1
|
de Jesus LB, Frota AF, de Araújo FM, de Jesus RLC, Costa MDFD, de Vasconcelos DFSA, Gois MB, Baccan GC, da Silva VDA, Costa SL. Effect of the Flavonoid Rutin on the Modulation of the Myenteric Plexuses in an Experimental Model of Parkinson's Disease. Int J Mol Sci 2024; 25:1037. [PMID: 38256111 PMCID: PMC10815896 DOI: 10.3390/ijms25021037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Recent discoveries have shown that enteric glial cells play an important role in different neurodegenerative disorders, such as Parkinson's disease (PD), which is characterized by motor dysfunctions caused by the progressive loss of dopaminergic neurons in the substance nigra pars compacta and non-motor symptoms including gastrointestinal dysfunction. In this study, we investigated the modulatory effects of the flavonoid rutin on the behavior and myenteric plexuses in a PD animal model and the response of enteric glia. Adult male Wistar rats were submitted to stereotaxic injection with 6-hydroxydopamine or saline, and they were untreated or treated with rutin (10 mg/kg) for 14 days. The ileum was collected to analyze tissue reactivity and immunohistochemistry for neurons (HuC/HuD) and enteric glial cells (S100β) in the myenteric plexuses. Behavioral tests demonstrated that treatment with rutin improved the motor capacity of parkinsonian animals and improved intestinal transit without interfering with the cell population; rutin treatment modulated the reactivity of the ileal musculature through muscarinic activation, reducing relaxation through the signaling pathway of nitric oxide donors, and increased the longitudinal contractility of the colon musculature in parkinsonian animals. Rutin revealed modulatory activities on the myenteric plexus, bringing relevant answers regarding the effect of the flavonoid in this system and the potential application of PD adjuvant treatment.
Collapse
Affiliation(s)
- Livia Bacelar de Jesus
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
| | - Annyta Fernandes Frota
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
| | - Fillipe Mendes de Araújo
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
| | - Rafael Leonne Cruz de Jesus
- Cardiovascular Physiology and Pharmacology Laboratory, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (R.L.C.d.J.); (D.F.S.A.d.V.)
| | - Maria de Fátima Dias Costa
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Marcelo Biondaro Gois
- Faculty of Health Sciences, Federal University of Rondonópolis, Rondonópolis 78736-900, MT, Brazil;
| | - Gyselle Chrystina Baccan
- Laboratory of Neuroendocrine-Immunology, Federal University of Bahia, Salvador 40170-110, BA, Brazil;
| | - Victor Diogenes Amaral da Silva
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Federal University of Bahia, Salvador 40170-110, BA, Brazil; (L.B.d.J.); (A.F.F.); (F.M.d.A.); (M.d.F.D.C.)
- National Institute for Translational Neurosciences (INCT/CNPq INNT), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
2
|
Mazzoni M, Cabanillas L, Costanzini A, Caremoli F, Million M, Larauche M, Clavenzani P, De Giorgio R, Sternini C. Distribution, quantification, and characterization of substance P enteric neurons in the submucosal and myenteric plexuses of the porcine colon. Cell Tissue Res 2024; 395:39-51. [PMID: 37982872 PMCID: PMC10774220 DOI: 10.1007/s00441-023-03842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
The pig is an important translational model for studying intestinal physiology and disorders for its many homologies with humans, including the organization of the enteric nervous system (ENS), the major regulator of gastrointestinal functions. This study focused on the quantification and neurochemical characterization of substance P (SP) neurons in the pig ascending (AC) and descending colon (DC) in wholemount preparations of the inner submucosal plexus (ISP), outer submucosal plexus (OSP), and myenteric plexus (MP). We used antibodies for the pan-neuronal marker HuCD, and choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS), markers for excitatory and inhibitory transmitters, for multiple labeling immunofluorescence and high-resolution confocal microscopy. The highest density of SP immunoreactive (IR) neurons was in the ISP (222/mm2 in the AC, 166/mm2 in the DC), where they make up about a third of HuCD-IR neurons, compared to the OSP and MP (19-22% and 13-17%, respectively, P < 0.001-0.0001). HuCD/SP/ChAT-IR neurons (up to 23%) were overall more abundant than HuCD/SP/nNOS-IR neurons (< 10%). Most SP-IR neurons contained ChAT-IR (62-85%), whereas 18-38% contained nNOS-IR with the highest peak in the OSP. A subpopulation of SP-IR neurons contains both ChAT- and nNOS-IR with the highest peak in the OSP and ISP of DC (33-36%) and the lowest in the ISP of AC (< 10%, P < 0.001). SP-IR varicose fibers were abundant in the ganglia. This study shows that SP-IR neurons are functionally distinct with variable proportions in different plexuses in the AC and DC reflecting diverse functions of specific colonic regions.
Collapse
Affiliation(s)
- Maurizio Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Bologna, Italy
| | - Luis Cabanillas
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Anna Costanzini
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Filippo Caremoli
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Current address: San Raffaele Hospital, Milan, Italy
| | - Mulugeta Million
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Muriel Larauche
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Bologna, Italy
| | - Roberto De Giorgio
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Catia Sternini
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Yamada NO, Wenduerma, Senda T. Altered microbiota caused by disordered gut motility leads to an overactivation of intestinal immune system in APC1638T mice. Med Mol Morphol 2023; 56:177-186. [PMID: 36995439 DOI: 10.1007/s00795-023-00352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Adenomatous polyposis coli (APC) is recognized as an antioncogene related to familial adenomatous polyposis and colorectal cancers. However, APC is a large protein with multiple binding partners, indicating APC has diverse roles besides as a tumor suppressor. We have ever studied the roles of APC by using APC1638T/1638T (APC1638T) mice. Through those studies, we have noticed stools of APC1638T mice were smaller than those of APC+/+ mice and hypothesized there be a disturbance in fecal formation processes in APC1638T mice. The gut motility was morphologically analyzed by immunohistochemical staining of the Auerbach's plexus. Gut microbiota was analyzed by terminal restriction fragment length polymorphism (T-RFLP). IgA concentration in stools was determined by enzyme-linked immunosorbent assay (ELISA). As results, macroscopic findings suggestive of large intestinal dysmotility and microscopic findings of disorganization and inflammation of the plexus were obtained in APC1638T mice. An alteration of microbiota composition, especially increased Bacteroidetes population was observed. Increases in IgA positive cells and dendritic cells in the ileum with high fecal IgA concentration were also confirmed, suggesting over-activation of gut immunity. Our findings will contribute to our understanding of APC's functions in the gastrointestinal motility, and lead to a development of novel therapies for gut dysmotility-related diseases.
Collapse
Affiliation(s)
- Nami O Yamada
- Department of Anatomy, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Wenduerma
- Department of Anatomy, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Takao Senda
- Department of Anatomy, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
4
|
Yuan PQ, Li T, Million M, Larauche M, Atmani K, Bellier JP, Taché Y. New insight on the enteric cholinergic innervation of the pig colon by central and peripheral nervous systems: reduction by repeated loperamide administration. Front Neurosci 2023; 17:1204233. [PMID: 37650102 PMCID: PMC10463754 DOI: 10.3389/fnins.2023.1204233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction The central and peripheral nervous systems provide cholinergic innervation in the colon. The ability to assess their neuroanatomical distinctions is still a challenge. The pig is regarded as a relevant translational model due to the close similarity of its enteric nervous system (ENS) with that of human. Opioid-induced constipation is one of the most common side effects of opioid therapy. Methods We developed an approach to differentiate the central and peripheral cholinergic innervation of the pig colon using double immunolabeling with a novel mouse anti-human peripheral type of choline acetyltransferase (hpChAT) antibody combined with a rabbit anti-common type of ChAT (cChAT) antibody, a reliable marker of cholinergic neurons in the central nervous system. We examined their spatial configurations in 3D images of the ENS generated from CLARITY-cleared colonic segments. The density was quantitated computationally using Imaris 9.7. We assessed changes in the distal colon induced by daily oral treatment for 4 weeks with the μ opioid receptor agonist, loperamide (0.4 or 3 mg/kg). Results The double labeling showed strong cChAT immunoreactive (ir) fibers in the cervical vagus nerve and neuronal somata and fibers in the ventral horn of the sacral (S2) cord while hpChAT immunoreactivity was visualized only in the ENS but not in the vagus or sacral neural structures indicating the selectivity of these two antibodies. In the colonic myenteric plexus, dense hpChAT-ir neurons and fibers and varicose cChAT-ir fibers surrounding hpChAT-ir neurons were simultaneously visualized in 3D. The density of cChAT-ir varicose fibers in the outer submucosal plexus of both males and females were higher in the transverse and distal colon than in the proximal colon and in the myenteric plexus compared to the outer submucosal plexus and there was no cChAT innervation in the inner submucosal plexus. The density of hpChAT in the ENS showed no segmental or plexus differences in both sexes. Loperamide at the highest dose significantly decreased the density hpChAT-ir fibers + somata in the myenteric plexus of the distal colon. Discussion These data showed the distinct density of central cholinergic innervation between myenteric and submucosal plexuses among colonic segments and the localization of cChAT-ir fibers around peripheral hpChAT neurons in 3D. The reduction of cholinergic myenteric innervation by chronic opiate treatment points to target altered prokinetic cholinergic pathway to counteract opiate constipation.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
- VA GLAHS, Los Angeles, CA, United States
| | - Tao Li
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Muriel Larauche
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Karim Atmani
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
| | - Jean-Pierre Bellier
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, UCLA David Geffen School of Medicine, Los Angeles, CA, United States
- VA GLAHS, Los Angeles, CA, United States
| |
Collapse
|
5
|
Smith M, Chhabra S, Shukla R, Kenny S, Almond S, Edgar D, Wilm B. The transition zone in Hirschsprung's bowel contains abnormal hybrid ganglia with characteristics of extrinsic nerves. J Cell Mol Med 2023; 27:287-298. [PMID: 36606638 PMCID: PMC9843525 DOI: 10.1111/jcmm.17659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
The aganglionic bowel in short-segment Hirschsprung's disease is characterized both by the absence of enteric ganglia and the presence of extrinsic thickened nerve bundles (TNBs). The relationship between the TNBs and the loss of enteric ganglia is unknown. Previous studies have described decreasing numbers of ganglia with increasing density of TNBs within the transition zone (TZ) between ganglionic and aganglionic gut, and there is some evidence of spatial contact between them in this region. To determine the cellular interactions involved, we have analysed the expression of perineurial markers of TNBs and enteric ganglionic markers for both neural cells and their ensheathing telocytes across four cranio-caudal segments consisting of most proximal ganglionic to most distal aganglionic from pull-through resected colon. We show that in the TZ, enteric ganglia are abnormal, being surrounded by perineurium cells characteristic of TNBs. Furthermore, short processes of ganglionic neurons extend caudally towards the aganglionic region, where telocytes in the TNB are located between the perineurium and nerve fibres into which they project telopodes. Thus, enteric ganglia within the TZ have abnormal structural characteristics, the cellular relationships of which are shared by the TNBs. These findings will help towards elucidation of the cellular mechanisms involved in the aetiology of Hirschsprung's disease.
Collapse
Affiliation(s)
- Megan Smith
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolMerseysideUK
| | - Sumita Chhabra
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolMerseysideUK,Department of Paediatric SurgeryAlder Hey Children's HospitalLiverpoolMerseysideUK
| | - Rajeev Shukla
- Department of HistopathologyAlder Hey Children's HospitalLiverpoolMerseysideUK
| | - Simon Kenny
- Department of Paediatric SurgeryAlder Hey Children's HospitalLiverpoolMerseysideUK
| | - Sarah Almond
- Department of Paediatric SurgeryAlder Hey Children's HospitalLiverpoolMerseysideUK
| | - David Edgar
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolMerseysideUK
| | - Bettina Wilm
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolMerseysideUK
| |
Collapse
|
6
|
Hydrogen and Methane Breath Test in the Diagnosis of Lactose Intolerance. Nutrients 2021; 13:nu13093261. [PMID: 34579138 PMCID: PMC8472045 DOI: 10.3390/nu13093261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/15/2021] [Indexed: 12/31/2022] Open
Abstract
The hydrogen (H2) breath test is a non-invasive investigation used to diagnose lactose intolerance (LI). Patients with LI may also expire increased amounts of methane (CH4) during a lactose test. The aim of this study is to evaluate the contribution of CH4 measurements. We tested 209 children (1–17 years old) with symptoms suggesting LI with lactose H2 and CH4 breath tests. The result was positive when the H2 excretion exceeded 20 parts per million (ppm) and the CH4 was 10 ppm above the baseline. A clinician, blinded for the results of the breath test, registered the symptoms. Of the patient population, 101/209 (48%) were negative for both H2 and CH4; 96/209 (46%) had a positive H2 breath test result; 31/96 (32%) were also positive for CH4; 12/209 (6%) patients were only positive for CH4. The majority of hydrogen producers showed symptoms, whereas this was only the case in half of the H2-negative CH4 producers. Almost all patients treated with a lactose-poor diet reported significant symptom improvement. These results indicate that CH4 measurements may possibly be of additional value for the diagnosis of LI, since 5.7% of patients were negative for H2 and positive for CH4, and half of them experienced symptoms during the test.
Collapse
|
7
|
do Carmo Neto JR, Braga YLL, da Costa AWF, Lucio FH, do Nascimento TC, dos Reis MA, Celes MRN, de Oliveira FA, Machado JR, da Silva MV. Biomarkers and Their Possible Functions in the Intestinal Microenvironment of Chagasic Megacolon: An Overview of the (Neuro)inflammatory Process. J Immunol Res 2021; 2021:6668739. [PMID: 33928170 PMCID: PMC8049798 DOI: 10.1155/2021/6668739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The association between inflammatory processes and intestinal neuronal destruction during the progression of Chagasic megacolon is well established. However, many other components play essential roles, both in the long-term progression and control of the clinical status of patients infected with Trypanosoma cruzi. Components such as neuronal subpopulations, enteric glial cells, mast cells and their proteases, and homeostasis-related proteins from several organic systems (serotonin and galectins) are differentially involved in the progression of Chagasic megacolon. This review is aimed at revealing the characteristics of the intestinal microenvironment found in Chagasic megacolon by using different types of already used biomarkers. Information regarding these components may provide new therapeutic alternatives and improve the understanding of the association between T. cruzi infection and immune, endocrine, and neurological system changes.
Collapse
Affiliation(s)
- José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Yarlla Loyane Lira Braga
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Arthur Wilson Florêncio da Costa
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fernanda Hélia Lucio
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thais Cardoso do Nascimento
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marlene Antônia dos Reis
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Mara Rubia Nunes Celes
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Flávia Aparecida de Oliveira
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinícius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
8
|
Huang Z, Liao L, Wang Z, Lu Y, Yan W, Cao H, Tan B. An efficient approach for wholemount preparation of the myenteric plexus of rat colon. J Neurosci Methods 2021; 348:109012. [PMID: 33249181 DOI: 10.1016/j.jneumeth.2020.109012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The nerve plexus of the enteric nervous system (ENS) plays a crucial part in regulating gastrointestinal functions, such as muscle contractile activity and nutrient absorption. Studying the nerve plexus can provide vital information for research on ENS disorders. Whole-mount preparation is an important technique for investigating the nerve plexus. However, currently available methods are time consuming and highly technical. NEW METHOD This study describes a simple and rapid method for preparing whole mounts of the longitudinal muscle and myenteric plexuses (LMMPs) of rat colon. Integral LMMPs can be easily separated from the underlying layer by using glass rods and wet cotton swabs. RESULTS The proposed method allows the easy separation of the LMMPs in intact sheets. Immunofluorescence histochemical staining of whole mounts enable clear visualization of enteric ganglia, nerve fibers, and several subtypes of neuronal populations residing in the myenteric plexus. COMPARISON WITH EXISTING METHODS Compared with existing procedures for whole-mount preparations, the proposed method achieves a quicker and more efficient preparation of high-quality LMMPs from intestinal segments in sufficient quantity. CONCLUSIONS This work provides a rapid method for efficiently preparing whole mounts of the intestines. Our method can be used for in situ observation of the morphological and functional alterations of the myenteric plexus for further studies on the ENS.
Collapse
Affiliation(s)
- Zitong Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lu Liao
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhesheng Wang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yulin Lu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Weiming Yan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bo Tan
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
9
|
Martins-Perles JVC, Bossolani GDP, Zignani I, de Souza SRG, Frez FCV, de Souza Melo CG, Barili E, de Souza Neto FP, Guarnier FA, Armani ALC, Cecchini R, Zanoni JN. Quercetin increases bioavailability of nitric oxide in the jejunum of euglycemic and diabetic rats and induces neuronal plasticity in the myenteric plexus. Auton Neurosci 2020; 227:102675. [PMID: 32474374 DOI: 10.1016/j.autneu.2020.102675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/06/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
Abstract
Considering the antioxidant, neuroprotective, inflammatory and nitric oxide modulatory actions of quercetin, the aim of this study was to test the effect of quercetin administration in drinking water (40 mg/day/rat) on neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), overall population of myenteric neurons (HuC/D) and nitric oxide (NO) levels in the jejunal samples from diabetic rats. Male Wistar rats were distributed into four groups (8 rats per group): euglycemic (E), euglycemic administered with quercetin (E+Q), diabetic (D) and diabetic administered with quercetin (D+Q). Rats were induced to diabetes with streptozotocin (35mg/kg/iv) and, after 120 days, the proximal jejunum were collected and processed for immunohistochemical (VIP, nNOS and HuC/D) and chemiluminescence (quantification of tissue NO levels) techniques. Diabetes mellitus reduced the number of nNOS-IR (immunoreactive) (p <0.05) and HuC/D-IR (p <0.001) neurons, however, promoted an increased morphometric area of nNOS-IR neurons (p <0.001) and VIP-IR varicosities (p <0.05). In D+Q group, neuroplasticity effects were observed on HuC/D-IR neurons, accompanied by a reduction of cell body area of neurons nNOS- and VIP-IR varicosities (p <0.05). The NO levels were increased in the E+Q (p <0.05) and D+Q group (p <0.001) compared to the control group. In conclusion, the results showed that quercetin supplementation increased the bioavailability of NO in the jejunum in euglycemic and mitigate the effects of diabetes on nNOS-IR neurons and VIP-IR varicosities in the myenteric plexus of diabetic rats.
Collapse
Affiliation(s)
| | - Gleison Daion Piovezana Bossolani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Sara Raquel Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Flávia Cristina Vieira Frez
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Carina Guimarães de Souza Melo
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil
| | - Emerson Barili
- Department of Statistic, Universidade Estadual de Maringá, Avenida Colombo, n 5790, Maringá, PR CEP 87020-900, Brazil
| | - Fernando Pinheiro de Souza Neto
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Flávia Alessandra Guarnier
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Alessandra Lourenço Cecchini Armani
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Rubens Cecchini
- Department of Pathology Sciences, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid
- Pr 445 Km 380, Londrina, PR CEP 86.057-970, Brazil
| | - Jacqueline Nelisis Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, n 5790 Bloco O-33, Maringá, PR CEP 87020-900, Brazil.
| |
Collapse
|
10
|
Yuan T, York JR, McCauley DW. Gliogenesis in lampreys shares gene regulatory interactions with oligodendrocyte development in jawed vertebrates. Dev Biol 2018; 441:176-190. [DOI: 10.1016/j.ydbio.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023]
|
11
|
Zséli G, Vida B, Szilvásy-Szabó A, Tóth M, Lechan RM, Fekete C. Neuronal connections of the central amygdalar nucleus with refeeding-activated brain areas in rats. Brain Struct Funct 2018; 223:391-414. [PMID: 28852859 PMCID: PMC5773374 DOI: 10.1007/s00429-017-1501-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
Abstract
Following fasting, satiety is accompanied by neuronal activation in brain areas including the central amygdalar nucleus (CEA). Since CEA is known to inhibit food intake, we hypothesized that CEA contributes to the termination of meal during refeeding. To better understand the organization of this satiety-related circuit, the interconnections of the CEA with refeeding-activated neuronal groups were elucidated using retrograde (cholera toxin-β subunit, CTB) and anterograde (phaseolus vulgaris leucoagglutinin, PHA-L) tracers in male rats. C-Fos-immunoreactivity was used as marker of neuronal activation. The refeeding-activated input of the CEA primarily originated from the paraventricular thalamic, parasubthalamic and parabrachial nuclei. Few CTB-c-Fos double-labeled neurons were detected in the prefrontal cortex, lateral hypothalamic area, nucleus of the solitary tract (NTS) and the bed nuclei of the stria terminalis (BNST). Only few refeeding-activated proopiomelanocortin-producing neurons of the arcuate nucleus projected to the CEA. Anterograde tract tracing revealed a high density of PHAL-labeled axons contacted with refeeding-activated neurons in the BNST, lateral hypothalamic area, parasubthalamic, paraventricular thalamic and parabrachial nuclei and NTS; a low density of labeled axons was found in the paraventricular hypothalamic nucleus. Chemogenetic activation of the medial CEA (CEAm) inhibited food intake during the first hour of refeeding, while activation of lateral CEA had no effect. These data demonstrate the existence of reciprocal connections between the CEA and distinct refeeding-activated hypothalamic, thalamic and brainstem nuclei, suggesting the importance of short feedback loops in the regulation of satiety and importance of the CEAm in the regulation of food intake during refeeding.
Collapse
Affiliation(s)
- Györgyi Zséli
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony St, Budapest, 1083, Hungary
- Neuroendocrinology Program, Semmelweis University Neurosciences Doctoral School, Budapest, Hungary
| | - Barbara Vida
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony St, Budapest, 1083, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Anett Szilvásy-Szabó
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony St, Budapest, 1083, Hungary
- Neuroendocrinology Program, Semmelweis University Neurosciences Doctoral School, Budapest, Hungary
| | - Mónika Tóth
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony St, Budapest, 1083, Hungary
| | - Ronald M Lechan
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Csaba Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony St, Budapest, 1083, Hungary.
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Tupper Research Institute, Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
12
|
Systemic gene delivery transduces the enteric nervous system of guinea pigs and cynomolgus macaques. Gene Ther 2017; 24:640-648. [PMID: 28771235 PMCID: PMC5658254 DOI: 10.1038/gt.2017.72] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/16/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Characterization of adeno-associated viral vector (AAV) mediated gene delivery to the enteric nervous system (ENS) was recently described in mice and rats. In these proof-of-concept experiments, we show that intravenous injections of clinically relevant AAVs can transduce the ENS in guinea pigs and non-human primates. Neonatal guinea pigs were given intravenous injections of either AAV8 or AAV9 vectors that contained a green fluorescent protein (GFP) expression cassette or PBS. Piglets were euthanized three weeks post-injection and tissues were harvested for immunofluorescent analysis. GFP expression was detected in myenteric and submucosal neurons along the length of the gastrointestinal tract in AAV8 injected guinea pigs. GFP positive neurons were found in dorsal motor nucleus of the vagus and dorsal root ganglia. Less transduction occurred in AAV9 treated tissues. Gastrointestinal tissues were analyzed from young cynomolgus macaques that received systemic injection of AAV9 GFP. GFP expression was detected in myenteric neurons of the stomach, small and large intestine. These data demonstrate that ENS gene delivery translates to larger species. This work develops tools for the field of neurogastroenterology to explore gut physiology and anatomy using emerging technologies such as optogenetics and gene editing. It also provides a basis to develop novel therapies for chronic gut disorders.
Collapse
|
13
|
Uranga JA, García-Martínez JM, García-Jiménez C, Vera G, Martín-Fontelles MI, Abalo R. Alterations in the small intestinal wall and motor function after repeated cisplatin in rat. Neurogastroenterol Motil 2017; 29. [PMID: 28261911 DOI: 10.1111/nmo.13047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gastrointestinal adverse effects occurring during cancer chemotherapy are well known and feared; those persisting once treatment has finished are relatively unknown. We characterized the alterations occurring in the rat small intestine, after repeated treatment with cisplatin. METHODS Male Wistar rats received saline or cisplatin (2 mg kg-1 week-1 , for 5 weeks, ip). Gastric motor function was studied non-invasively throughout treatment (W1-W5) and 1 week after treatment finalization (W6). During W6, upper gastrointestinal motility was also invasively studied and small intestinal samples were collected for histopathological and molecular studies. Structural alterations in the small intestinal wall, mucosa, submucosa, muscle layers, and lymphocytic nodules were histologically studied. Periodic acid-Schiff staining and immunohistochemistry for Ki-67, chromogranin A, and neuronal-specific enolase were used to detect secretory, proliferating, endocrine and neural cells, respectively. The expression of different markers in the tunica muscularis was analyzed by RT/qPCR. KEY RESULTS Repeated cisplatin induced motility alterations during and after treatment. After treatment (W6), the small intestinal wall showed histopathological alterations in most parameters measured, including a reduction in the thickness of circular and longitudinal muscle layers. Expression of c-KIT (for interstitial cells of Cajal), nNOS (for inhibitory motor neurons), pChAT, and cChAT (for excitatory motor neurons) increased significantly (although both ChATs to a lesser extent). CONCLUSIONS & INFERENCES Repeated cisplatin induces relatively long-lasting gut dysmotility in rat associated with important histopathological and molecular alterations in the small intestinal wall. In cancer survivors, the possible chemotherapy-induced histopathological, molecular, and functional intestinal sequelae should be evaluated.
Collapse
Affiliation(s)
- J A Uranga
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - J M García-Martínez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo de Compuestos químicos y materiales nanoestructurados con aplicaciones Avanzadas (QUINANOAP), Madrid, Spain
| | - C García-Jiménez
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo de Compuestos químicos y materiales nanoestructurados con aplicaciones Avanzadas (QUINANOAP), Madrid, Spain
| | - G Vera
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - M I Martín-Fontelles
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| | - R Abalo
- Depto. de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain
| |
Collapse
|
14
|
Immunostaining for Hu C/D and CD56 is useful for a definitive histopathological diagnosis of congenital and acquired isolated hypoganglionosis. Virchows Arch 2017; 470:679-685. [PMID: 28424865 DOI: 10.1007/s00428-017-2128-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 03/03/2017] [Accepted: 04/11/2017] [Indexed: 12/12/2022]
Abstract
Isolated hypoganglionosis (IHG) has been proposed as a distinct entity with two subtypes: congenital IHG (CIHG) and acquired IHG (AIHG). However, due to the rarity of the disease and the lack of defining histological criteria, the concept of IHG is not widely accepted. We studied paraffin-embedded intestinal specimens from 79 patients diagnosed with Hirschsprung's disease (HD) (n = 49), CIHG (n = 25), and AIHG (n = 5) collected between January 1996 and December 2015. Histopathological diagnosis of HD, CIHG, and AIHG was confirmed by hematoxylin and eosin staining and immunohistochemical staining using Hu C/D and CD56. We evaluated (immuno)histopathological findings, counted the number of ganglion cells, and measured the size of Auerbach's plexus. Hu C/D labeled neuronal cell bodies, whereas CD56 was detected in all neuronal components. In HD, all ganglion cells in Auerbach's plexus in the normoganglionic segment (NGS) were immunoreactive for Hu C/D, whereas in the aganglionic segment (AGS), these were replaced by CD56-positive extrinsic nerve fibers and bundles. The number of ganglion cells in AIHG and CIHG was significantly lower than in the NGS of HD (p < 0.05). Auerbach's plexus was significantly smaller in CIHG (p < 0.05) but in AIHG equivalent to the NGS in HD. In summary, immunostaining for Hu C/D and CD56 is useful for definitive histopathological diagnosis of IHG.
Collapse
|
15
|
Han X, Tang S, Dong L, Song L, Dong Y, Wang Y, Du Y. Loss of nitrergic and cholinergic neurons in the enteric nervous system of APP/PS1 transgenic mouse model. Neurosci Lett 2017; 642:59-65. [DOI: 10.1016/j.neulet.2017.01.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
|
16
|
de Souza SRG, de Miranda Neto MH, Martins Perles JVC, Vieira Frez FC, Zignani I, Ramalho FV, Hermes-Uliana C, Bossolani GDP, Zanoni JN. Antioxidant Effects of the Quercetin in the Jejunal Myenteric Innervation of Diabetic Rats. Front Med (Lausanne) 2017; 4:8. [PMID: 28224126 PMCID: PMC5293826 DOI: 10.3389/fmed.2017.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/19/2017] [Indexed: 12/31/2022] Open
Abstract
Purpose Enteric glial cells (EGCs) exert a critical role in the structural integrity, defense, and metabolic function of enteric neurons. Diabetes mellitus is a chronic disease characterized by metabolic disorders and chronic autonomic neuropathy. Quercetin supplementation, which is a potent antioxidant, has been used in order to reduce the effects of diabetes-induced oxidative stress. The purpose of this research was to investigate the effects of quercetin supplementation in the drinking water at a daily dose of 40 mg on the glial cells and neurons in the jejunum of diabetic rats. Materials and methods Twenty 90-day-old male adult Wistar rats were split into four groups: normoglycemic control (C), normoglycemic control supplemented with quercetin (Q), diabetic (D), and diabetic supplemented with quercetin (DQ). After 120 days, the jejunums were collected, and immunohistochemical technique was performed to label S-100-immunoreactive glial cells and HuC/D-immunoreactive neurons. Results An intense neuronal and glial reduction was observed in the jejunum of diabetic rats. Quercetin displayed neuroprotective effects due to reduced cell body areas of neurons and glial cells in Q and DQ groups compared to their controls (C and D groups). Interestingly, quercetin prevented the glial and neuronal loss with a higher density for the HuC/D-immunoreactive neurons (23.06%) and for the S100-immunoreactive glial cells (14.55%) in DQ group compared to D group. Conclusion Quercetin supplementation promoted neuroprotective effects through the reduction of neuronal and glial body areas and a slight prevention of neuronal and glial density reduction.
Collapse
Affiliation(s)
- Sara R Garcia de Souza
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | | | | | | | - Isabela Zignani
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | - Francielle Veiga Ramalho
- Department of Morphological Sciences, Universidade Estadual de Maringá , Maringá, Paraná , Brazil
| | | | | | | |
Collapse
|
17
|
Carbone SE, Jovanovska V, Brookes SJH, Nurgali K. Electrophysiological and morphological changes in colonic myenteric neurons from chemotherapy-treated patients: a pilot study. Neurogastroenterol Motil 2016; 28:975-84. [PMID: 26909894 PMCID: PMC5215581 DOI: 10.1111/nmo.12795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients receiving anticancer chemotherapy experience a multitude of gastrointestinal side-effects. However, the causes of these symptoms are uncertain and whether these therapeutics directly affect the enteric nervous system is unknown. Our aim was to determine whether the function and morphology of myenteric neurons are altered in specimens of the colon from chemotherapy-treated patients. METHODS Colon specimens were compared from chemotherapy-treated and non-treated patients following colorectal resections for removal of carcinoma. Intracellular electrophysiological recordings from myenteric neurons and immunohistochemistry were performed in whole mount preparations. KEY RESULTS Myenteric S neurons from chemotherapy-treated patients were hyperexcitable; more action potentials (11.4 ± 9.4, p < 0.05) were fired in response to depolarising current pulses than in non-treated patients (1.4 ± 0.5). The rheobase and the threshold to evoke action potentials were significantly lower for neurons from chemotherapy-treated patients compared to neurons from non-treated patients (p < 0.01). Fast excitatory postsynaptic potential reversal potential was more positive in neurons from chemotherapy-treated patients (p < 0.05). An increase in the number of neurons with translocation of Hu protein from the cytoplasm to the nucleus was observed in specimens from chemotherapy-treated patients (103 ± 25 neurons/mm(2) , 37.2 ± 7.0%, n = 8) compared to non-treated (26 ± 5 neurons/mm(2) , 11.9 ± 2.7%, n = 12, p < 0.01). An increase in the soma size of neuronal nitric oxide synthase-immunoreactive neurons was also observed in these specimens. CONCLUSIONS & INFERENCES This is the first study suggesting functional and structural changes in human myenteric neurons in specimens of colon from patients receiving anticancer chemotherapy. These changes may contribute to the causation of gastrointestinal symptoms experienced by chemotherapy-treated patients.
Collapse
Affiliation(s)
- S. E. Carbone
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria UniversityMelbourneVICAustralia
| | - V. Jovanovska
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria UniversityMelbourneVICAustralia
| | - S. J. H. Brookes
- Discipline of Human Physiology and Centre for NeuroscienceFlinders UniversityAdelaideSAAustralia
| | - K. Nurgali
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria UniversityMelbourneVICAustralia
| |
Collapse
|
18
|
Panizzon CPDNB, Zanoni JN, Hermes-Uliana C, Trevizan AR, Sehaber CC, Pereira RVF, Linden DR, Neto MHDM. Desired and side effects of the supplementation with l-glutamine and l-glutathione in enteric glia of diabetic rats. Acta Histochem 2016; 118:625-631. [PMID: 27470531 DOI: 10.1016/j.acthis.2016.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/07/2016] [Accepted: 07/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Enteric neuropathy associated with Diabetes Mellitus causes dysfunction in the digestive system, such as: nausea, diarrhea, constipation, vomiting, among others. The aim of this study was to compare the effects of supplementation with 2% l-glutamine and 1% l-glutathione on neurons and enteric glial cells of ileum of diabetic rats. METHODS Thirty male Wistar rats have been used according to these group distributions: Normoglycemic (N), Normoglycemic supplemented with l-glutamine (NG), Normoglycemic supplemented with l-glutathione (NGO), Diabetic (D), Diabetic supplemented with l-glutamine (DG) and Diabetic supplemented with l-glutathione (DGO). After 120days, the ileum was processed for immunohistochemistry of HuC/D and S100β. Quantitative and morphometric analysis have been performed. RESULTS Diabetic rats presented a decrease in the number of neurons when compared to normoglycemic animals. However, diabetes was not associated with a change in glial density. l-Glutathione prevented the neuronal death in diabetic rats. l-Glutathione increased a glial proliferation in diabetic rats. The neuronal area in diabetic rats increased in relation to the normoglycemics. The diabetic rats supplemented with l-glutamine and l-glutathione showed a smaller neuronal area in comparison to diabetic group. The glial cell area was a decreased in the diabetics. The diabetic rats supplemented with l-glutamine and l-glutathione did not have significant difference in the glial cell body area when compared to diabetic rats. CONCLUSION It is concluded that the usage of l-glutamine and l-glutathione as supplements presents both desired and side effects that are different for the same substance in considering normoglycemic or diabetic animals.
Collapse
|
19
|
Zséli G, Vida B, Martinez A, Lechan RM, Khan AM, Fekete C. Elucidation of the anatomy of a satiety network: Focus on connectivity of the parabrachial nucleus in the adult rat. J Comp Neurol 2016; 524:2803-27. [PMID: 26918800 DOI: 10.1002/cne.23992] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/09/2015] [Accepted: 02/22/2016] [Indexed: 01/01/2023]
Abstract
We hypothesized that brain regions showing neuronal activation after refeeding comprise major nodes in a satiety network, and tested this hypothesis with two sets of experiments. Detailed c-Fos mapping comparing fasted and refed rats was performed to identify candidate nodes of the satiety network. In addition to well-known feeding-related brain regions such as the arcuate, dorsomedial, and paraventricular hypothalamic nuclei, lateral hypothalamic area, parabrachial nucleus (PB), nucleus of the solitary tract and central amygdalar nucleus, other refeeding activated regions were also identified, such as the parastrial and parasubthalamic nuclei. To begin to understand the connectivity of the satiety network, the interconnectivity of PB with other refeeding-activated neuronal groups was studied following administration of anterograde or retrograde tracers into the PB. After allowing for tracer transport time, the animals were fasted and then refed before sacrifice. Refeeding-activated neurons that project to the PB were found in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamic area; arcuate, paraventricular, and dorsomedial hypothalamic nuclei; lateral hypothalamic area; parasubthalamic nucleus; central amygdalar nucleus; area postrema; and nucleus of the solitary tract. Axons originating from the PB were observed to closely associate with refeeding-activated neurons in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamus; paraventricular, arcuate, and dorsomedial hypothalamic nuclei; lateral hypothalamic area; central amygdalar nucleus; parasubthalamic nucleus; ventral posterior thalamic nucleus; area postrema; and nucleus of the solitary tract. These data indicate that the PB has bidirectional connections with most refeeding-activated neuronal groups, suggesting that short-loop feedback circuits exist in this satiety network. J. Comp. Neurol. 524:2803-2827, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Györgyi Zséli
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary, 1083.,Neuroendocrinology Program, Semmelweis University Neurosciences Doctoral School, Budapest, Hungary, 1085
| | - Barbara Vida
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary, 1083.,Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary, 1088
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, 79902.,Graduate Program in Pathobiology, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, 79902
| | - Ronald M Lechan
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts, 02111.,Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, 02111
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, 79902
| | - Csaba Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary, 1083.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center, Boston, Massachusetts, 02111
| |
Collapse
|
20
|
PEREIRA RENATAV, LINDEN DAVIDR, MIRANDA-NETO MARCÍLIOH, ZANONI JACQUELINEN. Differential effects in CGRPergic, nitrergic, and VIPergic myenteric innervation in diabetic rats supplemented with 2% L-glutamine. ACTA ACUST UNITED AC 2016; 88 Suppl 1:609-22. [DOI: 10.1590/0001-3765201620150228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/03/2015] [Indexed: 12/29/2022]
Abstract
ABSTRACT The objective of this study was to investigate the effects of 2% L-glutamine supplementation on myenteric innervation in the ileum of diabetic rats, grouped as follows: normoglycemic (N); normoglycemic supplemented with L-glutamine (NG); diabetic (D); and diabetic supplemented with L-glutamine (DG). The ileums were subjected to immunohistochemical techniques to localize neurons immunoreactive to HuC/D protein (HuC/D-IR) and neuronal nitric oxide synthase enzyme (nNOS-IR) and to analyze varicosities immunoreactive to vasoactive intestinal polypeptide (VIP-IR) and calcitonin gene-related peptide (CGRP-IR). L-Glutamine in the DG group (i) prevented the increase in the cell body area of nNOS-IR neurons, (ii) prevented the increase in the area of VIP-IR varicosities, (iii) did not prevent the loss of HuC/D-IR and nNOS-IR neurons per ganglion, and (iv) reduced the size of CGRP-IR varicosities. L-Glutamine in the NG group reduced (i) the number of HuC/D-IR and nNOS-IR neurons per ganglion, (ii) the cell body area of nNOS-IR neurons, and (iii) the size of VIP-IR and CGRP-IR varicosities. 2% L-glutamine supplementation exerted differential neuroprotective effects in experimental diabetes neuropathy that depended on the type of neurotransmitter analyzed. However, the effects of this dose of L-glutamine on normoglycemic animals suggests there are additional actions of this beyond its antioxidant capacity.
Collapse
|
21
|
Tashima CM, Hermes-Uliana C, Perles JVCM, de Miranda Neto MH, Zanoni JN. Vitamins C and E (ascorbate/α-tocopherol) provide synergistic neuroprotection in the jejunum in experimental diabetes. ACTA ACUST UNITED AC 2015; 22:241-8. [PMID: 26433445 DOI: 10.1016/j.pathophys.2015.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022]
Abstract
The present study evaluated the synergistic effects of the association of ascorbic acid and α-tocopherol on myenteric in the jejunum of diabetic rats. The rats were randomly divided into four equal groups: untreated normoglycemic (UC), untreated diabetic (UD), ascorbic acid and α-tocopherol-treated normoglycemic (CAE) and ascorbic acid and α-tocopherol-treated diabetic (DAE). The rats from the CAE and DAE group received supplementation with ascorbic acid (1g/L in water) and α-tocopherol (1% in chow). At 210-days-old, the animals were sacrified and their jejunum was collected and submitted to immunohistochemistry. Quantitative and/or morphometric analysis were performed. Supplementation with ascorbic acid and α-tocopherol prevented the cell loss of myenteric neurons expressing HuC/D and TrkA in an equivalent proportion. We also observed a reduction of the CGRP nerve fiber varicosities and the prevention of the increased cell body size of submucosal VIP neurons (p<0.05). The association of ascorbic acid and α-tocopherol reduced the deleterious effects of diabetes promoting protection on the enteric neurons.
Collapse
Affiliation(s)
- Cristiano Massao Tashima
- Department of Health and Education, Universidade Estadual do Norte do Paraná, 86360-000 Paraná, Brazil
| | - Catchia Hermes-Uliana
- Universidade Federal de Mato Grosso do Sul, 79400-000 Coxim, Mato Grosso do Sul, Brazil
| | | | | | - Jacqueline Nelisis Zanoni
- Department of Morphological Sciences, Universidade Estadual de Maringá, 87020-900 Maringá, Paraná, Brazil.
| |
Collapse
|
22
|
Aqueous Extract of Agaricus blazei Murrill Prevents Age-Related Changes in the Myenteric Plexus of the Jejunum in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:287153. [PMID: 25960748 PMCID: PMC4415631 DOI: 10.1155/2015/287153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/27/2023]
Abstract
This study evaluated the effects of the supplementation with aqueous extract of Agaricus blazei Murrill (ABM) on biometric and blood parameters and quantitative morphology of the myenteric plexus and jejunal wall in aging Wistar rats. The animals were euthanized at 7 (C7), 12 (C12 and CA12), and 23 months of age (C23 and CA23). The CA12 and CA23 groups received a daily dose of ABM extract (26 mg/animal) via gavage, beginning at 7 months of age. A reduction in food intake was observed with aging, with increases in the Lee index, retroperitoneal fat, intestinal length, and levels of total cholesterol and total proteins. Aging led to a reduction of the total wall thickness, mucosa tunic, villus height, crypt depth, and number of goblet cells. In the myenteric plexus, aging quantitatively decreased the population of HuC/D(+) neuronal and S100(+) glial cells, with maintenance of the nNOS(+) nitrergic subpopulation and increase in the cell body area of these populations. Supplementation with the ABM extract preserved the myenteric plexus in old animals, in which no differences were detected in the density and cell body profile of neurons and glial cells in the CA12 and CA23 groups, compared with C7 group. The supplementation with the aqueous extract of ABM efficiently maintained myenteric plexus homeostasis, which positively influenced the physiology and prevented the death of the neurons and glial cells.
Collapse
|
23
|
Abstract
The myenteric plexus of the enteric nervous system controls the movement of smooth muscles in the gastrointestinal system. They extend their axons between two peripheral smooth muscle layers to form a tubular meshwork arborizing the gut wall. How a tubular axonal meshwork becomes established without invading centrally toward the gut epithelium has not been addressed. We provide evidence here that sonic hedgehog (Shh) secreted from the gut epithelium prevents central projections of enteric axons, thereby forcing their peripheral tubular distribution. Exclusion of enteric central projections by Shh requires its binding partner growth arrest specific gene 1 (Gas1) and its signaling component smoothened (Smo) in enteric neurons. Using enteric neurons differentiated from neurospheres in vitro, we show that enteric axon growth is not inhibited by Shh. Rather, when Shh is presented as a point source, enteric axons turn away from it in a Gas1-dependent manner. Of the Gαi proteins that can couple with Smo, G protein α Z (Gnaz) is found in enteric axons. Knockdown and dominant negative inhibition of Gnaz dampen the axon-repulsive response to Shh, and Gnaz mutant intestines contain centrally projected enteric axons. Together, our data uncover a previously unsuspected mechanism underlying development of centrifugal tubular organization and identify a previously unidentified effector of Shh in axon guidance.
Collapse
|
24
|
Sousa FC, Schamber CR, Amorin SSS, Natali MRM. Effect of fumonisin-containing diet on the myenteric plexus of the jejunum in rats. Auton Neurosci 2014; 185:93-9. [PMID: 25183308 DOI: 10.1016/j.autneu.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
Fumonisins are mycotoxins that naturally occur as contaminants in grains that are destined for animal and human consumption. These mycotoxins cause hepatotoxic, nephrotoxic, carcinogenic, teratogenic, immunotoxic, and neurotoxic effects in different intensities based on dose, time of exposure, and animal species. In the present study, male Wistar rats were fed between postnatal days 21 and 63 with diets that contained fumonisins B1+B2 at concentrations of 1 and 3mg/kg. The objective of the present study was to evaluate the effects of fumonisins on food intake, growth, weight gain, serum activity of the alanine aminotransferase and aspartate aminotransferase enzymes, and quantitative and morphometric parameters of myenteric neurons in the jejunum that are immunoreactive to HuC/D protein and neuronal nitric oxide synthase enzyme (nNOS). Diets that contained fumonisins did not significantly alter food intake or body and blood parameters. We did not observe significant differences in the neuronal density and proportion of nitrergic neurons but found a significant reduction of cell body areas in both neuronal populations. This study is the first to report the effects of fumonisins in the enteric nervous system. The possible mechanisms by which fumonisins impair neuronal development and the use of the enteric nervous system as a tool for the study of the neurotoxic effects of fumonisins are discussed. In conclusion, fumonisin-containing food negatively affected the growth of myenteric neurons.
Collapse
Affiliation(s)
- Fernando Carlos Sousa
- Coordenação de Ciências Biológicas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Brazil.
| | | | | | | |
Collapse
|
25
|
Desmet AS, Cirillo C, Vanden Berghe P. Distinct subcellular localization of the neuronal marker HuC/D reveals hypoxia-induced damage in enteric neurons. Neurogastroenterol Motil 2014; 26:1131-43. [PMID: 24861242 DOI: 10.1111/nmo.12371] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Correct neuronal identification is essential to study neurons in health and disease. Although commonly used as pan-neuronal marker, HuC/D's expression pattern varies substantially between healthy and (patho)physiological conditions. This heterogenic labeling has received very little attention. We sought to investigate the subcellular HuC/D localization in enteric neurons in different conditions. METHODS The localization of neuronal RNA-binding proteins HuC/D was investigated by immunohistochemistry in the mouse myenteric plexus using different toxins and caustic agents. Preparations were also stained with Sox10 and glial fibrillary acidic protein (GFAP) antibodies to assess enteric glial cell appearance. KEY RESULTS Mechanically induced tissue damage, interference with the respiratory chain and oxygen (O2 ) deprivation increased nuclear HuC/D immunoreactivity. This effect was paralleled by a distortion of the GFAP-labeled glial network along with a loss of Sox10 expression and coincided with the activation of a non-apoptotic genetic program. Chemically induced damage and specific noxious stimuli did not induce a change in HuC/D immunoreactivity, supporting the specific nature of the nuclear HuC/D localization. CONCLUSIONS & INFERENCES HuC/D is not merely a pan-neuronal marker but its subcellular localization also reflects the condition of a neuron at the time of fixation. The functional meaning of this change in HuC/D localization is not entirely clear, but disturbance in O2 supply in combination with the support of enteric glial cells seems to play a crucial role. The molecular consequence of changes in HuC/D expression needs to be further investigated.
Collapse
Affiliation(s)
- A-S Desmet
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for GastroIntestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
26
|
Is L-glutathione more effective than L-glutamine in preventing enteric diabetic neuropathy? Dig Dis Sci 2014; 59:937-48. [PMID: 24370785 DOI: 10.1007/s10620-013-2993-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diabetes and its complications appear to be multifactorial. Substances with antioxidant potential have been used to protect enteric neurons in experimental diabetes. AIM This study evaluated the effects of supplementation with L-glutamine and L-glutathione on enteric neurons in the jejunum in diabetic rats. METHODS Rats at 90 days of age were distributed into six groups: normoglycemic, normoglycemic supplemented with 2 % L-glutamine, normoglycemic supplemented with 1 % L-glutathione, diabetic (D), diabetic supplemented with 2 % L-glutamine (DG), and diabetic supplemented with 1 % L-glutathione (DGT). After 120 days, the jejunums were immunohistochemically stained for HuC/D+ neuronal nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP). Western blot was performed to evaluate nNOS and VIP. Submucosal and myenteric neurons were quantitatively and morphometrically analyzed. RESULTS Diabetic neuropathy was observed in myenteric HuC/D, nNOS, and VIP neurons (p < 0.05). In the submucosal plexus, diabetes did not change nitrergic innervation but increased VIPergic neuronal density and body size (p < 0.05). Supplementation with L-glutathione prevented changes in HuC/D neurons in the enteric plexus (p < 0.05), showing that supplementation with L-glutathione was more effective than with L-glutamine. Myenteric nNOS neurons in the DGT group exhibited a reduced density (34.5 %) and reduced area (p < 0.05). Submucosal neurons did not exhibit changes. The increase in VIP-expressing neurons was prevented in the submucosal plexus in the DG and DGT groups (p < 0.05). CONCLUSION Supplementation with L-glutathione exerted a better neuroprotective effect than L-glutamine and may prevent the development of enteric diabetic neuropathy.
Collapse
|
27
|
Zhang Y, Bitner D, Pontes Filho AA, Li F, Liu S, Wang H, Yang F, Adhikari S, Gordon J, Srinivasan S, Hu W. Expression and function of NIK- and IKK2-binding protein (NIBP) in mouse enteric nervous system. Neurogastroenterol Motil 2014; 26:77-97. [PMID: 24011459 PMCID: PMC3962790 DOI: 10.1111/nmo.12234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/15/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND NIK- and IKK2-binding protein (NIBP)/TRAPPC9 is expressed in brain neurons, and human NIBP mutations are associated with neurodevelopmental disorders. The cellular distribution and function of NIBP in the enteric nervous system (ENS) remain unknown. METHODS Western blot and reverse transcription-polymerase chain reaction analysis were used respectively to identify the protein and mRNA expression of NIBP and other neuronal markers. Multi-labeled immunofluorescent microscopy and confocal image analysis were used to examine the cellular distribution of NIBP-like immunoreactivity (IR) in whole mount intestine. Enteric neuronal cell line (ENC) was infected with lentivirus carrying NIBP or its shRNA expression vectors and treated with vehicle or tumor necrosis factor (TNF)α. KEY RESULTS NIBP is expressed at both mRNA and protein levels in different regions and layers of the mouse intestine. NIBP-like-IR was co-localized with various neuronal markers, but not with glial, smooth muscular, or interstitial cells of Cajal markers. A small population of NIBP-expressing cells and fibers in extra-ganglionic and intra-ganglionic area were negative for pan-neuronal markers HuD or Peripherin. Relatively high NIBP-like-IR was found in 35-44% of myenteric neurons and 9-10% of submucosal neurons. Approximately 98%, 87%, and 43% of these relatively high NIBP-expressing neurons were positive for choline acetyltransferase, neuronal nitric oxide synthase and Calretinin, respectively. NIBP shRNA knockdown in ENC inhibited TNFα-induced NFκB activation and neuronal differentiation, whereas NIBP overexpression promoted it. CONCLUSIONS & INFERENCES NIBP is extensively expressed in the ENS with relatively high level in a subpopulation of enteric neurons. Various NIBP expression levels in different neurons may represent dynamic trafficking or posttranslational modification of NIBP in some functionally active neurons and ultimately regulate ENS plasticity.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Daniel Bitner
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Adalto Alfredo Pontes Filho
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Fang Li
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Shu Liu
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Hong Wang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Fan Yang
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Sam Adhikari
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Jennifer Gordon
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University, 615 Michael St., Atlanta, GA 30322 and Atlanta VAMC, Decatur, GA, 30331
| | - Wenhui Hu
- Department of Neuroscience, Temple University School of Medicine, 3500 N Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
28
|
Wang GD, Wang XY, Xia Y, Wood JD. Dietary glutamate: interactions with the enteric nervous system. J Neurogastroenterol Motil 2013; 20:41-53. [PMID: 24466444 PMCID: PMC3895608 DOI: 10.5056/jnm.2014.20.1.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND/AIMS Digestion of dietary protein elevates intraluminal concentrations of glutamate in the small intestine, some of which gain access to the enteric nervous system (ENS). Glutamate, in the central nervous system (CNS), is an excitatory neurotransmitter. A dogma that glutamatergic neurophysiology in the ENS recapitulates CNS glutamatergic function persists. We reassessed the premise that glutamatergic signaling in the ENS recapitulates its neurotransmitter role in the CNS. METHODS Pharmacological analysis of actions of receptor agonists and antagonists in concert with immunohistochemical localization of glutamate transporters and receptors was used. Analysis focused on intracellularly-recorded electrical and synaptic behavior of ENS neurons, on stimulation of mucosal secretion by secretomotor neurons in the submucosal plexus and on muscle contractile behavior mediated by musculomotor neurons in the myenteric plexus. RESULTS Immunoreactivity for glutamate was expressed in ENS neurons. ENS neurons expressed immunoreactivity for the EAAC-1 glutamate transporter. Neither L-glutamate nor glutamatergic receptor agonists had excitatory actions on ENS neurons. Metabotropic glutamatergic receptor agonists did not directly stimulate neurogenic mucosal chloride secretion. Neither L-glutamate nor the metabotropic glutamatergic receptor agonist, aminocyclopentane-1,3-dicarboxylic acid (ACPD), changed the mean amplitude of spontaneously occurring contractions in circular or longitudinal strips of intestinal wall from either guinea pig or human small intestinal preparations. CONCLUSIONS Early discoveries, for excitatory glutamatergic neurotransmission in the CNS, inspired enthusiasm that investigation in the ENS would yield discoveries recapitulating the CNS glutamatergic story. We found this not to be the case.
Collapse
Affiliation(s)
- Guo-Du Wang
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xi-Yu Wang
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Yun Xia
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA. ; Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jackie D Wood
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
29
|
Zacharko-Siembida A, Valverde Piedra JL, Szymańczyk S, Arciszewski MB. Immunolocalization of NOS, VIP, galanin and SP in the small intestine of suckling pigs treated with red kidney bean (Phaseolus vulgaris) lectin. Acta Histochem 2013; 115:219-25. [PMID: 22819292 DOI: 10.1016/j.acthis.2012.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 01/29/2023]
Abstract
Lectins belong to a family of glycoproteins that can act both beneficially and detrimentally on the morphology of the small intestine. The aim of the study was to determine whether experimental treatment with red kidney bean (Phaseolus vulgaris) lectin influences the chemical code of the small intestine nervous system of suckling pigs. The immunolocalization sites of vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), substance P (SP) and galanin were determined in control and lectin-treated animals. In all segments of the small intestine (duodenum, jejunum, ileum), the subpopulations of VIP-, NOS-, SP- and galanin-immunoreactive (IR) myenteric neurons were unchanged. After lectin stimulation, increased proportions of NOS-IR and decreased numbers of VIP-IR submucous neurons/mucosa innervating nerve fibers were observed in the duodenum, jejunum and ileum. In lectin-treated animals down-regulation of submucous neurons expressing SP and up-regulation of galanin-IR submucous neurons were seen in the duodenum and jejunum (but not in the ileum). The distribution patterns of NOS-IR, galanin-IR and SP-IR nerve fibers supplying the duodenum, jejunum and ileum of the lectin-treated animals showed no substantial differences in relation to control piglets. We conclude that exposure to red kidney bean (P. vulgaris) lectin substantially changes the chemical content of VIP, NOS, SP and galanin in submucous neurons of the small intestine. These results are in line with previous findings outlining the key role(s) of these substances in enteric neuroplasticity processes and may constitute the basis for further functional studies on maturation of the gut.
Collapse
Affiliation(s)
- Anna Zacharko-Siembida
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, Akademicka 12, 20-033, Lublin, Poland
| | | | | | | |
Collapse
|
30
|
Eisenman ST, Gibbons SJ, Singh RD, Bernard CE, Wu J, Sarr MG, Kendrick ML, Larson DW, Dozois EJ, Shen KR, Farrugia G. Distribution of TMEM100 in the mouse and human gastrointestinal tract--a novel marker of enteric nerves. Neuroscience 2013; 240:117-28. [PMID: 23485812 DOI: 10.1016/j.neuroscience.2013.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/30/2013] [Accepted: 02/14/2013] [Indexed: 02/02/2023]
Abstract
Identification of markers of enteric neurons has contributed substantially to our understanding of the development, normal physiology, and pathology of the gut. Previously identified markers of the enteric nervous system can be used to label all or most neuronal structures or for examining individual cells by labeling just the nucleus or cell body. Most of these markers are excellent but have some limitations. Transmembrane protein 100 (TMEM100) is a gene at locus 17q32 encoding a 134-amino acid protein with two hypothetical transmembrane domains. TMEM100 expression has not been reported in adult mammalian tissues but does appear in the ventral neural tube of embryonic mice and plays a role in signaling pathways associated with development of the enteric nervous system. We showed that TMEM100 messenger RNA is expressed in the gastrointestinal tract and demonstrated that TMEM100 is a membrane-associated protein. Furthermore TMEM100 immunoreactivity was restricted to enteric neurons and vascular tissue in the muscularis propria of all regions of the mouse and human gastrointestinal tract. TMEM100 immunoreactivity colocalized with labeling for the pan-neuronal marker protein gene product 9.5 (PGP9.5) but not with the glial marker S100ß or Kit, a marker of interstitial cells of Cajal. The signaling molecule, bone morphogenetic protein (BMP) 4, was also expressed in enteric neurons of the human colon and co-localized with TMEM100. TMEM100 is also expressed in neuronal cell bodies and fibers in the mouse brain and dorsal root ganglia. We conclude that TMEM100 is a novel, membrane-associated marker for enteric nerves and is as effective as PGP9.5 for identifying neuronal structures in the gastrointestinal tract. The expression of TMEM100 in the enteric nervous system may reflect a role in the development and differentiation of cells through a transforming growth factor β, BMP or related signaling pathway.
Collapse
Affiliation(s)
- S T Eisenman
- Enteric Neuroscience Program, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sadeghinezhad J, Tootian Z, Latorre R, Sorteni C, Chiocchetti R. Intrinsic Innervation of the Persian Squirrel (Sciurus anomalus) Ileum. Anat Histol Embryol 2012; 42:201-12. [DOI: 10.1111/ahe.12003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 08/08/2012] [Indexed: 12/31/2022]
Affiliation(s)
| | - Z. Tootian
- Department of Basic Sciences; Faculty of Veterinary Medicine; University of Tehran; Tehran; Iran
| | - R. Latorre
- Department of Veterinary Medical Science; University of Bologna; Ozzano dell'Emilia (Bologna); Italy
| | - C. Sorteni
- Department of Veterinary Medical Science; University of Bologna; Ozzano dell'Emilia (Bologna); Italy
| | - R. Chiocchetti
- Department of Veterinary Medical Science; University of Bologna; Ozzano dell'Emilia (Bologna); Italy
| |
Collapse
|
32
|
CaMKII is essential for the function of the enteric nervous system. PLoS One 2012; 7:e44426. [PMID: 22952977 PMCID: PMC3432132 DOI: 10.1371/journal.pone.0044426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
Background Ca2+/calmodulin-dependent protein kinases (CaMKs) are major downstream mediators of neuronal calcium signaling that regulate multiple neuronal functions. CaMKII, one of the key CaMKs, plays a significant role in mediating cellular responses to external signaling molecules. Although calcium signaling plays an essential role in the enteric nervous system (ENS), the role of CaMKII in neurogenic intestinal function has not been determined. In this study, we investigated the function and expression pattern of CaMKII in the ENS across several mammalian species. Methodology/Principal Findings CaMKII expression was characterized by immunofluorescence analyses and Western Blot. CaMKII function was examined by intracellular recordings and by assays of colonic contractile activity. Immunoreactivity for CaMKII was detected in the ENS of guinea pig, mouse, rat and human preparations. In guinea pig ENS, CaMKII immunoreactivity was enriched in both nitric oxide synthase (NOS)- and calretinin-containing myenteric plexus neurons and non-cholinergic secretomotor/vasodilator neurons in the submucosal plexus. CaMKII immunoreactivity was also expressed in both cholinergic and non-cholinergic neurons in the ENS of mouse, rat and human. The selective CaMKII inhibitor, KN-62, suppressed stimulus-evoked purinergic slow EPSPs and ATP-induced slow EPSP-like response in guinea pig submucosal plexus, suggesting that CaMKII activity is required for some metabotropic synaptic transmissions in the ENS. More importantly, KN-62 significantly suppressed tetrodotoxin-induced contractile response in mouse colon, which suggests that CaMKII activity is a major determinant of the tonic neurogenic inhibition of this tissue. Conclusion ENS neurons across multiple mammalian species express CaMKII. CaMKII signaling constitutes an important molecular mechanism for controlling intestinal motility and secretion by regulating the excitability of musculomotor and secretomotor neurons. These findings revealed a fundamental role of CaMKII in the ENS and provide clues for the treatment of intestinal dysfunctions.
Collapse
|
33
|
Baldassano S, Wang GD, Mulè F, Wood JD. Glucagon-like peptide-1 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro. Am J Physiol Gastrointest Liver Physiol 2012; 302:G352-8. [PMID: 22075777 PMCID: PMC3287398 DOI: 10.1152/ajpgi.00333.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (I(sc)), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in I(sc) that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9-39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase-IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks that control secretomotor functions.
Collapse
Affiliation(s)
- Sara Baldassano
- 1Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; and ,2Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, University of Palermo, Palermo, Italy
| | - Guo-Du Wang
- 1Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; and
| | - Flavia Mulè
- 2Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari, University of Palermo, Palermo, Italy
| | - Jackie D. Wood
- 1Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio; and
| |
Collapse
|
34
|
Wood JD, Liu S, Drossman DA, Ringel Y, Whitehead WE. Anti-enteric neuronal antibodies and the irritable bowel syndrome. J Neurogastroenterol Motil 2012; 18:78-85. [PMID: 22323991 PMCID: PMC3271258 DOI: 10.5056/jnm.2012.18.1.78] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/11/2011] [Accepted: 11/19/2011] [Indexed: 12/11/2022] Open
Abstract
Background/Aims Functional gastrointestinal disorders are those in which no abnormal metabolic or physical processes, which can account for the symptoms, can be identified. The irritable bowel syndrome (IBS) is a significant functional disorder, which affects 10-20 percent of the population worldwide. Predominant symptoms of IBS are abnormal defecation associated with abdominal pain, both of which may be exacerbated by psychogenic stress. Our study was designed to test a hypothesis that symptoms in a subset of patients with a diagnosis of IBS are associated with an autoimmune degenerative neuropathy in the enteric nervous system. Methods Serum was collected from Rome II-IBS patients and controls at the University of North Carolina Functional Gastrointestinal Diseases Center. Assay procedures were immunohistochemical localization of antibody binding to enteric neurons and human protein microarray assay for antigens recognized by antibodies in the sera. Results Eighty-seven percent of IBS sera and 59% of control sera contained anti-enteric neuronal antibodies. Antibody immunostaining was seen in the nucleus and cytoplasm of neurons in the enteric nervous system. Protein microarray analysis detected antibody reactivity for autoantigens in serum with anti-enteric neuronal antibodies and no reactivity for the same autoantigens in samples not containing anti-enteric neuronal antibodies in our immunostaining assay. Antibodies in sera from IBS patients recognized only 3 antigens out of an 8,000 immunoprotein array. The 3 antigens were: (1) a nondescript ribonucleoprotein (RNP-complex); (2) small nuclear ribonuclear polypeptide A; and (3) Ro-5,200 kDa. Conclusions Results of the present study suggest that symptoms in a subset of IBS patients might be a reflection of enteric neuronal damage or loss, caused by circulating anti-enteric autoimmune antibodies.
Collapse
Affiliation(s)
- Jackie D Wood
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, Ohio, USA
| | | | | | | | | |
Collapse
|
35
|
Pereira RVF, Tronchini EA, Tashima CM, Alves EPB, Lima MM, Zanoni JN. L-glutamine supplementation prevents myenteric neuron loss and has gliatrophic effects in the ileum of diabetic rats. Dig Dis Sci 2011; 56:3507-16. [PMID: 21710226 DOI: 10.1007/s10620-011-1806-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Accepted: 06/14/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Peripheral neuropathy caused chronically by diabetes mellitus is related to exacerbation of oxidative stress and a significant reduction in important endogenous antioxidants. L: -Glutamine is an amino acid involved in defense mechanisms and is a substrate for the formation of glutathione, the major endogenous cellular antioxidant. AIM This study investigated the effects of 2% L: -glutamine supplementation on peripheral diabetic neuropathy and enteric glia in the ileum in rats. METHODS Male Wistar rats were divided into four groups: normoglycemics (N), normoglycemics supplemented with L: -glutamine (NG), diabetics (D), and diabetics supplemented with L: -glutamine (DG). After 120 days, the ileums were processed for HuC/D and S100 immunohistochemistry. Quantitative and morphometric analysis was performed. RESULTS Diabetes significantly reduced the number of HuC/D-immunoreactive myenteric neurons per unit area and per ganglion in group D compared with normoglycemic animals (group N). L: -Glutamine (2%) prevented neuronal death induced by diabetes (group DG) compared with group D. The glial density per unit area did not change with diabetes (group D) but was significantly reduced after L: -glutamine supplementation (groups NG and DG). Ganglionic glial density was similar among the four groups. The neuronal area was not altered in groups D and DG. Glial size was reduced in group D; this was reversed by L: -glutamine supplementation (group DG). CONCLUSIONS We concluded that 2% L: -glutamine had neuroprotective effects directly on myenteric neurons and indirectly through glial cells, which had gliatrophic effects.
Collapse
Affiliation(s)
- Renata Virginia Fernandes Pereira
- Department of Morphological Sciences, Universidade Estadual de Maringá, Avenida Colombo, nº 5790 Bloco H-79, Maringá, PR, CEP 87020-900, Brazil.
| | | | | | | | | | | |
Collapse
|
36
|
Increased proportion of nitric oxide synthase immunoreactive neurons in rat ileal myenteric ganglia after severe acute pancreatitis. BMC Gastroenterol 2011; 11:127. [PMID: 22111589 PMCID: PMC3250940 DOI: 10.1186/1471-230x-11-127] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 11/23/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) remains a potentially life-threatening disease. Gastrointestinal motility disturbance such as intestinal ileus is seen in every case. By now, the mechanisms of pancreatitis-induced ileus are largely unknown. The main purpose of the present study was to observe changes of nitric oxide synthase-immunoreactive (NOS-IR) neurons in ileal myenteric ganglia in SAP rats with gastrointestinal dysmotility, trying to explore underlying nervous mechanisms of pancreatitis-induced ileus. METHODS Twenty Sprague Dawley rats were randomly divided into sham operated group and SAP group. SAP was induced by retrograde cholangiopancreatic duct injection of 5% sodium taurocholate. Abdominal X-ray and intestinal transit were performed to detect the existence of paralytic ileus and intestinal dysmotility. Pathological damage of pancreas was evaluated. Double-immunolabeling was employed for the whole-mount preparations of ileal myenteric ganglia. The morphology of NOS-IR neurons were observed and the percentage of NOS-IR neurons was calculated based on the total Hu-immunoreactive neurons. Total RNA of ileum was extracted according to Trizol reagent protocol. Neuronal NOS (nNOS) mRNA expression was evaluated by RT-PCR. RESULTS The small intestinal transit index in the SAP group was significantly lower compared with the sham operated group (29.21±3.68% vs 52.48±6.76%, P<0.01). The percentage of NOS-IR neurons in ileal myenteric ganglia in the SAP group was significantly higher than that in the sham operated group (37.5±12.28% vs 26.32±16.15%, P<0.01). nNOS mRNA expression in ileum of SAP group was significantly higher than that in the sham operated group (1.02±0.10 vs 0.70±0.06, P<0.01). CONCLUSIONS The increased quantity of NOS-IR neurons in ileal myenteric ganglia and increased nNOS mRNA expression may suggest nNOS over expression as one of the nervous mechanisms of gastrointestinal dysmotility in SAP rat.
Collapse
|
37
|
Voukali E, Shotton HR, Lincoln J. Selective responses of myenteric neurons to oxidative stress and diabetic stimuli. Neurogastroenterol Motil 2011; 23:964-e411. [PMID: 21914042 DOI: 10.1111/j.1365-2982.2011.01778.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Diabetes has a differential effect on different subpopulations of myenteric neurons. Our aim was to investigate an in vitro model to examine the pathways underlying the development of nerve changes in diabetes. METHODS The proportions of neuronal cell bodies containing vasoactive intestinal polypeptide (VIP), neuronal nitric oxide synthase (nNOS) and calbindin relative to the pan-neuronal marker HuC/D were quantified in wholemount preparations of the myenteric plexus of adult rat ileum using double labeling immunohistochemistry. Preparations were maintained in culture for 24 h in the presence and absence of stimuli mimicking the diabetic environment including oxidative stress, carbonyl stress, high glucose and advanced glycation end products (AGEs). Data were compared with the effect of streptozotocin-induced diabetes in vivo. KEY RESULTS Only oxidative stress in vitro produced the same pattern as observed in diabetes with an increase in VIP-, decrease in nNOS-, and no change in calbindin-positive neurons. Carbonyl stress and high glucose caused an increase in VIP-containing neurons without affecting nNOS expression. In contrast, exposure to AGEs only caused a decrease in nNOS-positive neurons. Calbindin expression was unaffected by any of the stimuli. The effects of the stimuli were prevented by the antioxidant, α-lipoic acid, or the carbonyl scavenger, aminoguanidine. CONCLUSIONS & INFERENCES The results provide evidence that oxidative stress is the common factor in the development of neuronal changes in diabetes; however, the mechanism by which oxidative stress occurs depends on the individual subpopulation of myenteric neurons examined. The presence of calbindin appears to protect myenteric neurons against harmful stimuli.
Collapse
Affiliation(s)
- E Voukali
- Department of Cell and Developmental Biology, University College London, Gower Street, London, UK
| | | | | |
Collapse
|
38
|
Liu S, Gao N, Hu HZ, Wang X, Wang GD, Fang X, Gao X, Xia Y, Wood JD. Activation of corticotropin-releasing factor receptor 2 mediates the colonic motor coping response to acute stress in rodents. Gastroenterology 2011; 494:63-74. [PMID: 16304680 PMCID: PMC2582187 DOI: 10.1002/cne.20781] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND & AIMS Corticotropin-releasing factor receptor-1 (CRF(1)) mediates the stress-induced colonic motor activity. Less is known about the role of CRF(2) in the colonic response to stress. METHODS We studied colonic contractile activity in rats and CRF(2)-/-, CRF-overexpressing, and wild-type mice using still manometry; we analyzed defecation induced by acute partial-restraint stress (PRS), and/or intraperitoneal injection of CRF ligands. In rats, we monitored activation of the colonic longitudinal muscle myenteric plexus (LMMP) neurons and localization of CRF(1) and CRF(2) using immunohistochemical and immunoblot analyses. We measured phosphorylation of extracellular signal-regulated kinase 1/2 by CRF ligands in primary cultures of LMMP neurons (PC-LMMPn) and cyclic adenosine monophosphate (cAMP) production in human embryonic kidney-293 cells transfected with CRF(1) and/or CRF(2). RESULTS In rats, a selective agonist of CRF(2) (urocortin 2) reduced CRF-induced defecation (>50%), colonic contractile activity, and Fos expression in the colonic LMMP. A selective antagonist of CRF(2) (astressin(2)-B) increased these responses. Urocortin 2 reduced PRS-induced colonic contractile activity in wild-type and CRF-overexpressing mice, whereas disruption of CRF(2) increased PRS-induced colonic contractile activity and CRF-induced defecation. CRF(2) colocalized with CRF(1) and neuronal nitric oxide synthase in the rat colon, LMMP, and PC-LMMPn. CRF-induced phosphorylation of extracellular signal-regulated kinase in PC-LMMPn; this was inhibited or increased by a selective antagonist of CRF(1) (NBI35965) or astressin(2)-B, respectively. The half maximal effective concentration, EC(50), for the CRF-induced cAMP response was 8.6 nmol/L in human embryonic kidney-293 cells that express only CRF(1); this response was suppressed 10-fold in cells that express CRF(1) and CRF(2). CONCLUSIONS In colon tissues of rodents, CRF(2) activation inhibits CRF(1) signaling in myenteric neurons and the stress-induced colonic motor responses. Disruption of CRF(2) function impairs colonic coping responses to stress.
Collapse
Affiliation(s)
- Sumei Liu
- Department of Physiology and Cell Biology, College of Medicine and Public Health, The Ohio State University, Columbus, 43210-1218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Neunlist M, Coquenlorge S, Aubert P, Duchalais-Dassonneville E, des Varannes SB, Meurette G, Coron E. Colonic endoscopic full-thickness biopsies: from the neuropathological analysis of the myenteric plexus to the functional study of neuromuscular transmission. Gastrointest Endosc 2011; 73:1029-34. [PMID: 21521570 DOI: 10.1016/j.gie.2011.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/17/2011] [Indexed: 02/08/2023]
Abstract
BACKGROUND Better understanding of the pathophysiological mechanisms involved in severe dysmotility disorders is crucial to improve patient management and identify novel therapeutic targets. Recent studies suggested that endoscopic full-thickness biopsies (eFTBs) could be developed as an alternative to surgical biopsies. However, currently it remains unknown whether eFTBs would allow myenteric plexus analysis on whole mounts and the evaluation of neuromuscular transmission. OBJECTIVE To determine with eFTB specimens the ability to analyze on whole mounts the key parameters of the myenteric plexus, ie, ganglia and neurons, and to perform functional evaluation of neuromuscular transmission. DESIGN An experimental pilot study in 6 pigs was conducted in accordance with French institutional guidelines. INTERVENTION Under general anesthesia, pigs underwent a rectosigmoidoscopy. In each pig, an eFTB was performed at 25, 30, and 35 cm from the anal margin with an EMR-based technique. Tissue specimens were immediately processed for immunohistochemical and/or functional ex vivo analysis of neuromuscular transmission. In 2 pigs, over-the-scope clips were used to seal the perforation. MAIN OUTCOME MEASUREMENTS Feasibility of obtaining specimens containing myenteric plexus and muscularis propria, quantitative and standardized immunohistochemical evaluation of ganglia and myenteric neurons, ex vivo assessment of neuromuscular transmission and its pharmacology, and closure rate (ancillary study). RESULTS Adequate tissue specimens were obtained in 100% of the procedures, on average, in 6±2 minutes. Immunohistochemical analysis of a whole mount of the myenteric plexus showed that each eFTB contained 14±5 ganglia and 1562±1066 myenteric neurons. In circular muscle strips, electrical field stimulation or exposure to a pharmacological agent induced a specific tissue response. A successful closure was achieved in 50% of cases. LIMITATIONS Nonsurvival study; safety of the procedure needs to be specifically assessed and compared with recently published data. CONCLUSIONS We demonstrate, for the first time, that full-thickness biopsy specimens obtained by using an endoscopic approach allow the performance of a precise study of the ENS phenotype on whole mounts of the myenteric plexus and the performance of functional studies such as evaluation of neuromuscular transmission. However, further studies are warranted to identify the optimal and safest endoscopic procedure before application of eFTB in humans.
Collapse
Affiliation(s)
- Michel Neunlist
- Institut National de la Santé et de la Recherche Médicale U913, Université de Nantes Faculté des Sciences et Techniques, Institut des Maladies de l'Appareil Digestif, CHU de Nantes, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Kapeller J, Möller D, Lasitschka F, Autschbach F, Hovius R, Rappold G, Brüss M, Gershon MD, Niesler B. Serotonin receptor diversity in the human colon: Expression of serotonin type 3 receptor subunits 5-HT3C, 5-HT3D, and 5-HT3E. J Comp Neurol 2011; 519:420-32. [PMID: 21192076 DOI: 10.1002/cne.22525] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the first description of 5-HT₃ receptors more than 50 years ago, there has been speculation about the molecular basis of their receptor heterogeneity. We have cloned the genes encoding novel 5-HT3 subunits 5-HT3C, 5-HT3D, and 5-HT3E and have shown that these subunits are able to form functional heteromeric receptors when coexpressed with the 5-HT3A subunit. However, whether these subunits are actually expressed in human tissue remained to be confirmed. In the current study, we performed immunocytochemistry to locate the 5-HT3A as well as the 5-HT3C, 5-HT3D, and 5-HT3E subunits within the human colon. Western blot analysis was used to confirm subunit expression, and RT-PCR was employed to detect transcripts encoding 5-HT₃ receptor subunits in microdissected tissue samples. This investigation revealed, for the first time, that 5-HT3C, 5-HT3D, and 5-HT3E subunits are coexpressed with 5-HT3A in cell bodies of myenteric neurons. Furthermore, 5-HT3A and 5-HT3D were found to be expressed in submucosal plexus of the human large intestine. These data provide a strong basis for future studies of the roles that specific 5-HT₃ receptor subtypes play in the function of the enteric and central nervous systems and the contribution that specific 5-HT₃ receptors make to the pathophysiology of gastrointestinal disorders such as irritable bowel syndrome and dyspepsia.
Collapse
Affiliation(s)
- Johannes Kapeller
- Department of Human Molecular Genetics, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rodrigues DM, Li AY, Nair DG, Blennerhassett MG. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil 2011; 23:e44-56. [PMID: 21087354 DOI: 10.1111/j.1365-2982.2010.01626.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The enteric nervous system (ENS) continues its structural and functional growth after birth, with formation of ganglia and the innervation of growing smooth muscle. However, little is known about factors in the postnatal intestine that influence these processes. METHODS We examined the presence and potential role of glial cell line-derived nerve growth factor (GDNF) in the rat postnatal ENS using neonatal tissue, primary co-cultures of the myenteric plexus, smooth muscle, and glial cells as well as cell lines of smooth muscle or glial cells. KEY RESULTS Western blot analysis showed that GDNF and its co-receptors rearranged during transfection (RET) and GDNF family receptor alpha-1 were expressed in the muscle layer of the neonatal and adult rat intestine. Immunohistochemistry localized the receptors for GDNF to myenteric neurons, while GDNF was localized to smooth muscle cells. In a co-culture model, GDNF but not nerve growth factor, brain derived neurotrophic factor or neurotrophin-3 significantly increased neuronal survival and more than doubled the numbers of neurites in vitro. RT-PCR, qPCR, Western blotting, ELISA, and immunocytochemistry as well as bioassays of neuronal survival and of RET phosphorylation all identified intestinal smooth muscle as the source of GDNF in vitro. GDNF also induced morphological changes in the structure and organization of neurons and axons, causing marked aggregation of neuronal cell bodies and collinear development of axons. As well, GDNF (50-150 ng mL(-1)) significantly increased [(3)H]-choline uptake and stimulated [(3)H]-acetylcholine release. CONCLUSIONS & INFERENCES We conclude that GDNF derived from intestinal smooth muscle cells is a key factor influencing the structural and functional development of postnatal myenteric neurons.
Collapse
Affiliation(s)
- D M Rodrigues
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
42
|
Uyttebroek L, Shepherd IT, Harrisson F, Hubens G, Blust R, Timmermans JP, Van Nassauw L. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol 2011; 518:4419-38. [PMID: 20853514 DOI: 10.1002/cne.22464] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Although the morphology and development of the zebrafish enteric nervous system have been extensively studied, the precise neurochemical coding of enteric neurons and their proportional enteric distribution are currently not known. By using immunohistochemistry, we determined the proportional expression and coexpression of neurochemical markers in the embryonic and adult zebrafish intestine. Tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and pituitary adenylate cyclase-activating peptide (PACAP) were observed only in nerve fibers, whereas other markers were also detected in neuronal cell bodies. Calretinin and calbindin had similar distributions. In embryos, all markers, except for choline acetyltransferase (ChAT) and TH, were present from 72 hours postfertilization. Nitrergic neurons, evenly distributed and remaining constant in time, constituted the major neuronal subpopulation. The neuronal proportions of the other markers increased during development and were characterized by regional differences. In the adult, all markers examined were expressed in the enteric nervous system. A large percentage of enteric neurons displayed calbindin and calretinin, and serotonin was the only marker showing significant distribution differences in the three intestinal regions. Colocalization studies showed that serotonin was not coexpressed with any of the other markers. At least five neuronal subpopulations were determined: a serotonergic, a nitrergic noncholinergic, two cholinergic nonnitrergic subpopulations along with one subpopulation expressing both ChAT and neuronal nitric oxide synthase. Analysis of nerve fibers revealed that nitrergic neurons coexpress VIP and PACAP, and that nitrergic neurons innervate the tunica muscularis, whereas serotonergic and cholinergic nonnitrergic neurons innervate the lamina propria and the tunica muscularis.
Collapse
Affiliation(s)
- Leen Uyttebroek
- Laboratory of Human Anatomy and Embryology, Department of Biomedical Sciences, University of Antwerp, 2020 Antwerpen, Belgium
| | | | | | | | | | | | | |
Collapse
|
43
|
Opazo A, Lecea B, Gil V, Jiménez M, Clavé P, Gallego D. Specific and complementary roles for nitric oxide and ATP in the inhibitory motor pathways to rat internal anal sphincter. Neurogastroenterol Motil 2011; 23:e11-25. [PMID: 20939852 DOI: 10.1111/j.1365-2982.2010.01602.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The neurotransmitters mediating inhibitory pathways to internal anal sphincter (IAS) have not been fully characterized. Our aim was to assess the putative release of nitric oxide, purines and vasoactive intestinal peptide (VIP) from inhibitory motor neurons (MNs) and their role in the myogenic tone, resting membrane potential (RMP) of smooth muscle cells (SMC), spontaneous inhibitory junction potentials (sIJP), mechanical relaxation, and IJP induced by electrical field stimulation (EFS) or nicotine. METHODS Rat IAS strips were studied using organ baths, microelectrodes, and immunohistochemistry. KEY RESULTS Internal anal sphincter strips developed active myogenic tone (0.31 g), enhanced and stabilized by prostaglandin F(2α) (PGF2α). L-NNA (1 mmol L(-1)) depolarized SMC and increased tone but did not modify sIJP. In contrast, the specific P2Y(1) receptor antagonist MRS2500 (1 μmol L(-1)) did not modify the RMP or the basal tone but abolished sIJP. Electrical field stimulation and nicotine (10 μmol L(-1)) caused IAS relaxation (-45.9%VS-52.2%), partially antagonized by L-NNA (35%-45%, P ≤ 0.05) and fully abolished by MRS2500 (P ≤ 0.001). Electrical field stimulation induced a biphasic inhibitory junction potential (IJP), the initial fast component was selectively blocked by MRS2500 and the sustained slow component was blocked by L-NNA. Vasoactive intestinal peptide 6-28 (0.1 μmol L(-1)) or α-chymotrypsin (10 U mL(-1)) did not modify the RMP, sIJP, EFS-induced IJP, or relaxation. P2Y(1) receptors were immunolocalized in the circular SMC of IAS. CONCLUSIONS & INFERENCES The effects of inhibitory MNs on rat IAS are mediated by a functional co-transmission process involving nitrergic and purinergic pathways through P2Y(1) receptors with specific and complementary roles on the control of tone, sIJP, and hyperpolarization and relaxation of IAS following stimulation of inhibitory MNs.
Collapse
Affiliation(s)
- A Opazo
- Department of Surgery, Hospital de Mataró, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Immunohistochemical analysis of substance P-containing neurons in rat small intestine. Cell Tissue Res 2010; 343:331-41. [DOI: 10.1007/s00441-010-1080-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
|
45
|
Patel BA, Dai X, Burda JE, Zhao H, Swain GM, Galligan JJ, Bian X. Inhibitory neuromuscular transmission to ileal longitudinal muscle predominates in neonatal guinea pigs. Neurogastroenterol Motil 2010; 22:909-18, e236-7. [PMID: 20482699 PMCID: PMC2911488 DOI: 10.1111/j.1365-2982.2010.01508.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Inhibitory neurotransmission to the longitudinal muscle is more prominent in the neonatal than in the adult guinea pig ileum. METHODS Inhibitory neuromuscular transmission was investigated using in vitro ileal longitudinal muscle myenteric plexus (LMMP) preparations made from neonatal (< or =48 h postnatal) and adult ( approximately 4 weeks postnatal) guinea pigs. KEY RESULTS Amperometric measurements of nicotine-induced nitric oxide (NO) release (measured as an oxidation current) from myenteric ganglia revealed larger currents in neonatal (379 +/- 24 pA) vs adult (119 +/- 39 pA, P < 0.05) tissues. Nicotine-induced oxidation currents were blocked by the nitric oxide synthase (NOS) inhibitor, nitro-l-arginine (NLA, 100 micromol L(-1)). Nicotine-induced, NLA-sensitive oxidation currents could be detected in the tertiary plexus of neonatal but not adult tissues. Immunohistochemistry demonstrated stronger NOS immunoreactivity in neonatal compared with adult myenteric ganglia. Western blot studies revealed higher levels of NOS in neonatal compared with adult LMMP. Cell counts revealed that the total number of myenteric neurons in the small intestine was greater in adults than in neonatal guinea pigs, however, the ratio of NOS : Calbindin neurons was significantly higher in neonatal compared with adult tissues. CONCLUSIONS & INFERENCES Nitric oxide signaling to the longitudinal muscle is stronger in neonatal compared with adult guinea pig ileum. Nitric oxide synthase-containing neurons are diluted postnatally by cholinergic and other, as yet unidentified neuronal subtypes.
Collapse
Affiliation(s)
- Bhavik A. Patel
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK,School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, BN2 4GJ, UK
| | - Xiaoling Dai
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Joshua E. Burda
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| | - Hong Zhao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Greg M. Swain
- Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - James J. Galligan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA,Neuroscience Program, Michigan State University, East Lansing, MI 48824 USA
| | - Xiaochun Bian
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
46
|
Oliveira-Barros LM, Costa-Casagrande TA, Cogliati B, Sá LRM, Matera JM. Histologic and immunohistochemical evaluation of intestinal innervation in dogs with and without intussusception. Am J Vet Res 2010; 71:636-42. [PMID: 20513178 DOI: 10.2460/ajvr.71.6.636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To assess viability of innervation in bowel segments appearing macroscopically viable from dogs with intussusception. ANIMALS 7 dogs without gastrointestinal dysfunction that had been euthanized for reasons unrelated to the study (control dogs) and 13 dogs with intussusception that underwent enterectomy and intestinal anastomosis (affected dogs). PROCEDURES A total of 31 samples of intestinal tissue were obtained from the control dogs; 28 samples were obtained from affected dogs during surgery. Samples were histologically and immunohistochemically prepared and subjectively scored for degree of vacuolization and staining, respectively. Other data collected included mean muscle cell density of circular and longitudinal muscular layers, ratio between areas of muscular layers, mean number of myenteric plexuses, mean ganglion cell density of myenteric plexuses, and degree of degeneration in neuronal plexuses as estimated through synaptophysin and neuron-specific enolase (NSE) immunoreactivity. RESULTS Mean muscle cell density of longitudinal muscular layers, ratio between areas of muscular layers, and synaptophysin immunoreactivity did not differ significantly between affected and control dogs; values of all other variables did. Correlations were evident between mean ganglion cell density in myenteric plexuses and mean muscle cell density in circular muscular layers, degree of neuronal degeneration in myenteric plexuses and NSE immunoreactivity, and degree of neuronal degeneration in myenteric plexuses and mean ganglion cell density of myenteric plexuses. CONCLUSIONS AND CLINICAL RELEVANCE Innervation may be impaired in bowel segments that appear macroscopically viable. Therefore, careful evaluation of preserved surgical margins during enterectomy and enteroanastomosis and monitoring of digestive function after surgery are important.
Collapse
Affiliation(s)
- Leda M Oliveira-Barros
- Department of Surgery, School of Veterinary Medicine, University of Sao Paulo, Sao Paulo, 05508-270, Brazil.
| | | | | | | | | |
Collapse
|
47
|
Smooth-muscle-specific expression of neurotrophin-3 in mouse embryonic and neonatal gastrointestinal tract. Cell Tissue Res 2010; 340:267-86. [PMID: 20387078 DOI: 10.1007/s00441-010-0959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 02/26/2010] [Indexed: 12/20/2022]
Abstract
Vagal gastrointestinal (GI) afferents are essential for the regulation of eating, body weight, and digestion. However, their functional organization and the way that this develops are poorly understood. Neurotrophin-3 (NT-3) is crucial for the survival of vagal sensory neurons and is expressed in the developing GI tract, possibly contributing to their survival and to other aspects of vagal afferent development. The identification of the functions of this peripheral NT-3 thus requires a detailed understanding of the localization and timing of its expression in the developing GI tract. We have studied embryos and neonates expressing the lacZ reporter gene from the NT-3 locus and found that NT-3 is expressed predominantly in the smooth muscle of the outer GI wall of the stomach, intestines, and associated blood vessels and in the stomach lamina propria and esophageal epithelium. NT-3 expression has been detected in the mesenchyme of the GI wall by embryonic day 12.5 (E12.5) and becomes restricted to smooth muscle and lamina propria by E15.5, whereas its expression in blood vessels and esophageal epithelium is first observed at E15.5. Expression in most tissues is maintained at least until postnatal day 4. The lack of colocalization of beta-galactosidase and markers for myenteric ganglion cell types suggests that NT-3 is not expressed in these ganglia. Therefore, NT-3 expression in the GI tract is largely restricted to smooth muscle at ages when vagal axons grow into the GI tract, and when vagal mechanoreceptors form in smooth muscle, consistent with its role in these processes and in vagal sensory neuron survival.
Collapse
|
48
|
Yang N, Liu SM, Zheng LF, Ji T, Li Y, Mi XL, Xue H, Ren W, Xu JD, Zhang XH, Li LS, Zhang Y, Zhu JX. Activation of submucosal 5-HT(3) receptors elicits a somatostatin-dependent inhibition of ion secretion in rat colon. Br J Pharmacol 2010; 159:1623-5. [PMID: 20233224 DOI: 10.1111/j.1476-5381.2010.00653.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE 5-Hydroxytryptamine (5-HT) is a key regulator of the gastrointestinal system and we have shown that submucosal neuronal 5-HT(3) receptors exerted a novel inhibitory effect on colonic ion transport. The aim of the present study was to investigate the precise mechanism(s) underlying this inhibitory effect. EXPERIMENTAL APPROACH Mucosa/submucosa or mucosa-only preparations from rat distal colon were mounted in Ussing chambers for measurement of short-circuit current (I(sc)) as an indicator of ion secretion. Somatostatin release was determined with radioimmunoassay. Intracellular cAMP content was measured with enzyme-linked immunoadsorbent assay (elisa). Immunohistochemical techniques were used to study the expression of 5-HT(3) receptors, somatostatin and somatostatin receptors in colonic tissue. KEY RESULTS In rat distal colonic mucosa/submucosa preparations, pretreatment with 5-HT(3) receptor antagonists enhanced 5-HT-induced increases in I(sc). However, in mucosa-only preparations without retained neural elements, pretreatment with 5-HT(3) receptor antagonists inhibited 5-HT-induced DeltaI(sc). Pretreatment with a somatostatin-2 (sst(2)) receptor antagonist in mucosa/submucosa preparations augmented 5-HT-induced DeltaI(sc). Combination of sst(2) and 5-HT(3) receptor antagonists did not cause further enhancement of 5-HT-induced DeltaI(sc). Moreover, both sst(2) and 5-HT(3) receptor antagonists enhanced 5-HT-induced increase in intracellular cAMP concentration in the mucosa/submucosa preparations. 5-HT released somatostatin from rat colonic mucosa/submucosa preparations, an effect prevented by pretreatment with 5-HT(3) receptor antagonists. Immunohistochemical staining demonstrated the presence of 5-HT(3) receptors on submucosal somatostatin neurons and of sst(2) receptors on colonic mucosa. CONCLUSION AND IMPLICATIONS Activation of neuronal 5-HT(3) receptors in the submucosal plexus of rat colon suppressed 5-HT-induced ion secretion by releasing somatostatin from submucosal neurons.
Collapse
Affiliation(s)
- N Yang
- Department of Physiology, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chalivoix S, Bagnolini A, Caraty A, Cognié J, Malpaux B, Dufourny L. Effects of photoperiod on kisspeptin neuronal populations of the ewe diencephalon in connection with reproductive function. J Neuroendocrinol 2010; 22:110-8. [PMID: 20002963 DOI: 10.1111/j.1365-2826.2009.01939.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Kisspeptin (Kiss) is a key regulator of reproductive function in both prepubertal and adult mammals. Its expression appears to vary throughout the year in seasonal species. We aimed to determine the impact of a change of photoperiod on the size of Kiss neuronal populations found in the preoptic area (POA) and arcuate nucleus (ARC) of the ewe brain. Using immunocytochemistry, we first examined the proportion of neurones expressing Kiss, using HuC/D as a neuronal marker, at different time-points after transition from long days (LD; 16 : 8 h light/dark cycle) to short days (SD; 8 : 16 h light/dark cycle). Luteinising hormone (LH) secretion was measured in ovariectomised oestradiol replaced ewes from the month preceding the transition to SD until the sacrifice of the animals at days 0, 45 and 112 from this photoperiodic transition. High LH levels were only observed in animals killed at day 112. The number of Kiss neurones/mm(2) doubled in the caudal ARC at day 112. The percentage of neurones showing Kiss immunoreactivity increased significantly in both the POA and ARC in the day 112 group. In a second experiment, ewes kept in LD received an i.c.v. injection of colchicine 20 h before sacrifice. Colchicine treatment increased the number and the percentage of neurones with Kiss in both the POA and caudal ARC. The data obtained suggest that the increase in Kiss neurones detected in the POA and caudal ARC after transition to SD stemmed from an increase in Kiss synthesis. This up-regulation of Kiss content under the shorter day condition appears to be a late event within the cascade activated by a longer secretion of melatonin, which is a critical factor in switching gonadotrophin-releasing hormone secretion to a breeding season profile.
Collapse
Affiliation(s)
- S Chalivoix
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | | | | | | | | | | |
Collapse
|
50
|
Yuan PQ, Wu SV, Wang L, Taché Y. Corticotropin releasing factor in the rat colon: expression, localization and upregulation by endotoxin. Peptides 2010; 31:322-31. [PMID: 19944726 PMCID: PMC2814976 DOI: 10.1016/j.peptides.2009.11.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 11/12/2009] [Accepted: 11/16/2009] [Indexed: 12/23/2022]
Abstract
Little is known about CRF expression and regulation in the rat colon compared to the brain. We investigated CRF gene expression, cellular location, and regulation by endotoxin and corticosterone in the male rat colon at 6h after intraperitoneal (ip) injection. CRF mRNA level, detected by reverse transcription-polymerase chain reaction (RT-PCR) was 1.3-fold higher in the distal than proximal colon and 3.4-fold higher in the proximal colonic submucosa plus muscle layers than in mucosa. CRF immunoreactivity was located in the epithelia, lamina propria and crypts, and co-localized with tryptophan hydroxylase, a marker for enterochromaffin (EC) cells, and in enteric neurons. Lipopolysaccharide (LPS, 100 microg/kg, ip) increased defecation by 2.9-fold and upregulated CRF mRNA by 2.5-fold in the proximal and 1.1-fold in the distal colon while there was no change induced by corticosterone as monitored by quantitative PCR. LPS-induced increased CRF mRNA expression occurred in the submucosa plus muscle layers (1.5-fold) and the mucosa of proximal colon (0.9-fold). LPS increased significantly CRF immunoreactivity in the submucosal and myenteric plexuses of proximal and distal colon compared to saline groups. These results indicate that in rats, CRF is expressed in both proximal and distal colon and more prominently in enteric neurons of the submucosa plus muscle layers and subject to upregulation at the gene and protein levels by LPS through corticosteroid independent pathways. These data suggests that colonic CRF may be part of the local effector limb of the CRF(1) receptor mediated colonic alterations induced by acute stress.
Collapse
Affiliation(s)
- P-Q Yuan
- Center for Neurobiology of Stress, VA Greater Los Angeles Healthcare System, and Digestive Diseases Division, Department of Medicine and Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|