1
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional responses of Neisseria gonorrhoeae to glucose and lactate: implications for resistance to oxidative damage and biofilm formation. mBio 2024; 15:e0176124. [PMID: 39012148 PMCID: PMC11323468 DOI: 10.1128/mbio.01761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding how bacteria adapt to different environmental conditions is crucial for advancing knowledge regarding pathogenic mechanisms that operate during infection as well as efforts to develop new therapeutic strategies to cure or prevent infections. Here, we investigated the transcriptional response of Neisseria gonorrhoeae, the causative agent of gonorrhea, to L-lactate and glucose, two important carbon sources found in the host environment. Our study revealed extensive transcriptional changes that gonococci make in response to L-lactate, with 37% of the gonococcal transcriptome being regulated, compared to only 9% by glucose. We found that L-lactate induces a transcriptional program that would negatively impact iron transport, potentially limiting the availability of labile iron, which would be important in the face of the multiple hydrogen peroxide attacks encountered by gonococci during its lifecycle. Furthermore, we found that L-lactate-mediated transcriptional response promoted aerobic respiration and dispersal of biofilms, contrasting with an anaerobic condition previously reported to favor biofilm formation. Our findings suggest an intricate interplay between carbon metabolism, iron homeostasis, biofilm formation, and stress response in N. gonorrhoeae, providing insights into its pathogenesis and identifying potential therapeutic targets.IMPORTANCEGonorrhea is a prevalent sexually transmitted infection caused by the human pathogen Neisseria gonorrhoeae, with ca. 82 million cases reported worldwide annually. The rise of antibiotic resistance in N. gonorrhoeae poses a significant public health threat, highlighting the urgent need for alternative treatment strategies. By elucidating how N. gonorrhoeae responds to host-derived carbon sources such as L-lactate and glucose, this study offers insights into the metabolic adaptations crucial for bacterial survival and virulence during infection. Understanding these adaptations provides a foundation for developing novel therapeutic approaches targeting bacterial metabolism, iron homeostasis, and virulence gene expression. Moreover, the findings reported herein regarding biofilm formation and L-lactate transport and metabolism contribute to our understanding of N. gonorrhoeae pathogenesis, offering potential avenues for preventing and treating gonorrhea infections.
Collapse
Affiliation(s)
- Julio C. Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
2
|
Sharma DK, Rajpurohit YS. Multitasking functions of bacterial extracellular DNA in biofilms. J Bacteriol 2024; 206:e0000624. [PMID: 38445859 PMCID: PMC11025335 DOI: 10.1128/jb.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Bacterial biofilms are intricate ecosystems of microbial communities that adhere to various surfaces and are enveloped by an extracellular matrix composed of polymeric substances. Within the context of bacterial biofilms, extracellular DNA (eDNA) originates from cell lysis or is actively secreted, where it exerts a significant influence on the formation, stability, and resistance of biofilms to environmental stressors. The exploration of eDNA within bacterial biofilms holds paramount importance in research, with far-reaching implications for both human health and the environment. An enhanced understanding of the functions of eDNA in biofilm formation and antibiotic resistance could inspire the development of strategies to combat biofilm-related infections and improve the management of antibiotic resistance. This comprehensive review encapsulates the latest discoveries concerning eDNA, encompassing its origins, functions within bacterial biofilms, and significance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Schools of Life Sciences, Homi Bhabha National Institute (DAE—Deemed University), Mumbai, India
| |
Collapse
|
3
|
Abstract
The versatile type IV secretion system (T4SS) nanomachine plays a pivotal role in bacterial pathogenesis and the propagation of antibiotic resistance determinants throughout microbial populations. In addition to paradigmatic DNA conjugation machineries, diverse T4SSs enable the delivery of multifarious effector proteins to target prokaryotic and eukaryotic cells, mediate DNA export and uptake from the extracellular milieu, and in rare examples, facilitate transkingdom DNA translocation. Recent advances have identified new mechanisms underlying unilateral nucleic acid transport through the T4SS apparatus, highlighting both functional plasticity and evolutionary adaptations that enable novel capabilities. In this review, we describe the molecular mechanisms underscoring DNA translocation through diverse T4SS machineries, emphasizing the architectural features that implement DNA exchange across the bacterial membrane and license transverse DNA release across kingdom boundaries. We further detail how recent studies have addressed outstanding questions surrounding the mechanisms by which nanomachine architectures and substrate recruitment strategies contribute to T4SS functional diversity.
Collapse
Affiliation(s)
- Mackenzie E. Ryan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Prashant P. Damke
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
| | - Carrie L. Shaffer
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Department of Veterinary Sciences, University of Kentucky College of Agriculture, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Kravtsov D, Gryadunov D, Shaskolskiy B. Gonococcal Genetic Island in the Global Neisseria gonorrhoeae Population: A Model of Genetic Diversity and Association with Resistance to Antimicrobials. Microorganisms 2023; 11:1547. [PMID: 37375049 DOI: 10.3390/microorganisms11061547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this work was to study the genetic diversity of the gonococcal genetic island (GGI) responsible for the type IV secretion system (T4SS) and the association of a functionally active GGI with antimicrobial resistance. An analysis of the GGI in a sample of 14,763 genomes of N. gonorrhoeae isolates from the Pathogenwatch database collected in 1996-2019 from 68 countries was performed. A model of GGI's genetic diversity that divides the global gonococcal population into fifty-one GGI clusters and three GGI superclusters based on the allele type of the traG gene and substitutions of the atlA and ych genes for eppA and ych1 has been proposed, reflecting differences among isolates in the T4SS functionality. The NG-MAST and MLST typing schemes (with accuracies of 91% and 83%, respectively) allowed the determination of both the presence of a GGI and the GGI cluster and, correspondingly, the structure of the GGI and the ability to secrete DNA. A statistically significant difference in the proportion of N. gonorrhoeae isolates resistant to ciprofloxacin, cefixime, tetracycline, and penicillin was found when comparing populations with a functional and a non-functional GGI. The presence of a functional GGI did not affect the proportion of azithromycin-resistant isolates.
Collapse
Affiliation(s)
- Dmitry Kravtsov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Boris Shaskolskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Tang T, Chen Y, Du Y, Yao B, Liu M. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129870. [PMID: 36063716 DOI: 10.1016/j.jhazmat.2022.129870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
6
|
Zhang D, Hu M, Chi S, Chen H, Lin C, Yu F, Zheng Z. Molecular Characteristics and Gonococcal Genetic Island Carrying Status of Thirty-Seven Neisseria gonorrhoeae Isolates in Eastern China. Infect Drug Resist 2022; 15:6545-6553. [DOI: 10.2147/idr.s385079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
|
7
|
Wang Y, Li C, Wang J, Bai N, Zhang H, Chi Y, Cai Y. The Efficacy of Colistin Combined with Amikacin or Levofloxacin against Pseudomonas aeruginosa Biofilm Infection. Microbiol Spectr 2022; 10:e0146822. [PMID: 36102678 PMCID: PMC9603716 DOI: 10.1128/spectrum.01468-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (PA) biofilm infection is clinically prevalent and difficult to eradicate. In the present work, we aimed to evaluate the in vitro and in vivo efficacy of colistin (COL)-based combinations against PA biofilm. MICs and fractional inhibitory concentration indexes (FICIs) of four antibiotics (COL, amikacin, levofloxacin, and meropenem) to bioluminescent strain PAO1, carbapenem-resistant PAO1 (CRPAO1), and clinically isolated strains were assessed. Minimal biofilm eradication concentrations (MBECs) of monotherapy and combinations were examined by counting the live bacteria in biofilm, accompanied by visual confirmation using confocal laser-scanning microscopy. An animal biofilm infection model was established by implanting biofilm subcutaneously, and the therapeutic effect was evaluated according to the change in luminescence through a live animal bio-photonic imaging system. In vitro, even combined with 4 or 8 mg/L COL, meropenem needed to reach 128 or 256 mg/L to eradicate the biofilm. Moreover, 2 mg/L COL combined with 32 mg/L amikacin or 4-8 mg/L levofloxacin could kill the PAO1 and CRPAO1 in biofilm within 24 h. In vivo, COL combined with amikacin or levofloxacin could shorten the eradication time of biofilm than monotherapy. For PAO1 biofilm, combination therapy could eradicate the biofilm in all mice on the 5th day, whereas monotherapy only eradicated biofilms in almost half of the mice. For CRPAO1 biofilm, the biofilm eradication rate on the 6th day in the COL+ amikacin, amikacin, or COL alone regimen was 90%, 10%, or 40%, respectively. COL combined with levofloxacin did not show a better effect than each individual antibiotic. COL-based combinations containing levofloxacin or amikacin were promising choices for treating PA biofilm infection. IMPORTANCE Infections associated with PA biofilm formation are extremely challenging. When monotherapy fails to achieve optimal efficacy, combination therapy becomes the last option. After evaluating multiple drug combinations through a series of experiments in vitro and in vivo, we confirmed that colistin-based combinations containing levofloxacin or amikacin were promising choices for treating PA biofilm infection. The efficacy of these combinations derives from the different bactericidal mechanisms and the bacterial susceptibility to each antibiotic. This study provided a new regimen to solve the incurable problem of biofilm by using COL combined with other antibiotics.
Collapse
Affiliation(s)
- Yuhang Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Chunsun Li
- Laboratory of Department of Pulmonary and Critical Care Medicine, PLA General Hospital, Beijing, People’s Republic of China
| | - Jin Wang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Nan Bai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Huan Zhang
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Yulong Chi
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| | - Yun Cai
- Center of Medicine Clinical Research, Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Guglielmino CJD, Sandhu S, Lau CL, Buckely C, Trembizki E, Whiley DM, Jennison AV. Molecular characterisation of Neisseria gonorrhoeae associated with disseminated gonococcal infections in Queensland, Australia: a retrospective surveillance study. BMJ Open 2022; 12:e061040. [PMID: 35918119 PMCID: PMC9351343 DOI: 10.1136/bmjopen-2022-061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Gonorrhoea caused by Neisseria gonorrhoeae is the second most notified sexually transmitted infection (STI) in Australia and the case numbers for this STI have been increasing globally. Progressive gonococcal infection may lead to disseminated gonococcal infection (DGI), which causes significant morbidity among patients. This study aims to examine the genetic diversity of N. gonorrhoeae isolates collected in Queensland from January 2010 to August 2015 and to determine factors associated with DGI in Queensland. DESIGN Retrospective surveillance study for epidemiological purposes. SETTING All gonorrhoeae isolates referred by private and public pathology laboratories to the state of Queensland, Australia Neisseria reference laboratory. METHODS Between January 2010 and August 2015, 3953 N. gonorrhoeae isolates from both metropolitan and regional Queensland infections were typed with NG-MAST (N. gonorrhoeae multiantigen sequence typing) to assess the genetic diversity between strains. Whole-genome sequencing (WGS) was used to investigate strain-related factors associated with DGI. RESULTS ST6876 was the most common NG-MAST type, detected in 7.6% of the isolates. DGI was significantly more likely in females <30 years (OR 13.02, p<0.0001) and in older males >30 years (OR 6.04, p<0.0001), with most cases originating from North Queensland (OR 8.5, p<0.0001). Strains harbouring PIA class of porB type were associated with DGI (OR 33.23, p<0.0001). CONCLUSION Genotyping techniques, such as NG-MAST and WGS, are proving instrumental in providing an insight into the population structure of N. gonorrhoeae, and genetic mechanisms of pathogenesis, such as for DGI.
Collapse
Affiliation(s)
- Christine J D Guglielmino
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Archerfield, Queensland, Australia
| | - Sumeet Sandhu
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Archerfield, Queensland, Australia
| | - Colleen L Lau
- Australian National University Research School of Population Health, Canberra, Australian Capital Territory, Australia
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Cameron Buckely
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Pathology Queensland Central Laboratory, Queensland Health, Brisbane, Queensland, Australia
| | - Ella Trembizki
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
| | - David M Whiley
- The University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Queensland, Australia
- Pathology Queensland Central Laboratory, Queensland Health, Brisbane, Queensland, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Archerfield, Queensland, Australia
| |
Collapse
|
9
|
Baerentsen R, Tang CM, Exley RM. Et tu, Neisseria? Conflicts of Interest Between Neisseria Species. Front Cell Infect Microbiol 2022; 12:913292. [PMID: 35811666 PMCID: PMC9263626 DOI: 10.3389/fcimb.2022.913292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are two obligate human pathogens that have evolved to be uniquely adapted to their host. The meningococcus is frequently carried asymptomatically in the nasopharynx, while gonococcal infection of the urogenital tract usually elicits a marked local inflammatory response. Other members of the Neisseria genus are abundant in the upper airway where they could engage in co-operative or competitive interactions with both these pathogens. Here, we briefly outline the potential sites of contact between Neisseria spp. in the body, with emphasis on the upper airway, and describe the growing yet circumstantial evidence for antagonism from carriage studies and human volunteer challenge models with Neisseria lactamica. Recent laboratory studies have characterized antagonistic mechanisms that enable competition between Neisseria species. Several of these mechanisms, including Multiple Adhesin family (Mafs), Two Partner Secretion Systems, and Type VI secretion system, involve direct contact between bacteria; the genetic organisation of these systems, and the domain structure of their effector molecules have striking similarities. Additionally, DNA from one species of Neisseria can be toxic to another species, following uptake. More research is needed to define the full repertoire of antagonistic mechanisms in Neisseria spp., their distribution in strains, their range of activity, and contribution to survival in vivo. Understanding the targets of effectors could reveal how antagonistic relationships between close relatives shape subsequent interactions between pathogens and their hosts.
Collapse
|
10
|
Zhang L, Sun J, Zhang Z, Peng Z, Dai X, Ni BJ. Polyethylene terephthalate microplastic fibers increase the release of extracellular antibiotic resistance genes during sewage sludge anaerobic digestion. WATER RESEARCH 2022; 217:118426. [PMID: 35427830 DOI: 10.1016/j.watres.2022.118426] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Microplastic fibers (MFs), as the most frequently detected microplastic shape in sewage sludge, have posed emerging concern for sludge treatment and disposal. However, the effect of MFs on antibiotic resistance genes (ARGs), especially extracellular ARGs (eARGs) during sludge treatment remains far from explicit. Therefore, this study investigated the potential impact of MFs on eARGs during sludge anaerobic digestion (AD), a commonly used sludge treatment method, through long-term operation. The qPCR results showed that both absolute and relative abundances of eARGs increased with the MFs exposure during sludge AD. The average absolute and relative abundances of eight tested eARGs in the AD reactor with the highest MFs dosage (170 items/gTS) were 1.70 and 2.15 times higher than those in the control AD reactor. The metagenomics results further comfirmed the increase of eARGs abundance during sludge anaerobic digestion after MFs exposure and the enhancement did not show significant selectivity. The identification of the potential hosts of eARGs suggested the host numbers of eARGs also increased with MFs exposure, which may suggest enhanced horizonal transformation as a result of increased eARGs. Further exploring the mechansims showed that the genes involved in type IV secretion system was upregulated after MFs exposure, suggesting the active release of eARGs was enhanced with MFs exposure. In contrast, the MFs may not affect the passive release of eARGs as its impact on cell membrance damage was insignificant. The enhanced eARGs in sludge AD process may further accelerate the transport of ARGs in environment, which should be considered during sludge treatment and disposal.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Hefei 230000, China.
| | - Zisha Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zitong Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| |
Collapse
|
11
|
Miele S, Provan JI, Vergne J, Possoz C, Ochsenbein F, Barre FX. The Xer activation factor of TLCΦ expands the possibilities for Xer recombination. Nucleic Acids Res 2022; 50:6368-6383. [PMID: 35657090 PMCID: PMC9226527 DOI: 10.1093/nar/gkac429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The chromosome dimer resolution machinery of bacteria is generally composed of two tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific site, dif. The reaction depends on a cell division protein, FtsK, which activates XerD by protein-protein interactions. The toxin-linked cryptic satellite phage (TLCΦ) of Vibrio cholerae, which participates in the emergence of cholera epidemic strains, carries a dif-like attachment site (attP). TLCΦ exploits the Xer machinery to integrate into the dif site of its host chromosomes. The TLCΦ integration reaction escapes the control of FtsK because TLCΦ encodes for its own XerD-activation factor, XafT. Additionally, TLCΦ attP is a poor substrate for XerD binding, in apparent contradiction with the high integration efficiency of the phage. Here, we present a sequencing-based methodology to analyse the integration and excision efficiency of thousands of synthetic mini-TLCΦ plasmids with differing attP sites in vivo. This methodology is applicable to the fine-grained analyses of DNA transactions on a wider scale. In addition, we compared the efficiency with which XafT and the XerD-activation domain of FtsK drive recombination reactions in vitro. Our results suggest that XafT not only activates XerD-catalysis but also helps form and/or stabilize synaptic complexes between imperfect Xer recombination sites.
Collapse
Affiliation(s)
- Solange Miele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - James Iain Provan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Justine Vergne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Cartee JC, Joseph SJ, Weston E, Pham CD, Thomas JC, Schlanger K, St Cyr SB, Farley MM, Moore AE, Tunali AK, Cloud C, Raphael BH. Phylogenomic comparison of Neisseria gonorrhoeae causing disseminated gonococcal infections and uncomplicated gonorrhea in Georgia, United States. Open Forum Infect Dis 2022; 9:ofac247. [DOI: 10.1093/ofid/ofac247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Disseminated gonococcal infection (DGI) is a rare complication caused by the systemic dissemination of Neisseria gonorrhoeae (Ng) to normally sterile anatomical sites. Little is known about the genetic diversity of DGI gonococcal strains and how they relate to other gonococcal strains causing uncomplicated mucosal infections. We used whole genome sequencing to characterize DGI isolates (n = 30) collected from a surveillance system in Georgia (GA), USA during 2017-2020 to understand phylogenetic clustering among DGI as well as uncomplicated uro-and-extragenital gonococcal (UGI) isolates (n = 110) collected in Fulton County, GA during 2017-2019. We also investigated the presence or absence of genetic markers related to antimicrobial resistance (AMR) as well as surveyed the genomes for putative virulence genetic factors associated with normal human-serum (NHS) resistance that might facilitate DGI. We found that DGI strains demonstrated significant genetic variability similar to the population structure of isolates causing UGI, with sporadic incidences of geographically clustered DGI strains. DGI isolates contained various AMR markers and genetic mechanisms associated with NHS resistance. DGI isolates had a higher frequency of the porB1A allele compared with UGI (67% vs. 9%, p < 0.0001); however, no single NHS resistance marker was found in all DGI isolates. Continued DGI surveillance with genome-based characterization of DGI isolates is necessary to better understand specific factors that promote systemic dissemination.
Collapse
Affiliation(s)
- John C. Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Emily Weston
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
- Current affiliation: Division of Global Health and Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Cau D. Pham
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Jesse C. Thomas
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Karen Schlanger
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Sancta B. St Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| | - Monica M. Farley
- Emory University School of Medicine, Department of Medicine, Atlanta, GA, 30322, United States
- Atlanta VA Medical Center, Atlanta, GA, 30033, United States
| | - Ashley E. Moore
- Georgia Department of Public Health, Atlanta, GA, 30303, United States
| | - Amy K. Tunali
- Emory University School of Medicine, Department of Medicine, Atlanta, GA, 30322, United States
- Atlanta VA Medical Center, Atlanta, GA, 30033, United States
| | - Charletta Cloud
- Georgia Department of Public Health, Atlanta, GA, 30303, United States
| | - Brian H. Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, United States
| |
Collapse
|
13
|
Shaskolskiy B, Kravtsov D, Kandinov I, Gorshkova S, Kubanov A, Solomka V, Deryabin D, Dementieva E, Gryadunov D. Comparative Whole-Genome Analysis of Neisseria gonorrhoeae Isolates Revealed Changes in the Gonococcal Genetic Island and Specific Genes as a Link to Antimicrobial Resistance. Front Cell Infect Microbiol 2022; 12:831336. [PMID: 35252037 PMCID: PMC8895040 DOI: 10.3389/fcimb.2022.831336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022] Open
Abstract
Comparative whole-genome analysis was performed for Neisseria gonorrhoeae isolates belonging to the Neisseria gonorrhoeae multiantigen sequence typing (NG-MAST) types predominant worldwide — 225, 1407, 2400, 2992, and 4186 — and to genogroup 807, the most common genogroup in the Russian Federation. Here, for the first time, the complete genomes of 25 N. gonorrhoeae isolates from genogroup 807 were obtained. For NG-MAST types 225, 1407, 2400, 2992, and 4186, genomes from the Pathogenwatch database were used. The phylogenetic network constructed for 150 genomes showed that the clustering according to NG-MAST type corresponded to the clustering according to genome. Comparisons of genomes of the six sequence types revealed 8-20 genes specific to each sequence type, including the loci for phase variations and genetic components of the gonococcal genetic island (GGI). NG-MAST type 2992 and 4186 isolates either lacked the GGI or carried critical mutations in genes essential for DNA secretion. In all analyzed genogroup 807 isolates, substitution of the essential atlA gene with the eppA gene was found, accompanied by a change in the traG allele, replacement of the ych gene with ych1, and the absence of the exp1 gene, which is likely to result in loss of GGI functionality. For the NG-MAST type 225, 1407 and 2400 isolates, no premature stop codons or reading frameshifts were found in the genes essential for GGI function. A relationship between isolate susceptibility to ciprofloxacin, penicillin, tetracycline and the presence of lesions in GGI genes necessary for DNA secretion was established. The N. gonorrhoeae evolutionary pathways, which allow a particular sequence type to maintain long-term predominance in the population, may include changes in genes responsible for adhesion and virulence, changes in the GGI structure, preservation of genes carrying drug resistance determinants, and changes in genes associated with host adaptation or encoding enzymes of biochemical pathways.
Collapse
Affiliation(s)
- Boris Shaskolskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Boris Shaskolskiy,
| | - Dmitry Kravtsov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kandinov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofya Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Kubanov
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Victoria Solomka
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Dmitry Deryabin
- State Research Center of Dermatovenerology and Cosmetology, Russian Ministry of Health, Moscow, Russia
| | - Ekaterina Dementieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Interbacterial Transfer of Carbapenem Resistance and Large Antibiotic Resistance Islands by Natural Transformation in Pathogenic Acinetobacter. mBio 2022; 13:e0263121. [PMID: 35073754 PMCID: PMC8787482 DOI: 10.1128/mbio.02631-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii infection poses a major health threat, with recurrent treatment failure due to antibiotic resistance, notably to carbapenems. While genomic analyses of clinical strains indicate that homologous recombination plays a major role in the acquisition of antibiotic resistance genes, the underlying mechanisms of horizontal gene transfer often remain speculative. Our understanding of the acquisition of antibiotic resistance is hampered by the lack of experimental systems able to reproduce genomic observations. We here report the detection of recombination events occurring spontaneously in mixed bacterial populations and which can result in the acquisition of resistance to carbapenems. We show that natural transformation is the main driver of intrastrain but also interstrain recombination events between A. baumannii clinical isolates and pathogenic species of Acinetobacter. We observed that interbacterial natural transformation in mixed populations is more efficient at promoting the acquisition of large resistance islands (AbaR4 and AbaR1) than when the same bacteria are supplied with large amounts of purified genomic DNA. Importantly, analysis of the genomes of the recombinant progeny revealed large recombination tracts (from 13 to 123 kb) similar to those observed in the genomes of clinical isolates. Moreover, we highlight that transforming DNA availability is a key determinant of the rate of recombinants and results from both spontaneous release and interbacterial predatory behavior. In the light of our results, natural transformation should be considered a leading mechanism of genome recombination and horizontal gene transfer of antibiotic resistance genes in Acinetobacter baumannii.
Collapse
|
15
|
Callaghan MM, Koch B, Hackett KT, Klimowicz AK, Schaub RE, Krasnogor N, Dillard JP. Expression, Localization, and Protein Interactions of the Partitioning Proteins in the Gonococcal Type IV Secretion System. Front Microbiol 2021; 12:784483. [PMID: 34975804 PMCID: PMC8716806 DOI: 10.3389/fmicb.2021.784483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Partitioning proteins are well studied as molecular organizers of chromosome and plasmid segregation during division, however little is known about the roles partitioning proteins can play within type IV secretion systems. The single-stranded DNA (ssDNA)-secreting gonococcal T4SS has two partitioning proteins, ParA and ParB. These proteins work in collaboration with the relaxase TraI as essential facilitators of type IV secretion. Bacterial two-hybrid experiments identified interactions between each partitioning protein and the relaxase. Subcellular fractionation demonstrated that ParA is found in the cellular membrane, whereas ParB is primarily in the membrane, but some of the protein is in the soluble fraction. Since TraI is known to be membrane-associated, these data suggest that the gonococcal relaxosome is a membrane-associated complex. In addition, we found that translation of ParA and ParB is controlled by an RNA switch. Different mutations within the stem-loop sequence predicted to alter folding of this RNA structure greatly increased or decreased levels of the partitioning proteins.
Collapse
Affiliation(s)
- Melanie M. Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Birgit Koch
- Interdisciplinary Computing and Complex BioSystems (ICOS), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kathleen T. Hackett
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Amy K. Klimowicz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
16
|
Transcriptional and Translational Responsiveness of the Neisseria gonorrhoeae Type IV Secretion System to Conditions of Host Infections. Infect Immun 2021; 89:e0051921. [PMID: 34581604 DOI: 10.1128/iai.00519-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The type IV secretion system of Neisseria gonorrhoeae translocates single-stranded DNA into the extracellular space, facilitating horizontal gene transfer and initiating biofilm formation. Expression of this system has been observed to be low under laboratory conditions, and multiple levels of regulation have been identified. We used a translational fusion of lacZ to traD, the gene for the type IV secretion system coupling protein, to screen for increased type IV secretion system expression. We identified several physiologically relevant conditions, including surface adherence, decreased manganese or iron, and increased zinc or copper, which increase gonococcal type IV secretion system protein levels through transcriptional and/or translational mechanisms. These metal treatments are reminiscent of the conditions in the macrophage phagosome. The ferric uptake regulator, Fur, was found to repress traD transcript levels but to also have a second role, acting to allow TraD protein levels to increase only in the absence of iron. To better understand type IV secretion system regulation during infection, we examined transcriptomic data from active urethral infection samples from five men. The data demonstrated differential expression of 20 of 21 type IV secretion system genes during infection, indicating upregulation of genes necessary for DNA secretion during host infection.
Collapse
|
17
|
Complete Genome Sequences of Seven Neisseria gonorrhoeae Clinical Isolates from Mucosal and Disseminated Gonococcal Infections. Microbiol Resour Announc 2021; 10:e0073421. [PMID: 34709052 PMCID: PMC8552677 DOI: 10.1128/mra.00734-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae is a Gram-negative bacterium that causes the sexually transmitted infection gonorrhea. N. gonorrhoeae has progressively developed resistance to all currently prescribed antibiotics, and no vaccine is available. Here, we report the closed, completed, annotated genome sequences for seven N. gonorrhoeae strains obtained by single-molecule real-time (SMRT) long-read genome sequencing.
Collapse
|
18
|
Danevčič T, Dragoš A, Spacapan M, Stefanic P, Dogsa I, Mandic-Mulec I. Surfactin Facilitates Horizontal Gene Transfer in Bacillus subtilis. Front Microbiol 2021; 12:657407. [PMID: 34054753 PMCID: PMC8160284 DOI: 10.3389/fmicb.2021.657407] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 11/14/2022] Open
Abstract
Genetic competence for the uptake and integration of extracellular DNA is a key process in horizontal gene transfer (HGT), one of the most powerful forces driving the evolution of bacteria. In several species, development of genetic competence is coupled with cell lysis. Using Bacillus subtilis as a model bacterium, we studied the role of surfactin, a powerful biosurfactant and antimicrobial lipopeptide, in genetic transformation. We showed that surfactin itself promotes cell lysis and DNA release, thereby promoting HGT. These results, therefore, provide evidence for a fundamental mechanism involved in HGT and significantly increase our understanding of the spreading of antibiotic resistance genes and diversification of microbial communities in the environment.
Collapse
Affiliation(s)
- Tjaša Danevčič
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anna Dragoš
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mihael Spacapan
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Stefanic
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iztok Dogsa
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ines Mandic-Mulec
- Chair of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Ogbebor O, Mortimer TD, Fryling K, Zhang JJ, Bhanot N, Grad YH. Disseminated Gonococcal Infection Complicated by Prosthetic Joint Infection: Case Report and Genomic and Phylogenetic Analysis. Open Forum Infect Dis 2020; 8:ofaa632. [PMID: 33553473 PMCID: PMC7850131 DOI: 10.1093/ofid/ofaa632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Neisseria gonorrhoeae infections have been increasing globally, with prevalence rising across age groups. In this study, we report a case of disseminated gonococcal infection (DGI) involving a prosthetic joint, and we use whole-genome sequencing to characterize resistance genes, putative virulence factors, and the phylogenetic lineage of the infecting isolate. We review the literature on sequence-based prediction of antibiotic resistance and factors that contribute to risk for DGI. We argue for routine sequencing and reporting of invasive gonococcal infections to aid in determining whether an invasive gonococcal infection is sporadic or part of an outbreak and to accelerate understanding of the genetic features of N gonorrhoeae that contribute to pathogenesis.
Collapse
Affiliation(s)
- Osakpolor Ogbebor
- Division of Infectious Diseases, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Kyra Fryling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jessica J Zhang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nitin Bhanot
- Division of Infectious Diseases, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
20
|
Samarth DP, Kwon YM. Horizontal genetic exchange of chromosomally encoded markers between Campylobacter jejuni cells. PLoS One 2020; 15:e0241058. [PMID: 33104745 PMCID: PMC7588059 DOI: 10.1371/journal.pone.0241058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Many epidemiological studies provide us with the evidence of horizontal gene transfer (HGT) contributing to the bacterial genomic diversity that benefits the bacterial populations with increased ability to adapt to the dynamic environments. Campylobacter jejuni, a major cause of acute enteritis in the U.S., often linked with severe post-infection neuropathies, has been reported to exhibit a non-clonal population structure and comparatively higher strain-level genetic variation. In this study, we provide evidence of the HGT of chromosomally encoded genetic markers between C. jejuni cells in the biphasic MH medium. We used two C. jejuni NCTC-11168 mutants harbouring distinct antibiotic-resistance genes [chloramphenicol (Cm) and kanamycin (Km)] present at two different neutral genomic loci. Cultures of both marker strains were mixed together and incubated for 5 hrs, then plated on MH agar plates supplemented with both antibiotics. The recombinant cells with double antibiotic markers were generated at the frequency of 0.02811 ± 0.0035% of the parental strains. PCR assays using locus-specific primers confirmed that transfer of the antibiotic-resistance genes was through homologous recombination. Also, the addition of chicken cecal content increased the recombination efficiency approximately up to 10-fold as compared to the biphasic MH medium (control) at P < 0.05. Furthermore, treating the co-culture with DNase I decreased the available DNA, which in turn significantly reduced recombination efficiency by 99.92% (P < 0.05). We used the cell-free supernatant of 16 hrs-culture of Wild-type C. jejuni as a template for PCR and found DNA sequences from six different genomic regions were easily amplified, indicating the presence of released chromosomal DNA in the culture supernatant. Our findings suggest that HGT in C. jejuni is facilitated in the chicken gut environment contributing to in vivo genomic diversity. Additionally, C. jejuni might have an active mechanism to release its chromosomal DNA into the extracellular environment, further expediting HGT in C. jejuni populations.
Collapse
Affiliation(s)
- Deepti Pranay Samarth
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail:
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
21
|
Calder A, Menkiti CJ, Çağdaş A, Lisboa Santos J, Streich R, Wong A, Avini AH, Bojang E, Yogamanoharan K, Sivanesan N, Ali B, Ashrafi M, Issa A, Kaur T, Latif A, Mohamed HAS, Maqsood A, Tamang L, Swager E, Stringer AJ, Snyder LAS. Virulence genes and previously unexplored gene clusters in four commensal Neisseria spp. isolated from the human throat expand the neisserial gene repertoire. Microb Genom 2020; 6. [PMID: 32845827 PMCID: PMC7643975 DOI: 10.1099/mgen.0.000423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Commensal non-pathogenic Neisseria spp. live within the human host alongside the pathogenic Neisseria meningitidis and Neisseria gonorrhoeae and due to natural competence, horizontal gene transfer within the genus is possible and has been observed. Four distinct Neisseria spp. isolates taken from the throats of two human volunteers have been assessed here using a combination of microbiological and bioinformatics techniques. Three of the isolates have been identified as Neisseria subflava biovar perflava and one as Neisseria cinerea. Specific gene clusters have been identified within these commensal isolate genome sequences that are believed to encode a Type VI Secretion System, a newly identified CRISPR system, a Type IV Secretion System unlike that in other Neisseria spp., a hemin transporter, and a haem acquisition and utilization system. This investigation is the first to investigate these systems in either the non-pathogenic or pathogenic Neisseria spp. In addition, the N. subflava biovar perflava possess previously unreported capsule loci and sequences have been identified in all four isolates that are similar to genes seen within the pathogens that are associated with virulence. These data from the four commensal isolates provide further evidence for a Neisseria spp. gene pool and highlight the presence of systems within the commensals with functions still to be explored.
Collapse
Affiliation(s)
- Alan Calder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Chukwuma Jude Menkiti
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aylin Çağdaş
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Jefferson Lisboa Santos
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ricarda Streich
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alice Wong
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Amir H Avini
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Ebrima Bojang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Karththeepan Yogamanoharan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Nivetha Sivanesan
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Besma Ali
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Mariam Ashrafi
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Abdirizak Issa
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Tajinder Kaur
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Aisha Latif
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Hani A Sheik Mohamed
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Atifa Maqsood
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Laxmi Tamang
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Emily Swager
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Alex J Stringer
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
22
|
Koch B, Callaghan MM, Tellechea-Luzardo J, Seeger AY, Dillard JP, Krasnogor N. Protein interactions within and between two F-type type IV secretion systems. Mol Microbiol 2020; 114:823-838. [PMID: 32738086 DOI: 10.1111/mmi.14582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023]
Abstract
Bacterial type IV secretion systems (T4SSs) can mediate conjugation. The T4SS from Neisseria gonorrhoeae possesses the unique ability to mediate DNA secretion into the extracellular environment. The N. gonorrhoeae T4SS can be grouped with F-type conjugative T4SSs based on homology. We tested 17 proteins important for DNA secretion by N. gonorrhoeae for protein interactions. The BACTH-TM bacterial two-hybrid system was successfully used to study periplasmic interactions. By determining if the same interactions were observed for F-plasmid T4SS proteins and when one interaction partner was replaced by the corresponding protein from the other T4SS, we aimed to identify features associated with the unique function of the N. gonorrhoeae T4SS as well as generic features of F-type T4SSs. For both systems, we observed already described interactions shared by homologs from other T4SSs as well as new and described interactions between F-type T4SS-specific proteins. Furthermore, we demonstrate, for the first-time, interactions between proteins with homology to the conserved T4SS outer membrane core proteins and F-type-specific proteins and we confirmed two of them by co-purification. The F-type-specific protein TraHN was found to localize to the outer membrane and the presence of significant amounts of TraHN in the outer membrane requires TraGN .
Collapse
Affiliation(s)
- Birgit Koch
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
| | - Melanie M Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan Tellechea-Luzardo
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
| | - Ami Y Seeger
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Hughes-Games A, Roberts AP, Davis SA, Hill DJ. Identification of integrative and conjugative elements in pathogenic and commensal Neisseriaceae species via genomic distributions of DNA uptake sequence dialects. Microb Genom 2020; 6:e000372. [PMID: 32375974 PMCID: PMC7371117 DOI: 10.1099/mgen.0.000372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023] Open
Abstract
Mobile genetic elements (MGEs) are key factors responsible for dissemination of virulence determinants and antimicrobial-resistance genes amongst pathogenic bacteria. Conjugative MGEs are notable for their high gene loads donated per transfer event, broad host ranges and phylogenetic ubiquity amongst prokaryotes, with the subclass of chromosomally inserted integrative and conjugative elements (ICEs) being particularly abundant. The focus on a small number of model systems has biased the study of ICEs towards those conferring readily selectable phenotypes to host cells, whereas the identification and characterization of integrated cryptic elements remains challenging. Even though antimicrobial resistance and horizontally acquired virulence genes are major factors aggravating neisserial infection, conjugative MGEs of Neisseria gonorrhoeae and Neisseria meningitidis remain poorly characterized. Using a phenotype-independent approach based on atypical distributions of DNA uptake sequences (DUSs) in MGEs relative to the chromosomal background, we have identified two groups of chromosomally integrated conjugative elements in Neisseria: one found almost exclusively in pathogenic species possibly deriving from the genus Kingella, the other belonging to a group of Neisseria mucosa-like commensals. The former element appears to enable transfer of traditionally gonococcal-specific loci such as the virulence-associated toxin-antitoxin system fitAB to N. meningitidis chromosomes, whilst the circular form of the latter possesses a unique attachment site (attP) sequence seemingly adapted to exploit DUS motifs as chromosomal integration sites. In addition to validating the use of DUS distributions in Neisseriaceae MGE identification, the >170 identified ICE sequences provide a valuable resource for future studies of ICE evolution and host adaptation.
Collapse
Affiliation(s)
- Alex Hughes-Games
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Adam P. Roberts
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Sean A. Davis
- School of Chemistry, University of Bristol, Bristol, UK
| | - Darryl J. Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
24
|
Klein TA, Ahmad S, Whitney JC. Contact-Dependent Interbacterial Antagonism Mediated by Protein Secretion Machines. Trends Microbiol 2020; 28:387-400. [PMID: 32298616 DOI: 10.1016/j.tim.2020.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
To establish and maintain an ecological niche, bacteria employ a wide range of pathways to inhibit the growth of their microbial competitors. Some of these pathways, such as those that produce antibiotics or bacteriocins, exert toxicity on nearby cells in a cell contact-independent manner. More recently, however, several mechanisms of interbacterial antagonism requiring cell-to-cell contact have been identified. This form of microbial competition is mediated by antibacterial protein toxins whose delivery to target bacteria uses protein secretion apparatuses embedded within the cell envelope of toxin-producing bacteria. In this review, we discuss recent work implicating the bacterial Type I, IV, VI, and VII secretion systems in the export of antibacterial 'effector' proteins that mediate contact-dependent interbacterial antagonism.
Collapse
Affiliation(s)
- Timothy A Klein
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8S 4K1; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - Shehryar Ahmad
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8S 4K1; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada L8S 4K1; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8S 4K1; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada L8S 4K1.
| |
Collapse
|
25
|
Humbert MV, Christodoulides M. Atypical, Yet Not Infrequent, Infections with Neisseria Species. Pathogens 2019; 9:E10. [PMID: 31861867 PMCID: PMC7168603 DOI: 10.3390/pathogens9010010] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Neisseria species are extremely well-adapted to their mammalian hosts and they display unique phenotypes that account for their ability to thrive within niche-specific conditions. The closely related species N. gonorrhoeae and N. meningitidis are the only two species of the genus recognized as strict human pathogens, causing the sexually transmitted disease gonorrhea and meningitis and sepsis, respectively. Gonococci colonize the mucosal epithelium of the male urethra and female endo/ectocervix, whereas meningococci colonize the mucosal epithelium of the human nasopharynx. The pathophysiological host responses to gonococcal and meningococcal infection are distinct. However, medical evidence dating back to the early 1900s demonstrates that these two species can cross-colonize anatomical niches, with patients often presenting with clinically-indistinguishable infections. The remaining Neisseria species are not commonly associated with disease and are considered as commensals within the normal microbiota of the human and animal nasopharynx. Nonetheless, clinical case reports suggest that they can behave as opportunistic pathogens. In this review, we describe the diversity of the genus Neisseria in the clinical context and raise the attention of microbiologists and clinicians for more cautious approaches in the diagnosis and treatment of the many pathologies these species may cause.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK;
| | | |
Collapse
|
26
|
Heilers JH, Reiners J, Heller EM, Golzer A, Smits SHJ, van der Does C. DNA processing by the MOBH family relaxase TraI encoded within the gonococcal genetic island. Nucleic Acids Res 2019; 47:8136-8153. [PMID: 31276596 PMCID: PMC6736028 DOI: 10.1093/nar/gkz577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 11/26/2022] Open
Abstract
Relaxases of the MOBH family are often found on large plasmids, genetic islands and integrative conjugative elements. Many members of this family contain an N-terminal relaxase domain (TraI_2) followed by a disordered middle part and a C-terminal domain of unknown function (TraI_2_C). The TraI_2 domain contains two putative metal-binding motifs, an HD domain motif and an alternative 3H motif. TraI, encoded within the gonococcal genetic island of Neisseria gonorrhoeae, is the prototype of the MOBH family. SAXS experiments showed that TraI_2 and TraI_2_C form globular structures separated by an extended middle domain. The TraI_2 domain cleaves oriT-ssDNA in a site-specific Mn2+ or Co2+ dependent manner. The minimal oriT encompasses 50 nucleotides, requires an inverted repeat 3′ of the nic-site and several nucleotides around nic for efficient cleavage. Surprisingly, no stable covalent relaxase-DNA intermediate was observed. Mutagenesis of conserved tyrosines showed that cleavage was abolished in the Y212A mutant, whereas the Y212F and Y212H mutants retained residual activity. The HD and the alternative 3H motifs were essential for cleavage and the HD domain residues D162 and D267 for metal ion binding. We propose that the active site binds two metal ions, one in a high-affinity and one in a low-affinity site.
Collapse
Affiliation(s)
- Jan-Hendrik Heilers
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Jens Reiners
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - Annika Golzer
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| | - Sander H J Smits
- Biochemie I, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Chris van der Does
- Institute for Biology II, Microbiology, Albert Ludwig University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
27
|
John CM, Feng D, Jarvis GA. Treatment of human challenge and MDR strains of Neisseria gonorrhoeae with LpxC inhibitors. J Antimicrob Chemother 2019; 73:2064-2071. [PMID: 29726994 DOI: 10.1093/jac/dky151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 11/15/2022] Open
Abstract
Objectives Inhibitors of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC), which catalyses the second step in the biosynthesis of lipid A, have been developed as potential antibiotics for Gram-negative infections. Our objectives were to determine the effect of LpxC inhibition on the in vitro survival and inflammatory potential of Neisseria gonorrhoeae. Methods Survival of four human challenge strains was determined after treatment with two LpxC inhibitors for 2 and 4 h. To confirm results from treatment and assess their anti-inflammatory effect, the expression of TNF-α by human THP-1 monocytic cells infected with bacteria in the presence of the LpxC inhibitors was quantified. Cytotoxicity of inhibitors for THP-1 cells was evaluated by release of lactate dehydrogenase. Survival of five MDR strains was determined after 2 h of treatment with an LpxC inhibitor and the effect of co-treatment on MICs of ceftriaxone and azithromycin was examined. Results The inhibitors had bactericidal activity against the four human challenge and five MDR strains with one compound exhibiting complete killing at ≥5 mg/L after either 2 or 4 h of treatment. Treatment of gonococci infecting THP-1 monocytic cells reduced the levels of TNF-α probably owing to reduced numbers of bacteria and a lower level of expression of lipooligosaccharide. Neither inhibitor exhibited cytotoxicity for THP-1 cells. The MIC of azithromycin was slightly lowered by sublethal treatment of two MDR strains with an LpxC inhibitor. Conclusions Our in vitro results demonstrated promising efficacy of LpxC inhibition of N. gonorrhoeae that warrants further investigation particularly owing to the rise in MDR gonorrhoea.
Collapse
Affiliation(s)
- Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Dongxiao Feng
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA, USA.,Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
28
|
Kim WJ, Higashi D, Goytia M, Rendón MA, Pilligua-Lucas M, Bronnimann M, McLean JA, Duncan J, Trees D, Jerse AE, So M. Commensal Neisseria Kill Neisseria gonorrhoeae through a DNA-Dependent Mechanism. Cell Host Microbe 2019; 26:228-239.e8. [PMID: 31378677 DOI: 10.1016/j.chom.2019.07.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/25/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
Abstract
The mucosa is colonized with commensal Neisseria. Some of these niches are sites of infection for the STD pathogen Neisseria gonorrhoeae (Ngo). Given the antagonistic behavior of commensal bacteria toward their pathogenic relatives, we hypothesized that commensal Neisseria may negatively affect Ngo colonization. Here, we report that commensal species of Neisseria kill Ngo through a mechanism based on genetic competence and DNA methylation state. Specifically, commensal-triggered killing occurs when the pathogen takes up commensal DNA containing a methylation pattern that it does not recognize. Indeed, any DNA will kill Ngo if it can enter the cell, is differentially methylated, and has homology to the pathogen genome. Consistent with these findings, commensal Neisseria elongata accelerates Ngo clearance from the mouse in a DNA-uptake-dependent manner. Collectively, we propose that commensal Neisseria antagonizes Ngo infection through a DNA-mediated mechanism and that DNA is a potential microbicide against this highly drug-resistant pathogen.
Collapse
Affiliation(s)
- Won Jong Kim
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Dustin Higashi
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Maira Goytia
- Department of Biology, Spelman College, Atlanta, GA 30314, USA
| | - Maria A Rendón
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Matthew Bronnimann
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Jeanine A McLean
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Joseph Duncan
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David Trees
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - Magdalene So
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
29
|
Callaghan MM, Heilers JH, van der Does C, Dillard JP. Secretion of Chromosomal DNA by the Neisseria gonorrhoeae Type IV Secretion System. Curr Top Microbiol Immunol 2019; 413:323-345. [PMID: 29536365 PMCID: PMC5935271 DOI: 10.1007/978-3-319-75241-9_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Approximately 80% of Neisseria gonorrhoeae and 17.5% of Neisseria meningitidis clinical isolates carry a ~59 kb genomic island known as the gonococcal genetic island (GGI). About half of the GGI consists of genes encoding a type IV secretion system (T4SS), and most of these genes are clustered in a ~28 kb region at one end of the GGI. Two additional genes (parA and parB) are found at the other end of the island. The remainder of the GGI consists mostly of hypothetical proteins, with several being identified as DNA-binding or DNA-processing proteins. The T4SS genes show similarity to those of the F-plasmid family of conjugation systems, with similarity in gene order and a low but significant level of sequence identity for the encoded proteins. However, several GGI-encoded proteins are unique from the F-plasmid system, such as AtlA, Yag, and TraA. Interestingly, the gonococcal T4SS does not act as a conjugation system. Instead, this T4SS secretes ssDNA into the extracellular milieu, where it can serve to transform highly competent Neisseria species, thereby increasing the transfer of genetic information. Although many of the T4SS proteins are expressed at low levels, this system has been implicated in several cellular processes. The secreted ssDNA is involved in the initial stages of biofilm formation, and the presence of the T4SS enables TonB-independent intracellular survival of N. gonorrhoeae strains during infection of cervical cells. Other GGI-like T4SSs have been identified in several other α-, β-, and γ-proteobacteria, but the function of these GGI-like T4SSs is unknown. Remarkably, the presence of the GGI is related to resistance to several antibiotics. Here, we describe our current knowledge about the GGI and its unique ssDNA-secreting T4SS.
Collapse
Affiliation(s)
- Melanie M Callaghan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA
| | - Jan-Hendrik Heilers
- Institut für Biologie II-Mikrobiologie, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Chris van der Does
- Institut für Biologie II-Mikrobiologie, Albert-Ludwigs-Universität Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI, 53706, USA.
| |
Collapse
|
30
|
Schaub RE, Dillard JP. The Pathogenic Neisseria Use a Streamlined Set of Peptidoglycan Degradation Proteins for Peptidoglycan Remodeling, Recycling, and Toxic Fragment Release. Front Microbiol 2019; 10:73. [PMID: 30766523 PMCID: PMC6365954 DOI: 10.3389/fmicb.2019.00073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022] Open
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis release peptidoglycan (PG) fragments from the cell as the bacteria grow. For N. gonorrhoeae these PG fragments are known to cause damage to human Fallopian tube tissue in organ culture that mimics the damage seen in patients with pelvic inflammatory disease. N. meningitidis also releases pro-inflammatory PG fragments, but in smaller amounts than those from N. gonorrhoeae. It is not yet known if PG fragment release contributes to the highly inflammatory conditions of meningitis and meningococcemia caused by N. meningitidis. Examination of the mechanisms of PG degradation and recycling identified proteins required for these processes. In comparison to the model organism E. coli, the pathogenic Neisseria have far fewer PG degradation proteins, and some of these proteins show differences in subcellular localization compared to their E. coli homologs. In particular, some N. gonorrhoeae PG degradation proteins were demonstrated to be in the outer membrane while their homologs in E. coli were found free in the periplasm or in the cytoplasm. The localization of two of these proteins was demonstrated to affect PG fragment release. Another major factor for PG fragment release is the allele of ampG. Gonococcal AmpG was found to be slightly defective compared to related PG fragment permeases, thus leading to increased release of PG. A number of additional PG-related factors affect other virulence functions in Neisseria. Endopeptidases and carboxypeptidases were found to be required for type IV pilus production and resistance to hydrogen peroxide. Also, deacetylation of PG was required for virulence of N. meningitidis as well as normal cell size. Overall, we describe the processes involved in PG degradation and recycling and how certain characteristics of these proteins influence the interactions of these pathogens with their host.
Collapse
Affiliation(s)
- Ryan E Schaub
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
31
|
Lenz JD, Shirk KA, Jolicoeur A, Dillard JP. Selective Inhibition of Neisseria gonorrhoeae by a Dithiazoline in Mixed Infections with Lactobacillus gasseri. Antimicrob Agents Chemother 2018; 62:e00826-18. [PMID: 30275084 PMCID: PMC6256793 DOI: 10.1128/aac.00826-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/22/2018] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative human pathogen Neisseria gonorrhoeae has progressively developed resistance to antibiotic monotherapies, and recent failures of dual-drug therapy have heightened concerns that strains resistant to all available antibiotics will begin circulating globally. Targeting bacterial cell wall assembly has historically been effective at treating infections with N. gonorrhoeae, but as the effectiveness of β-lactams (including cephalosporins) is challenged by increasing resistance, research has expanded into compounds that target the numerous other enzymes with roles in peptidoglycan metabolism. One example is the dithiazoline compound JNJ-853346 (DTZ), which inhibits the activity of an Escherichia coli serine protease l,d-carboxypeptidase (LdcA). Recently, the characterization of an LdcA homolog in N. gonorrhoeae revealed localization and activity differences from the characterized E. coli LdcA, prompting us to explore the effectiveness of DTZ against N. gonorrhoeae We found that DTZ is effective at inhibiting N. gonorrhoeae in all growth phases, unlike the specific stationary-phase inhibition seen in E. coli Surprisingly, DTZ does not inhibit gonococcal LdcA enzyme activity, and DTZ sensitivity is not significantly decreased in ldcA mutants. While effective against numerous N. gonorrhoeae strains, including recent multidrug-resistant isolates, DTZ is much less effective at inhibiting growth of the commensal species Lactobacillus gasseri DTZ treatment during coinfections of epithelial cells resulted in significant lowering of gonococcal burden and interleukin-8 secretion without significantly impacting recovery of viable L. gasseri This selective toxicity presents a possible pathway for the use of DTZ as an effective antigonococcal agent at concentrations that do not impact vaginal commensals.
Collapse
Affiliation(s)
- Jonathan D Lenz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kristina A Shirk
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Adrienne Jolicoeur
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Palmer A, Criss AK. Gonococcal Defenses against Antimicrobial Activities of Neutrophils. Trends Microbiol 2018; 26:1022-1034. [PMID: 30115561 DOI: 10.1016/j.tim.2018.07.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Neisseria gonorrhoeae initiates a strong local immune response that is characterized by copious recruitment of neutrophils to the site of infection. Neutrophils neutralize microbes by mechanisms that include phagocytosis, extracellular trap formation, production of reactive oxygen species, and the delivery of antimicrobial granular contents. However, neutrophils do not clear infection with N. gonorrhoeae. N. gonorrhoeae not only expresses factors that defend against neutrophil bactericidal components, but it also manipulates neutrophil production and release of these components. In this review, we highlight the numerous approaches used by N. gonorrhoeae to survive exposure to neutrophils both intracellularly and extracellularly. These approaches reflect the exquisite adaptation of N. gonorrhoeae to its obligate human host.
Collapse
Affiliation(s)
- Allison Palmer
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0734, USA.
| |
Collapse
|
33
|
Stress-Induced, Highly Efficient, Donor Cell-Dependent Cell-to-Cell Natural Transformation in Bacillus subtilis. J Bacteriol 2018; 200:JB.00267-18. [PMID: 29941421 DOI: 10.1128/jb.00267-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/14/2018] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer (HGT) is a driving force for bacterial evolution that occurs via conjugation, transduction, and transformation. Whereas conjugation and transduction depend on nonbacterial vehicles, transformation is considered a naturally occurring process in which naked DNA molecules are taken up by a competent recipient cell. Here, we report that HGT occurred between two Bacillus subtilis strains cocultured on a minimum medium agar plate for 10 h. This process was almost completely resistant to DNase treatment and appeared to require close proximity between cells. The deletion of comK in the recipient completely abolished gene transfer, indicating that the process involved transformation. This process was also highly efficient, reaching 1.75 × 106 transformants/μg DNA compared to 5.3 × 103 and 1.86 × 105 transformants/μg DNA for DNA-to-cell transformation by the same agar method and the standard two-step procedure, respectively. Interestingly, when three distantly localized chromosomal markers were selected simultaneously, the efficiency of cell-to-cell transformation still reached 6.26 × 104 transformants/μg DNA, whereas no transformants were obtained when free DNA was used as the donor. Stresses, such as starvation and exposure to antibiotics, further enhanced transformation efficiency by affecting the donor cells, suggesting that stress served as an important signal for promoting this type of HGT. Taken together, our results defined a bona fide process of cell-to-cell natural transformation (CTCNT) in B. subtilis and related species. This finding reveals the previously unrecognized role of donor cells in bacterial natural transformation and improves our understanding of how HGT drives bacterial evolution at a mechanistic level.IMPORTANCE Because DNA is easily prepared, studies of bacterial natural genetic transformation traditionally focus on recipient cells. However, such laboratory artifacts cannot explain how this process occurs in nature. In most cases, competence is only transient and involves approximately 20 to 50 genes, and it is unreasonable for bacteria to spend so many genetic resources on unpredictable and uncertain environmental DNA. Here, we characterized a donor cell-dependent CTCNT process in B. subtilis and related species that was almost completely resistant to DNase treatment and was more efficient than classical natural transformation using naked DNA as a donor, i.e., DNA-to-cell transformation, suggesting that DNA donor cells were also important in the transformation process in natural environments.
Collapse
|
34
|
Mortimer TD, Grad YH. Applications of genomics to slow the spread of multidrug-resistant Neisseria gonorrhoeae. Ann N Y Acad Sci 2018; 1435:93-109. [PMID: 29876934 DOI: 10.1111/nyas.13871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
Infections with Neisseria gonorrhoeae, a sexually transmitted pathogen that causes urethritis, cervicitis, and more severe complications, are increasing. Gonorrhea is typically treated with antibiotics; however, N. gonorrhoeae has rapidly acquired resistance to many antibiotic classes, and lineages with reduced susceptibility to the currently recommended therapies are emerging worldwide. In this review, we discuss the contributions of whole genome sequencing (WGS) to our understanding of resistant N. gonorrhoeae. Genomics has illuminated the evolutionary origins and population structure of N. gonorrhoeae and the magnitude of horizontal gene transfer within and between Neisseria species. WGS can be used to predict the susceptibility of N. gonorrhoeae based on known resistance determinants, track the spread of these determinants throughout the N. gonorrhoeae population, and identify novel loci contributing to resistance. WGS has also allowed more detailed epidemiological analysis of transmission of N. gonorrhoeae between individuals and populations than previously used typing methods. Ongoing N. gonorrhoeae genomics will complement other laboratory techniques to understand the biology and evolution of the pathogen, improve diagnostics and treatment in the clinic, and inform public health policies to limit the impact of antibiotic resistance.
Collapse
Affiliation(s)
- Tatum D Mortimer
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.,Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
35
|
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted disease gonorrhoeae, possesses several mobile genetic elements (MGEs). The MGEs such as transposable elements mediate intrachromosomal rearrangements, while plasmids and the gonococcal genetic island are involved in interchromosomal gene transfer. Additionally, gonococcal MGEs serve as hotspots for recombination and integration of other genetic elements such as bacteriophages, contribute to gene regulation or spread genes through gonococcal populations by horizontal gene transfer. In this review, we summarise the literature on the structure and biology of MGEs and discuss how these genetic elements may play a role in the pathogenesis and spread of antimicrobial resistance in N. gonorrhoeae. Although an abundance of information about gonococcal MGEs exists (mainly from whole genome sequencing and bioinformatic analysis), there are still many open questions on how MGEs influence the biology of N. gonorrhoeae.
Collapse
Affiliation(s)
- Ana Cehovin
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Steven B Lewis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
36
|
Spencer-Smith R, Gould SW, Pulijala M, Snyder LAS. Investigating Potential Chromosomal Rearrangements during Laboratory Culture of Neisseria gonorrhoeae. Microorganisms 2018; 6:microorganisms6010010. [PMID: 29361673 PMCID: PMC5874624 DOI: 10.3390/microorganisms6010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/19/2017] [Accepted: 01/19/2018] [Indexed: 01/02/2023] Open
Abstract
Comparisons of genome sequence data between different strains and isolates of Neisseria spp., such as Neisseria gonorrhoeae, reveal that over the evolutionary history of these organisms, large scale chromosomal rearrangements have occurred. Factors within the genomes, such as repetitive sequences and prophage, are believed to have contributed to these observations. However, the timescale in which rearrangements occur is not clear, nor whether it might be expected for them to happen in the laboratory. In this study, N. gonorrhoeae was repeatedly passaged in the laboratory and assessed for large scale chromosomal rearrangements. Using gonococcal strain NCCP11945, for which there is a complete genome sequence, cultures were passaged for eight weeks in the laboratory. The resulting genomic DNA was assessed using Pulsed Field Gel Electrophoresis, comparing the results to the predicted results from the genome sequence data. Three cultures generated Pulsed Field Gel Electrophoresis patterns that varied from the genomic data and were further investigated for potential chromosomal rearrangements.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | - Simon W Gould
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Madhuri Pulijala
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK.
| |
Collapse
|
37
|
Jurcisek JA, Brockman KL, Novotny LA, Goodman SD, Bakaletz LO. Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery. Proc Natl Acad Sci U S A 2017; 114:E6632-E6641. [PMID: 28696280 PMCID: PMC5559034 DOI: 10.1073/pnas.1705508114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biofilms formed by nontypeable Haemophilus influenzae (NTHI) are central to the chronicity, recurrence, and resistance to treatment of multiple human respiratory tract diseases including otitis media, chronic rhinosinusitis, and exacerbations of both cystic fibrosis and chronic obstructive pulmonary disease. Extracellular DNA (eDNA) and associated DNABII proteins are essential to the overall architecture and structural integrity of biofilms formed by NTHI and all other bacterial pathogens tested to date. Although cell lysis and outer-membrane vesicle extrusion are possible means by which these canonically intracellular components might be released into the extracellular environment for incorporation into the biofilm matrix, we hypothesized that NTHI additionally used a mechanism of active DNA release. Herein, we describe a mechanism whereby DNA and associated DNABII proteins transit from the bacterial cytoplasm to the periplasm via an inner-membrane pore complex (TraC and TraG) with homology to type IV secretion-like systems. These components exit the bacterial cell through the ComE pore through which the NTHI type IV pilus is expressed. The described mechanism is independent of explosive cell lysis or cell death, and the release of DNA is confined to a discrete subpolar location, which suggests a novel form of DNA release from viable NTHI. Identification of the mechanisms and determination of the kinetics by which critical biofilm matrix-stabilizing components are released will aid in the design of novel biofilm-targeted therapeutic and preventative strategies for diseases caused by NTHI and many other human pathogens known to integrate eDNA and DNABII proteins into their biofilm matrix.
Collapse
Affiliation(s)
- Joseph A Jurcisek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Kenneth L Brockman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Laura A Novotny
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
| | - Steven D Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205;
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
38
|
Ibáñez de Aldecoa AL, Zafra O, González-Pastor JE. Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities. Front Microbiol 2017; 8:1390. [PMID: 28798731 PMCID: PMC5527159 DOI: 10.3389/fmicb.2017.01390] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
The capacity to release genetic material into the extracellular medium has been reported in cultures of numerous species of bacteria, archaea, and fungi, and also in the context of multicellular microbial communities such as biofilms. Moreover, extracellular DNA (eDNA) of microbial origin is widespread in natural aquatic and terrestrial environments. Different specific mechanisms are involved in eDNA release, such as autolysis and active secretion, as well as through its association with membrane vesicles. It is noteworthy that in microorganisms, in which DNA release has been studied in detail, the production of eDNA is coordinated by the population when it reaches a certain cell density, and is induced in a subpopulation in response to the accumulation of quorum sensing signals. Interestingly, in several bacteria there is also a relationship between eDNA release and the development of natural competence (the ability to take up DNA from the environment), which is also controlled by quorum sensing. Then, what is the biological function of eDNA? A common biological role has not been proposed, since different functions have been reported depending on the microorganism. However, it seems to be important in biofilm formation, can be used as a nutrient source, and could be involved in DNA damage repair and gene transfer. This review covers several aspects of eDNA research: (i) its occurrence and distribution in natural environments, (ii) the mechanisms and regulation of its release in cultured microorganisms, and (iii) its biological roles. In addition, we propose that eDNA release could be considered a social behavior, based on its quorum sensing-dependent regulation and on the described functions of eDNA in the context of microbial communities.
Collapse
Affiliation(s)
- Alejandra L Ibáñez de Aldecoa
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (Consejo Superior de Investigaciones Científicas/Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| | - Olga Zafra
- Experimental Sciences Faculty, Francisco de Vitoria UniversityMadrid, Spain
| | - José E González-Pastor
- Laboratory of Molecular Adaptation, Department of Molecular Evolution, Centro de Astrobiología (Consejo Superior de Investigaciones Científicas/Instituto Nacional de Técnica Aeroespacial)Madrid, Spain
| |
Collapse
|
39
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
40
|
Marin MA, Fonseca E, Encinas F, Freitas F, Camargo DA, Coimbra RS, de Filippis I, Vicente AC. The invasive Neisseria meningitidis MenC CC103 from Brazil is characterized by an accessory gene repertoire. Sci Rep 2017; 7:1617. [PMID: 28487566 PMCID: PMC5431661 DOI: 10.1038/s41598-017-01671-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/30/2017] [Indexed: 12/21/2022] Open
Abstract
Neisseria meningitidis infections are a major issue for global health. The invasive MenC ST-103 clonal complex (CC103) has been the most prevalent in meningococcal outbreaks in Brazil, occurring also in several countries worldwide. Here we have analysed the population structure and accessory genome of MenC CC103 strains from a global perspective. An in-depth phylogenomic analysis revealed a lineage of N. meningitidis causing meningitis in Brazil and the United Kingdom. This lineage was also characterized as harbouring a particular accessory genome composed of CRISPR/Cas and restriction modification systems. This lineage was also characterized by a genomic island resembling an integrative and conjugative element. This island carried genes potentially associated with virulence and fitness. We propose this accessory gene repertoire could be contributing to the spatial-temporal persistence of the invasive MenC CC103 lineage.
Collapse
Affiliation(s)
- Michel Abanto Marin
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil.
| | - Erica Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - Fernando Encinas
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil
| | - Fernanda Freitas
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil
| | | | - Roney Santos Coimbra
- Neurogenômica, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG, Brazil
| | - Ivano de Filippis
- Instituto Nacional de Controle de Qualidade em Saúde (INCQS), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Ana Carolina Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz (IOC) - Fundação Oswaldo Cruz (FIOCRUZ), Av. Brasil, 4365, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Kandel PP, Lopez SM, Almeida RPP, De La Fuente L. Natural Competence of Xylella fastidiosa Occurs at a High Frequency Inside Microfluidic Chambers Mimicking the Bacterium's Natural Habitats. Appl Environ Microbiol 2016; 82:5269-77. [PMID: 27316962 PMCID: PMC4988197 DOI: 10.1128/aem.01412-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Xylella fastidiosa is a xylem-limited bacterium that is the causal agent of emerging diseases in a number of economically important crops. Genetic diversity studies have demonstrated homologous recombination occurring among X. fastidiosa strains, which has been proposed to contribute to host plant shifts. Moreover, experimental evidence confirmed that X. fastidiosa is naturally competent for recombination in vitro Here, as an approximation of natural habitats (plant xylem vessels and insect mouthparts), recombination was studied in microfluidic chambers (MCs) filled with media amended with grapevine xylem sap. First, different media were screened for recombination in solid agar plates using a pair of X. fastidiosa strains that were previously reported to recombine in coculture. The highest frequency of recombination was obtained with PD3 medium, compared to those with the other two media (X. fastidiosa medium [XFM] and periwinkle wilt [PW] medium) used in previous studies. Dissection of the media components led to the identification of bovine serum albumin as an inhibitor of recombination that was correlated to its previously known effect on inhibition of twitching motility. When recombination was performed in liquid culture, the frequencies were significantly higher under flow conditions (MCs) than under batch conditions (test tubes). The recombination frequencies in MCs and agar plates were not significantly different from each other. Grapevine xylem sap from both susceptible and tolerant varieties allowed high recombination frequency in MCs when mixed with PD3. These results suggest that X. fastidiosa has the ability to be naturally competent in the natural growth environment of liquid flow, and this phenomenon could have implications in X. fastidiosa environmental adaptation. IMPORTANCE Xylella fastidiosa is a plant pathogen that lives inside xylem vessels (where water and nutrients are transported inside the plant) and the mouthparts of insect vectors. This bacterium causes emerging diseases in various crops worldwide, including recent outbreaks in Europe. The mechanisms by which this bacterium adapts to new hosts is not understood, but it was previously shown that it is naturally competent, meaning that it can take up DNA from the environment and incorporate it into its genome (recombination). In this study, we show that the frequency of recombination is highest when the bacterium is grown under flow conditions in microfluidic chambers modeled after its natural habitats, and recombination was still high when the medium was amended with grapevine sap. Our results suggest that this bacterium is able to recombine when growing inside plants or insects, and this can be a mechanism of adaptation of this pathogen that causes incurable diseases.
Collapse
Affiliation(s)
- Prem P Kandel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Samantha M Lopez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
42
|
Single-Stranded DNA Uptake during Gonococcal Transformation. J Bacteriol 2016; 198:2515-23. [PMID: 27381919 DOI: 10.1128/jb.00464-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 01/15/2023] Open
Abstract
UNLABELLED Neisseria gonorrhoeae is naturally competent for transformation. The first step of the transformation process is the uptake of DNA from the environment into the cell. This transport step is driven by a powerful molecular machine. Here, we addressed the question whether this machine imports single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) at similar rates. The fluorescence signal associated with the uptake of short DNA fragments labeled with a single fluorescent marker molecule was quantified. We found that ssDNA with a double-stranded DNA uptake sequence (DUS) was taken up with a similar efficiency as dsDNA. Imported ssDNA was degraded rapidly, and the thermonuclease Nuc was required for degradation. In a nuc deletion background, dsDNA and ssDNA with a double-stranded DUS were imported and used as the substrates for transformation, whereas the import and transformation efficiencies of ssDNA with single-stranded DUS were below the detection limits. We conclude that the DNA uptake machine requires a double-stranded DUS for efficient DNA recognition and transports ssDNA and dsDNA with comparable efficiencies. IMPORTANCE Bacterial transformation enables bacteria to exchange genetic information. It can speed up adaptive evolution and enhances the potential of DNA repair. The transport of DNA through the outer membrane is the first step of transformation in Gram-negative species. It is driven by a powerful molecular machine whose mechanism remains elusive. Here, we show for Neisseria gonorrhoeae that the machine transports single- and double-stranded DNA at comparable rates, provided that the species-specific DNA uptake sequence is double stranded. Moreover, we found that single-stranded DNA taken up into the periplasm is rapidly degraded by the thermonuclease Nuc. We conclude that the secondary structure of transforming DNA is important for the recognition of self DNA but not for the process of transport through the outer membrane.
Collapse
|
43
|
Spencer-Smith R, Roberts S, Gurung N, Snyder LAS. DNA uptake sequences in Neisseria gonorrhoeae as intrinsic transcriptional terminators and markers of horizontal gene transfer. Microb Genom 2016; 2:e000069. [PMID: 28348864 DOI: 10.1099/mgen.0.000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/24/2016] [Indexed: 01/24/2023] Open
Abstract
DNA uptake sequences are widespread throughout the Neisseria gonorrhoeae genome. These short, conserved sequences facilitate the exchange of endogenous DNA between members of the genus Neisseria. Often the DNA uptake sequences are present as inverted repeats that are able to form hairpin structures. It has been suggested previously that DNA uptake sequence inverted repeats present 3' of genes play a role in rho-independent termination and attenuation. However, there is conflicting experimental evidence to support this role. The aim of this study was to determine the role of DNA uptake sequences in transcriptional termination. Both bioinformatics predictions, conducted using TransTermHP, and experimental evidence, from RNA-seq data, were used to determine which inverted repeat DNA uptake sequences are transcriptional terminators and in which direction. Here we show that DNA uptake sequences in the inverted repeat configuration occur in N. gonorrhoeae both where the DNA uptake sequence precedes the inverted version of the sequence and also, albeit less frequently, in reverse order. Due to their symmetrical configuration, inverted repeat DNA uptake sequences can potentially act as bi-directional terminators, therefore affecting transcription on both DNA strands. This work also provides evidence that gaps in DNA uptake sequence density in the gonococcal genome coincide with areas of DNA that are foreign in origin, such as prophage. This study differentiates for the first time, to our knowledge, between DNA uptake sequences that form intrinsic transcriptional terminators and those that do not, providing characteristic features within the flanking inverted repeat that can be identified.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- 1School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK.,2Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sabrina Roberts
- 1School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Neesha Gurung
- 1School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- 1School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
44
|
Seminal Plasma Promotes Neisseria gonorrhoeae Aggregation and Biofilm Formation. J Bacteriol 2016; 198:2228-35. [PMID: 27274027 DOI: 10.1128/jb.00165-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/26/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Neisseria gonorrhoeae causes the human-specific disease gonorrhea and is transmitted from person to person primarily via sexual contact. During transmission, N. gonorrhoeae is often exposed to seminal fluid and must adapt to this change in environment. Previous work demonstrated that seminal fluid facilitates N. gonorrhoeae motility and alters epithelial cell interactions. In this study, exposure to seminal fluid was found to decrease surface adherence of gonococci in a manner that was independent of Opa adhesin proteins or type IV pilus retraction. Semen was also shown to cause dispersal of bacteria that had previously established surface adherence. Although surface adherence decreased, interbacterial interactions were increased by seminal plasma both in long-term static culture and on a cell-to-cell basis over shorter time periods. The result of increased bacterium-bacterium interactions resulted in the formation of microcolonies, an important step in the N. gonorrhoeae infectious process. Seminal fluid also facilitated increased bacterial aggregation in the form of shear-resistant three-dimensional biofilms. These results emphasize the importance of the gonococcal response to the influx of seminal fluid within the genital niche. Further characterization of the N. gonorrhoeae response to semen will advance our understanding of the mechanisms behind the establishment of infection in naive hosts and the process of transmission. IMPORTANCE N. gonorrhoeae is the causative agent of the globally prevalent sexually transmitted infection gonorrhea. An understudied aspect of this human-adapted pathogen is the change in bacterial physiology that occurs during sexual transmission. N. gonorrhoeae encounters semen when transmitted from host to host, and it is known that, when N. gonorrhoeae is exposed to seminal fluid, alterations in bacterial motility and type IV pilus arrangement occur. This work extends our previous observations on this modulation of gonococcal physiology by seminal fluid and demonstrates that seminal plasma decreases surface adherence, promotes interbacterial interactions, and enhances biofilm formation.
Collapse
|
45
|
|
46
|
FtsK translocation permits discrimination between an endogenous and an imported Xer/dif recombination complex. Proc Natl Acad Sci U S A 2016; 113:7882-7. [PMID: 27317749 DOI: 10.1073/pnas.1523178113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In bacteria, the FtsK/Xer/dif (chromosome dimer resolution site) system is essential for faithful vertical genetic transmission, ensuring the resolution of chromosome dimers during their segregation to daughter cells. This system is also targeted by mobile genetic elements that integrate into chromosomal dif sites. A central question is thus how Xer/dif recombination is tuned to both act in chromosome segregation and stably maintain mobile elements. To explore this question, we focused on pathogenic Neisseria species harboring a genomic island in their dif sites. We show that the FtsK DNA translocase acts differentially at the recombination sites flanking the genomic island. It stops at one Xer/dif complex, activating recombination, but it does not stop on the other site, thus dismantling it. FtsK translocation thus permits cis discrimination between an endogenous and an imported Xer/dif recombination complex.
Collapse
|
47
|
Gonzalez-Rivera C, Bhatty M, Christie PJ. Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0024-2015. [PMID: 27337453 PMCID: PMC4920089 DOI: 10.1128/microbiolspec.vmbf-0024-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic hosts. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant "superbugs," detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This article summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host.
Collapse
Affiliation(s)
- Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| |
Collapse
|
48
|
Abstract
The genus Neisseria contains two pathogenic species of prominant public health concern: Neisseria gonorrhoeae and Neisseria meningitidis. These pathogens display a notable ability to undergo frequent programmed recombination events. The recombination-mediated pathways of transformation and pilin antigenic variation in the Neisseria are well-studied systems that are critical for pathogenesis. Here we will detail the conserved and unique aspects of transformation and antigenic variation in the Neisseria. Transformation will be followed from initial DNA binding through recombination into the genome with consideration to the factors necessary at each step. Additional focus is paid to the unique type IV secretion system that mediates donation of transforming DNA in the pathogenic Neisseria. The pilin antigenic variation system uses programmed recombinations to alter a major surface determinant, which allows immune avoidance and promotes infection. We discuss the trans- and cis- acting factors which facilitate pilin antigenic variation and present the current understanding of the mechanisms involved in the process.
Collapse
|
49
|
Abstract
Bacterial-bacterial interactions play a critical role in promoting biofilm formation. Here we show that NagZ, a protein associated with peptidoglycan recycling, has moonlighting activity that allows it to modulate biofilm accumulation by Neisseria gonorrhoeae. We characterize the biochemical properties of NagZ and demonstrate its ability to function as a dispersing agent for biofilms formed on abiotic surfaces. We extend these observations to cell culture and tissue explant models and show that in nagZ mutants, the biofilms formed in cell culture and on human tissues contain significantly more biomass than those formed by a wild-type strain. Our results demonstrate that an enzyme thought to be restricted to peptidoglycan recycling is able to disperse preformed biofilms.
Collapse
|
50
|
Xer Site-Specific Recombination: Promoting Vertical and Horizontal Transmission of Genetic Information. Microbiol Spectr 2016; 2. [PMID: 26104463 DOI: 10.1128/microbiolspec.mdna3-0056-2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Two related tyrosine recombinases, XerC and XerD, are encoded in the genome of most bacteria where they serve to resolve dimers of circular chromosomes by the addition of a crossover at a specific site, dif. From a structural and biochemical point of view they belong to the Cre resolvase family of tyrosine recombinases. Correspondingly, they are exploited for the resolution of multimers of numerous plasmids. In addition, they are exploited by mobile DNA elements to integrate into the genome of their host. Exploitation of Xer is likely to be advantageous to mobile elements because the conservation of the Xer recombinases and of the sequence of their chromosomal target should permit a quite easy extension of their host range. However, it requires means to overcome the cellular mechanisms that normally restrict recombination to dif sites harbored by a chromosome dimer and, in the case of integrative mobile elements, to convert dedicated tyrosine resolvases into integrases.
Collapse
|