in the modulation of reproductive function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:431-54. [PMID: 23550018 DOI: 10.1007/978-1-4614-6199-9_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stressful stimuli abound in modern society and have shaped evolution through altering reproductive development, behavior, and physiology. The recent identification of kisspeptin as an important component of the hypothalamic regulatory circuits involved in reproductive homeostasis sparked a great deal of research interest that subsequently implicated kisspeptin signaling in the relay of metabolic, environmental, and physiological cues to the hypothalamo-pituitary-gonadal axis. However, although it is widely recognized that exposure to stress profoundly impacts on reproductive function, the roles of kisspeptin within the complex mechanisms underlying stress regulation of reproduction remain poorly understood. We and others have recently demonstrated that a variety of experimental stress paradigms downregulate the expression of kisspeptin ligand and receptor within the reproductive brain. Coincidently, these stressors also inhibit gonadotropin secretion and delay pubertal onset-processes that rely on kisspeptin signaling. However, a modest literature is inconsistent with an exclusively suppressive influence of stress on the reproductive axis and suggests that complicated neural interactions and signaling mechanisms translate the stress response into reproductive perturbations. The purpose of this chapter is to review the evidence for a novel role of kisspeptin signaling in the modulation of reproductive function by stress and to broaden the understanding of this timely phenomenon.
Collapse
|
18
|
|
19
|
Lin Y, Li X, Lupi M, Kinsey-Jones JS, Shao B, Lightman SL, O'Byrne KT. The role of the medial and central amygdala in stress-induced suppression of pulsatile LH secretion in female rats. Endocrinology 2011; 152:545-55. [PMID: 21159851 PMCID: PMC3101805 DOI: 10.1210/en.2010-1003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress exerts profound inhibitory effects on reproductive function by suppressing the pulsatile release of GnRH and therefore LH. Although the mechanisms by which stressors disrupt the hypothalamic GnRH pulse generator remain to be fully elucidated, numerous studies have implicated the amygdala, especially its medial (MeA) and central nuclei (CeA), as key modulators of the neuroendocrine response to stress. In the present study, we investigated the roles of the MeA and CeA in stress-induced suppression of LH pulses. Ovariectomized rats received bilateral ibotenic acid or sham lesions targeting the MeA or CeA; blood samples (25 μl) were taken via chronically implanted cardiac catheters every 5 min for 6 h for the measurement of LH pulses. After 2 h of baseline sampling, the rats were exposed to either: restraint (1 h), insulin-induced hypoglycemia (IIH) (0.3 U/kg, iv), or lipopolysaccharide (LPS) (25 μg/kg, iv) stress. The restraint but not IIH or LPS stress-induced suppression of LH pulses was markedly attenuated by the MeA lesions. In contrast, CeA lesioning attenuated LPS, but not restraint or IIH stress-induced suppression of LH pulses. Moreover, after restraint stress, the number of Fos-positive neurons and the percentage of glutamic acid decarboxylase(67) neurons expressing Fos was significantly greater in the GnRH-rich medial preoptic area (mPOA) of rats with intact, rather than lesioned, MeA. These data indicate that the MeA and CeA play key roles in psychogenic and immunological stress-induced suppression of the GnRH pulse generator, respectively, and the MeA-mediated effect may involve γ-aminobutyric acid ergic signaling within the mPOA.
Collapse
Affiliation(s)
- Yuanshao Lin
- Division of Women's Health, School of Medicine, King's College London, 2.92W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
20
|
Li XF, Lin YS, Kinsey-Jones JS, Milligan SR, Lightman SL, O'Byrne KT. The role of the bed nucleus of the stria terminalis in stress-induced inhibition of pulsatile luteinising hormone secretion in the female rat. J Neuroendocrinol 2011; 23:3-11. [PMID: 21073554 DOI: 10.1111/j.1365-2826.2010.02071.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) occupies a central position in the neural circuitry regulating the hypothalamic-pituitary-adrenocortical axis response to stress. The potential role of the BNST in stress-induced suppression of the gondotrophin-releasing hormone (GnRH) pulse generator, the central regulator of the reproductive system, was assessed by examining the effects of micro-infusion of corticotrophin-releasing factor (CRF) or its antagonist into the BNST on pulsatile luteinising hormone (LH) secretion or stress-induced inhibition of LH pulses, respectively. Ovariectomised oestrogen-treated rats were implanted chronically with bilateral cannulae in the dorsolateral BNST and i.v. catheters. CRF (25, 50 or 100 pmol in 200 nl of artificial cerebrospinal fluid) administered bilaterally into the BNST resulted in a dose-dependent decrease in LH pulse frequency, and induced Fos expression in glutamic acid decarboxylase immunostained neurones in the medial preoptic area. These results suggest that the activation of hypothalamic GABAergic neurones in response to intra-BNST administration of CRF may be involved in the suppression of LH pulses. Furthermore, administration of CRF antagonist (280 pmol astressin-B, three times at 20-min intervals) into the BNST effectively blocked the suppression of pulsatile LH secretion in response to restraint (1 h) but not hypoglycaemic (0.25 U insulin/kg, i.v.) stress. These data suggest that CRF innervation of the dorsolateral BNST plays a key, but differential, role in stress-induced suppression of the GnRH pulse generator.
Collapse
Affiliation(s)
- X F Li
- Division of Reproduction & Endocrinology, King's College London, London, UK
| | | | | | | | | | | |
Collapse
|
21
|
Li XF, Knox AMI, O'Byrne KT. Corticotrophin-releasing factor and stress-induced inhibition of the gonadotrophin-releasing hormone pulse generator in the female. Brain Res 2010; 1364:153-63. [PMID: 20727865 DOI: 10.1016/j.brainres.2010.08.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 08/09/2010] [Accepted: 08/12/2010] [Indexed: 10/19/2022]
Abstract
It is well established that stress activates the hypothalamo-pituitary-adrenal (HPA) axis and suppresses the hypothalamo-pituitary-gonadal (HPG) axis. A large literature dealing with various stressors that regulate gonadotrophin-releasing hormone (GnRH) secretion in a variety of species (including nonhuman primates, sheep, and rats) provides evidence that stress modulates GnRH secretion by activating the corticotrophin-releasing factor (CRF) system and sympathoadrenal pathways, as well as the limbic brain. Different stressors may suppress the HPG axis by activating or inhibiting various pathways in the CNS. In addition to CRF being the principal hypophysiotropic factor driving the HPA axis, it is a potent inhibitor of the GnRH pulse generator. The suppression of the GnRH pulse generator by a variety of stressful stimuli can be blocked by CRF antagonists, suggesting a pivotal role for endogenous CRF. The differential roles for CRF receptor type 1 (CRF-R1) and CRF-R2 in stress-induced suppression of the GnRH pulse generator add to the complexity of CRF regulation of the HPG axis. Although the precise sites and mechanisms of action remain to be elucidated, noradrenergic and gamma-amino-butyric acid (GABA) neurones are implicated in the system's regulation, and opioids and kisspeptin in the medial preoptic area (mPOA) and hypothalamic arcuate nucleus (ARC) may operate downstream of the CRF neuronal system.
Collapse
Affiliation(s)
- X F Li
- Division of Reproduction and Endocrinology, King's College London, Guy's Campus, SE1 1UL, UK
| | | | | |
Collapse
|
22
|
Ghuman SPS, Morris R, Spiller DG, Smith RF, Dobson H. Integration Between Different Hypothalamic Nuclei Involved in Stress and GnRH Secretion in the Ewe. Reprod Domest Anim 2009; 45:1065-73. [DOI: 10.1111/j.1439-0531.2009.01496.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Li XF, Kinsey-Jones JS, Bowe JE, Wilkinson ES, Brain SD, Lightman SL, O'Byrne KT. A role for the medial preoptic area in CGRP-induced suppression of pulsatile LH secretion in the female rat. Stress 2009; 12:259-67. [PMID: 19051122 DOI: 10.1080/10253890802379922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is involved in a variety of stress responses and plays a pivotal role in stress-induced suppression of the GnRH pulse generator in the rat. Intracerebroventricular administration of CGRP suppresses luteinizing hormone (LH) pulses and increases Fos expression within the medial preoptic area (mPOA) and paraventricular nucleus (PVN). The aims of the present study were to investigate whether the mPOA or PVN are sites of action for CGRP-induced suppression of LH pulses and whether lipopolysaccharide (LPS), restraint or insulin-induced hypoglycaemia, stressors known to suppress LH pulses, affect mRNA expression for CGRP and its receptor subunits (calcitonin receptor-like receptor (CL) and RAMP-1) in the mPOA and PVN. Micro-infusion of CGRP (50, 250 or 500 pmol) into the mPOA, but not the PVN, dose-dependently suppressed LH pulse frequency. LPS, restraint and hypoglycaemia suppressed RAMP-1 mRNA, but not CL or CGRP mRNA expression in the mPOA. In the PVN, all three stressors suppressed CL mRNA expression, but only LPS or restraint suppressed RAMP-1 mRNA, and CGRP mRNA was unaffected. These results provide evidence that, unlike the PVN, the mPOA might play an important role in the inhibitory effect of CGRP on pulsatile LH secretion. Additionally, CGRP receptor function may be involved in this brain region in stress-induced suppression of the GnRH pulse generator.
Collapse
Affiliation(s)
- X F Li
- Division of Reproduction & Endocrinology, London, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Bethea CL, Centeno ML, Cameron JL. Neurobiology of stress-induced reproductive dysfunction in female macaques. Mol Neurobiol 2008; 38:199-230. [PMID: 18931961 PMCID: PMC3266127 DOI: 10.1007/s12035-008-8042-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/15/2008] [Indexed: 11/24/2022]
Abstract
It is now well accepted that stress can precipitate mental and physical illness. However, it is becoming clear that given the same stress, some individuals are very vulnerable and will succumb to illness while others are more resilient and cope effectively, rather than becoming ill. This difference between individuals is called stress sensitivity. Stress sensitivity of an individual appears to be influenced by genetically inherited factors, early life (even prenatal) stress, and by the presence or absence of factors that provide protection from stress. In comparison to other stress-related diseases, the concept of sensitivity versus resilience to stress-induced reproductive dysfunction has received relatively little attention. The studies presented herein were undertaken to begin to identify stable characteristics and the neural underpinnings of individuals with sensitivity to stress-induced reproductive dysfunction. Female cynomolgus macaques with normal menstrual cycles either stop ovulating (stress sensitive) or to continue to ovulate (stress resilient) upon exposure to a combined metabolic and psychosocial stress. However, even in the absence of stress, the stress-sensitive animals have lower secretion of the ovarian steroids, estrogen and progesterone, have higher heart rates, have lower serotonin function, have fewer serotonin neurons and lower expression of pivotal serotonin-related genes, have lower expression of 5HT2A and 2C genes in the hypothalamus, have higher gene expression of GAD67 and CRH in the hypothalamus, and have reduced gonadotropin-releasing hormone transport to the anterior pituitary. Altogether, the results suggest that the neurobiology of reproductive circuits in stress-sensitive individuals is compromised. We speculate that with the application of stress, the dysfunction of these neural systems becomes exacerbated and reproductive function ceases.
Collapse
Affiliation(s)
- Cynthia L Bethea
- Division of Reproductive Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
25
|
Bowe JE, Li XF, Kinsey-Jones JS, Brain SD, Lightman SL, O'Byrne KT. The role of corticotrophin-releasing hormone receptors in the calcitonin gene-related peptide-induced suppression of pulsatile luteinising hormone secretion in the female rat. Stress 2008; 11:312-9. [PMID: 18574791 DOI: 10.1080/10253890701801448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Corticotrophin-releasing hormone (CRH) plays a pivotal role in the suppression of the gonadotrophin-releasing hormone (GRH) pulse generator in response to stress and intracerebroventricular (i.c.v.) administration of calcitonin gene-related peptide (CGRP). We have previously shown both CRH receptor subtypes, CRH-R1 and CRH-R2, are involved in the stress-induced suppression of LH pulses. The aims of the present study were to examine the role of CRH-R1 and CRH-R2 in CGRP-induced suppression of LH pulses, and to investigate the effects of CGRP on CRH expression in the paraventricular nucleus (PVN) and central nucleus of the amygdala (CeA), which have prominent CRH neurone populations that receive dense CGRP innervations. The suppression of LH pulses by CGRP (1.5 microg i.c.v.) was completely prevented by intravenous administration of the CRH-R1 antagonist SSR125543Q (7.5 mg/rat i.v., 30 min before CGRP), but was not affected by the CRH-R2 antagonist, astressin(2)-B (100 microg i.c.v., 10 min before CGRP). CGRP increased the CRH mRNA expression in PVN and CeA. These results provide evidence of a role for CRH-R1 in mediating the suppressive effects of CGRP on pulsatile LH secretion in the female rat, and additionally raise the possibility of an involvement of PVN and CeA CRH neuronal populations in this suppression.
Collapse
Affiliation(s)
- J E Bowe
- Division of Reproduction and Endocrinology, New Hunt's House, King's College London, Guy's Campus, London, UK
| | | | | | | | | | | |
Collapse
|
26
|
Li XF, Kinsey-Jones JS, Knox AMI, Wu XQ, Tahsinsoy D, Brain SD, Lightman SL, O'Byrne KT. Neonatal lipopolysaccharide exposure exacerbates stress-induced suppression of luteinizing hormone pulse frequency in adulthood. Endocrinology 2007; 148:5984-90. [PMID: 17872370 PMCID: PMC2225523 DOI: 10.1210/en.2007-0710] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Early life exposure to immunological challenge has programming effects on the adult hypothalamo-pituitary-adrenocortical axis stress responsivity, and stress is known to suppress GnRH pulse generator activity, especially LH pulses. We investigated the effects of neonatal exposure to endotoxin on stress-induced suppression of pulsatile LH secretion and the involvement of corticotropin-releasing factor (CRF) receptor mechanisms in adult rats. Pups at 3 and 5 d of age were administered lipopolysaccharide (LPS, 50 microg/kg, ip). At 12 wk of age, they were ovariectomized and implanted with sc 17beta-estradiol capsules and i.v. cannulas. Blood samples (25 microl) were collected every 5 min for 5 h for LH measurement. After 2 h of sampling, rats were given LPS (25 microg/kg, iv). CRF and CRF-R1 and CRF-R2 receptor mRNA was determined by RT-PCR in medial preoptic area (mPOA) micropunches collected at 3 h after LPS administration. There was no difference in basal LH pulse frequency between neonatal LPS- and neonatal saline-treated controls. However, neonatal endotoxin-treated rats exhibited a significantly greater LPS stress-induced suppression of LH pulse frequency. Basal mPOA CRF-R1 expression was unchanged in neonatal LPS- and neonatal saline-treated rats. However, CRF-R1 expression was significantly increased in response to LPS stress in neonatal LPS-treated animals but not in neonatal saline-treated controls. CRF and CRF-R2 expression was unchanged in all treatment groups. These data demonstrate that exposure to bacterial endotoxin in early neonatal life programs long-term sensitization of the GnRH pulse generator to the inhibitory influence of stress in adulthood, an effect that might involve up-regulation of CRF-R1 expression in the mPOA.
Collapse
Affiliation(s)
- X F Li
- Division of Reproduction and Endocrinology, 2.36D New Hunt's House, King's College London, Guy's Campus, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Centeno ML, Sanchez RL, Cameron JL, Bethea CL. Hypothalamic gonadotrophin-releasing hormone expression in female monkeys with different sensitivity to stress. J Neuroendocrinol 2007; 19:594-604. [PMID: 17620101 DOI: 10.1111/j.1365-2826.2007.01566.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Psychosocial stress, combined with mild dieting and moderate exercise, are observed in women seeking treatment for hypothalamic amenorrhea. Using female cynomolgus macaques, we previously reported that the same combination of mild stresses suppressed reproductive hormone secretion and menstrual cycles in some individuals (stress-sensitive, SS), but not in others (highly stress-resilient, HSR). Compared to HSR monkeys, SS monkeys exhibited lower oestradiol and progesterone levels at the midcycle peak and decreased gene expression in the central serotonergic system during nonstressed cycles. Because steroids and serotonin impinge upon the hypothalamic-pituitary-gonadal (HPG) axis, we hypothesised that the differences between SS and HSR monkeys in the sensitivity of the HPG axis to stress may ultimately manifest in differences in the gonadotrophin-releasing hormone (GnRH) system. GnRH in situ hybridisation and immunohistochemistry were performed with hypothalamic sections from SS and HSR animals, euthanised in the early follicular phase of a nonstressed menstrual cycle. Compared to HSR monkeys, SS monkeys exhibited a significantly higher number and density of GnRH cell bodies, as well as a higher number of soma with extremely robust expression of GnRH mRNA, but SS monkeys exhibited a lower density of immunostained GnRH fibres in the median eminence. We suggest that neuronal mechanisms involved in the control of GnRH synthesis, transport and release differ in SS compared to HSR animals.
Collapse
Affiliation(s)
- M-L Centeno
- Division of Reproductive Sciences, Oregon National Primate Research Centre, Beaverton, OR 97006, USA.
| | | | | | | |
Collapse
|
28
|
Kinsey-Jones JS, Li XF, Bowe JE, Lightman SL, O'Byrne KT. Corticotrophin-releasing factor type 2 receptor-mediated suppression of gonadotrophin-releasing hormone mRNA expression in GT1-7 cells. Stress 2006; 9:215-22. [PMID: 17175507 DOI: 10.1080/10253890601040535] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Corticotrophin-releasing factor (CRF) released during stress has been implicated in the suppression of the hypothalamo-pituitary-gonadal (HPG) axis, especially the gonadotrophin-releasing hormone (GnRH) pulse generator, the central neural regulator of pituitary LH and FSH secretion, resulting in reproductive dysfunction. The gonadal steroid 17beta-oestradiol (E2) has been shown to enhance CRF- and stress-induced suppression of pulsatile LH secretion. In the present study, we investigated the potential direct action of CRF on GnRH neurones by using GT1-7 cells, an established GnRH cell line. Furthermore, we investigated the modulatory influence of E2 on the effects of CRF and expression of CRF type 2 receptors (CRF-R2). Expression of CRF-R2 in the GT1-7 cells was detected by reverse transcription-polymerase chain reaction (RT-PCR). CRF produced a dose-dependent suppression of GnRH mRNA expression, an effect reversed by the selective CRF-R2 antagonist, astressin2-B (Ast2-B). E2 combined with CRF resulted in a greater suppression of GnRH expression compared with either treatment alone. E2 also increased CRF-R2 expression. These results demonstrate for the first time expression of CRF-R2 in the GT1-7 cells and suggest that CRF may directly regulate GnRH gene expression, an effect mediated, at least in part, by CRF-R2. They also raise the possibility that up-regulation of CRF-R2 may contribute to the sensitising influence of E2 on CRF- and stress-induced suppression of the GnRH pulse generator.
Collapse
|
29
|
Khan AM, Hahn JD, Cheng WC, Watts AG, Burns GAPC. NeuroScholar's electronic laboratory notebook and its application to neuroendocrinology. Neuroinformatics 2006; 4:139-62. [PMID: 16845166 PMCID: PMC4476904 DOI: 10.1385/ni:4:2:139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Scientists continually relate information from the published literature to their current research. The challenge of this essential and time-consuming activity increases as the body of scientific literature continues to grow. In an attempt to lessen the challenge, we have developed an Electronic Laboratory Notebook (ELN) application. Our ELN functions as a component of another application we have developed, an open-source knowledge management system for the neuroscientific literature called NeuroScholar (http://www. neuroscholar. org/). Scanned notebook pages, images, and data files are entered into the ELN, where they can be annotated, organized, and linked to similarly annotated excerpts from the published literature within Neuroscholar. Associations between these knowledge constructs are created within a dynamic node-and-edge user interface. To produce an interactive, adaptable knowledge base. We demonstrate the ELN's utility by using it to organize data and literature related to our studies of the neuroendocrine hypothalamic paraventricular nucleus (PVH). We also discuss how the ELN could be applied to model other neuroendocrine systems; as an example we look at the role of PVH stressor-responsive neurons in the context of their involvement in the suppression of reproductive function. We present this application to the community as open-source software and invite contributions to its development.
Collapse
|
30
|
Li XF, Bowe JE, Kinsey-Jones JS, Brain SD, Lightman SL, O'Byrne KT. Differential role of corticotrophin-releasing factor receptor types 1 and 2 in stress-induced suppression of pulsatile luteinising hormone secretion in the female rat. J Neuroendocrinol 2006; 18:602-10. [PMID: 16867181 DOI: 10.1111/j.1365-2826.2006.01450.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corticotrophin-releasing factor (CRF) plays a pivotal role in stress-induced suppression of the gonadotrophin-releasing hormone pulse generator. We have previously shown that type 2 CRF receptors (CRF(2)) mediate restraint stress-induced suppression of luteinising hormone (LH) pulses in the rat. The present study aimed: (i) to determine whether type 1 CRF receptors (CRF(1)) are also involved in this response to restraint and (ii) to investigate the differential involvement of CRF(1) and CRF(2) in the suppression of LH pulses in response to the metabolic perturbation of insulin-induced hypoglycemia and the innate immunological challenge of lipopolysaccharide (LPS). Ovariectomised rats with oestrogen replacement were implanted with intracerebroventricular (i.c.v.) and intravenous (i.v.) cannulae. Blood samples (25 microl) were collected every 5 min for 5 h for LH measurement. After 2 h of controlled blood sampling, rats were either exposed to restraint (1 h) or injected intravenously with insulin (0.25 IU/kg) or LPS (5 microg/kg). All three stressors suppressed LH pulses. The CRF(1) antagonist SSR125543Q (11.5 micromol/rat i.v., 30 min before stressor) blocked the inhibitory response to restraint, but not hypoglycaemia or LPS stress. In addition to its effect on restraint, the CRF(2) antagonist astressin(2)-B (28 nmol/rat i.c.v., 10 min before insulin or LPS) blocked hypoglycaemia or LPS stress-induced suppression of LH pulses. These results suggest that hypoglycaemia and LPS stress-induced LH suppression involves activation of CRF(2) while restraint stress-induced inhibition of LH pulses involves both CRF(1) and CRF(2).
Collapse
Affiliation(s)
- X F Li
- Division of Reproductive Health, Endocrinology and Development, King's College London, Guy's Campus, London, UK
| | | | | | | | | | | |
Collapse
|
31
|
Hollenstein K, Janett F, Bleul U, Hässig M, Kähn W, Thun R. Influence of estradiol on adrenal activity in ovariectomized cows during acute stress. Anim Reprod Sci 2006; 93:292-302. [PMID: 16191466 DOI: 10.1016/j.anireprosci.2005.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 07/18/2005] [Accepted: 08/10/2005] [Indexed: 11/23/2022]
Abstract
Stress-dependent activation of the hypothalamo-pituitary-adrenal axis (HPA) can compromise reproductive function in animals and humans. In addition, it has been shown that estrogens are also capable of influencing the activity of the adrenal cortex. The objective of this study was to evaluate the effect of estradiol (E2) on adrenocortical secretion of cortisol and progesterone as well as on pituitary LH-release in cows during stress. Five ovariectomized Brown Swiss cows were exposed to acute restraint stress (2-h immobilization in a trimming chute), either with or without E2 treatment. Blood samples were taken every 15 min during a 5-h period for determination of cortisol progesterone and LH. Our results demonstrate that during the 2-h stress period mean cortisol concentrations significantly (P < 0.05) increased in all cows independent of E2 treatment. Mean progesterone concentrations also increased during stress, but the effect was only significant in E2-untreated cows. In contrast to cortisol and progesterone, mean LH values decreased in all animals during stress, but the decline was not significant. However, significantly lower mean LH values were seen at the end of the stress period comparing to values before stress. In cows without stress, E2 treatment had no significant effect on mean values of all three hormones analyzed. From our results it can be concluded that in ovariectomized cows (a) acute stress increases cortisol and progesterone secretion but decreases LH release and (b) the stress induced adrenocortical and pituitary responses were clearly attenuated under the influence of estradiol.
Collapse
Affiliation(s)
- K Hollenstein
- Clinic of Reproduction, University of Zürich, Winterthurerstrasse 260, 8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
32
|
Kinsey-Jones JS, Li XF, Bowe JE, Brain SD, Lightman SL, O'Byrne KT. Effect of calcitonin gene-related peptide on gonadotrophin-releasing hormone mRNA expression in GT1-7 cells. J Neuroendocrinol 2005; 17:541-4. [PMID: 16101891 DOI: 10.1111/j.1365-2826.2005.01341.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent evidence has shown calcitonin gene-related peptide (CGRP) to be a key mediator of stress-induced suppression of the gonadotrophin-releasing hormone (GnRH) pulse generator, although little is known about the neural pathways involved. In the present study, we investigated the potential direct action of CGRP on GnRH neurones using GT1-7 cells, an established GnRH cell line. First, we detected expression of the CGRP receptor subunits, calcitonin receptor-like receptor and receptor activity-modifying protein-1 in the GT1-7 cells by reverse transcriptase-polymerase chain reaction. Second, we have shown that CGRP inhibits GnRH mRNA expression in the GT1-7 cells, which was effectively reversed by the CGRP receptor antagonist, CGRP8-37. These results suggest that CGRP down regulates expression of GnRH mRNA, via CGRP receptors in the GT1-7 cell, thus implying that a potential direct action of CGRP may mediate a suppressive effect on the GnRH neural network.
Collapse
Affiliation(s)
- J S Kinsey-Jones
- Division of Reproductive Health, Endocrinology and Development, King's College London, UK
| | | | | | | | | | | |
Collapse
|
33
|
Mitchell JC, Li XF, Breen L, Thalabard JC, O'Byrne KT. The role of the locus coeruleus in corticotropin-releasing hormone and stress-induced suppression of pulsatile luteinizing hormone secretion in the female rat. Endocrinology 2005; 146:323-31. [PMID: 15486230 DOI: 10.1210/en.2004-1053] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite a wealth of evidence for CRH mediating stress-induced suppression of the hypothalamic GnRH pulse generator, and hence reproductive dysfunction, the site and mechanism of action remains elusive. The locus coeruleus (LC), a prominent noradrenergic brain stem nucleus, is innervated by CRH neurons, mediates several behavioral stress responses, and is implicated in the control of pulsatile LH secretion. The aim of this study was to test the hypothesis that LC CRH has a critical role in mediating stress-induced suppression of pulsatile LH secretion in the rat. Ovariectomized rats with 17beta-estradiol or oil-filled s.c. capsules were implanted with bilateral LC and i.v. cannulae. Central administration of CRH (10 ng to 1 microg) resulted in a dose-dependent suppression of LH pulses, which was reversed by a CRH receptor antagonist (alpha-helical CRF(9-41), 1 microg). The induction of c-fos expression in glutamic acid decarboxylase67 immunostained neurons in the preoptic area suggests activation of the secretion of gamma-aminobutyric acid in response to intracoerulear administration of CRH; 17beta-estradiol further increased the percentage of glutamic acid decarboxylase67-positive neurons that expressed fos and augmented suppression of LH pulses. Furthermore, intracoerulear administration of alpha-helical CRF(9-41) completely blocked restraint stress-induced suppression of LH pulses, without affecting the inhibitory response to hypoglycemia. These results suggest that CRH innervation of the LC may play a pivotal, but differential, role in the normal physiological response of stress-induced suppression of the GnRH pulse generator and hence the reproductive system.
Collapse
Affiliation(s)
- J C Mitchell
- Division of Reproductive Health, Endocrinology and Development, School of Medicine, 2.36D New Hunt's House, King's College London, London SE1 1UL, United Kingdom
| | | | | | | | | |
Collapse
|
34
|
Hahn JD, Coen CW. Comparative study of the sources of neuronal projections to the site of gonadotrophin-releasing hormone perikarya and to the anteroventral periventricular nucleus in female rats. J Comp Neurol 2005; 494:190-214. [PMID: 16304687 DOI: 10.1002/cne.20803] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The rat ovulatory cycle is dependent on the preoptic region encompassing the gonadotrophin-releasing hormone (GnRH) perikarya and the anteroventral periventricular nucleus (AVPV). Retrograde tract tracing was used to identify and compare the sources of inputs to these sites in female rats. Within the telencephalon and diencephalon, the incidence of retrograde labelling from both sites was moderate to abundant in the ventral lateral septum, posteromedial bed nucleus of the stria terminalis, amygdalohippocampal area and the periventricular, medial preoptic, anterodorsal preoptic, dorsomedial suprachiasmatic, arcuate, and posterior ventrolateral ventromedial hypothalamic nuclei. In these regions, the incidence of retrograde labelling was either greater from the AVPV than from the GnRH perikarya site or similar from both sites. In the medial amygdaloid, parastrial, striohypothalamic, and ventral premammillary nuclei, the retrograde labelling from the AVPV greatly exceeded the sparse incidence from the GnRH perikarya site. In contrast, retrograde labelling from the GnRH perikarya site predominated in the median preoptic, lateroanterior and dorsomedial hypothalamic nuclei, subparaventricular zone, and retrochiasmatic area; it was abundant in the AVPV. Caudal to the diencephalon, retrograde labelling from either site was sparse, except in the lateral parabrachial nucleus, which displayed a particularly high incidence from the GnRH perikarya site. Other mesencephalic regions labelled from either site included the periaqueductal gray and dorsal and median raphe nuclei. The most caudal labelling was found in the ventrolateral medulla and region of the solitary tract nucleus; this was almost exclusively from the GnRH perikarya site. These findings further elucidate the neuroanatomical connections underlying the control of the ovulatory cycle.
Collapse
Affiliation(s)
- Joel D Hahn
- School of Biomedical Sciences, King's College London, SE1 1UL, United Kingdom
| | | |
Collapse
|
35
|
Jasoni CL, Todman MG, Han SK, Herbison AE. Expression of mRNAs encoding receptors that mediate stress signals in gonadotropin-releasing hormone neurons of the mouse. Neuroendocrinology 2005; 82:320-8. [PMID: 16721036 DOI: 10.1159/000093155] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 02/28/2006] [Indexed: 11/19/2022]
Abstract
Neurons that synthesize and secrete gonadotropin-releasing hormone (GnRH) represent the neural control point for fertility modulation in vertebrates. As such GnRH neurons are ideally situated to integrate stress responses on reproduction. By isolating individual GnRH neurons from acute brain slices of adult female GnRH-EGFP transgenic mice and using microarray analyses, we have identified a range of transcripts encoding receptors known to be involved in stress responses in GnRH neurons. Prominent among these were receptors for corticotropin-releasing hormone (CRH), vasopressin, interleukins, prostaglandins, tumor necrosis factor alpha and other inflammatory mediators. We selected 4 of these targets [interleukin 1 receptor accessory protein (IL-1Racc), prostaglandin E(2) receptor subtype EP2 (PGER2), CRH receptor type 1 (CRH-R1), and arginine-vasopressin receptor type 1b (AVP-R1b)] for validation using single-cell RT-PCR from individual GnRH neurons. In total, 54% of GnRH neurons (n = 26) were found to express at least 1 of these transcripts. The IL-1Racc, PGER2 and CRH-R1 mRNAs were each detected in approximately 25% of the GnRH neurons tested, but no evidence was found for AVP-R1b transcripts. Overlap was found between the expression of CRH-R1 and PGER2, and IL-1Racc and PGER2 in individual GnRH neurons. Dual immunofluorescence experiments confirmed the expression of CRH-R1/2 in a subpopulation ( approximately 30%) of GnRH neurons. These observations indicate that a variety of different stressors and stress pathways have the capacity to have an impact directly upon a subpopulation of GnRH neurons to influence the reproductive axis.
Collapse
MESH Headings
- Animals
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation
- Gonadotropin-Releasing Hormone/analysis
- Immunohistochemistry
- Interleukin-1 Receptor Accessory Protein
- Mice
- Mice, Transgenic
- Neurons/chemistry
- Neurons/cytology
- Neurons/physiology
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Corticotropin-Releasing Hormone/analysis
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/physiology
- Receptors, Interleukin-1/analysis
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/physiology
- Receptors, Prostaglandin E/analysis
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/physiology
- Receptors, Prostaglandin E, EP2 Subtype
- Receptors, Vasopressin/analysis
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/genetics
- Signal Transduction/physiology
- Stress, Physiological/genetics
- Stress, Physiological/physiopathology
Collapse
Affiliation(s)
- Christine L Jasoni
- Centre for Neuroendocrinology, Department of Physiology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | | | | | | |
Collapse
|
36
|
Quan H, Funabashi T, Kimura F. Intracerebroventricular injection of corticotropin-releasing hormone receptor antagonist blocks the suppression of pulsatile luteinizing hormone secretion induced by neuromedin U in ovariectomized rats after 48hours of fasting. Neurosci Lett 2004; 369:33-8. [PMID: 15380303 DOI: 10.1016/j.neulet.2004.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/30/2004] [Accepted: 07/16/2004] [Indexed: 11/28/2022]
Abstract
We recently reported that neuromedin U (NMU) and fasting synergistically suppressed the pulsatile LH secretion, even though NMU has been shown to act as a satiety factor. In the present study, we examined whether this synergistic effect on the pulsatile LH secretion was mediated via corticotropin-releasing hormone (CRH) neurons. Adult ovariectomized (OVX) rats were stereotaxically implanted with a guide cannula into the third ventricle. After 2 weeks of recovery, blood samples were taken under freely-moving conditions at 6-min intervals for 180 min from 09:00 to 12:00 h in OVX rats that had been fasted for 48 h. After first 60 min of blood sampling, astressin (2 nmol/3 microl), a CRH receptor antagonist, dissolved in artificial cerebrospinal fluid (aCSF) or aCSF (3 microl) was injected as a control into the third ventricle. Thirty minutes after the first injection, the rats were injected with NMU (1 nmol/3 microl) into the third ventricle. We found that pre-treatment with astressin completely blocked the prolongation of the interpulse interval, which should be induced by NMU. We confirmed that a single intracerebroventricular injection of astressin per se did not affect the pulsatile LH secretion. The present study suggests that synergistic inhibitory effect of NMU and fasting on the pulsatile LH secretion is at least in part mediated via CRH neurons.
Collapse
Affiliation(s)
- Hong Quan
- Department of Neuroendocrinology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | |
Collapse
|
37
|
Li XF, Bowe JE, Mitchell JC, Brain SD, Lightman SL, O'Byrne KT. Stress-induced suppression of the gonadotropin-releasing hormone pulse generator in the female rat: a novel neural action for calcitonin gene-related peptide. Endocrinology 2004; 145:1556-63. [PMID: 14736738 DOI: 10.1210/en.2003-1609] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to its role as a potent vasodilator, calcitonin gene-related peptide (CGRP) is centrally involved in a variety of stress responses, including activation of the hypothalamo-pituitary-adrenocortical axis. It is well known that stress suppresses the activity of the hypothalamic GnRH pulse generator, the central regulator of LH and FSH pulses, resulting in reproductive dysfunction. The aim of this study was to test the hypothesis that CGRP has a critical role in mediating stress-induced suppression of pulsatile LH secretion in the rat. Ovariectomized rats were implanted with intracerebroventricular and iv cannulae. Central administration of CGRP (75 pmol-1.2 nmol) into the lateral cerebral ventricle resulted in a profound, dose-dependent suppression of LH pulses, which was reversed by a CGRP receptor antagonist (CGRP(8-37),1 nmol). Although the site of action of CGRP remains to be established, the induction of c-Fos expression in the preoptic area and hypothalamic paraventricular nucleus might suggest an involvement of these brain regions. Intravenous administration of CGRP did not affect LH pulses. Coadministration (intracerebroventricular) of CGRP (400 pmol) with a CRH antagonist (alpha-helical CRF(9-41), 26 nmol) partly blocked the CGRP-induced suppression of LH pulses. Furthermore, CGRP(8-37) (1 nmol) completely blocked hypoglycemic stress-induced suppression of LH pulses. These results suggest that the suppression of pulsatile LH secretion by central administration of CGRP may be mediated in part by CRH, and that CGRP may play a pivotal role in the normal physiological response of stress-induced suppression of the hypothalamic GnRH pulse generator, and hence the reproductive system.
Collapse
Affiliation(s)
- Xiao Feng Li
- Centre for Reproduction, Endocrinology and Diabetes, New Hunt's House, King's College London, Guy's Campus, United Kingdom.
| | | | | | | | | | | |
Collapse
|