1
|
Kalizang'oma A, Richard D, Kwambana-Adams B, Coelho J, Broughton K, Pichon B, Hopkins KL, Chalker V, Beleza S, Bentley SD, Chaguza C, Heyderman RS. Population genomics of Streptococcus mitis in UK and Ireland bloodstream infection and infective endocarditis cases. Nat Commun 2024; 15:7812. [PMID: 39242612 PMCID: PMC11379897 DOI: 10.1038/s41467-024-52120-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Streptococcus mitis is a leading cause of infective endocarditis (IE). However, our understanding of the genomic epidemiology and pathogenicity of IE-associated S. mitis is hampered by low IE incidence. Here we use whole genome sequencing of 129 S. mitis bloodstream infection (BSI) isolates collected between 2001-2016 from clinically diagnosed IE cases in the UK to investigate genetic diversity, antimicrobial resistance, and pathogenicity. We show high genetic diversity of IE-associated S. mitis with virtually all isolates belonging to distinct lineages indicating no predominance of specific lineages. Additionally, we find a highly variable distribution of known pneumococcal virulence genes among the isolates, some of which are overrepresented in disease when compared to carriage strains. Our findings suggest that S. mitis in patients with clinically diagnosed IE is not primarily caused by specific hypervirulent or antimicrobial resistant lineages, highlighting the accidental pathogenic nature of S. mitis in patients with clinically diagnosed IE.
Collapse
Affiliation(s)
- Akuzike Kalizang'oma
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK. akuzike.kalizang'
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi. akuzike.kalizang'
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi. akuzike.kalizang'
| | - Damien Richard
- UCL Genetics Institute, University College London, London, UK
| | - Brenda Kwambana-Adams
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Department of Pathology, School of Medicine and Oral Health, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Juliana Coelho
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Karen Broughton
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Bruno Pichon
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | - Katie L Hopkins
- Public Health Microbiology Division, UK Health Security Agency, Colindale, London, UK
| | | | - Sandra Beleza
- University of Leicester, Department of Genetics and Genome Biology, Leicester, UK
| | | | - Chrispin Chaguza
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Robert S Heyderman
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection & Immunity, University College London, London, UK.
| |
Collapse
|
2
|
Guo M, Li Y, Tang J, Wang Q, Wang Q, Zhou H, Lin H, Ma Z, Fan H. Glaesserella parasuis serotype 4 exploits fibronectin via RlpA for tracheal colonization following porcine circovirus type 2 infection. PLoS Pathog 2024; 20:e1012513. [PMID: 39264911 PMCID: PMC11392263 DOI: 10.1371/journal.ppat.1012513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality, but the role played by PCV2 and bacterial and host factors contributing to this process have not been defined. Bacterial attachment is assumed to occur via specific receptor-ligand interactions between adhesins on the bacterial cell and host proteins adsorbed to the implant surface. Mass spectrometry (MS) analysis of PCV2-infected swine tracheal epithelial cells (STEC) revealed that the expression of Extracellular matrix protein (ECM) Fibronectin (Fn) increased significantly on the infected cells surface. Importantly, efficient G. parasuis serotype 4 (GPS4) adherence to STECs was imparted by interactions with Fn. Furthermore, abrogation of adherence was gained by genetic knockout of Fn, Fn and Integrin β1 antibody blocking. Fn is frequently exploited as a receptor for bacterial pathogens. To explore the GPS4 adhesin that interacts with Fn, recombinant Fn N-terminal type I and type II domains were incubated with GPS4, and the interacting proteins were pulled down for MS analysis. Here, we show that rare lipoprotein A (RlpA) directly interacts with host Fibronectin mediating GPS4 adhesion. Finally, we found that PCV2-induced Fibronectin expression and adherence of GPS4 were prevented significantly by TGF-β signaling pathway inhibitor SB431542. Our data suggest the RlpA-Fn interaction to be a potentially promising novel therapeutic target to combat PCV2 and GPS4 coinfection.
Collapse
Affiliation(s)
- Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiancheng Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
3
|
Cao P, Lin M, Chen Z, Zhang G, Lai XH, Wu X, Niu L. Identification and genomic analyses of a Streptococcus suis ST25 strain associated with the first human septicemia in mainland China. Heliyon 2024; 10:e35456. [PMID: 39170392 PMCID: PMC11336695 DOI: 10.1016/j.heliyon.2024.e35456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Streptococcus suis (S. suis) is a Gram-positive bacterium and the main culprit behind zoonotic outbreaks, posing a serious threat to public health. The prevalent strains in China are mainly of sequence types (ST) 1 and 7, with few cases of human infections caused by other sequence type being reported. This study presents the first isolation of a ST25 strain from the blood of a septicemic patient. A 57-year-old febrile patient was admitted to a hospital in Hainan of China, diagnosed as septicemia and hepatic dysfunction. A strain of S. suis was isolated from blood culture and confirmed to be serotype 2 and ST25 through 16S rRNA sequencing and whole-genome sequencing, and its genome was further analyzed for gene functions and presence of drug resistance genes. The full-length genome of strain HN28 spans 2,280,124 bp and encodes a total of 2291 proteins. Genes annotated in COG, GO, KEGG, CAZy, and PHl databases accounted for 75.38 %, 69.14 %, 55.35 %, 4.58 %, and 11.87 % of the total predicted proteins, respectively. Virulence factor analysis revealed the presence of seven putative virulence genes in strain HN28. Analysis using the CARD database identified 51 resistance genes in HN28, alongside abundant exocytosis systems. These findings underscore the occurrence of S. suis infections in humans caused by less common ST, emphasizing the need for enhanced epidemiological investigations and monitoring of S. suis infections in the human population.
Collapse
Affiliation(s)
- Peipei Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Meixing Lin
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, China
| | - Zhiling Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| | - Guannan Zhang
- Hainan Medical University Public Research Center, Haikou, Hainan, China
| | - Xin-He Lai
- Shenzhen Boya Gene Technology Company Limited, Shenzhen, China
| | - Xiang Wu
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, Hainan, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, Hainan, China
- Department of Pathogen Biology, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou, Hainan, China
| |
Collapse
|
4
|
Kaye AD, Greene D, Alvarez-Amado AV, Townsend HL, Forte M, Vasterling M, Hirsch JD, Howard J, Ahmadzadeh S, Willett O, Kaye AM, Shekoohi S, Varrassi G. Pathophysiology and Evolving Treatment Options of Septic Arthritis: A Narrative Review. Cureus 2024; 16:e65883. [PMID: 39219968 PMCID: PMC11364462 DOI: 10.7759/cureus.65883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Pyogenic (septic) arthritis is a severe joint infection characterized by the invasion of microorganisms into the synovium, causing inflammation and joint destruction. This review article provides a comprehensive overview of pyogenic arthritis, focusing on etiology, pathogenesis, clinical manifestations, diagnosis, and management strategies. This review explores routes of microbial entry into joints, emphasizing the importance of prompt identification and treatment to prevent irreversible joint damage. Clinical manifestations, such as joint pain, swelling, and limited range of motion, are discussed, along with the challenges in differentiating pyogenic arthritis from other joint disorders. Diagnostic approaches, including joint aspiration and imaging modalities, are critically examined for accuracy in confirming diagnosis. This review also addresses the significance of early intervention through antimicrobial therapy and joint drainage, highlighting the role of multidisciplinary collaboration in optimizing patient outcomes. In summary, the present investigation underscores the complexities of pyogenic arthritis and the need for a comprehensive understanding of pathophysiology for timely and effective management to improve patient prognosis and quality of life.
Collapse
Affiliation(s)
- Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Driskell Greene
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | | | - Horace L Townsend
- School of Medicine, American University of the Caribbean, Cupecoy, SXM
| | - Michael Forte
- School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, USA
| | - Megan Vasterling
- School of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, USA
| | - Jon D Hirsch
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Jeffrey Howard
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Olga Willett
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
5
|
Baranchyk Y, Gestels Z, Van den Bossche D, Abdellati S, Britto Xavier B, Manoharan-Basil SS, Kenyon C. Effect of erythromycin residuals in food on the development of resistance in Streptococcus pneumoniae: an in vivo study in Galleria mellonella. PeerJ 2024; 12:e17463. [PMID: 38827315 PMCID: PMC11141549 DOI: 10.7717/peerj.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/05/2024] [Indexed: 06/04/2024] Open
Abstract
Background The use of antimicrobials to treat food animals may result in antimicrobial residues in foodstuffs of animal origin. The European Medicines Association (EMA) and World Health Organization (WHO) define safe antimicrobial concentrations in food based on acceptable daily intakes (ADIs). It is unknown if ADI doses of antimicrobials in food could influence the antimicrobial susceptibility of human-associated bacteria. Objectives This aim of this study was to evaluate if the consumption of ADI doses of erythromycin could select for erythromycin resistance in a Galleria mellonella model of Streptococcus pneumoniae infection. Methods A chronic model of S. pneumoniae infection in G. mellonella larvae was used for the experiment. Inoculation of larvae with S. pneumoniae was followed by injections of erythromycin ADI doses (0.0875 and 0.012 μg/ml according to EMA and WHO, respectively). Isolation of S. pneumoniae colonies was then performed on selective agar plates. Minimum inhibitory concentrations (MICs) of resistant colonies were measured, and whole genome sequencing (WGS) was performed followed by variant calling to determine the genetic modifications. Results Exposure to single doses of both EMA and WHO ADI doses of erythromycin resulted in the emergence of erythromycin resistance in S. pneumoniae. Emergent resistance to erythromycin was associated with a mutation in rplA, which codes for the L1 ribosomal protein and has been linked to macrolide resistance in previous studies. Conclusion In our in vivo model, even single doses of erythromycin that are classified as acceptable by the WHO and EMA induced significant increases in erythromycin MICs in S. pneumoniae. These results suggest the need to include the induction of antimicrobial resistance (AMR) as a significant criterion for determining ADIs.
Collapse
Affiliation(s)
- Yuliia Baranchyk
- UnivLyon, Université Claude Bernard Lyon 1, Lyon, France
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Zina Gestels
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | - Saïd Abdellati
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | | - Chris Kenyon
- Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Darkwah S, Kotey FCN, Ahenkorah J, Adutwum-Ofosu KK, Donkor ES. Sepsis-Related Lung Injury and the Complication of Extrapulmonary Pneumococcal Pneumonia. Diseases 2024; 12:72. [PMID: 38667530 PMCID: PMC11049144 DOI: 10.3390/diseases12040072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 04/28/2024] Open
Abstract
Globally, sepsis and pneumonia account for significant mortality and morbidity. A complex interplay of immune-molecular pathways underlies both sepsis and pneumonia, resulting in similar and overlapping disease characteristics. Sepsis could result from unmanaged pneumonia. Similarly, sepsis patients have pneumonia as a common complication in the intensive care unit. A significant percentage of pneumonia is misdiagnosed as septic shock. Therefore, our knowledge of the clinical relationship between pneumonia and sepsis is imperative to the proper management of these syndromes. Regarding pathogenesis and etiology, pneumococcus is one of the leading pathogens implicated in both pneumonia and sepsis syndromes. Growing evidence suggests that pneumococcal pneumonia can potentially disseminate and consequently induce systemic inflammation and severe sepsis. Streptococcus pneumoniae could potentially exploit the function of dendritic cells (DCs) to facilitate bacterial dissemination. This highlights the importance of pathogen-immune cell crosstalk in the pathophysiology of sepsis and pneumonia. The role of DCs in pneumococcal infections and sepsis is not well understood. Therefore, studying the immunologic crosstalk between pneumococcus and host immune mediators is crucial to elucidating the pathophysiology of pneumonia-induced lung injury and sepsis. This knowledge would help mitigate clinical diagnosis and management challenges.
Collapse
Affiliation(s)
- Samuel Darkwah
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| | - John Ahenkorah
- Department of Anatomy, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (J.A.); (K.K.A.-O.)
| | - Kevin Kofi Adutwum-Ofosu
- Department of Anatomy, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (J.A.); (K.K.A.-O.)
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra P.O. Box KB 4236, Ghana; (F.C.N.K.); (E.S.D.)
| |
Collapse
|
7
|
Lee CH, Wu CJ, Yang YY, Wang WC, Leu SJ, Wu CT, Kao PS, Liu KJ, Tsai BY, Chiang YW, Mao YC, Benedict Dlamini N, Chang J. Characterization of chicken-derived antibody against Alpha-Enolase of Streptococcus pneumoniae. Int Immunopharmacol 2024; 128:111476. [PMID: 38185035 DOI: 10.1016/j.intimp.2023.111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus pneumoniae is a clinically relevant pathogen notorious for causing pneumonia, meningitis, and otitis media in immunocompromised patients. Currently, antibiotic therapy is the most efficient treatment for fighting pneumococcal infections. However, an arise in antimicrobial resistance in S. pneumoniae has become a serious health issue globally. To resolve the problem, alternative and cost-effective strategies, such as monoclonal antibody-based targeted therapy, are needed for combating bacterial infection. S. pneumoniae alpha-enolase (spEno1), which is thought to be a great target, is a surface protein that binds and converts human plasminogen to plasmin, leading to accelerated bacterial infections. We first purified recombinant spEno1 protein for chicken immunization to generate specific IgY antibodies. We next constructed two single-chain variable fragments (scFv) antibody libraries by phage display technology, containing 7.2 × 107 and 4.8 × 107 transformants. After bio-panning, ten scFv antibodies were obtained, and their binding activities to spEno1 were evaluated on ELISA, Western blot and IFA. The epitopes of spEno1 were identified by these scFv antibodies, which binding affinities were determined by competitive ELISA. Moreover, inhibition assay displayed that the scFv antibodies effectively inhibit the binding between spEno1 and human plasminogen. Overall, the results suggested that these scFv antibodies have the potential to serve as an immunotherapeutic drug against S. pneumoniae infections.
Collapse
Affiliation(s)
- Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Chao-Jung Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 110301, Taiwan
| | - Wei-Chu Wang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Cheng-Tsang Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Pei-Shih Kao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 70456, Taiwan
| | - Bor-Yu Tsai
- Navi Bio-Therapeutics Inc., Taipei 10351, Taiwan
| | - Yu-Wei Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Nhlanhla Benedict Dlamini
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan; International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
8
|
Hayashida A, Saeed HN, Zhang F, Song Y, Liu J, Parks WC, Bispo PJM, Park PW. Sulfated motifs in heparan sulfate inhibit Streptococcus pneumoniae adhesion onto fibronectin and attenuate corneal infection. PROTEOGLYCAN RESEARCH 2023; 1:e9. [PMID: 38957622 PMCID: PMC11218895 DOI: 10.1002/pgr2.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/26/2023] [Indexed: 07/04/2024]
Abstract
A large number of bacterial pathogens bind to host extracellular matrix (ECM) components. For example, many Gram-negative and Gram-positive pathogens express binding proteins for fibronectin (FN) on their cell surface. Mutagenesis studies of bacterial FN-binding proteins have demonstrated their importance in pathogenesis in preclinical animal models. However, means to draw on these findings to design therapeutic approaches that specifically target FN-bacteria interactions have not been successful because bacterial pathogens can elaborate several FN-binding proteins and also because FN is an essential protein and likely a nondruggable target. Here we report that select heparan compounds potently inhibit Streptococcus pneumoniae infection of injured corneas in mice. Using intact heparan sulfate (HS) and heparin (HP), heparinase-digested fragments of HS, HP oligosaccharides, and chemically or chemoenzymatically modified heparan compounds, we found that inhibition of S. pneumoniae corneal infection by heparan compounds is not mediated by simple charge effects but by a selective sulfate group. Removal of 2-O-sulfates significantly inhibited the ability of HP to inhibit S. pneumoniae corneal infection, whereas the addition of 2-O-sulfates to heparosan (H) significantly increased H's ability to inhibit bacterial corneal infection. Proximity ligation assays indicated that S. pneumoniae attaches directly to FN fibrils in the corneal epithelial ECM and that HS and HP specifically inhibit this binding interaction in a 2-O-sulfate-dependent manner. These data suggest that heparan compounds containing 2-O-sulfate groups protect against S. pneumoniae corneal infection by inhibiting bacterial attachment to FN fibrils in the subepithelial ECM of injured corneas. Moreover, 2-O-sulfated heparan compounds significantly inhibited corneal infection in immunocompromised hosts, by a clinical keratitis isolate of S. pneumoniae, and also when topically administered in a therapeutic manner. These findings suggest that the administration of nonanticoagulant 2-O-sulfated heparan compounds may represent a plausible approach to the treatment of S. pneumoniae keratitis.
Collapse
Affiliation(s)
- Atsuko Hayashida
- Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hajirah N. Saeed
- Department of Ophthalmology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Yuefan Song
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Jian Liu
- Division of Medicinal Chemistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - William C. Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Paulo J. M. Bispo
- Department of Ophthalmology, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Pyong Woo Park
- Department of Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Ogawa M, Shizukuishi S, Akeda Y, Ohnishi M. Molecular mechanism of Streptococcus pneumoniae-targeting xenophagy recognition and evasion: Reinterpretation of pneumococci as intracellular bacteria. Microbiol Immunol 2023; 67:224-227. [PMID: 36872456 DOI: 10.1111/1348-0421.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Streptococcus pneumoniae is a major, encapsulated Gram-positive pathogen that causes diseases including community-acquired pneumonia, meningitis, and sepsis. This pathogen colonizes the nasopharyngeal epithelia asymptomatically but can often migrate to sterile tissues and cause life-threatening invasive infections (invasive pneumococcal disease). Although multivalent pneumococcal polysaccharides and conjugate vaccines are available and effective, they also have major shortcomings with respect to the emergence of vaccine-resistant serotypes. Therefore, alternative therapeutic approaches are needed, and the molecular analysis of host-pathogen interactions and their applications to pharmaceutical development and clinical practice has recently received increased attention. In this review, we introduce pneumococcal surface virulence factors involved in pathogenicity and highlight recent advances in our understanding of host autophagy recognition mechanisms against intracellular S. pneumoniae and pneumococcal evasion from autophagy.
Collapse
Affiliation(s)
- Michinaga Ogawa
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayaka Shizukuishi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Microbiology, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yukihiro Akeda
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan
- Chubu Regional Public Health Center, Okinawa, Japan
| |
Collapse
|
10
|
Fanelli F, Montemurro M, Verni M, Garbetta A, Bavaro AR, Chieffi D, Cho GS, Franz CMAP, Rizzello CG, Fusco V. Probiotic Potential and Safety Assessment of Type Strains of Weissella and Periweissella Species. Microbiol Spectr 2023; 11:e0304722. [PMID: 36847557 PMCID: PMC10100829 DOI: 10.1128/spectrum.03047-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023] Open
Abstract
Although numerous strains belonging to the Weissella genus have been described in the last decades for their probiotic and biotechnological potential, others are known to be opportunistic pathogens of humans and animals. Here, we investigated the probiotic potential of two Weissella and four Periweissella type strains belonging to the species Weissella diestrammenae, Weissella uvarum, Periweissella beninensis, Periweissella fabalis, Periweissella fabaria, and Periweissella ghanensis by genomic and phenotypic analyses, and performed a safety assessment of these strains. Based on the results of the survival to simulated gastrointestinal transit, autoaggregation and hydrophobicity characteristics, as well as adhesion to Caco-2 cells, we showed that the P. beninensis, P. fabalis, P. fabaria, P. ghanensis, and W. uvarum type strains exhibited a high probiotic potential. The safety assessment, based on the genomic analysis, performed by searching for virulence and antibiotic resistance genes, as well as on the phenotypic evaluation, by testing hemolytic activity and antibiotic susceptibility, allowed us to identify the P. beninensis type strain as a safe potential probiotic microorganism. IMPORTANCE A comprehensive analysis of safety and functional features of six Weissella and Periweissella type strains was performed. Our data demonstrated the probiotic potential of these species, indicating the P. beninensis type strain as the best candidate based on its potential probiotic features and the safety assessment. The presence of different antimicrobial resistance profiles in the analyzed strains highlighted the need to establish cutoff values to perform a standardized safety evaluation of these species, which, in our opinion, should be mandatory on a strain-specific basis.
Collapse
Affiliation(s)
- Francesca Fanelli
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Antonella Garbetta
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Anna Rita Bavaro
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Daniele Chieffi
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Gyu-Sung Cho
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Kiel, Germany
| | | | | | - Vincenzina Fusco
- National Research Council, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| |
Collapse
|
11
|
Huang LD, Yang MJ, Huang YY, Jiang KY, Yan J, Sun AH. Molecular Characterization of Predominant Serotypes, Drug Resistance, and Virulence Genes of Streptococcus pneumoniae Isolates From East China. Front Microbiol 2022; 13:892364. [PMID: 35722327 PMCID: PMC9198556 DOI: 10.3389/fmicb.2022.892364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a common diplococcus pathogen found worldwide. The characterization of predominant serotypes, drug resistance, and virulence genes of S. pneumoniae isolates prevailing in different areas and countries is clinically important for choice of antibiotics and improvement of vaccines. In this study, pneumonia (78.7%) and meningitis (37.0%) were the predominant diseases observed in the 282 (children) and 27 (adults) S. pneumoniae-infected patients (p < 0.05) from seven hospitals in different areas of East China. Of the 309 pneumococcal isolates, 90.3% were classified by PCR into 15 serotypes, with serotypes 19F (27.2%) and the 6A/B (19.1%) being most predominant (p < 0.05). Importantly, serotypes 15A and 15B/C combined for a total of 10.4% of the isolates, but these serotypes are not included in the 13-valent pneumococcal capsule conjugate vaccine used in China. Antimicrobial susceptibility analysis by the E-test showed that >95% of the 309 pneumococcal isolates were susceptible to moxifloxacin and levofloxacin, as well as 18.4, 85.8, and 81.6% of the isolates displayed susceptibility to penicillin, cefotaxime, and imipenem, respectively. A significant correlation between the prevalence of predominant serotypes and their penicillin resistance was observed (p < 0.05). In particular, >95% of all the pneumococcal isolates showed resistance to erythromycin and azithromycin. Of the nine detected virulence genes, the lytA, ply, hysA, and nanA were the most common with 95–100% positive rates in the 309 pneumococcal isolates, while the pavA and psaA genes displayed a significant correlation with pneumococcal bacteremia and meningitis (p < 0.05). Overall, our data suggested that the predominant serotypes, drug resistance, and virulence genes of the S. pneumoniae isolates prevailing in East China are distinct from those observed in other areas of China and adjacent countries.
Collapse
Affiliation(s)
- Li-Dan Huang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Mei-Juan Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Yan-Ying Huang
- Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke-Yi Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China
| | - Ai-Hua Sun
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Filbeck S, Cerullo F, Pfeffer S, Joazeiro CAP. Ribosome-associated quality-control mechanisms from bacteria to humans. Mol Cell 2022; 82:1451-1466. [PMID: 35452614 PMCID: PMC9034055 DOI: 10.1016/j.molcel.2022.03.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Ribosome-associated quality-control (RQC) surveys incomplete nascent polypeptides produced by interrupted translation. Central players in RQC are the human ribosome- and tRNA-binding protein, NEMF, and its orthologs, yeast Rqc2 and bacterial RqcH, which sense large ribosomal subunits obstructed with nascent chains and then promote nascent-chain proteolysis. In canonical eukaryotic RQC, NEMF stabilizes the LTN1/Listerin E3 ligase binding to obstructed ribosomal subunits for nascent-chain ubiquitylation. Furthermore, NEMF orthologs across evolution modify nascent chains by mediating C-terminal, untemplated polypeptide elongation. In eukaryotes, this process exposes ribosome-buried nascent-chain lysines, the ubiquitin acceptor sites, to LTN1. Remarkably, in both bacteria and eukaryotes, C-terminal tails also have an extra-ribosomal function as degrons. Here, we discuss recent findings on RQC mechanisms and briefly review how ribosomal stalling is sensed upstream of RQC, including via ribosome collisions, from an evolutionary perspective. Because RQC defects impair cellular fitness and cause neurodegeneration, this knowledge provides a framework for pathway-related biology and disease studies.
Collapse
Affiliation(s)
- Sebastian Filbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Federico Cerullo
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Claudio A P Joazeiro
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
13
|
Okahashi N, Sumitomo T, Nakata M, Kawabata S. Secondary streptococcal infection following influenza. Microbiol Immunol 2022; 66:253-263. [PMID: 35088451 DOI: 10.1111/1348-0421.12965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
Abstract
Secondary bacterial infection following influenza A virus (IAV) infection is a major cause of morbidity and mortality during influenza epidemics. Streptococcus pneumoniae has been identified as a predominant pathogen in secondary pneumonia cases that develop following influenza. Although IAV has been shown to enhance susceptibility to the secondary bacterial infection, the underlying mechanism of the viral-bacterial synergy leading to disease progression is complex and remains elusive. In this review, cooperative interactions of viruses and streptococci during co- or secondary infection with IAV are described. IAV infects the upper respiratory tract, therefore, streptococci that inhabit or infect the respiratory tract are of special interest. Since many excellent reviews on the co-infection of IAV and S. pneumoniae have already been published, this review is intended to describe the unique interactions between other streptococci and IAV. Both streptococcal and IAV infections modulate the host epithelial barrier of the respiratory tract in various ways. IAV infection directly disrupts epithelial barriers, though at the same time the virus modifies the properties of infected cells to enhance streptococcal adherence and invasion. Mitis group streptococci produce neuraminidases, which promote IAV infection in a unique manner. The studies reviewed here have revealed intriguing mechanisms underlying secondary streptococcal infection following influenza. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| |
Collapse
|
14
|
Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int Immunopharmacol 2021; 103:108471. [PMID: 34952466 DOI: 10.1016/j.intimp.2021.108471] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Biofilm is a community of bacteria embedded in the extracellular matrix that accounts for 80% of bacterial infections. Biofilm enables bacterial cells to provide particular conditions and produce virulence determinants in response to the unavailability of micronutrients and local oxygen, resulting in their resistance to various antibacterial agents. Besides, the human immune reactions are not completely competent in the elimination of biofilm. Most importantly, the growing body of evidence shows that some bacterial spp. use a variety of mechanisms by which hijack the host components to form biofilm. In this regard, host components, such as DNA, hyaluronan, collagen, fibronectin, mucin, oligosaccharide moieties, filamentous polymers (F-actin), plasma, platelets, keratin, sialic acid, laminin, vitronectin, C3- and C4- binding proteins, antibody, proteases, factor I, factor H, and acidic proline-rich proteins have been reviewed. Hence, the characterization of interactions between bacterial biofilm and the host would be critical to effectively address biofilm-associated infections. In this paper, we review the latest information on the hijacking of host factors by bacteria to form biofilm.
Collapse
|
15
|
Ali MQ, Kohler TP, Schulig L, Burchhardt G, Hammerschmidt S. Pneumococcal Extracellular Serine Proteases: Molecular Analysis and Impact on Colonization and Disease. Front Cell Infect Microbiol 2021; 11:763152. [PMID: 34790590 PMCID: PMC8592123 DOI: 10.3389/fcimb.2021.763152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
The pathobiont Streptococcus pneumoniae causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. S. pneumoniae expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG. These serine proteases have recently received increasing attention because of their immunogenicity and pivotal role in the interaction with host proteins. This review is summarizing and focusing on the molecular and functional analysis of pneumococcal serine proteases, thereby discussing their contribution to pathogenesis.
Collapse
Affiliation(s)
- Murtadha Q Ali
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Gerhard Burchhardt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Peng S, Ren H, Deng J, Zhao N, Li Y, Li M, Yuan Q, Zhang Z, Luo L, Zeng L, Wang B, Zou N, Gu C, Huang X, Liao Z, Chen S, Chen H, Li Q, Qin T. Genotypic and phenotypic characteristics of Streptococcus pneumoniae from community-acquired pneumonia patients and healthy asymptomatic participants in Sichuan province, China. BMC Infect Dis 2021; 21:1030. [PMID: 34598707 PMCID: PMC8485506 DOI: 10.1186/s12879-021-06737-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
Background Streptococcus pneumoniae (S. pneumoniae) is the common cause of community-acquired pneumonia (CAP) and is also found in the upper respiratory tract of healthy people. Hence, the study aimed to compare the serotypes, virulence/pili genes, and antibiotic susceptibility of S. pneumoniae from healthy asymptomatic participants and CAP patients. Methods Streptococcus pneumoniae were retrospectively collected from health asymptomatic participants and CAP patients in Sichuan, China. The serotypes were tested by multiplex polymerase chain reaction (PCR) or Quellung reaction. Antibiotic susceptibility testing was performed using the broth microdilution method. The molecular epidemiology of S. pneumoniae was analyzed by multilocus sequence typing (MLST). Additionally, the presence of virulence/pili genes were detected using PCR. Results A total of 83 pneumococcal isolates were collected in the current study. Of these, 52 and 31 isolates were from healthy asymptomatic participants and CAP patients, respectively. Most of S. pneumoniae were resistant to erythromycin (ERY), clindamycin (CLI), tetracycline (TET) and trimethoprim-sulfamethoxazole (SXT). 90.4% isolates were classified as multidrug resistant (MDR). The predominant serotypes were 3, 19F and 19A in the CAP carriers, whereas 3, 6 and 19F were the main serotypes among the asymptomatic carriers. The overall coverage rates of pneumococcal conjugate vaccine (PCV) 10 and PCV13 serotypes were 34.9% and 66.3%, respectively. The predominant sequence types (STs) were ST271, ST320, and ST3397. There were significant differences in some resistance and virulence characteristics between CAP patients and asymptomatic carriers. Additionally, clonal complex (CC) 271 strains had higher percentage in resistance to cefuroxime (CXM) and cefotaxime (CEF), meropenem (MER) and cefepime (CFP), which mainly carried the rlrA and sipA genes. Conclusions High coverage rate of PCV13 and high prevalence of MDR indicated the necessity to expand immunization with PCV13 and rationally use the antibiotics in Sichuan, China. Importantly, long-term surveillance should be conducted to assess effectiveness brought by vaccines. Our findings may supply new guidance for developing new pneumococcal vaccines.
Collapse
Affiliation(s)
- Shihui Peng
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, People's Republic of China
| | - Hongyu Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Chang Bai Road, ChangPing District, Beijing, 102206, People's Republic of China
| | - Jianping Deng
- Zigong Center for Disease Control and Prevention, Zigong, People's Republic of China
| | - Na Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Chang Bai Road, ChangPing District, Beijing, 102206, People's Republic of China
| | - Yinan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Chang Bai Road, ChangPing District, Beijing, 102206, People's Republic of China
| | - Ming Li
- Chengdu Center for Disease Control and Prevention, Chengdu, People's Republic of China
| | - Qiwu Yuan
- Chengdu Center for Disease Control and Prevention, Chengdu, People's Republic of China
| | - Zhengdong Zhang
- Zigong Center for Disease Control and Prevention, Zigong, People's Republic of China
| | - Longze Luo
- Sichuan Center for Disease Control and Prevention, Chengdu, People's Republic of China
| | - Linzi Zeng
- Sichuan Center for Disease Control and Prevention, Chengdu, People's Republic of China
| | - Bin Wang
- Zigong Center for Disease Control and Prevention, Zigong, People's Republic of China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, People's Republic of China
| | - Changguo Gu
- The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Xin Huang
- The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Zheng Liao
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, People's Republic of China
| | - Shenen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, People's Republic of China
| | - Haiying Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, People's Republic of China
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, People's Republic of China
| | - Tian Qin
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No. 155, Chang Bai Road, ChangPing District, Beijing, 102206, People's Republic of China.
| |
Collapse
|
17
|
Abstract
Translation of the genetic information into proteins, performed by the ribosome, is a key cellular process in all organisms. Translation usually proceeds smoothly, but, unfortunately, undesirable events can lead to stalling of translating ribosomes. To rescue these faulty arrested ribosomes, bacterial cells possess three well-characterized quality control systems, tmRNA, ArfA, and ArfB. Recently, an additional ribosome rescue mechanism has been discovered in Bacillus subtilis. In contrast to the "canonical" systems targeting the 70S bacterial ribosome, this latter mechanism operates by first splitting the ribosome into the small (30S) and large (50S) subunits to then clearing the resultant jammed large subunit from the incomplete nascent polypeptide. Here, I will discuss the recent microbiological, biochemical, and structural data regarding functioning of this novel rescue system.
Collapse
Affiliation(s)
- Maxim S Svetlov
- Center for Biomolecular Sciences, Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
18
|
Abiotrophia defectiva DnaK Promotes Fibronectin-Mediated Adherence to HUVECs and Induces a Proinflammatory Response. Int J Mol Sci 2021; 22:ijms22168528. [PMID: 34445234 PMCID: PMC8395199 DOI: 10.3390/ijms22168528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023] Open
Abstract
Abiotrophia defectiva is a nutritionally variant streptococci that is found in the oral cavity, and it is an etiologic agent of infective endocarditis. We have previously reported the binding activity of A. defectiva to fibronectin and to human umbilical vein endothelial cells (HUVECs). However, the contribution of some adhesion factors on the binding properties has not been well delineated. In this study, we identified DnaK, a chaperon protein, as being one of the binding molecules of A. defectiva to fibronectin. Recombinant DnaK (rDnaK) bound immobilized fibronectin in a concentration-dependent manner, and anti-DnaK antiserum reduced the binding activity of A. defectiva with both fibronectin and HUVECs. Furthermore, DnaK were observed on the cell surfaces via immune-electroscopic analysis with anti-DnaK antiserum. Expression of IL-8, CCL2, ICAM-1, and VCAM-1 was upregulated with the A. defectiva rDnaK treatment in HUVECs. Furthermore, TNF-α secretion of THP-1 macrophages was also upregulated with the rDnaK. We observed these upregulations in rDnaK treated with polymyxin B, but not in the heat-treated rDnaK. The findings show that A. defectiva DnaK functions not only as an adhesin to HUVECs via the binding to fibronectin but also as a proinflammatory agent in the pathogenicity to cause infective endocarditis.
Collapse
|
19
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Sinha D, Sun X, Khare M, Drancourt M, Raoult D, Fournier PE. Pangenome analysis and virulence profiling of Streptococcus intermedius. BMC Genomics 2021; 22:522. [PMID: 34238216 PMCID: PMC8266483 DOI: 10.1186/s12864-021-07829-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/22/2021] [Indexed: 12/03/2022] Open
Abstract
Background Streptococcus intermedius, a member of the S. anginosus group, is a commensal bacterium present in the normal microbiota of human mucosal surfaces of the oral, gastrointestinal, and urogenital tracts. However, it has been associated with various infections such as liver and brain abscesses, bacteremia, osteo-articular infections, and endocarditis. Since 2005, high throughput genome sequencing methods enabled understanding the genetic landscape and diversity of bacteria as well as their pathogenic role. Here, in order to determine whether specific virulence genes could be related to specific clinical manifestations, we compared the genomes from 27 S. intermedius strains isolated from patients with various types of infections, including 13 that were sequenced in our institute and 14 available in GenBank. Results We estimated the theoretical pangenome size to be of 4,020 genes, including 1,355 core genes, 1,054 strain-specific genes and 1,611 accessory genes shared by 2 or more strains. The pangenome analysis demonstrated that the genomic diversity of S. intermedius represents an “open” pangenome model. We identified a core virulome of 70 genes and 78 unique virulence markers. The phylogenetic clusters based upon core-genome sequences and SNPs were independent from disease types and sample sources. However, using Principal Component analysis based on presence/ absence of virulence genes, we identified the sda histidine kinase, adhesion protein LAP and capsular polysaccharide biosynthesis protein cps4E as being associated to brain abscess or broncho-pulmonary infection. In contrast, liver and abdominal abscess were associated to presence of the fibronectin binding protein fbp54 and capsular polysaccharide biosynthesis protein cap8D and cpsB. Conclusions Based on the virulence gene content of 27 S. intermedius strains causing various diseases, we identified putative disease-specific genetic profiles discriminating those causing brain abscess or broncho-pulmonary infection from those causing liver and abdominal abscess. These results provide an insight into S. intermedius pathogenesis and highlights putative targets in a diagnostic perspective.
Collapse
Affiliation(s)
- Dhiraj Sinha
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Xifeng Sun
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Mudra Khare
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Didier Raoult
- IHU Méditerranée Infection, Marseille, France.,Aix-Marseille University, IRD, AP-HM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Pierre-Edouard Fournier
- Aix-Marseille University, IRD, AP-HM, SSA, VITROME, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France. .,IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
21
|
Zhou Y, Yan K, Sun C, Liu F, Peng W, Chen H, Yuan F, Bei W, Li J. Binding of Plasminogen to Streptococcus suis Protein Endopeptidase O Facilitates Evasion of Innate Immunity in Streptococcus suis. Front Microbiol 2021; 12:694103. [PMID: 34305859 PMCID: PMC8297593 DOI: 10.3389/fmicb.2021.694103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022] Open
Abstract
The Gram-positive bacterial species Streptococcus suis is an important porcine and human pathogen that causes severe life-threatening diseases associated with high mortality rates. However, the mechanisms by which S. suis evades host innate immunity remain elusive, so identifying novel virulence factors involved in immune evasion is crucial to gain control over this threatening pathogen. Our previous work has shown that S. suis protein endopeptidase O (SsPepO) is a novel fibronectin-binding protein. Here, we identified that recombinant SsPepO binds human plasminogen in a dose-dependent manner. Moreover, the binding of SsPepO and plasminogen, upon the activation of urokinase-type plasminogen activator, generated plasmin, which could cleave complement C3b, thus playing an important role in complement control. Additionally, a SspepO-deficient mutant showed impaired adherence to plasminogen as well as impaired adherence to and invasion of rat brain microvascular endothelial cells compared with the wildtype strain. We further found that the SspepO-deficient mutant was efficiently killed by human serum and blood. We also confirmed that the SspepO-deficient mutant had a lower mortality rate than the wildtype strain in a mouse model. In conclusion, these results indicate that SsPepO is a novel plasminogen-binding protein that contributes to S. suis immune evasion.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Kang Yan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chengfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Ministry of Agriculture, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jinquan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
22
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Ali MQ, Kohler TP, Burchhardt G, Wüst A, Henck N, Bolsmann R, Voß F, Hammerschmidt S. Extracellular Pneumococcal Serine Proteases Affect Nasopharyngeal Colonization. Front Cell Infect Microbiol 2021; 10:613467. [PMID: 33659218 PMCID: PMC7917122 DOI: 10.3389/fcimb.2020.613467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae has evolved versatile strategies to colonize the nasopharynx of humans. Colonization is facilitated by direct interactions with host cell receptors or via binding to components of the extracellular matrix. In addition, pneumococci hijack host-derived extracellular proteases such as the serine protease plasmin(ogen) for ECM and mucus degradation as well as colonization. S. pneumoniae expresses strain-dependent up to four serine proteases. In this study, we assessed the role of secreted or cell-bound serine proteases HtrA, PrtA, SFP, and CbpG, in adherence assays and in a mouse colonization model. We hypothesized that the redundancy of serine proteases compensates for the deficiency of a single enzyme. Therefore, double and triple mutants were generated in serotype 19F strain EF3030 and serotype 4 strain TIGR4. Strain EF3030 produces only three serine proteases and lacks the SFP encoding gene. In adherence studies using Detroit-562 epithelial cells, we demonstrated that both TIGR4Δcps and 19F mutants without serine proteases or expressing only CbpG, HtrA, or PrtA have a reduced ability to adhere to Detroit-562 cells. Consistent with these results, we show that the mutants of strain 19F, which preferentially colonizes mice, abrogate nasopharyngeal colonization in CD-1 mice after intranasal infection. The bacterial load in the nasopharynx was monitored for 14 days. Importantly, mutants showed significantly lower bacterial numbers in the nasopharynx two days after infection. Similarly, we detected a significantly reduced pneumococcal colonization on days 3, 7, and 14 post-inoculations. To assess the impact of pneumococcal serine proteases on acute infection, we infected mice intranasally with bioluminescent and invasive TIGR4 or isogenic triple mutants expressing only CbpG, HtrA, PrtA, or SFP. We imaged the acute lung infection in real-time and determined the survival of the mice. The TIGR4lux mutant expressing only PrtA showed a significant attenuation and was less virulent in the acute pneumonia model. In conclusion, our results showed that pneumococcal serine proteases contributed significantly to pneumococcal colonization but played only a minor role in pneumonia and invasive diseases. Because colonization is a prerequisite for invasive diseases and transmission, these enzymes could be promising candidates for the development of antimicrobials to reduce pneumococcal transmission.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
Lin L, Huang X, Yang H, He Y, He X, Huang J, Li S, Wang X, Tang S, Liu G, Pan Z. Molecular epidemiology, antimicrobial activity, and virulence gene clustering of Streptococcus agalactiae isolated from dairy cattle with mastitis in China. J Dairy Sci 2021; 104:4893-4903. [PMID: 33551160 DOI: 10.3168/jds.2020-19139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/02/2020] [Indexed: 12/26/2022]
Abstract
Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis worldwide, resulting in considerable economic losses. In this study, we isolated 42 S. agalactiae strains in 379 milk samples from cows with subclinical mastitis on 15 dairy farms in 12 Chinese provinces. Analysis based on capsular typing and multilocus sequence typing, combined with patterns of virulence gene scanning and antimicrobial resistance, identified the lineages and populations of the isolates. We grouped the 42 isolates into 7 sequence types belonging to 6 clonal complexes, mainly CC103 (31/42 isolates; 73.8%). We identified an ST-23 strain named Sa 129 for the first time on Chinese dairy farms-this strain is usually associated with human isolates. Capsular types Ia and II were predominant in capsular typing. The prevalence of virulence profile 1 (bibA, cfb, cspA, cylE, fbsA, fbsB, hylB, and pavA) was 64.3%, and represented the main trend in China. With respect to antimicrobial resistance, most isolates were susceptible to β-lactams, rifamycin, glycopeptides, and oxazolidone; resistance to several antimicrobial agents, including lincomycin, clindamycin, and doxycycline, varied in 4 different regions. Our research provides a profile for the molecular epidemiology, multilocus sequence typing, antimicrobial resistance, and virulence gene clustering of S. agalactiae, and may be beneficial for the clinical monitoring, prevention, and control of mastitis in dairy cattle.
Collapse
Affiliation(s)
- Lishan Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaojun Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China
| | - Hongfei Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China
| | - Yixuan He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China
| | - Xuefeng He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China
| | - Jinhu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China
| | - Siyan Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China
| | - Xiaoliang Wang
- Ningxia Animal Disease Prevention and Control Center, Yinchuan 750011, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing 210095, China.
| |
Collapse
|
25
|
Syndecan-1 Promotes Streptococcus pneumoniae Corneal Infection by Facilitating the Assembly of Adhesive Fibronectin Fibrils. mBio 2020; 11:mBio.01907-20. [PMID: 33293379 PMCID: PMC7733941 DOI: 10.1128/mbio.01907-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Subversion of heparan sulfate proteoglycans (HSPGs) is thought to be a common virulence mechanism shared by many microbial pathogens. The prevailing assumption is that pathogens co-opt HSPGs as cell surface attachment receptors or as inhibitors of innate host defense. However, there are few data that clearly support this idea in vivo We found that deletion of syndecan-1 (Sdc1), a major cell surface HSPG of epithelial cells, causes a gain of function in a mouse model of scarified corneal infection, where Sdc1-/- corneas were significantly less susceptible to Streptococcus pneumoniae infection. Administration of excess Sdc1 ectodomains significantly inhibited S. pneumoniae corneal infection, suggesting that Sdc1 promotes infection as a cell surface attachment receptor. However, S. pneumoniae did not interact with Sdc1 and Sdc1 was shed upon S. pneumoniae infection, indicating that Sdc1 does not directly support S. pneumoniae adhesion. Instead, Sdc1 promoted S. pneumoniae adhesion by driving the assembly of fibronectin (FN) fibrils in the corneal basement membrane to which S. pneumoniae attaches when infecting injured corneas. S. pneumoniae specifically bound to corneal FN via PavA, and PavA deletion significantly attenuated S. pneumoniae virulence in the cornea. Excess Sdc1 ectodomains inhibited S. pneumoniae corneal infection by binding to the Hep II domain and interfering with S. pneumoniae PavA binding to FN. These findings reveal a previously unknown virulence mechanism of S. pneumoniae where key extracellular matrix (ECM) interactions and structures that are essential for host cell homeostasis are exploited for bacterial pathogenesis.IMPORTANCE Bacterial pathogens have evolved several ingenious mechanisms to subvert host cell biology for their pathogenesis. Bacterial attachment to the host ECM establishes a niche to grow and is considered one of the critical steps of infection. This pathogenic mechanism entails coordinated assembly of the ECM by the host to form the ECM structure and organization that are specifically recognized by bacteria for their adhesion. We serendipitously discovered that epithelial Sdc1 facilitates the assembly of FN fibrils in the corneal basement membrane and that this normal biological function of Sdc1 has detrimental consequences for the host in S. pneumoniae corneal infection. Our studies suggest that bacterial subversion of the host ECM is more complex than previously appreciated.
Collapse
|
26
|
Vinod V, Pushkaran AC, Kumar A, Mohan CG, Biswas R. Interaction mechanism of Mycobacterium tuberculosis GroEL2 protein with macrophage Lectin-like, oxidized low-density lipoprotein receptor-1: An integrated computational and experimental study. Biochim Biophys Acta Gen Subj 2020; 1865:129758. [PMID: 33031906 DOI: 10.1016/j.bbagen.2020.129758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bacterial surface proteins act as potential adhesins or invasins. The GroEL is a signal peptide-free surface expressed protein that aids adhesion in Escherichia coli by binding to LOX-1 receptor of the host cells. Mycobacterium tuberculosis (Mtb) expresses GroEL2 protein, having high level sequence identity with E. coli GroEL. This study investigates the interaction mechanism of GroEL2 protein of Mtb with LOX-1 of macrophages using integrated computational and experimental approach. METHODS Mtb GroEL2 protein was purified as histidine tagged protein using Ni-NTA chromatography. Confocal and scanning electron microscopies were used to study the uptake of GroEL2 coated fluorescent latex beads through the LOX-1 receptor in RAW264.7 macrophage cell line. Docking studies were performed to understand the interaction between the GroEL2 and LOX-1 proteins. Polyinosinic acid (PIA) was used as a LOX-1 inhibitor in both in silico and in vitro experiments. RESULTS GroEL2 protein coating enhances uptake of latex beads into macrophages through LOX-1 receptor. LOX-1 inhibitor PIA decreased the uptake of GroEL2 coated latex beads. GroEL2 interacts with the key ligand binding regions of the LOX-1 receptor, such as the basic spine and the saddle hydrophobic patch. PIA molecule destabilized the LOX-1-GroEL2 docked complex. CONCLUSION Surface associated GroEL2 protein of Mtb is a potential ligand for macrophage LOX-1 receptor. Interaction between GroEL2 and LOX-1 receptor may be utilized by Mtb to gain its intracellular access. GENERAL SIGNIFICANCE Surface associated GroEL2 of Mtb may bind to the macrophage LOX-1 receptor, enabling the internalization of the bacteria and progression of the infection.
Collapse
Affiliation(s)
- Vivek Vinod
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Anju Choorakottayil Pushkaran
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences and Research Center, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Chethampadi Gopi Mohan
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India..
| | - Raja Biswas
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Center (AIMS), Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India..
| |
Collapse
|
27
|
Sasaki M, Kodama Y, Shimoyama Y, Ishikawa T, Tajika S, Kimura S. Abiotrophia defectiva adhere to saliva-coated hydroxyapatite beads via interactions between salivary proline-rich-proteins and bacterial glyceraldehyde-3-phosphate dehydrogenase. Microbiol Immunol 2020; 64:719-729. [PMID: 32918493 DOI: 10.1111/1348-0421.12848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/27/2022]
Abstract
Abiotrophia defectiva is a species of nutritionally variant streptococci that is found in human saliva and dental plaques and that has been associated with infective endocarditis. In our previous study, it was found that A. defectiva could bind specifically to saliva-coated hydroxyapatite beads (SHA). This study identified a cell surface component of A. defectiva that promotes adherence to SHA beads. The binding of A. defectiva to SHA was reduced in the presence of antibodies against human proline-rich protein (PRP); these results suggested that PRP may be a critical component mediating interactions between A. defectiva and the salivary pellicle. Two-dimensional gel electrophoresis of whole A. defectiva cells followed by Far-Western blotting was conducted by probing with synthetic peptides analogous to the binding region of PRP known as PRP-C. The results indicate that an A. defectiva protein of 37 kDa interacts with PRP-C. The results of amino-terminal sequencing of the adhesive A. defectiva protein revealed significant similarity to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Recombinant GAPDH bound to immobilized PRP-C in a dose-dependent manner and binding of A. defectiva to SHA or to PRP was reduced in the presence of anti-GAPDH antiserum. Western blotting or electron immunomicroscopic observations with anti-GAPDH antiserum revealed that this protein was expressed in both cytosolic and cell wall fractions. These results suggest that A. defectiva could specifically bind to PRP via interactions with cell surface GAPDH; the findings suggest a mechanism underlying A. defectiva-mediated adherence to saliva-coated tooth surfaces.
Collapse
Affiliation(s)
- Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Yoshitoyo Kodama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Shihoko Tajika
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| | - Shigenobu Kimura
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Shiwa-gun, Iwate, Japan
| |
Collapse
|
28
|
Functional Analysis of a Fibronectin Binding Protein of Streptococcus parasanguinis FW213. Curr Microbiol 2020; 77:3430-3440. [PMID: 32761388 DOI: 10.1007/s00284-020-02152-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/28/2020] [Indexed: 10/23/2022]
Abstract
Streptococcus parasanguinis is a primary colonizer of dental plaque and an opportunistic pathogen for subacute endocarditis. A putative fibronectin binding protein (Spaf_1409) that lacks both an N-terminal signal peptide and a C-terminal cell wall-anchoring motif was identified from the S. parasanguinis FW213 genome. Spaf_1409 was abundantly present in the cytoplasm and also was found in the cell wall preparation and culture supernatant. By using an isogenic mutant strain, MPH4, Spaf_1409 was found to mediate the binding of S. parasanguinis FW213 to fibronectin. Inactivation of Spaf_1409 did not significantly alter the mass of static biofilm, but reduced the resistance of S. parasanguinis against the shearing force in a flow cell biofilm system, resulting in scattered biofilm. The mortality in Galleria mellonella larvae infected with MPH4 was higher than in those infected with wild-type S. parasanguinis. However, fewer viable bacterial cells were recovered from larvae infected with MPH4, compared to those infected with wild-type S. parasanguinis, up to 42 h post infection, suggesting that the infection by MPH4, but not the growth, was responsible for the elevated mortality. The phagocytic analysis using flow cytometry indicated that Spaf_1409 participates in the recognition of S. parasanguinis FW213 by RAW264.7 macrophages, suggesting that inactivation of Spaf_1409 intensified the immune responses in larvae, leading to larval death. Taken together, the data indicate that Spaf_1409 plays different roles in the development of dental biofilm and in systemic infections.
Collapse
|
29
|
Characterization and pathogenicity of fibronectin binding protein FbpI of Streptococcus intermedius. Arch Microbiol 2020; 202:2071-2081. [PMID: 32488560 DOI: 10.1007/s00203-020-01922-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Streptococcus intermedius is a causative agent of brain or liver abscesses. S. intermedius produces intermedilysin that plays a pivotal role in pathogenicity. We identified other pathogenic factors and described a fibronectin binding protein (FBP) homolog of S. intermedius (FbpI) that mediated bacterial adhesion to epithelial cells and virulence for mice. The amino acid sequence of FbpI is similar to that of atypical FBPs, which do not possess a conventional secretion signal and an anchoring motif. A full-length recombinant FbpI (rFbpI) bound to immobilized fibronectin in a dose-dependent manner. The fibronectin binding activity of an N-terminal construct of rFbpI comprising the translation initiation methionine of the open reading frame to lysine 265 (rFbpI-N) bound immobilized fibronectin to a much lesser extent compared with rFbpI. A construct comprising the C-terminal domain (alanine 266 to methionine 549; rFbpI-C) bound immobilized fibronectin equivalently to rFbpI. Adherence of the isogenic mutant ΔfbpI to cultured epithelial cells and immobilized fibronectin was significantly lower than that of the wild-type strain. Abscess formation of ΔfbpI reduced in a mouse infection model compared with that in the wild-type. Thus, FbpI may play a role in bacterial adhesion to host cells and represent a critical pathogenic factor of S. intermedius.
Collapse
|
30
|
Ma J, Zhang Z, Pan Z, Bai Q, Zhong X, Zhu Y, Zhang Y, Wu Z, Liu G, Yao H. Streptococcus suis Uptakes Carbohydrate Source from Host Glycoproteins by N-glycans Degradation System for Optimal Survival and Full Virulence during Infection. Pathogens 2020; 9:E387. [PMID: 32443590 PMCID: PMC7281376 DOI: 10.3390/pathogens9050387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with the epidemic virulent strain of Streptococcus suis serotype 2 (SS2) can cause septicemia in swine and humans, leading to pneumonia, meningitis and even cytokine storm of Streptococcal toxic shock-like syndrome. Despite some progress concerning the contribution of bacterial adhesion, biofilm, toxicity and stress response to the SS2 systemic infection, the precise mechanism underlying bacterial survival and growth within the host bloodstream remains elusive. Here, we reported the SS2 virulent strains with a more than 20 kb endoSS-related insertion region that showed significantly higher proliferative ability in swine serum than low-virulent strains. Further study identified a complete N-glycans degradation system encoded within this insertion region, and found that both GH92 and EndoSS contribute to bacterial virulence, but that only DndoSS was required for optimal growth of SS2 in host serum. The supplement of hydrolyzed high-mannose-containing glycoprotein by GH92 and EndoSS could completely restore the growth deficiency of endoSS deletion mutant in swine serum. EndoSS only hydrolyzed a part of the model glycoprotein RNase B with high-mannose N-linked glycoforms into a low molecular weight form, and the solo activity of GH92 could not show any changes comparing with the blank control in SDS-PAGE gel. However, complete hydrolyzation was observed under the co-incubation of EndoSS and GH92, suggesting GH92 may degrade the high-mannose arms of N-glycans to generate a substrate for EndoSS. In summary, these findings provide compelling evidences that EndoSS-related N-glycans degradation system may enable SS2 to adapt to host serum-specific availability of carbon sources from glycoforms, and be required for optimal colonization and full virulence during systemic infection.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Ze Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zihao Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Xiaojun Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yinchu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Yue Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Guangjin Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (J.M.); (Z.Z.); (Z.P.); (Q.B.); (X.Z.); (Y.Z.); (Y.Z.); (Z.W.); (G.L.)
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
31
|
Zhou J, Sun T, Kang W, Tang D, Feng Q. Pathogenic and antimicrobial resistance genes in Streptococcus oralis strains revealed by comparative genome analysis. Genomics 2020; 112:3783-3793. [PMID: 32334114 DOI: 10.1016/j.ygeno.2020.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/03/2020] [Accepted: 04/20/2020] [Indexed: 02/05/2023]
Abstract
Streptococcus oralis is an early colonizer bacterium in dental plaques and is considered a potential pathogen of infective endocarditis (IE) disease. In this study, we built a complete genome map of Streptococcus oralis strain SOT, Streptococcus oralis strain SOD and Streptococcus infantis strain SO and performed comparative genomic analysis among these three strains. The results showed that there are five genomic islands (GIs) in strain SOT and one CRISPR in strain SOD. Each genome harbors various pathogenic genes related to diseases and drug resistance, while the antibiotic resistance genes in strains SOT and SOD were quite similar but different from those in strain SO. In addition, we identified 17 main virulence factors and capsule-related genes in three strains. These results suggest the pathogenic potential of Streptococcus strains, which lay a foundation for the prevention and treatment of a Streptococcus oralis infection.
Collapse
Affiliation(s)
- Jiannan Zhou
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Tianyong Sun
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Wenyan Kang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Di Tang
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Qiang Feng
- Department of Human Microbiome, School and Hospital of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, 250012 Jinan, Shandong, China; State Key Laboratory of Microbial Technology, Shandong University,266237 Qingdao, Shandong, China; NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China.
| |
Collapse
|
32
|
Fibronectin and Its Role in Human Infective Diseases. Cells 2019; 8:cells8121516. [PMID: 31779172 PMCID: PMC6952806 DOI: 10.3390/cells8121516] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 01/25/2023] Open
Abstract
Fibronectin is a multidomain glycoprotein ubiquitously detected in extracellular fluids and matrices of a variety of animal and human tissues where it functions as a key link between matrices and cells. Fibronectin has also emerged as the target for a large number of microorganisms, particularly bacteria. There are clear indications that the binding of microorganism’ receptors to fibronectin promotes attachment to and infection of host cells. Each bacterium may use different receptors which recognize specific fibronectin domains, mostly the N-terminal domain and the central cell-binding domain. In many cases, fibronectin receptors have actions over and above that of simple adhesion: In fact, adhesion is often the prerequisite for invasion and internalization of microorganisms in the cells of colonized tissues. This review updates the current understanding of fibronectin receptors of several microorganisms with emphasis on their biochemical and structural properties and the role they can play in the onset and progression of host infection diseases. Furthermore, we describe the antigenic profile and discuss the possibility of designing adhesion inhibitors based on the structure of the fibronectin-binding site in the receptor or the receptor-binding site in fibronectin.
Collapse
|
33
|
Manne K, Narayana SVL, Chattopadhyay D. Crystal structure of the N-terminal domain of the fibronectin-binding protein PavA from Streptococcus pneumoniae. Acta Crystallogr F Struct Biol Commun 2019; 75:657-662. [PMID: 31584015 PMCID: PMC6777132 DOI: 10.1107/s2053230x19012160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 11/10/2022] Open
Abstract
The Gram-positive bacterium Streptococcus pneumoniae, a major human pathogen, is a regular colonizer of the upper and lower respiratory tracts. Pneumococcal adherence and virulence factor A (PavA), a fibronectin-binding bacterial protein, from S. pneumoniae is an important facilitator of its colonization of host cells. In this study, the crystal structure of the N-terminal domain of PavA (SpPavA-N) determined at a resolution of 2.39 Å is reported. Each monomer of the dimeric protein consists of two domains (domains I and II) and a short α-helix (α6) at the C-terminus that are connected by elongated loops. Comparison of the SpPavA-N structure with that of its homolog from Streptococcus suis (FBPS-N) revealed differences in α5, α6 and the domain II/α6 inter-loop region within domain II. The α5 helix of FBPS-N folds back toward domain I, whereas in SpPavA-N it adopts an elongated rod shape.
Collapse
Affiliation(s)
- Kartik Manne
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sthanam V L Narayana
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
34
|
Subramanian K, Henriques-Normark B, Normark S. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen. Cell Microbiol 2019; 21:e13077. [PMID: 31251447 PMCID: PMC6899785 DOI: 10.1111/cmi.13077] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is a human respiratory tract pathogen and a major cause of morbidity and mortality globally. Although the pneumococcus is a commensal bacterium that colonizes the nasopharynx, it also causes lethal diseases such as meningitis, sepsis, and pneumonia, especially in immunocompromised patients, in the elderly, and in young children. Due to the acquisition of antibiotic resistance and the emergence of nonvaccine serotypes, the pneumococcus has been classified as one of the priority pathogens for which new antibacterials are urgently required by the World Health Organization, 2017. Understanding molecular mechanisms behind the pathogenesis of pneumococcal infections and bacterial interactions within the host is crucial to developing novel therapeutics. Previously considered to be an extracellular pathogen, it is becoming evident that pneumococci may also occasionally establish intracellular niches within the body to escape immune surveillance and spread within the host. Intracellular survival within host cells also enables pneumococci to resist many antibiotics. Within the host cell, the bacteria exist in unique vacuoles, thereby avoiding degradation by the acidic lysosomes, and modulate the expression of its virulence genes to adapt to the intracellular environment. To invade and survive intracellularly, the pneumococcus utilizes a combination of virulence factors such as pneumolysin (PLY), pneumococcal surface protein A (PspA), pneumococcal adhesion and virulence protein B (PavB), the pilus‐1 adhesin RrgA, pyruvate oxidase (SpxB), and metalloprotease (ZmpB). In this review, we discuss recent findings showing the intracellular persistence of Streptococcus pneumoniae and its underlying mechanisms.
Collapse
Affiliation(s)
- Karthik Subramanian
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgitta Henriques-Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| | - Staffan Normark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Lee Kong Chian School of Medicine (LKC) and Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore
| |
Collapse
|
35
|
Lytvynenko I, Paternoga H, Thrun A, Balke A, Müller TA, Chiang CH, Nagler K, Tsaprailis G, Anders S, Bischofs I, Maupin-Furlow JA, Spahn CMT, Joazeiro CAP. Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control. Cell 2019; 178:76-90.e22. [PMID: 31155236 DOI: 10.1016/j.cell.2019.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
Abstract
In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.
Collapse
Affiliation(s)
- Iryna Lytvynenko
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Helge Paternoga
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Anna Thrun
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Annika Balke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Tina A Müller
- Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Christina H Chiang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Katja Nagler
- BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Ilka Bischofs
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
36
|
Hammerschmidt S, Rohde M, Preissner KT. Extracellular Matrix Interactions with Gram-Positive Pathogens. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0041-2018. [PMID: 31004421 PMCID: PMC11590433 DOI: 10.1128/microbiolspec.gpp3-0041-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Indexed: 01/10/2023] Open
Abstract
The main strategies used by pathogenic bacteria to infect eukaryotic tissue include their adherence to cells and the extracellular matrix (ECM), the subsequent colonization and invasion as well as the evasion of immune defences. A variety of structurally and functionally characterized adhesins and binding proteins of gram-positive bacteria facilitate these processes by specifically recognizing and interacting with various components of the host ECM, including different collagens, fibronectin and other macromolecules. The ECM affects the cellular physiology of our body and is critical for adhesion, migration, proliferation, and differentiation of many host cell types, but also provides the support for infiltrating pathogens, particularly under conditions of injury and trauma. Moreover, microbial binding to a variety of adhesive components in host tissue fluids leads to structural and/or functional alterations of host proteins and to the activation of cellular mechanisms that influence tissue and cell invasion of pathogens. Since the diverse interactions of gram-positive bacteria with the ECM represent important pathogenicity mechanisms, their characterization not only allows a better understanding of microbial invasion but also provides clues for the design of novel therapeutic strategies to manage infectious diseases.
Collapse
Affiliation(s)
- Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Center for Infection Research, D-38124 Braunschweig, Germany
| | - Klaus T Preissner
- Institute for Biochemistry, Medical School, Justus-Liebig-University, D-35392 Giessen, Germany
| |
Collapse
|
37
|
PepN is a non-essential, cell wall-localized protein that contributes to neutrophil elastase-mediated killing of Streptococcus pneumoniae. PLoS One 2019; 14:e0211632. [PMID: 30707714 PMCID: PMC6358159 DOI: 10.1371/journal.pone.0211632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae (Spn) is an asymptomatic colonizer of the human nasopharynx but can also cause disease in the inner ear, meninges, lung and blood. Although various mechanisms contribute to the effective clearance of Spn, opsonophagocytosis by neutrophils is perhaps most critical. Upon phagocytosis, Spn is exposed to various degradative molecules, including a family of neutrophil serine proteases (NSPs) that are stored within intracellular granules. Despite the critical importance of NSPs in killing Spn, the bacterial proteins that are degraded by NSPs leading to Spn death are still unknown. In this report, we identify a 90kDa protein in a purified cell wall (CW) preparation, aminopeptidase N (PepN) that is degraded by the NSP neutrophil elastase (NE). Since PepN lacked a canonical signal sequence or LPxTG motif, we created a mutant expressing a FLAG tagged version of the protein and confirmed its localization to the CW compartment. We determined that not only is PepN a CW-localized protein, but also is a substrate of NE in the context of intact Spn cells. Furthermore, in comparison to wild-type TIGR4 Spn, a mutant strain lacking PepN demonstrated a significant hyper-resistance phenotype in vitro in the presence of purified NE as well as in opsonophagocytic assays with purified human neutrophils ex vivo. Taken together, this is the first study to demonstrate that PepN is a CW-localized protein and a substrate of NE that contributes to the effective killing of Spn by NSPs and human neutrophils.
Collapse
|
38
|
Hu FZ, Król JE, Tsai CHS, Eutsey RA, Hiller LN, Sen B, Ahmed A, Hillman T, Buchinsky FJ, Nistico L, Dice B, Longwell M, Horsey E, Ehrlich GD. Deletion of genes involved in the ketogluconate metabolism, Entner-Doudoroff pathway, and glucose dehydrogenase increase local and invasive virulence phenotypes in Streptococcus pneumoniae. PLoS One 2019; 14:e0209688. [PMID: 30620734 PMCID: PMC6324787 DOI: 10.1371/journal.pone.0209688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae displays increased resistance to antibiotic therapy following biofilm formation. A genome-wide search revealed that SP 0320 and SP 0675 (respectively annotated as 5-keto-D-gluconate-5-reductase and glucose dehydrogenase) contain the highest degree of homology to CsgA of Myxococcus xanthus, a signaling factor that promotes cell aggregation and biofilm formation. Single and double SP 0320 and SP 0675 knockout mutants were created in strain BS72; however, no differences were observed in the biofilm-forming phenotypes of mutants compared to the wild type strain. Using the chinchilla model of otitis media and invasive disease, all three mutants exhibited greatly increased virulence compared to the wild type strain (increased pus formation, tympanic membrane rupture, mortality rates). The SP 0320 gene is located in an operon with SP 0317, SP 0318 and SP 0319, which we bioinformatically annotated as being part of the Entner-Doudoroff pathway. Deletion of SP 0317 also resulted in increased mortality in chinchillas; however, mutations in SP 0318 and SP 0319 did not alter the virulence of bacteria compared to the wild type strain. Complementing the SP 0317, SP 0320 and SP 0675 mutant strains reversed the virulence phenotype. We prepared recombinant SP 0317, SP 0318, SP 0320 and SP 0675 proteins and confirmed their functions. These data reveal that disruption of genes involved in the degradation of ketogluconate, the Entner-Doudoroff pathway, and glucose dehydrogenase significantly increase the virulence of bacteria in vivo; two hypothetical models involving virulence triggered by reduced in carbon-flux through the glycolytic pathways are presented.
Collapse
Affiliation(s)
- Fen Z. Hu
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail: (FZH); (GDE)
| | - Jarosław E. Król
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Chen Hsuan Sherry Tsai
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Rory A. Eutsey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Luisa N. Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
| | - Bhaswati Sen
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Azad Ahmed
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Todd Hillman
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Farrel J. Buchinsky
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Laura Nistico
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Bethany Dice
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Mark Longwell
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Edward Horsey
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Otolaryngology-Head and Neck Surgery, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Center for Advanced Microbial Processing, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States of America
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States of America
- * E-mail: (FZH); (GDE)
| |
Collapse
|
39
|
Tavares GC, Pereira FL, Barony GM, Rezende CP, da Silva WM, de Souza GHMF, Verano-Braga T, de Carvalho Azevedo VA, Leal CAG, Figueiredo HCP. Delineation of the pan-proteome of fish-pathogenic Streptococcus agalactiae strains using a label-free shotgun approach. BMC Genomics 2019; 20:11. [PMID: 30616502 PMCID: PMC6323687 DOI: 10.1186/s12864-018-5423-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae (GBS) is a major pathogen of Nile tilapia, a global commodity of the aquaculture sector. The aims of this study were to evaluate protein expression in the main genotypes of GBS isolated from diseased fishes in Brazil using a label-free shotgun nano-liquid chromatography-ultra definition mass spectrometry (nanoLC-UDMSE) approach and to compare the differential abundance of proteins identified in strains isolated from GBS-infected fishes and humans. RESULTS A total of 1070 protein clusters were identified by nanoLC-UDMSE in 5 fish-adapted GBS strains belonging to sequence types ST-260 and ST-927 and the non-typeable (NT) lineage and 1 human GBS strain (ST-23). A total of 1065 protein clusters corresponded to the pan-proteome of fish-adapted GBS strains; 989 of these were identified in all fish-adapted GBS strains (core proteome), and 62 were shared by at least two strains (accessory proteome). Proteins involved in the stress response and in the regulation of gene expression, metabolism and virulence were detected, reflecting the adaptive ability of fish-adapted GBS strains in response to stressor factors that affect bacterial survival in the aquatic environment and bacterial survival and multiplication inside the host cell. Measurement of protein abundance among different hosts showed that 5 and 26 proteins were exclusively found in the human- and fish-adapted GBS strains, respectively; the proteins exclusively identified in fish isolates were mainly related to virulence factors. Furthermore, 215 and 269 proteins were up- and down-regulated, respectively, in the fish-adapted GBS strains in comparison to the human isolate. CONCLUSIONS Our study showed that the core proteome of fish-adapted GBS strains is conserved and demonstrated high similarity of the proteins expressed by fish-adapted strains to the proteome of the human GBS strain. This high degree of proteome conservation of different STs suggests that, a monovalent vaccine may be effective against these variants.
Collapse
Affiliation(s)
- Guilherme Campos Tavares
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Felipe Luiz Pereira
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo Morais Barony
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cristiana Perdigão Rezende
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wanderson Marques da Silva
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Augusto Gomes Leal
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Henrique César Pereira Figueiredo
- AQUACEN - National Reference Laboratory of Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil. .,School of Veterinary, Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Pampulha, Belo Horizonte, Minas Gerais, 30161-970, Brazil.
| |
Collapse
|
40
|
Kodama Y, Ishikawa T, Shimoyama Y, Sasaki D, Kimura S, Sasaki M. The fibronectin-binding protein homologue Fbp62 ofStreptococcus anginosusis a potent virulence factor. Microbiol Immunol 2018; 62:624-634. [DOI: 10.1111/1348-0421.12646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshitoyo Kodama
- Division of Molecular Microbiology; Department of Microbiology; Iwate Medical University; 2-1-1 Nishitokuta Yahaba-cho Shiwagun Iwate 028-3694 Japan
| | - Taichi Ishikawa
- Division of Molecular Microbiology; Department of Microbiology; Iwate Medical University; 2-1-1 Nishitokuta Yahaba-cho Shiwagun Iwate 028-3694 Japan
| | - Yu Shimoyama
- Division of Molecular Microbiology; Department of Microbiology; Iwate Medical University; 2-1-1 Nishitokuta Yahaba-cho Shiwagun Iwate 028-3694 Japan
| | - Daisuke Sasaki
- Division of Periodontology; Department of Conservative Dentistry; Iwate Medical University School of Dentistry; 1-3-27 Chuo-dori Morioka Iwate 020-8505 Japan
| | - Shigenobu Kimura
- Division of Molecular Microbiology; Department of Microbiology; Iwate Medical University; 2-1-1 Nishitokuta Yahaba-cho Shiwagun Iwate 028-3694 Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology; Department of Microbiology; Iwate Medical University; 2-1-1 Nishitokuta Yahaba-cho Shiwagun Iwate 028-3694 Japan
| |
Collapse
|
41
|
Meyburgh CM, Bragg RR, Boucher CE. Detection of virulence factors of South African Lactococcus garvieae isolated from rainbow trout, Oncorhynchus mykiss (Walbaum). Onderstepoort J Vet Res 2018; 85:e1-e9. [PMID: 30326716 PMCID: PMC6324078 DOI: 10.4102/ojvr.v85i1.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 11/25/2022] Open
Abstract
Lactococcus garvieae is a Gram-positive bacterium that causes mortalities in freshwater and marine fish worldwide and therefore results in severe economic losses in the aquaculture industry. Apart from the apparent integral role of the exopolysaccharide (EPS) capsule in pathogenesis, factors associated with virulence of this bacterium are poorly understood. However, recent studies have indicated that the ability of L. garvieae to cause disease does not depend on the presence of the EPS capsule. Lack of knowledge of virulence factors, pathogenesis and serology of L. garvieae is an impediment to the development of effective typing methods and control measures. This study, therefore, aimed to detect the presence of EPS capsules and other putative virulence factors in South African L. garvieae fish pathogenic isolates and a non-virulent isolate, and to identify possible candidates for subunit vaccine development. No indication of the presence of the EPS capsule was detected by negative staining or amplification of the EPS biosynthesis gene cluster in the virulent isolates or the avirulent strain, discrediting the notion that the EPS capsule is the sole determinant of virulence. However, a set of putative virulence factor genes was detected in all isolates, and candidates for subunit vaccine development (enolase, lactate dehydrogenase phosphoenolpyruvate-protein phosphotransferase) were identified by identification of extracellular proteins of virulent strains.
Collapse
Affiliation(s)
- Cornelia M Meyburgh
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State.
| | | | | |
Collapse
|
42
|
P27 (MBOV_RS03440) is a novel fibronectin binding adhesin of Mycoplasma bovis. Int J Med Microbiol 2018; 308:848-857. [PMID: 30076003 DOI: 10.1016/j.ijmm.2018.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/02/2018] [Accepted: 07/15/2018] [Indexed: 01/06/2023] Open
Abstract
Mycoplasma bovis, one of the major pathogens of bovine respiratory disease, binds to respiratory epithelial cells resulting in severe pneumonia and tissue damage. This study was designed to identify the adhesive function of a putative 27-kDa M. bovis lipoprotein, encoded by the gene MBOV_RS03440 and designated as P27. The gene was cloned and overexpressed to produce antibodies against the recombinant P27 (rP27). The western blot and flow cytometry assay confirmed P27 to be a surface-localized protein, while ELISA confirmed it to be an immunogenic protein. Confocal immunofluorescence microscopy demonstrated that rP27 bound to embryonic bovine lung (EBL) cell monolayers in a dose-dependent manner. Furthermore, anti-rP27 antiserum inhibited the attachment of M. bovis to EBL cells demonstrating the binding specificity of P27 to EBL cells. The attachment of rP27 to EBL cells was mediated by fibronectin (Fn), an extracellular matrix component. The interaction between rP27 and Fn was qualitatively and quantitatively monitored by ligand immunoblot assay, ELISA, and biolayer interferometry. Collectively, these results indicate that P27 is a novel Fn-binding, immunogenic adhesive protein of M. bovis, thereby contributing to the further understanding of the molecular pathogenesis of M. bovis.
Collapse
|
43
|
Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol 2018; 16:355-367. [PMID: 29599457 PMCID: PMC5949087 DOI: 10.1038/s41579-018-0001-8] [Citation(s) in RCA: 615] [Impact Index Per Article: 87.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Streptococcus pneumoniae has a complex relationship with its obligate human host. On the one hand, the pneumococci are highly adapted commensals, and their main reservoir on the mucosal surface of the upper airways of carriers enables transmission. On the other hand, they can cause severe disease when bacterial and host factors allow them to invade essentially sterile sites, such as the middle ear spaces, lungs, bloodstream and meninges. Transmission, colonization and invasion depend on the remarkable ability of S. pneumoniae to evade or take advantage of the host inflammatory and immune responses. The different stages of pneumococcal carriage and disease have been investigated in detail in animal models and, more recently, in experimental human infection. Furthermore, widespread vaccination and the resulting immune pressure have shed light on pneumococcal population dynamics and pathogenesis. Here, we review the mechanistic insights provided by these studies on the multiple and varied interactions of the pneumococcus and its host.
Collapse
|
44
|
Desvaux M, Candela T, Serror P. Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface Display. Front Microbiol 2018; 9:100. [PMID: 29491848 PMCID: PMC5817068 DOI: 10.3389/fmicb.2018.00100] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
The cell envelope of parietal monoderm bacteria (archetypal Gram-positive bacteria) is formed of a cytoplasmic membrane (CM) and a cell wall (CW). While the CM is composed of phospholipids, the CW is composed at least of peptidoglycan (PG) covalently linked to other biopolymers, such as teichoic acids, polysaccharides, and/or polyglutamate. Considering the CW is a porous structure with low selective permeability contrary to the CM, the bacterial cell surface hugs the molecular figure of the CW components as a well of the external side of the CM. While the surfaceome corresponds to the totality of the molecules found at the bacterial cell surface, the proteinaceous complement of the surfaceome is the proteosurfaceome. Once translocated across the CM, secreted proteins can either be released in the extracellular milieu or exposed at the cell surface by associating to the CM or the CW. Following the gene ontology (GO) for cellular components, cell-surface proteins at the CM can either be integral (GO: 0031226), i.e., the integral membrane proteins, or anchored to the membrane (GO: 0046658), i.e., the lipoproteins. At the CW (GO: 0009275), cell-surface proteins can be covalently bound, i.e., the LPXTG-proteins, or bound through weak interactions to the PG or wall polysaccharides, i.e., the cell wall binding proteins. Besides monopolypeptides, some proteins can associate to each other to form supramolecular protein structures of high molecular weight, namely the S-layer, pili, flagella, and cellulosomes. After reviewing the cell envelope components and the different molecular mechanisms involved in protein attachment to the cell envelope, perspectives in investigating the proteosurfaceome in parietal monoderm bacteria are further discussed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRA, UMR454 MEDiS, Clermont-Ferrand, France
| | - Thomas Candela
- EA4043 Unité Bactéries Pathogènes et Santé, Châtenay-Malabry, France
| | - Pascale Serror
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
45
|
Expression of fibronectin-binding protein of L. acidophilus NCFM and in vitro refolding to adhesion capable native-like protein from inclusion bodies. Protein Expr Purif 2017; 145:7-13. [PMID: 29229289 DOI: 10.1016/j.pep.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/16/2017] [Accepted: 11/29/2017] [Indexed: 01/01/2023]
Abstract
The ability of Lactobacilli to adhere to host epithelial surface and intestinal tracts is important for colonization and persistence of bacteria in the host gut. Extracellular matrix components like fibronectin, mucin, collagen and other adhesion molecules serve as substratum for attachment of bacteria. However, the precise structure, function and mechanism of binding of microbial surface adhesion proteins such as Fibronectin-binding protein (FBP) with host molecules remains unclear. This is primarily due to limitations in high expression of these proteins in biologically active form. To study adhesion of its FBP (64 kDa), the fbp gene of L. acidophilus NCFM was cloned and expressed in E. coli. However, the fibronectin-binding protein expressed in soluble form could not be purified by Ni-NTA affinity chromatography possibly because of partially buried Histidine tag in the recombinant fusion protein. Therefore, the protein was expressed as inclusion bodies (IBs) at 37 °C and solubilized in urea followed by purification in denatured form by Ni-NTA affinity chromatography. The purified denatured protein was refolded in vitro to structurally stable and biologically active form. The conformational properties of the refolded protein were studied by circular dichroism, which showed prominence of α+ β structural element. The refolded FBP also showed significant binding to human intestinal tissue sections. Our optimized refolding protocol from IBs of this recombinant probiotic FBP led into high amounts of biologically active protein. Our results help in increasing understanding of structure-function relation of surface adhesion proteins and host-microbial interactions.
Collapse
|
46
|
Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells. mSphere 2017; 2:mSphere00398-17. [PMID: 29104935 PMCID: PMC5663983 DOI: 10.1128/msphere.00398-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/05/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs after bacteria interact with and penetrate the blood-brain barrier (BBB). The BBB is comprised of highly specialized brain microvascular endothelial cells (BMECs) that function to separate the circulation from the CNS and act as a formidable barrier for toxins and pathogens. Certain bacteria, such as Streptococcus agalactiae (group B Streptococcus [GBS]), possess the ability to interact with and penetrate the BBB to cause meningitis. Modeling bacterial interaction with the BBB in vitro has been limited to primary and immortalized BMEC culture. While useful, these cells often do not retain BBB-like properties, and human primary cells have limited availability. Recently, a human induced pluripotent stem cell (iPSC)-derived BMEC model has been established that is readily renewable and retains key BBB phenotypes. Here, we sought to evaluate whether the iPSC-derived BMECs were appropriate for modeling bacterial interaction with the BBB. Using GBS as a model meningeal pathogen, we demonstrate that wild-type GBS adhered to, invaded, and activated the iPSC-derived BMECs, while GBS mutants known to have diminished BBB interaction were attenuated in the iPSC-derived model. Furthermore, bacterial infection resulted in the disruption of tight junction components ZO-1, occludin, and claudin-5. Thus, we show for the first time that the iPSC-derived BBB model can be utilized to study BBB interaction with a bacterial CNS pathogen. IMPORTANCE Here for the first time, human iPSC-derived BMECs were used to model bacterial interaction with the BBB. Unlike models previously used to study these interactions, iPSC-derived BMECs possess robust BBB properties, such as the expression of complex tight junctions that are key components for the investigation of bacterial effects on the BBB. Here, we demonstrated that GBS interacts with the iPSC-derived BMECs and specifically disrupts these tight junctions. Thus, using this BBB model may allow researchers to uncover novel mechanisms of BBB disruption during meningitis that are inaccessible to immortalized or primary cell models that lack substantial tight junctions.
Collapse
|
47
|
Carkaci D, Højholt K, Nielsen XC, Dargis R, Rasmussen S, Skovgaard O, Fuursted K, Andersen PS, Stegger M, Christensen JJ. Genomic characterization, phylogenetic analysis, and identification of virulence factors in Aerococcus sanguinicola and Aerococcus urinae strains isolated from infection episodes. Microb Pathog 2017; 112:327-340. [PMID: 28943151 DOI: 10.1016/j.micpath.2017.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 11/18/2022]
Abstract
Aerococcus sanguinicola and Aerococcus urinae are emerging pathogens in clinical settings mostly being causative agents of urinary tract infections (UTIs), urogenic sepsis and more seldomly complicated infective endocarditis (IE). Limited knowledge exists concerning the pathogenicity of these two species. Eight clinical A. sanguinicola (isolated from 2009 to 2015) and 40 clinical A. urinae (isolated from 1984 to 2015) strains from episodes of UTIs, bacteremia, and IE were whole-genome sequenced (WGS) to analyze genomic diversity and characterization of virulence genes involved in the bacterial pathogenicity. A. sanguinicola genome sizes were 2.06-2.12 Mb with 47.4-47.6% GC-contents, and 1783-1905 genes were predicted whereof 1170 were core-genes. In case of A. urinae strains, the genome sizes were 1.93-2.44 Mb with 41.6-42.6% GC-contents, and 1708-2256 genes of which 907 were core-genes. Marked differences were observed within A. urinae strains with respect to the average genome sizes, number and sequence identity of core-genes, proteome conservations, phylogenetic analysis, and putative capsular polysaccharide (CPS) loci sequences. Strains of A. sanguinicola showed high degree of homology. Phylogenetic analyses showed the 40 A. urinae strains formed two clusters according to two time periods: 1984-2004 strains and 2010-2015 strains. Genes that were homologs to virulence genes associated with bacterial adhesion and antiphagocytosis were identified by aligning A. sanguinicola and A. urinae pan- and core-genes against Virulence Factors of Bacterial Pathogens (VFDB). Bacterial adherence associated gene homologs were present in genomes of A. sanguinicola (htpB, fbpA, lmb, and ilpA) and A. urinae (htpB, lap, lmb, fbp54, and ilpA). Fifteen and 11-16 CPS gene homologs were identified in genomes of A. sanguinicola and A. urinae strains, respectively. Analysis of these genes identified one type of putative CPS locus within all A. sanguinicola strains. In A. urinae genomes, five different CPS loci types were identified with variations in CPS locus sizes, genetic content, and structural organization. In conclusion, this is the first study dealing with WGS and comparative genomics of clinical A. sanguinicola and A. urinae strains from episodes of UTIs, bacteremia, and IE. Gene homologs associated with antiphagocytosis and bacterial adherence were identified and genetic variability was observed within A. urinae genomes. These findings contribute with important knowledge and basis for future molecular and experimental pathogenicity study of UTIs, bacteremia, and IE causing A. sanguinicola and A. urinae strains.
Collapse
Affiliation(s)
- Derya Carkaci
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark; Department of Science and Environment, Roskilde University, Roskilde, Denmark; Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Katrine Højholt
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark; Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Rimtas Dargis
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark.
| | - Simon Rasmussen
- Department of Bio and Health Informatics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Kurt Fuursted
- Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Paal Skytt Andersen
- Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark; Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Marc Stegger
- Department of Microbiology & Infection Control, Statens Serum Institut, Copenhagen, Denmark.
| | - Jens Jørgen Christensen
- Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
48
|
Rasmussen LH, Højholt K, Dargis R, Christensen JJ, Skovgaard O, Justesen US, Rosenvinge FS, Moser C, Lukjancenko O, Rasmussen S, Nielsen XC. In silico assessment of virulence factors in strains of Streptococcus oralis and Streptococcus mitis isolated from patients with Infective Endocarditis. J Med Microbiol 2017; 66:1316-1323. [PMID: 28874232 DOI: 10.1099/jmm.0.000573] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose. Streptococcus oralis and Streptococcus mitis belong to the Mitis group, which are mostly commensals in the human oral cavity. Even though S. oralis and S. mitis are oral commensals, they can be opportunistic pathogens causing infective endocarditis. A recent taxonomic re-evaluation of the Mitis group has embedded the species Streptococcus tigurinus and Streptococcus dentisani into the species S. oralis as subspecies. In this study, the distribution of virulence factors that contribute to bacterial immune evasion, colonization and adhesion was assessed in clinical strains of S. oralis (subsp. oralis, subsp. tigurinus and subsp. dentisani) and S. mitis. Methodology. Forty clinical S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) and S. mitis genomes were annotated with the pipeline PanFunPro and aligned against the VFDB database for assessment of virulence factors.Results/Key findings. Three homologues of pavA, psaA and lmb, encoding adhesion proteins, were present in all strains. Seven homologues of nanA, nanB, ply, lytA, lytB, lytC and iga, of importance regarding survival in blood and modulation of the human immune system, were variously present in the genomes. Few S. oralis subspecies specific differences were observed. iga homologues were identified in S. oralis subsp. oralis, whereas lytA homologues were identified in S. oralis subsp. oralis and subsp. tigurinus. Conclusion. Differences in the presence of virulence factors among the three S. oralis subspecies were observed. The virulence gene profiles of the 40 S. mitis and S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) contribute with important new knowledge regarding these species and new subspecies.
Collapse
Affiliation(s)
- Louise H Rasmussen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Katrine Højholt
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs Lyngby, Denmark
| | - Rimtas Dargis
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark
| | - Jens Jørgen Christensen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark.,Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ole Skovgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ulrik S Justesen
- Department of Clinical Microbiology, Odense University Hospital, J. B. Winsløws Vej 21, 2, 5000 Odense C, Denmark.,Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Flemming S Rosenvinge
- Department of Clinical Microbiology, Vejle Hospital, Kabbeltoft 25, 7100 Vejle, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, University Hospital of Copenhagen, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Oksana Lukjancenko
- National Food Institute, Technical University of Denmark, Søltofts plads, Building 221, 2800 Kgs Lyngby, Denmark
| | - Simon Rasmussen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kemitorvet, Building 208, 2800 Kgs Lyngby, Denmark
| | - Xiaohui C Nielsen
- Department of Clinical Microbiology, Slagelse Hospital, Ingemannsvej 46, 4200 Slagelse, Denmark
| |
Collapse
|
49
|
Effects of Arginine on Streptococcus mutans Growth, Virulence Gene Expression, and Stress Tolerance. Appl Environ Microbiol 2017; 83:AEM.00496-17. [PMID: 28526785 DOI: 10.1128/aem.00496-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/11/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans is a common constituent of oral biofilms and a primary etiologic agent of human dental caries. The bacteria associated with dental caries have potent abilities to produce organic acids from dietary carbohydrates and to grow and metabolize in acidic conditions. By contrast, many commensal bacteria produce ammonia through the arginine deiminase system (ADS), which moderates the pH of oral biofilms. Arginine metabolism by the ADS is a significant deterrent to the initiation and progression of dental caries. In this study, we observed how exogenously provided l-arginine affects the growth, the virulence properties, and the tolerance of environmental stresses of S. mutans Supplementation with 1.5% arginine (final concentration) had an inhibitory effect on the growth of S. mutans in complex and chemically defined media, particularly when cells were exposed to acid or oxidative stress. The genes encoding virulence factors required for attachment/accumulation (gtfB and spaP), bacteriocins (nlmA, nlmB, nlmD, and cipB), and the sigma factor required for competence development (comX) were downregulated during growth with 1.5% arginine. Deep sequencing of RNA (RNA-Seq) comparing the transcriptomes of S. mutans growing in chemically defined media with and without 1.5% arginine revealed differential expression of genes encoding ATP-binding cassette transporters, metal transporters, and constituents required for survival, metabolism, and biofilm formation. Therefore, the mechanisms of action by which arginine inhibits dental caries include direct adverse effects on multiple virulence-related properties of the most common human dental caries pathogen.IMPORTANCE Metabolism of the amino acid arginine by the arginine deiminase system (ADS) of certain oral bacteria raises the pH of dental plaque and provides a selective advantage to health-associated bacteria, thereby protecting the host from dental caries (cavities). Here, we examine the effects of arginine on the cavity-causing bacterium Streptococcus mutans We find that arginine negatively impacts the growth, the pathogenic potential, and the tolerance of environmental stresses in a way that is likely to compromise the ability of S. mutans to cause disease. Using genetic and genomic techniques, multiple mechanisms by which arginine exerts its influence on virulence-related properties of S. mutans are discovered. This report demonstrates that a primary mechanism of action by which arginine inhibits the initiation and progression of dental caries may be by reducing the pathogenic potential of S. mutans.
Collapse
|
50
|
Kanwal S, Jensch I, Palm GJ, Brönstrup M, Rohde M, Kohler TP, Somplatzki D, Tegge W, Jenkinson HF, Hammerschmidt S. Mapping the recognition domains of pneumococcal fibronectin-binding proteins PavA and PavB demonstrates a common pattern of molecular interactions with fibronectin type III repeats. Mol Microbiol 2017; 105:839-859. [PMID: 28657670 DOI: 10.1111/mmi.13740] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
Abstract
Colonization of mucosal respiratory surfaces is a prerequisite for the human pathobiont Streptococcus pneumoniae (the pneumococcus) to cause severe invasive infections. The arsenal of pneumococcal adhesins interacts with a multitude of extracellular matrix proteins. A paradigm for pneumococci is their interaction with the adhesive glycoprotein fibronectin, which facilitates bacterial adherence to host cells. Here, we deciphered the molecular interaction between fibronectin and pneumococcal fibronectin-binding proteins (FnBPs) PavA and PavB respectively. We show in adherence and binding studies that the pneumococcal interaction with fibronectin is a non-human specific trait. PavA and PavB target at least 13 out of 15 type III fibronectin domains as demonstrated in ligand overlay assays, surface plasmon resonance studies and SPOT peptide arrays. Strikingly, both pneumococcal FnBPs recognize similar peptides in targeted type III repeats. Structural comparisons revealed that the targeted type III repeat epitopes cluster on the inner strands of both β-sheets forming the fibronectin domains. Importantly, synthetic peptides of FnIII1 , FnIII5 or FnIII15 bind directly to FnBPs PavA and PavB respectively. In conclusion, our study suggests a common pattern of molecular interactions between pneumococcal FnBPs and fibronectin. The specific epitopes recognized in this study can potentially be tested as antimicrobial targets in further scientific endeavours.
Collapse
Affiliation(s)
- Sajida Kanwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Inga Jensch
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Gottfried J Palm
- Department of Structural Biology, Institute for Biochemistry, University of Greifswald, Greifswald, D-17487, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Braunschweig, D-38124, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, ZEIM, Helmholtz Centre for Infection Research, Braunschweig, D-38124, Germany
| | - Thomas P Kohler
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany
| | - Daniela Somplatzki
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, D-97070, Germany
| | - Werner Tegge
- Department of Chemical Biology, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Braunschweig, D-38124, Germany
| | - Howard F Jenkinson
- Department of Oral and Dental Science, University of Bristol, Bristol, UK
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, D-17487, Germany.,Research Center for Infectious Diseases, University of Würzburg, Würzburg, D-97070, Germany
| |
Collapse
|