1
|
Athanasopoulou K, Boti MA, Adamopoulos PG, Skourou PC, Scorilas A. Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life (Basel) 2021; 12:life12010030. [PMID: 35054423 PMCID: PMC8780579 DOI: 10.3390/life12010030] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Although next-generation sequencing (NGS) technology revolutionized sequencing, offering a tremendous sequencing capacity with groundbreaking depth and accuracy, it continues to demonstrate serious limitations. In the early 2010s, the introduction of a novel set of sequencing methodologies, presented by two platforms, Pacific Biosciences (PacBio) and Oxford Nanopore Sequencing (ONT), gave birth to third-generation sequencing (TGS). The innovative long-read technologies turn genome sequencing into an ease-of-handle procedure by greatly reducing the average time of library construction workflows and simplifying the process of de novo genome assembly due to the generation of long reads. Long sequencing reads produced by both TGS methodologies have already facilitated the decipherment of transcriptional profiling since they enable the identification of full-length transcripts without the need for assembly or the use of sophisticated bioinformatics tools. Long-read technologies have also provided new insights into the field of epitranscriptomics, by allowing the direct detection of RNA modifications on native RNA molecules. This review highlights the advantageous features of the newly introduced TGS technologies, discusses their limitations and provides an in-depth comparison regarding their scientific background and available protocols as well as their potential utility in research and clinical applications.
Collapse
|
2
|
Singhal RK, Saha D, Skalicky M, Mishra UN, Chauhan J, Behera LP, Lenka D, Chand S, Kumar V, Dey P, Indu, Pandey S, Vachova P, Gupta A, Brestic M, El Sabagh A. Crucial Cell Signaling Compounds Crosstalk and Integrative Multi-Omics Techniques for Salinity Stress Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:670369. [PMID: 34484254 PMCID: PMC8414894 DOI: 10.3389/fpls.2021.670369] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/28/2021] [Indexed: 10/29/2023]
Abstract
In the era of rapid climate change, abiotic stresses are the primary cause for yield gap in major agricultural crops. Among them, salinity is considered a calamitous stress due to its global distribution and consequences. Salinity affects plant processes and growth by imposing osmotic stress and destroys ionic and redox signaling. It also affects phytohormone homeostasis, which leads to oxidative stress and eventually imbalances metabolic activity. In this situation, signaling compound crosstalk such as gasotransmitters [nitric oxide (NO), hydrogen sulfide (H2S), hydrogen peroxide (H2O2), calcium (Ca), reactive oxygen species (ROS)] and plant growth regulators (auxin, ethylene, abscisic acid, and salicylic acid) have a decisive role in regulating plant stress signaling and administer unfavorable circumstances including salinity stress. Moreover, recent significant progress in omics techniques (transcriptomics, genomics, proteomics, and metabolomics) have helped to reinforce the deep understanding of molecular insight in multiple stress tolerance. Currently, there is very little information on gasotransmitters and plant growth regulator crosstalk and inadequacy of information regarding the integration of multi-omics technology during salinity stress. Therefore, there is an urgent need to understand the crucial cell signaling crosstalk mechanisms and integrative multi-omics techniques to provide a more direct approach for salinity stress tolerance. To address the above-mentioned words, this review covers the common mechanisms of signaling compounds and role of different signaling crosstalk under salinity stress tolerance. Thereafter, we mention the integration of different omics technology and compile recent information with respect to salinity stress tolerance.
Collapse
Affiliation(s)
| | - Debanjana Saha
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Udit N. Mishra
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Jyoti Chauhan
- Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, India
| | - Laxmi P. Behera
- Department of Agriculture Biotechnology, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Devidutta Lenka
- Department of Plant Breeding and Genetics, Orissa University of Agriculture and Technology, Bhubaneswar, India
| | - Subhash Chand
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Vivek Kumar
- Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, India
| | - Prajjal Dey
- Faculty of Agriculture, Sri Sri University, Cuttack, India
| | - Indu
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, India
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Plant Physiology, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
| |
Collapse
|
3
|
Liu J, Zhang J, Kim SH, Lee HS, Marinoia E, Song WY. Characterization of Brassica rapa metallothionein and phytochelatin synthase genes potentially involved in heavy metal detoxification. PLoS One 2021; 16:e0252899. [PMID: 34086824 PMCID: PMC8177407 DOI: 10.1371/journal.pone.0252899] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Brassica rapa is an important leafy vegetable that can potentially accumulate high concentrations of cadmium (Cd), posing a risk to human health. The aim of the present study was to identify cadmium detoxifying molecular mechanisms in B. rapa using a functional cloning strategy. A cDNA library constructed from roots of B. rapa plants treated with Cd was transformed into the Cd sensitive yeast mutant strain DTY167 that lacks the yeast cadmium factor (YCF1), and resistant yeast clones were selected on Cd containing media. Two hundred genes potentially conferring cadmium resistance were rescued from the surviving yeast clones and sequenced. Sequencing analysis revealed that genes encoding for metallothionein (MT)1, MT2a, MT2b and MT3, and phytochelatin synthase (PCS)1 and PCS2 accounted for 35.5%, 28.5%, 4%, 11.3%, 18.7% and 2%, respectively of the genes identified. MTs and PCSs expressing DTY167 cells showed resistance to Cd as well as to Zn. PCS1 expressing yeast cells were also more resistant to Pb compared to those expressing MTs or PCS2. RT-PCR results showed that Cd treatment strongly induced the expression levels of MTs in the root and shoot. Furthermore, the different MTs and PCSs exhibited tissue specific expression. The results indicate that MTs and PCS genes potentially play a central role in detoxifying Cd and other toxic metals in B. rapa.
Collapse
Affiliation(s)
- Jiayou Liu
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Jie Zhang
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Sun Ha Kim
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Hyun-Sook Lee
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
| | - Enrico Marinoia
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
| | - Won-Yong Song
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, Guangdong, China
- College of Agriculture and Life Sciences, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
4
|
Chang CY, Lee KW, Wu CS, Huang YH, Chang HC, Chen CL, Li CT, Li MJ, Chang CF, Chen PW. Identification of sugar response complex in the metallothionein OsMT2b gene promoter for enhancement of foreign protein production in transgenic rice. PLANT CELL REPORTS 2019; 38:899-914. [PMID: 31004187 DOI: 10.1007/s00299-019-02411-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
A 146-bp sugar response complex MTSRC is identified in the promoter of rice metallothionein OsMT2b gene conferring high-level expression of luciferase reporter gene and bioactive recombinant haFGF in transgenic rice. A rice subfamily type 2 plant metallothionein (pMT) gene, OsMT2b, encoding a reactive oxygen species (ROS) scavenger protein, has been previously shown to exhibit the most abundant gene expression in young rice seedling. Expression of OsMT2b was found to be regulated negatively by ethylene and hydrogen peroxide in rice stem node under flooding stress, but little is known about its response to sugar depletion. In this study, transient expression assay and transgenic approach were employed to characterize the regulation of the OsMT2b gene expression in rice. We found that the expression of OsMT2b gene is induced by sugar starvation in both rice suspension cells and germinated embryos. Deletion analysis and functional assay of the OsMT2b promoter revealed that the 5'-flanking region of the OsMT2b between nucleotides - 351 and - 121, which contains the sugar response complex (- 266 to - 121, designated MTSRC) is responsible for high-level promoter activity under sugar starvation. It was also found that MTSRC significantly enhances the Act1 promoter activity in transgenic rice cells and seedlings. The modified Act1 promoter, Act1-MTSRC, was used to produce the recombinant human acidic fibroblast growth factor (haFGF) in rice cells. Our result shows that the bioactive recombinant haFGF is stably produced in transformed rice cell culture and yields are up to 2% of total medium proteins. Our studies reveal that MTSRC serves as a strong transcriptional activator and the Act1-MTSRC promoter can be applicable in establishing an efficient expression system for the high-level production of foreign proteins in transgenic rice cells and seedlings.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan
| | - Kuo-Wei Lee
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan
| | - Chung-Shen Wu
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan
| | - Yu-Hsing Huang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan
| | - Ho-Chun Chang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan
| | | | - Chen-Tung Li
- PRIT Biotech Co., Ltd., Chunan, 35053, Miaoli, Taiwan
| | - Min-Jeng Li
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan
| | - Chung-Fu Chang
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan
| | - Peng-Wen Chen
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi, 60004, Taiwan.
| |
Collapse
|
5
|
Zhao L, Zhang H, Kohnen MV, Prasad KVSK, Gu L, Reddy ASN. Analysis of Transcriptome and Epitranscriptome in Plants Using PacBio Iso-Seq and Nanopore-Based Direct RNA Sequencing. Front Genet 2019; 10:253. [PMID: 30949200 PMCID: PMC6438080 DOI: 10.3389/fgene.2019.00253] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Nanopore sequencing from Oxford Nanopore Technologies (ONT) and Pacific BioSciences (PacBio) single-molecule real-time (SMRT) long-read isoform sequencing (Iso-Seq) are revolutionizing the way transcriptomes are analyzed. These methods offer many advantages over most widely used high-throughput short-read RNA sequencing (RNA-Seq) approaches and allow a comprehensive analysis of transcriptomes in identifying full-length splice isoforms and several other post-transcriptional events. In addition, direct RNA-Seq provides valuable information about RNA modifications, which are lost during the PCR amplification step in other methods. Here, we present a comprehensive summary of important applications of these technologies in plants, including identification of complex alternative splicing (AS), full-length splice variants, fusion transcripts, and alternative polyadenylation (APA) events. Furthermore, we discuss the impact of the newly developed nanopore direct RNA-Seq in advancing epitranscriptome research in plants. Additionally, we summarize computational tools for identifying and quantifying full-length isoforms and other co/post-transcriptional events and discussed some of the limitations with these methods. Sequencing of transcriptomes using these new single-molecule long-read methods will unravel many aspects of transcriptome complexity in unprecedented ways as compared to previous short-read sequencing approaches. Analysis of plant transcriptomes with these new powerful methods that require minimum sample processing is likely to become the norm and is expected to uncover novel co/post-transcriptional gene regulatory mechanisms that control biological outcomes during plant development and in response to various stresses.
Collapse
Affiliation(s)
- Liangzhen Zhao
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Markus V. Kohnen
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kasavajhala V. S. K. Prasad
- Program in Cell and Molecular Biology, Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Anireddy S. N. Reddy
- Program in Cell and Molecular Biology, Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
6
|
Mohanta TK, Bashir T, Hashem A, Abd Allah EF. Systems biology approach in plant abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:58-73. [PMID: 29096174 DOI: 10.1016/j.plaphy.2017.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 05/05/2023]
Abstract
Plant abiotic stresses are the major constraint on plant growth and development, causing enormous crop losses across the world. Plants have unique features to defend themselves against these challenging adverse stress conditions. They modulate their phenotypes upon changes in physiological, biochemical, molecular and genetic information, thus making them tolerant against abiotic stresses. It is of paramount importance to determine the stress-tolerant traits of a diverse range of genotypes of plant species and integrate those traits for crop improvement. Stress-tolerant traits can be identified by conducting genome-wide analysis of stress-tolerant genotypes through the highly advanced structural and functional genomics approach. Specifically, whole-genome sequencing, development of molecular markers, genome-wide association studies and comparative analysis of interaction networks between tolerant and susceptible crop varieties grown under stress conditions can greatly facilitate discovery of novel agronomic traits that protect plants against abiotic stresses.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Tufail Bashir
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Science, King Saud University, P.O. Box 24160, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
7
|
Nongpiur RC, Singla-Pareek SL, Pareek A. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Curr Genomics 2016; 17:343-57. [PMID: 27499683 PMCID: PMC4955028 DOI: 10.2174/1389202917666160331202517] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067,India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| |
Collapse
|
8
|
Mustafiz A, Kumari S, Karan R. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics. Curr Genomics 2016; 17:155-76. [PMID: 27252584 PMCID: PMC4869004 DOI: 10.2174/1389202917666160202215135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/22/2022] Open
Abstract
Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.
Collapse
Affiliation(s)
- Ananda Mustafiz
- South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi
| | - Sumita Kumari
- Sher-e-Kashmir University of Agriculture Sciences and Technology, Jammu 180009, India
| | - Ratna Karan
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville - 32611, Florida, USA
| |
Collapse
|
9
|
Reference gene selection for normalization of RT-qPCR gene expression data from Actinidia deliciosa leaves infected with Pseudomonas syringae pv. actinidiae. Sci Rep 2015; 5:16961. [PMID: 26581656 PMCID: PMC4652207 DOI: 10.1038/srep16961] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022] Open
Abstract
Normalization of data, by choosing the appropriate reference genes (RGs), is fundamental for obtaining reliable results in reverse transcription-quantitative PCR (RT-qPCR). In this study, we assessed Actinidia deliciosa leaves inoculated with two doses of Pseudomonas syringae pv. actinidiae during a period of 13 days for the expression profile of nine candidate RGs. Their expression stability was calculated using four algorithms: geNorm, NormFinder, BestKeeper and the deltaCt method. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and protein phosphatase 2A (PP2A) were the most stable genes, while β-tubulin and 7s-globulin were the less stable. Expression analysis of three target genes, chosen for RGs validation, encoding the reactive oxygen species scavenging enzymes ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT) indicated that a combination of stable RGs, such as GAPDH and PP2A, can lead to an accurate quantification of the expression levels of such target genes. The APX level varied during the experiment time course and according to the inoculum doses, whereas both SOD and CAT resulted down-regulated during the first four days, and up-regulated afterwards, irrespective of inoculum dose. These results can be useful for better elucidating the molecular interaction in the A. deliciosa/P. s. pv. actinidiae pathosystem and for RGs selection in bacteria-plant pathosystems.
Collapse
|
10
|
Wu CS, Chen DY, Chang CF, Li MJ, Hung KY, Chen LJ, Chen PW. The promoter and the 5'-untranslated region of rice metallothionein OsMT2b gene are capable of directing high-level gene expression in germinated rice embryos. PLANT CELL REPORTS 2014; 33:793-806. [PMID: 24381099 DOI: 10.1007/s00299-013-1555-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
Critical regions within the rice metallothionein OsMT2b gene promoter are identified and the 5'-untranslated region (5'-UTR) is found essential for the high-level promoter activity in germinated transgenic rice embryos. Many metallothionein (MT) genes are highly expressed in plant tissues. A rice subfamily p2 (type 2) MT gene, OsMT2b, has been shown previously to exhibit the most abundant gene expression in young rice seedling. In the present study, transient expression assays and a transgenic approach were employed to characterize the expression of the OsMT2b gene in rice. We found that the OsMT2b gene is strongly and differentially expressed in germinated rice embryos during seed germination and seedling development. Histochemical staining analysis of transgenic rice carrying OsMT2b::GUS chimeric gene showed that high-level GUS activity was detected in germinated embryos and at the meristematic part of other tissues during germination. Deletion analysis of the OsMT2b promoter revealed that the 5'-flanking region of the OsMT2b between nucleotides -351 and -121 relative to the transcriptional initiation site is important for promoter activity in rice embryos, and this region contains the consensus sequences of G box and TA box. Our study demonstrates that the 5'-untranslated region (5'-UTR) of OsMT2b gene is not only necessary for the OsMT2b promoter activity, but also sufficient to augment the activity of a minimal promoter in both transformed cell cultures and germinated transgenic embryos in rice. We also found that addition of the maize Ubi intron 1 significantly enhanced the OsMT2b promoter activity in rice embryos. Our studies reveal that OsMT2b351-ubi(In) promoter can be applied in plant transformation and represents potential for driving high-level production of foreign proteins in transgenic rice.
Collapse
Affiliation(s)
- Chung-Shen Wu
- Department of Bioagricultural Science, National Chiayi University, Chiayi, 60004, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
11
|
New insights on plant cell elongation: a role for acetylcholine. Int J Mol Sci 2014; 15:4565-82. [PMID: 24642879 PMCID: PMC3975414 DOI: 10.3390/ijms15034565] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 12/04/2022] Open
Abstract
We investigated the effect of auxin and acetylcholine on the expression of the tomato expansin gene LeEXPA2, a specific expansin gene expressed in elongating tomato hypocotyl segments. Since auxin interferes with clathrin-mediated endocytosis, in order to regulate cellular and developmental responses we produced protoplasts from tomato elongating hypocotyls and followed the endocytotic marker, FM4-64, internalization in response to treatments. Tomato protoplasts were observed during auxin and acetylcholine treatments after transient expression of chimerical markers of volume-control related compartments such as vacuoles. Here we describe the contribution of auxin and acetylcholine to LeEXPA2 expression regulation and we support the hypothesis that a possible subcellular target of acetylcholine signal is the vesicular transport, shedding some light on the characterization of this small molecule as local mediator in the plant physiological response.
Collapse
|
12
|
Schiller M, Hegelund JN, Pedas P, Kichey T, Laursen KH, Husted S, Schjoerring JK. Barley metallothioneins differ in ontogenetic pattern and response to metals. PLANT, CELL & ENVIRONMENT 2014; 37:353-367. [PMID: 23808399 DOI: 10.1111/pce.12158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/12/2013] [Accepted: 06/20/2013] [Indexed: 06/02/2023]
Abstract
The barley genome encodes a family of 10 metallothioneins (MTs) that have not previously been subject to extensive gene expression profiling. We show here that expression of MT1a, MT2b1, MT2b2 and MT3 in barley leaves increased more than 50-fold during the first 10 d after germination. Concurrently, the root-specific gene MT1b1 was 1000-fold up-regulated. Immunolocalizations provided the first evidence for accumulation of MT1a and MT2a proteins in planta, with correlation to transcript levels. In developing grains, MT2a and MT4 expression increased 4- and 300-fold over a 28-day-period after pollination. However, among the MT grain transcripts MT2c was the most abundant, whereas MT4 was the least abundant. Excess Cu up-regulated three out of the six MTs expressed in leaves of young barley plants. In contrast, most MTs were down-regulated by excess Zn or Cd. Zn starvation led to up-regulation of MT1a, whereas Cu starvation up-regulated MT2a, which has two copper-responsive elements in the promoter. Arabidopsis lines constitutively overexpressing barley MT2a showed increased sensitivity to excess Cd and Zn but no Cu-induced response. We suggest that barley MTs are differentially involved in intracellular homeostasis of essential metal ions and that a subset of barley MTs is specifically involved in Cu detoxification.
Collapse
Affiliation(s)
- Michaela Schiller
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 40 Thorvaldsensvej, DK-1871, Frederiksberg C, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
13
|
Fawcett JA, Kado T, Sasaki E, Takuno S, Yoshida K, Sugino RP, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Takagi H, Abe A, Ishii T, Terauchi R, Innan H. QTL map meets population genomics: an application to rice. PLoS One 2013; 8:e83720. [PMID: 24376738 PMCID: PMC3871663 DOI: 10.1371/journal.pone.0083720] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 11/14/2013] [Indexed: 12/14/2022] Open
Abstract
Genes involved in the transition from wild to cultivated crop species should be of great agronomic importance. Population genomic approaches utilizing genome resequencing data have been recently applied for this purpose, although it only reports a large list of candidate genes with no biological information. Here, by resequencing more than 30 genomes altogether of wild rice Oryza rufipogon and cultivated rice O. sativa, we identified a number of regions with clear footprints of selection during the domestication process. We then focused on identifying candidate domestication genes in these regions by utilizing the wealth of QTL information in rice. We were able to identify a number of interesting candidates such as transcription factors that should control key domestication traits such as shattering, awn length, and seed dormancy. Other candidates include those that might have been related to the improvement of grain quality and those that might have been involved in the local adaptation to dry conditions and colder environments. Our study shows that population genomic approaches and QTL mapping information can be used together to identify genes that might be of agronomic importance.
Collapse
Affiliation(s)
| | - Tomoyuki Kado
- Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Eriko Sasaki
- Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Shohei Takuno
- Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | | | | | | | | | | | - Aiko Uemura
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Akira Abe
- Iwate Agricultural Research Center, Kitakami, Iwate, Japan
| | | | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- * E-mail: (HI); (RT)
| | - Hideki Innan
- Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
- * E-mail: (HI); (RT)
| |
Collapse
|
14
|
Genomics approaches for crop improvement against abiotic stress. ScientificWorldJournal 2013; 2013:361921. [PMID: 23844392 PMCID: PMC3690750 DOI: 10.1155/2013/361921] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022] Open
Abstract
As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses.
Collapse
|
15
|
Hanumappa M, Preece J, Elser J, Nemeth D, Bono G, Wu K, Jaiswal P. WikiPathways for plants: a community pathway curation portal and a case study in rice and arabidopsis seed development networks. RICE (NEW YORK, N.Y.) 2013; 6:14. [PMID: 24280312 PMCID: PMC4883732 DOI: 10.1186/1939-8433-6-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/22/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND Next-generation sequencing and 'omics' platforms are used extensively in plant biology research to unravel new genomes and study their interactions with abiotic and biotic agents in the growth environment. Despite the availability of a large and growing number of genomic data sets, there are only limited resources providing highly-curated and up-to-date metabolic and regulatory networks for plant pathways. RESULTS Using PathVisio, a pathway editor tool associated with WikiPathways, we created a gene interaction network of 430 rice (Oryza sativa) genes involved in the seed development process by curating interactions reported in the published literature. We then applied an InParanoid-based homology search to these genes and used the resulting gene clusters to identify 351 Arabidopsis thaliana genes. Using this list of homologous genes, we constructed a seed development network in Arabidopsis by processing the gene list and the rice network through a Perl utility software called Pathway GeneSWAPPER developed by us. In order to demonstrate the utility of these networks in generating testable hypotheses and preliminary analysis prior to more in-depth downstream analysis, we used the expression viewer and statistical analysis features of PathVisio to analyze publicly-available and published microarray gene expression data sets on diurnal photoperiod response and the seed development time course to discover patterns of coexpressed genes found in the rice and Arabidopsis seed development networks. These seed development networks described herein, along with other plant pathways and networks, are freely available on the plant pathways portal at WikiPathways (http://plants.wikipathways.org). CONCLUSION In collaboration with the WikiPathways project we present a community curation and analysis platform for plant biologists where registered users can freely create, edit, share and monitor pathways supported by published literature. We describe the curation and annotation of a seed development network in rice, and the projection of a similar, gene homology-based network in Arabidopsis. We also demonstrate the utility of the Pathway GeneSWAPPER (PGS) application in saving valuable time and labor when a reference network in one species compiled in GPML format is used to project a similar network in another species based on gene homology.
Collapse
Affiliation(s)
- Mamatha Hanumappa
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Justin Preece
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Justin Elser
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Denise Nemeth
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Gina Bono
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Kenny Wu
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR 97331-2902 USA
| |
Collapse
|
16
|
Takahashi M, Yoshioka K, Imai T, Miyoshi Y, Nakano Y, Yoshida K, Yamashita T, Furuta Y, Watanabe T, Sugiyama J, Takeda T. Degradation and synthesis of β-glucans by a Magnaporthe oryzae endotransglucosylase, a member of the glycoside hydrolase 7 family. J Biol Chem 2013; 288:13821-30. [PMID: 23530038 DOI: 10.1074/jbc.m112.448902] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Plant pathogens secrete enzymes that degrade plant cell walls to enhance infection and nutrient acquisition. RESULTS A novel endotransglucosylase catalyzes cleavage and transfer of β-glucans and decreases the physical strength of plant cell walls. CONCLUSION Endotransglucosylation causes depolymerization and polymerization of β-glucans, depending on substrate molecular size. SIGNIFICANCE Enzymatic degradation of plant cell walls is required for wall loosening, which enhances pathogen invasion. A Magnaporthe oryzae enzyme, which was encoded by the Mocel7B gene, was predicted to act on 1,3-1,4-β-glucan degradation and transglycosylation reaction of cellotriose after partial purification from a culture filtrate of M. oryzae cells, followed by liquid chromatography-tandem mass spectrometry. A recombinant MoCel7B prepared by overexpression in M. oryzae exhibited endo-typical depolymerization of polysaccharides containing β-1,4-linkages, in which 1,3-1,4-β-glucan was the best substrate. When cellooligosaccharides were used as the substrate, the recombinant enzyme generated reaction products with both shorter and longer chain lengths than the substrate. In addition, incorporation of glucose and various oligosaccharides including sulforhodamine-conjugated cellobiose, laminarioligosaccharides, gentiobiose, xylobiose, mannobiose, and xyloglucan nonasaccharide into β-1,4-linked glucans were observed after incubation with the enzyme. These results indicate that the recombinant enzyme acts as an endotransglucosylase (ETG) that cleaves the glycosidic bond of β-1,4-glucan as a donor substrate and transfers the cleaved glucan chain to another molecule functioning as an acceptor substrate. Furthermore, ETG treatment caused greater extension of heat-treated wheat coleoptiles. The result suggests that ETG functions to induce wall loosening by cleaving the 1,3-1,4-β-glucan tethers of plant cell walls. On the other hand, use of cellohexaose as a substrate for ETG resulted in the production of cellulose II with a maximum length (degree of polymerization) of 26 glucose units. Thus, ETG functions to depolymerize and polymerize β-glucans, depending on the size of the acceptor substrate.
Collapse
Affiliation(s)
- Machiko Takahashi
- Iwate Biotechnology Research Center, 22-174-4, Narita Kitakami, Iwate 024-0003, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hypothalamic transcript profiling in hypothermia using SuperSAGE. J Forensic Leg Med 2012; 19:396-401. [DOI: 10.1016/j.jflm.2012.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 04/21/2012] [Indexed: 11/15/2022]
|
18
|
Kumar G, Kushwaha HR, Panjabi-Sabharwal V, Kumari S, Joshi R, Karan R, Mittal S, Pareek SLS, Pareek A. Clustered metallothionein genes are co-regulated in rice and ectopic expression of OsMT1e-P confers multiple abiotic stress tolerance in tobacco via ROS scavenging. BMC PLANT BIOLOGY 2012; 12:107. [PMID: 22780875 PMCID: PMC3491035 DOI: 10.1186/1471-2229-12-107] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/25/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND Metallothioneins (MT) are low molecular weight, cysteine rich metal binding proteins, found across genera and species, but their function(s) in abiotic stress tolerance are not well documented. RESULTS We have characterized a rice MT gene, OsMT1e-P, isolated from a subtractive library generated from a stressed salinity tolerant rice genotype, Pokkali. Bioinformatics analysis of the rice genome sequence revealed that this gene belongs to a multigenic family, which consists of 13 genes with 15 protein products. OsMT1e-P is located on chromosome XI, away from the majority of other type I genes that are clustered on chromosome XII. Various members of this MT gene cluster showed a tight co-regulation pattern under several abiotic stresses. Sequence analysis revealed the presence of conserved cysteine residues in OsMT1e-P protein. Salinity stress was found to regulate the transcript abundance of OsMT1e-P in a developmental and organ specific manner. Using transgenic approach, we found a positive correlation between ectopic expression of OsMT1e-P and stress tolerance. Our experiments further suggest ROS scavenging to be the possible mechanism for multiple stress tolerance conferred by OsMT1e-P. CONCLUSION We present an overview of MTs, describing their gene structure, genome localization and expression patterns under salinity and development in rice. We have found that ectopic expression of OsMT1e-P enhances tolerance towards multiple abiotic stresses in transgenic tobacco and the resultant plants could survive and set viable seeds under saline conditions. Taken together, the experiments presented here have indicated that ectopic expression of OsMT1e-P protects against oxidative stress primarily through efficient scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Gautam Kumar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Hemant Ritturaj Kushwaha
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vaishali Panjabi-Sabharwal
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sumita Kumari
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohit Joshi
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ratna Karan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shweta Mittal
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sneh L Singla Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
19
|
Edwards JM, Roberts TH, Atwell BJ. Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4389-402. [PMID: 22585748 PMCID: PMC3421981 DOI: 10.1093/jxb/ers114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/22/2012] [Accepted: 03/23/2012] [Indexed: 05/20/2023]
Abstract
Oxygen deprivation limits the energy available for cellular processes and yet no comprehensive ATP budget has been reported for any plant species under O(2) deprivation, including Oryza sativa. Using 3-d-old coleoptiles of a cultivar of O. sativa tolerant to flooding at germination, (i) rates of ATP regeneration in coleoptiles grown under normoxia (aerated solution), hypoxia (3% O(2)), and anoxia (N(2)) and (ii) rates of synthesis of proteins, lipids, nucleic acids, and cell walls, as well as K(+) transport, were determined. Based on published bioenergetics data, the cost of synthesizing each class of polymer and the proportion of available ATP allocated to each process were then compared. Protein synthesis consumed the largest proportion of ATP synthesized under all three oxygen regimes, with the proportion of ATP allocated to protein synthesis in anoxia (52%) more than double that in normoxic coleoptiles (19%). Energy allocation to cell wall synthesis was undiminished in hypoxia, consistent with preferential elongation typical of submerged coleoptiles. Lipid synthesis was also conserved strongly in O(2) deficits, suggesting that membrane integrity was maintained under anoxia, thus allowing K(+) to be retained within coleoptile cells. Rates of protein synthesis in coleoptiles from rice cultivars with contrasting tolerance to oxygen deficits (including mutants deficient in fermentative enzymes) confirmed that synthesis and turnover of proteins always accounted for most of the ATP consumed under anoxia. It is concluded that successful establishment of rice seedlings under water is largely due to the capacity of coleoptiles to allocate energy to vital processes, particularly protein synthesis.
Collapse
Affiliation(s)
- Joshua M. Edwards
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Thomas H. Roberts
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, NSW 2006, Australia
| | - Brian J. Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
20
|
Ren Y, Liu Y, Chen H, Li G, Zhang X, Zhao J. Type 4 metallothionein genes are involved in regulating Zn ion accumulation in late embryo and in controlling early seedling growth in Arabidopsis. PLANT, CELL & ENVIRONMENT 2012; 35:770-89. [PMID: 22014117 DOI: 10.1111/j.1365-3040.2011.02450.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Type 4 metallothionein (MT) genes are recognized for their specific expression in higher plant seeds, but their functions are still unclear. In this study, the functions of two Arabidopsis metallothionein genes, AtMT4a and AtMT4b, are investigated in seed development, germination and early seedling growth. Transcriptional analysis showed that these two genes are specifically expressed in late embryos. Subcellular localization displayed that both AtMT4a and AtMT4b are widespread distributed in cytoplasm, nucleus and membrane. Co-silencing RNAi of AtMT4a and AtMT4b reduced seed weight and influenced the early seedling growth after germination, whereas overexpression of these two genes caused the opposite results. Detailed analysis showed clearly the correlation of AtMT4a and AtMT4b to the accumulation of some important metal ions in late embryos, especially to Zn ion storing in seeds, which then serves as part of early Zn ion resources for post-germinated seedling growth. Furthermore, phytohormone abscisic acid (ABA) and gibberellic acid (GA) may play roles in regulating the expression and function of AtMT4a and AtMT4b during seed development; and this may influence Zn accumulation in seeds and Zn ion nutrient supplementation in the early seedling growth after germination.
Collapse
Affiliation(s)
- Yujun Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
21
|
Padmanabhan P, Venkatachalam P, Sahi SV. Characterization of upregulated genes associated with high phosphorus accumulation in cucumber. PHYSIOLOGIA PLANTARUM 2011; 143:344-354. [PMID: 21883253 DOI: 10.1111/j.1399-3054.2011.01512.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Excessive application of phosphorus (P)-rich manures to agricultural lands often results in P-accumulation in soils leading to water pollution through runoffs and leaching. Use of suitable plant species that can extract and sequester excess P from soil into their biomass is an effective method of remediation of P-contaminated soils. Knowledge on the molecular responses of plants to high P-accumulation and tolerance is lacking. Therefore, a suppression subtractive hybridization (SSH) strategy was employed to identify and elucidate the pattern of gene expression related to P-tolerance and accumulation in cucumber (Cucumis sativus L.), a P-accumulator plant. RNA isolated from cucumber grown in high P was used for 'tester' cDNA synthesis and SSH library preparation. A total of 63 cDNAs were identified as showing upregulated expression in this plant in response to high P. No putative function could be assigned to 7 (11%) of the 63 upregulated high P-modulated genes and 11 expressed sequence tags (ESTs) (17%) did not match database entries. The remaining 45 ESTs were grouped into five functional classes. The majority of these ESTs belonged to three groups: 'metabolism', 'protein synthesis/degradation and signaling' and 'cell structure/cell wall'. Only six 'stress/defense'-related ESTs were identified from this library. The results of reverse northern blot analysis was further confirmed and validated through semi-quantitative RT-PCR carried out with representative ESTs identified in this study. The research reported here may contribute to a preliminary understanding of the high P-related gene expression in this P-accumulating plant.
Collapse
Affiliation(s)
- Priya Padmanabhan
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA
| | | | | |
Collapse
|
22
|
Ruan SL, Ma HS, Wang SH, Fu YP, Xin Y, Liu WZ, Wang F, Tong JX, Wang SZ, Chen HZ. Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed. BMC PLANT BIOLOGY 2011; 11:34. [PMID: 21324151 PMCID: PMC3050798 DOI: 10.1186/1471-2229-11-34] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 02/16/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling. RESULTS Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties. CONCLUSIONS Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA.
Collapse
Affiliation(s)
- Song-Lin Ruan
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Hua-Sheng Ma
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Shi-Heng Wang
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Ya-Ping Fu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Ya Xin
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Wen-Zhen Liu
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| | - Fang Wang
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Jian-Xin Tong
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Shu-Zhen Wang
- Plant Molecular Biology & Proteomics Lab, Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, PR China
| | - Hui-Zhe Chen
- National Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, PR China
| |
Collapse
|
23
|
Gilardoni PA, Schuck S, Jüngling R, Rotter B, Baldwin IT, Bonaventure G. SuperSAGE analysis of the Nicotiana attenuata transcriptome after fatty acid-amino acid elicitation (FAC): identification of early mediators of insect responses. BMC PLANT BIOLOGY 2010; 10:66. [PMID: 20398280 PMCID: PMC3095340 DOI: 10.1186/1471-2229-10-66] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/14/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants trigger and tailor defense responses after perception of the oral secretions (OS) of attacking specialist lepidopteran larvae. Fatty acid-amino acid conjugates (FACs) in the OS of the Manduca sexta larvae are necessary and sufficient to elicit the herbivory-specific responses in Nicotiana attenuata, an annual wild tobacco species. How FACs are perceived and activate signal transduction mechanisms is unknown. RESULTS We used SuperSAGE combined with 454 sequencing to quantify the early transcriptional changes elicited by the FAC N-linolenoyl-glutamic acid (18:3-Glu) and virus induced gene silencing (VIGS) to examine the function of candidate genes in the M. sexta-N. attenuata interaction. The analysis targeted mRNAs encoding regulatory components: rare transcripts with very rapid FAC-elicited kinetics (increases within 60 and declines within 120 min). From 12,744 unique Tag sequences identified (UniTags), 430 and 117 were significantly up- and down-regulated >or= 2.5-fold, respectively, after 18:3-Glu elicitation compared to wounding. Based on gene ontology classification, more than 25% of the annotated UniTags corresponded to putative regulatory components, including 30 transcriptional regulators and 22 protein kinases. Quantitative PCR analysis was used to analyze the FAC-dependent regulation of a subset of 27 of these UniTags and for most of them a rapid and transient induction was confirmed. Six FAC-regulated genes were functionally characterized by VIGS and two, a putative lipid phosphate phosphatase (LPP) and a protein of unknown function, were identified as important mediators of the M. sexta-N. attenuata interaction. CONCLUSIONS The analysis of the early changes in the transcriptome of N. attenuata after FAC elicitation using SuperSAGE/454 has identified regulatory genes involved in insect-specific mediated responses in plants. Moreover, it has provided a foundation for the identification of additional novel regulators associated with this process.
Collapse
Affiliation(s)
- Paola A Gilardoni
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, 07745 Jena, Germany
| | - Stefan Schuck
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, 07745 Jena, Germany
| | - Ruth Jüngling
- GenXPro GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Björn Rotter
- GenXPro GmbH, Altenhöferallee 3, 60438 Frankfurt am Main, Germany
| | - Ian T Baldwin
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, 07745 Jena, Germany
| | - Gustavo Bonaventure
- Max Planck Institute for Chemical Ecology, Department of Molecular Ecology, Hans Knöll Str. 8, 07745 Jena, Germany
| |
Collapse
|
24
|
Vega-Arreguín JC, Ibarra-Laclette E, Jiménez-Moraila B, Martínez O, Vielle-Calzada JP, Herrera-Estrella L, Herrera-Estrella A. Deep sampling of the Palomero maize transcriptome by a high throughput strategy of pyrosequencing. BMC Genomics 2009; 10:299. [PMID: 19580677 PMCID: PMC2714558 DOI: 10.1186/1471-2164-10-299] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 07/06/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND In-depth sequencing analysis has not been able to determine the overall complexity of transcriptional activity of a plant organ or tissue sample. In some cases, deep parallel sequencing of Expressed Sequence Tags (ESTs), although not yet optimized for the sequencing of cDNAs, has represented an efficient procedure for validating gene prediction and estimating overall gene coverage. This approach could be very valuable for complex plant genomes. In addition, little emphasis has been given to efforts aiming at an estimation of the overall transcriptional universe found in a multicellular organism at a specific developmental stage. RESULTS To explore, in depth, the transcriptional diversity in an ancient maize landrace, we developed a protocol to optimize the sequencing of cDNAs and performed 4 consecutive GS20-454 pyrosequencing runs of a cDNA library obtained from 2 week-old Palomero Toluqueño maize plants. The protocol reported here allowed obtaining over 90% of informative sequences. These GS20-454 runs generated over 1.5 Million reads, representing the largest amount of sequences reported from a single plant cDNA library. A collection of 367,391 quality-filtered reads (30.09 Mb) from a single run was sufficient to identify transcripts corresponding to 34% of public maize ESTs databases; total sequences generated after 4 filtered runs increased this coverage to 50%. Comparisons of all 1.5 Million reads to the Maize Assembled Genomic Islands (MAGIs) provided evidence for the transcriptional activity of 11% of MAGIs. We estimate that 5.67% (86,069 sequences) do not align with public ESTs or annotated genes, potentially representing new maize transcripts. Following the assembly of 74.4% of the reads in 65,493 contigs, real-time PCR of selected genes confirmed a predicted correlation between the abundance of GS20-454 sequences and corresponding levels of gene expression. CONCLUSION A protocol was developed that significantly increases the number, length and quality of cDNA reads using massive 454 parallel sequencing. We show that recurrent 454 pyrosequencing of a single cDNA sample is necessary to attain a thorough representation of the transcriptional universe present in maize, that can also be used to estimate transcript abundance of specific genes. This data suggests that the molecular and functional diversity contained in the vast native landraces remains to be explored, and that large-scale transcriptional sequencing of a presumed ancestor of the modern maize varieties represents a valuable approach to characterize the functional diversity of maize for future agricultural and evolutionary studies.
Collapse
Affiliation(s)
- Julio C Vega-Arreguín
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Carretera Irapuato-León, Irapuato, Gto, Mexico.
| | | | | | | | | | | | | |
Collapse
|
25
|
Yang Z, Wu Y, Li Y, Ling HQ, Chu C. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. PLANT MOLECULAR BIOLOGY 2009; 70:219-29. [PMID: 19229638 DOI: 10.1007/s11103-009-9466-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 02/01/2009] [Indexed: 05/08/2023]
Abstract
Metallothioneins (MTs) are small, cysteine-rich, metal-binding proteins that may be involved in metal homeostasis and detoxification in both plants and animals. OsMT1a, encoding a type 1 metallothionein, was isolated via suppression subtractive hybridization from Brazilian upland rice (Oryza sativa L. cv. Iapar 9). Expression analysis revealed that OsMT1a predominantly expressed in the roots, and was induced by dehydration. Interestingly, the OsMT1a expression was also induced specifically by Zn(2+) treatment. Both transgenic plants and yeasts harboring OsMT1a accumulated more Zn(2+) than wild type controls, suggesting OsMT1a is most likely to be involved in zinc homeostasis. Transgenic rice plants overexpressing OsMT1a demonstrated enhanced tolerance to drought. The examination of antioxidant enzyme activities demonstrated that catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) were significantly elevated in transgenic plants. Furthermore, the transcripts of several Zn(2+)-induced CCCH zinc finger transcription factors accumulated in OsMT1a transgenic plants, suggesting that OsMT1a not only participates directly in ROS scavenging pathway but also regulates expression of the zinc finger transcription factors via the alteration of Zn(2+) homeostasis, which leads to improved plant stress tolerance.
Collapse
Affiliation(s)
- Zhao Yang
- State Key Laboratory of Plant Genomics and National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Chinese Academy of Sciences, 100101, Beijing, China
| | | | | | | | | |
Collapse
|
26
|
Wang W, Meng B, Ge X, Song S, Yang Y, Yu X, Wang L, Hu S, Liu S, Yu J. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Proteomics 2008; 8:4808-21. [DOI: 10.1002/pmic.200701164] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
27
|
Robinson SJ, Parkin IAP. Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 2008; 9:434. [PMID: 18808718 PMCID: PMC2568001 DOI: 10.1186/1471-2164-9-434] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 09/22/2008] [Indexed: 11/28/2022] Open
Abstract
Background Abiotic stress, including low temperature, limits the productivity and geographical distribution of plants, which has led to significant interest in understanding the complex processes that allow plants to adapt to such stresses. The wide range of physiological, biochemical and molecular changes that occur in plants exposed to low temperature require a robust global approach to studying the response. We have employed Serial Analysis of Gene Expression (SAGE) to uncover changes in the transcriptome of Arabidopsis thaliana over a time course of low temperature stress. Results Five SAGE libraries were generated from A. thaliana leaf tissue collected at time points ranging from 30 minutes to one week of low temperature treatment (4°C). Over 240,000 high quality SAGE tags, corresponding to 16,629 annotated genes, provided a comprehensive survey of changes in the transcriptome in response to low temperature, from perception of the stress to acquisition of freezing tolerance. Interpretation of these data was facilitated by representing the SAGE data by gene identifier, allowing more robust statistical analysis, cross-platform comparisons and the identification of genes sharing common expression profiles. Simultaneous statistical calculations across all five libraries identified 920 low temperature responsive genes, only 24% of which overlapped with previous global expression analysis performed using microarrays, although similar functional categories were affected. Clustering of the differentially regulated genes facilitated the identification of novel loci correlated with the development of freezing tolerance. Analysis of their promoter sequences revealed subsets of genes that were independent of CBF and ABA regulation and could provide a mechanism for elucidating complementary signalling pathways. The SAGE data emphasised the complexity of the plant response, with alternate pre-mRNA processing events increasing at low temperatures and antisense transcription being repressed. Conclusion Alternate transcript processing appears to play an important role in enhancing the plasticity of the stress induced transcriptome. Novel genes and cis-acting sequences have been identified as compelling targets to allow manipulation of the plant's ability to protect against low temperature stress. The analyses performed provide a contextual framework for the interpretation of quantitative sequence tag based transcriptome analysis which will prevail with the application of next generation sequencing technology.
Collapse
Affiliation(s)
- Stephen J Robinson
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| | | |
Collapse
|
28
|
Guo WJ, Meetam M, Goldsbrough PB. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. PLANT PHYSIOLOGY 2008; 146:1697-706. [PMID: 18287486 PMCID: PMC2287344 DOI: 10.1104/pp.108.115782] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/11/2008] [Indexed: 05/20/2023]
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins found in various eukaryotes. Plant MTs are classified into four types based on the arrangement of cysteine residues. To determine whether all four types of plant MTs function as metal chelators, six Arabidopsis (Arabidopsis thaliana) MTs (MT1a, MT2a, MT2b, MT3, MT4a, and MT4b) were expressed in the copper (Cu)- and zinc (Zn)-sensitive yeast mutants, Deltacup1 and Deltazrc1 Deltacot1, respectively. All four types of Arabidopsis MTs provided similar levels of Cu tolerance and accumulation to the Deltacup1 mutant. The type-4 MTs (MT4a and MT4b) conferred greater Zn tolerance and higher accumulation of Zn than other MTs to the Deltazrc1 Deltacot1 mutant. To examine the functions of MTs in plants, we studied Arabidopsis plants that lack MT1a and MT2b, two MTs that are expressed in phloem. The lack of MT1a, but not MT2b, led to a 30% decrease in Cu accumulation in roots of plants exposed to 30 mum CuSO(4). Ectopic expression of MT1a RNA in the mt1a-2 mt2b-1 mutant restored Cu accumulation in roots. The mt1a-2 mt2b-1 mutant had normal metal tolerance. However, when MT deficiency was combined with phytochelatin deficiency, growth of the mt1a-2 mt2b-1 cad1-3 triple mutant was more sensitive to Cu and cadmium compared to the cad1-3 mutant. Together these results provide direct evidence for functional contributions of MTs to plant metal homeostasis. MT1a, in particular, plays a role in Cu homeostasis in the roots under elevated Cu. Moreover, MTs and phytochelatins function cooperatively to protect plants from Cu and cadmium toxicity.
Collapse
Affiliation(s)
- Woei-Jiun Guo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
29
|
Gene expression studies of the dikaryotic mycelium and primordium of Lentinula edodes by serial analysis of gene expression. ACTA ACUST UNITED AC 2008; 112:950-64. [PMID: 18555678 DOI: 10.1016/j.mycres.2008.01.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 01/16/2008] [Accepted: 01/24/2008] [Indexed: 02/02/2023]
Abstract
Lentinula edodes (Shiitake mushroom) is a common edible mushroom that has high nutritional and medical value. Although a number of genes involved in the fruit of the species have been identified, little is known about the process of differentiation from dikaryotic mycelium to primordium. In this study, serial analysis of gene expression (SAGE) was applied to determine the gene expression profiles of the dikaryotic mycelium and primordium of L. edodes in an effort to advance our understanding of the molecular basis of fruit body development. A total of 6363 tags were extracted (3278 from the dikaryotic mycelium and 3085 from the primordium), 164 unique tags matched the in-house expressed sequence tag (EST) database. The difference between the expression profiles of the dikaryotic mycelium and primordium suggests that a specific set of genes is required for fruit body development. In the transition from the mycelium to the primordium, different hydrophobins were expressed abundantly, fewer structural genes were expressed, transcription and translation became active, different genes became involved in intracellular trafficking, and stress responses were expressed. These findings advance our understanding of fruit body development. We used cDNA microarray hybridization and Northern blotting to verify the SAGE results, and found SAGE to be highly efficient in the performance of transcriptome analysis. To our knowledge, this is the first SAGE study of a mushroom.
Collapse
|
30
|
Irian S, Xu P, Dai X, Zhao PX, Roossinck MJ. Regulation of a virus-induced lethal disease in tomato revealed by LongSAGE analysis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1477-1488. [PMID: 17990955 DOI: 10.1094/mpmi-20-12-1477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Infection of Cucumber mosaic virus (CMV) and D satellite RNA (satRNA) in tomato plants induces rapid plant death, which has caused catastrophic crop losses. We conducted long serial analysis of gene expression (LongSAGE) in control and virus-infected plants to identify the genes that may be involved in the development of this lethal tomato disease. The transcriptomes were compared between mock-inoculated plants and plants infected with CMV, CMV/D satRNA, or CMV/Dm satRNA (a nonnecrogenic mutant of D satRNA with three mutated nucleotides). The analysis revealed both general and specific changes in the tomato transcriptome after infection with these viruses. A massive transcriptional difference of approximately 400 genes was found between the transcriptomes of CMV/D and CMV/Dm satRNA-infected plants. Particularly, the Long-SAGE data indicated the activation of ethylene synthesis and signaling by CMV/D satRNA infection. Results from inoculation tests with an ethylene-insensitive mutant and treatments with an ethylene action inhibitor further confirmed the role of ethylene in mediating the epinastic leaf symptoms and the secondary cell death in the stem. Results from Northern blot analysis demonstrated the partial contribution of ethylene in the induced defense responses in CMV/D satRNA-infected plants.
Collapse
Affiliation(s)
- Saeed Irian
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | | | | | | |
Collapse
|
31
|
Sereno ML, Almeida RS, Nishimura DS, Figueira A. Response of sugarcane to increasing concentrations of copper and cadmium and expression of metallothionein genes. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1499-515. [PMID: 17175063 DOI: 10.1016/j.jplph.2006.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 09/18/2006] [Indexed: 05/13/2023]
Abstract
Sugarcane (Saccharum spp.) offers the potential to be a phytoremediator species due to its outstanding biomass production, but its prospective metal accumulation and tolerance have not been fully characterized. Sugarcane plantlets were able to tolerate up to 100microM of copper in nutrient solution for 33 days, with no significant reduction in fresh weight, while accumulating 45mgCukg(-1) shoot dry weight. Higher levels of copper in solution (250 and 500microM) were lethal. Sugarcane displayed tolerance to 500microM Cd without symptoms of toxicity, accumulating 451mgCdkg(-1) shoot dry weight after 33 days, indicating its potential as Cd phytoremediator. DNA gel blot analyses detected 8 fragments using a metallothionein (MT) Type I probe, while 10 were revealed for the MT Type II and 8 for MT Type III. The number of genes for each type of MT in sugarcane might be similar to the ones identified in rice considering the interspecific origin of sugarcane cultivars. MT Type I gene appeared to present the highest level of constitutive expression, mainly in roots, followed by MT Type II, corroborating the expression pattern described based on large-scale expressed sequence tags sequencing. MT Type II and III genes were more expressed in shoots, where MT I was also importantly expressed. Increasing Cu concentration had little or no effect in modulating MT genes expression, while an apparent minor modulation of some of the MT genes could be detected in Cd treatments. However, the level of response was too small to explain the tolerance and/or accumulation of Cd in sugarcane tissues. Thus, cadmium tolerance and accumulation in sugarcane might derive from other mechanisms, although MT may be involved in oxidative responses to high levels of Cd. Sugarcane can be considered a potential candidate to be tested in Cd phytoremediation.
Collapse
Affiliation(s)
- Maria Lorena Sereno
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11 CP 83, Piracicaba, SP 13400-970, Brazil
| | | | | | | |
Collapse
|
32
|
Song S, Qu H, Chen C, Hu S, Yu J. Differential gene expression in an elite hybrid rice cultivar (Oryza sativa, L) and its parental lines based on SAGE data. BMC PLANT BIOLOGY 2007; 7:49. [PMID: 17877838 PMCID: PMC2077334 DOI: 10.1186/1471-2229-7-49] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Accepted: 09/19/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND It was proposed that differentially-expressed genes, aside from genetic variations affecting protein processing and functioning, between hybrid and its parents provide essential candidates for studying heterosis or hybrid vigor. Based our serial analysis of gene expression (SAGE) data from an elite Chinese super-hybrid rice (LYP9) and its parental cultivars (93-11 and PA64s) in three major tissue types (leaves, roots and panicles) at different developmental stages, we analyzed the transcriptome and looked for candidate genes related to rice heterosis. RESULTS By using an improved strategy of tag-to-gene mapping and two recently annotated genome assemblies (93-11 and PA64s), we identified 10,268 additional high-quality tags, reaching a grand total of 20,595 together with our previous result. We further detected 8.5% and 5.9% physically-mapped genes that are differentially-expressed among the triad (in at least one of the three stages) with P-values less than 0.05 and 0.01, respectively. These genes distributed in 12 major gene expression patterns; among them, 406 up-regulated and 469 down-regulated genes (P < 0.05) were observed. Functional annotations on the identified genes highlighted the conclusion that up-regulated genes (some of them are known enzymes) in hybrid are mostly related to enhancing carbon assimilation in leaves and roots. In addition, we detected a group of up-regulated genes related to male sterility and 442 down-regulated genes related to signal transduction and protein processing, which may be responsible for rice heterosis. CONCLUSION We improved tag-to-gene mapping strategy by combining information from transcript sequences and rice genome annotation, and obtained a more comprehensive view on genes that related to rice heterosis. The candidates for heterosis-related genes among different genotypes provided new avenue for exploring the molecular mechanism underlying heterosis.
Collapse
Affiliation(s)
- Shuhui Song
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
- Department of Biology, Graduate University of the Chinese Academy of Sciences, Beijing 100094, China
| | - Hongzhu Qu
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
- Department of Biology, Graduate University of the Chinese Academy of Sciences, Beijing 100094, China
| | - Chen Chen
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
- Department of Biology, Graduate University of the Chinese Academy of Sciences, Beijing 100094, China
| | - Songnian Hu
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | - Jun Yu
- Key Laboratory of Genome Science and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| |
Collapse
|
33
|
Leszczyszyn OI, Schmid R, Blindauer CA. Toward a property/function relationship for metallothioneins: Histidine coordination and unusual cluster composition in a zinc-metallothionein from plants. Proteins 2007; 68:922-35. [PMID: 17563107 DOI: 10.1002/prot.21463] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Early cysteine labeled (E(C)) proteins are plant metallothioneins, which were first identified in wheat embryos and are thought to be seed-specific. An exhaustive analysis of expressed sequence tag (EST) entries reveals that homologs are expressed in embryos of both classes of flowering plants (monocotyledons and dicotyledons), but also occur in conifers (gymnosperms) and seed-free spike moss (lycophyta). Mass spectrometric and elemental analysis results indicate that, contrary to the widely propagated number of five, E(C) binds predominantly six zinc ions in at least two zinc-thiolate clusters. 1H and 111Cd NMR experiments suggest that, in contrast to the majority of previously characterized metallothioneins, two conserved histidine residues participate in metal binding. The collected data is consistent with the presence of clusters unprecedented in metallothioneins so far. This novel cluster composition is accompanied by metal-binding properties that are substantially different from other metallothioneins; thus wheat E(C) binds zinc less strongly than either mammalian or cyanobacterial MTs. The unique biochemical properties of wheat E(C) render it ideally suited for a role in zinc donation to nascent proteins during seed development, a role that has been suggested based on the fact that E(C) is induced by the plant hormone abscisic acid, but not by heavy metals. Our results provide a step further toward developing a property/function relationship for metallothioneins.
Collapse
Affiliation(s)
- Oksana I Leszczyszyn
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
34
|
Vij S, Tyagi AK. Emerging trends in the functional genomics of the abiotic stress response in crop plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:361-80. [PMID: 17430544 DOI: 10.1111/j.1467-7652.2007.00239.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants are exposed to different abiotic stresses, such as water deficit, high temperature, salinity, cold, heavy metals and mechanical wounding, under field conditions. It is estimated that such stress conditions can potentially reduce the yield of crop plants by more than 50%. Investigations of the physiological, biochemical and molecular aspects of stress tolerance have been conducted to unravel the intrinsic mechanisms developed during evolution to mitigate against stress by plants. Before the advent of the genomics era, researchers primarily used a gene-by-gene approach to decipher the function of the genes involved in the abiotic stress response. However, abiotic stress tolerance is a complex trait and, although large numbers of genes have been identified to be involved in the abiotic stress response, there remain large gaps in our understanding of the trait. The availability of the genome sequences of certain important plant species has enabled the use of strategies, such as genome-wide expression profiling, to identify the genes associated with the stress response, followed by the verification of gene function by the analysis of mutants and transgenics. Certain components of both abscisic acid-dependent and -independent cascades involved in the stress response have already been identified. Information originating from the genome-wide analysis of abiotic stress tolerance will help to provide an insight into the stress-responsive network(s), and may allow the modification of this network to reduce the loss caused by stress and to increase agricultural productivity.
Collapse
Affiliation(s)
- Shubha Vij
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | |
Collapse
|
35
|
Li L, Wang X, Sasidharan R, Stolc V, Deng W, He H, Korbel J, Chen X, Tongprasit W, Ronald P, Chen R, Gerstein M, Wang Deng X. Global identification and characterization of transcriptionally active regions in the rice genome. PLoS One 2007; 2:e294. [PMID: 17372628 PMCID: PMC1808428 DOI: 10.1371/journal.pone.0000294] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 02/21/2007] [Indexed: 11/18/2022] Open
Abstract
Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Xiangfeng Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
- Peking-Yale Joint Research Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing, China
| | - Rajkumar Sasidharan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Viktor Stolc
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Genome Research Facility, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Wei Deng
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hang He
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jan Korbel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Xuewei Chen
- Department of Plant Pathology, University of California, Davis, California, United States of America
| | | | - Pamela Ronald
- Department of Plant Pathology, University of California, Davis, California, United States of America
| | - Runsheng Chen
- Bioinformatics Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Gorantla M, Babu PR, Lachagari VBR, Reddy AMM, Wusirika R, Bennetzen JL, Reddy AR. Identification of stress-responsive genes in an indica rice (Oryza sativa L.) using ESTs generated from drought-stressed seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2007; 58:253-65. [PMID: 17132712 DOI: 10.1093/jxb/erl213] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The impacts of drought on plant growth and development limit cereal crop production worldwide. Rice (Oryza sativa) productivity and production is severely affected due to recurrent droughts in almost all agroecological zones. With the advent of molecular and genomic technologies, emphasis is now placed on understanding the mechanisms of genetic control of the drought-stress response. In order to identify genes associated with water-stress response in rice, ESTs generated from a normalized cDNA library, constructed from drought-stressed leaf tissue of an indica cultivar, Nagina 22 were used. Analysis of 7794 cDNA sequences led to the identification of 5815 rice ESTs. Of these, 334 exhibited no significant sequence homology with any rice ESTs or full-length cDNAs in public databases, indicating that these transcripts are enriched during drought stress. Analysis of these 5815 ESTs led to the identification of 1677 unique sequences. To characterize this drought transcriptome further and to identify candidate genes associated with the drought-stress response, the rice data were compared with those for abiotic stress-induced sequences obtained from expression profiling studies in Arabidopsis, barley, maize, and rice. This comparative analysis identified 589 putative stress-responsive genes (SRGs) that are shared by these diverse plant species. Further, the identified leaf SRGs were compared to expression profiles for a drought-stressed rice panicle library to identify common sequences. Significantly, 125 genes were found to be expressed under drought stress in both tissues. The functional classification of these 125 genes showed that a majority of them are associated with cellular metabolism, signal transduction, and transcriptional regulation.
Collapse
Affiliation(s)
- Markandeya Gorantla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad-500046, AP, India
| | | | | | | | | | | | | |
Collapse
|
37
|
Uehara T, Sugiyama S, Masuta C. Comparative serial analysis of gene expression of transcript profiles of tomato roots infected with cyst nematode. PLANT MOLECULAR BIOLOGY 2007; 63:185-94. [PMID: 16983456 DOI: 10.1007/s11103-006-9081-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2006] [Accepted: 08/18/2006] [Indexed: 05/11/2023]
Abstract
We analyzed global transcripts for tomato roots infected with the cyst nematode Globodera rostochiensis using serial analysis of gene expression (SAGE). SAGE libraries were made from nematode-infected roots and uninfected roots at 14 days after inoculation, and the clones including SAGE tags were sequenced. Genes were identified by matching the SAGE tags to tomato expressed sequence tags and cDNA databases. We then compiled a list of numerous genes according to the mRNA levels that were altered after cyst nematode infection. Our SAGE results showed significant changes in expression of many unreported genes involved in nematode infection. Of these, for discussion we selected five SAGE tags of RSI-1, BURP domain-containing protein, hexose transporter, P-rich protein, and PHAP2A that were activated by cyst nematode infection. Over 20% of the tags that were upregulated in the infected root have unknown functions (non-annotated), suggesting that we can obtain information on previously unreported and uncharacterized genes by SAGE. We can also obtain information on previously reported genes involved in nematode infection (e.g., multicystatin, peroxidase, catalase, pectin esterase, and S-adenosylmethionine transferase). To evaluate the validity of our SAGE results, seven genes were further analyzed by semiquantitative reverse transcriptase-polymerase chain reaction and Northern blot hybridization; the results agreed well with the SAGE data.
Collapse
Affiliation(s)
- Taketo Uehara
- National Agricultural Research Center for Hokkaido Region, 1 Hitsujigaoka, Toyohira-ku, Sapporo, 062-8555, Japan.
| | | | | |
Collapse
|
38
|
Robinson SJ, Guenther JD, Lewis CT, Links MG, Parkin IAP. Reaping the Benefits of SAGE. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2007; 406:365-86. [PMID: 18287703 DOI: 10.1007/978-1-59745-535-0_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Serial analysis of gene expression (SAGE) is a powerful technique which yields a digital measure of gene expression through the sequencing of libraries of specific mRNA-derived fragments, namely SAGE tags. This chapter introduces the methods and software tools that are available for researchers to analyze gene expression through SAGE analysis. A detailed examination of SAGE analysis in Arabidopsis thaliana using the publicly available analysis tool, SaskSAGE, is provided. The use of this software allows the user to maximize the information gained from SAGE experiments in a model system with a fully sequenced genome.
Collapse
Affiliation(s)
- Stephen J Robinson
- Agriculture and Agri-Food, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | | | | | | | | |
Collapse
|
39
|
McIntosh S, Watson L, Bundock P, Crawford A, White J, Cordeiro G, Barbary D, Rooke L, Henry R. SAGE of the developing wheat caryopsis. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:69-83. [PMID: 17207258 DOI: 10.1111/j.1467-7652.2006.00218.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Understanding the development of the cereal caryopsis holds the future for metabolic engineering in the interests of enhancing global food production. We have developed a Serial Analysis of Gene Expression (SAGE) data platform to investigate the developing wheat (Triticum aestivum) caryopsis. LongSAGE libraries have been constructed at five time-points post-anthesis to coincide with key processes in caryopsis development. More than 90,000 LongSAGE tags have been sequenced generating 29,261 unique tag sequences across all five libraries. Tag abundance, generated from cumulative tag counts, provides insight into the redundancy and diversity of each library. Annotation of the 500 most abundant tags spanning development highlights the array of functional groups being expressed. The relative frequency of these more abundant transcripts allows quantitative analysis of patterns of expression during grain development. We have identified activities of cellular proliferation/differentiation, the accumulation of storage proteins and starch biosynthesis. The abundance of calcium-dependent protein kinases indicate their importance in signalling across development. Acquisition of a broad array of defence coincides with storage accumulation and is dominated by inhibitors of amylase activity. Differential expression profiles of abundant tags from each library reveal the coordinated expression of genes responsible for the cellular events constituting caryopsis development. This SAGE platform has also provided a resource of novel sequence and expression information including the identification of potentially useful promoter activities. Further investigations into both the abundant and low expressing transcripts will provide greater insight into wheat caryopsis development and assist in wheat improvement programmes.
Collapse
Affiliation(s)
- Shane McIntosh
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, PO Box 157, Lismore, NSW 2480 Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang Y, Li L, Chen Y, Li X, Xu C, Wang S, Zhang Q. Comparative analysis of gene expression at early seedling stage between a rice hybrid and its parents using a cDNA microarray of 9198 uni-sequences. ACTA ACUST UNITED AC 2006; 49:519-29. [PMID: 17312990 DOI: 10.1007/s11427-006-2031-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using a cDNA microarray consisting of 9198 expressed sequence tags, we surveyed the gene expression profiles in shoots and roots of a rice hybrid, Liangyoupei 9 and its parents Peiai 64s and 93-11 at 72 h after germination. A total of 8587 sequences had detectable signals in both shoots and roots of the three genotypes. A total of 1571 sequences exhibited significant (P < 0.01) expression differences in shoots or roots among the three genotypes, of which 121 showed expression polymorphisms in both shoots and roots, and 870 revealed significant expression differences between the hybrid and one of the parents. The expression polymorphism of the sequences was associated with the functional categories of the sequences. They occurred more frequently in categories of carbohydrate, energy and lipid metabolisms and stress response than expected, while less frequently in categories of amino acid metabolism, transcription and translation regulation, and signal transduction. A total of 214 sequences exhibited significant (P < 0.05) mid-parent heterosis in expression, of which 117 had homology to genes with known functions, assigned in the categories of basic metabolism, genetic information processing, cell growth and death, signal transduction, transportation and stress response. The results may provide useful information for exploring the relationship between gene expression polymorphism and phenotypic variation, and for characterizing the molecular mechanism of seedling development and heterosis in rice.
Collapse
Affiliation(s)
- Yi Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Miyashita NT, Yoshida K, Ishii T. DNA variation in the metallothionein genes in wild rice Oryza rufipogon: relationship between DNA sequence polymorphism, codon bias and gene expression. Genes Genet Syst 2006; 80:173-83. [PMID: 16172530 DOI: 10.1266/ggs.80.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study examines the relationship between DNA sequence variation and level of gene expression in four metallothionein genes from wild rice Oryza rufipogon. The nucleotide diversity was 0.0028 to 0.0117 over the entire coding and non-coding region, and it was negatively correlated with gene expression for three type 2 metallothionein genes. In contrast, codon bias and percent of preferred codons correlated positively with gene expression. These results indicate that the intensity of natural selection depends on the level of gene expression, which in turn shapes the level of nucleotide polymorphism. In addition, significant linkage disequilibria were frequent between the metallothionein genes, although significance was not confirmed after multiple test correction. This result suggests that metallothionein genes expressed at different levels are epistatic with respect to fitness, and that gene expression is an important factor determining level of DNA polymorphism.
Collapse
Affiliation(s)
- Naohiko T Miyashita
- Laboratory of Plant Genetics, Graduate School of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
42
|
McNally KL, Bruskiewich R, Mackill D, Buell CR, Leach JE, Leung H. Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. PLANT PHYSIOLOGY 2006; 141:26-31. [PMID: 16684934 PMCID: PMC1459310 DOI: 10.1104/pp.106.077313] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Kenneth L McNally
- International Rice Research Institute, Metro Manila, The Philippines.
| | | | | | | | | | | |
Collapse
|
43
|
White J, Pacey-Miller T, Crawford A, Cordeiro G, Barbary D, Bundock P, Henry R. Abundant transcripts of malting barley identified by serial analysis of gene expression (SAGE). PLANT BIOTECHNOLOGY JOURNAL 2006; 4:289-301. [PMID: 17147635 DOI: 10.1111/j.1467-7652.2006.00181.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Serial analysis of gene expression (SAGE) was applied to the major cereal crop barley (Hordeum vulgare) to characterize the transcriptional profile of grain during the malting process. Seven SAGE libraries were generated from seed at different time points during malting, in addition to one library from dry mature seed. A total of 155,206 LongSAGE tags, representing 41,909 unique sequences, was generated. This study reports an in-depth analysis of the most abundant transcripts from each of eight specific time points in a malting barley time course. The 100 most abundant tags from each library were analysed to identify the putative functional role of highly abundant transcripts. The largest functional groups included transcripts coding for stress response and cell defence, ribosomal proteins and storage proteins. The most abundant tag represented B22EL8, a barley metallothionein, which showed significant up-regulation across the malting time course. Considerable changes in the abundance profiles of some of the highly abundant tags occurred at 24 h post-steeping, indicating that it may be an important time point for gene expression changes associated with barley seed germination.
Collapse
Affiliation(s)
- Jessica White
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
| | | | | | | | | | | | | |
Collapse
|
44
|
Labra M, Gianazza E, Waitt R, Eberini I, Sozzi A, Regondi S, Grassi F, Agradi E. Zea mays L. protein changes in response to potassium dichromate treatments. CHEMOSPHERE 2006; 62:1234-44. [PMID: 16313944 DOI: 10.1016/j.chemosphere.2005.06.062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/13/2005] [Accepted: 06/28/2005] [Indexed: 05/05/2023]
Abstract
The plant metabolic response to heavy metal stress is largely unknown. The present investigation was undertaken to examine the influence of different concentrations of potassium dichromate on the Zea mays L. plantlets. A clear effect of chromium on maize plantlets growth and seed germination was observed strating from 100-300 ppm up to 1500 ppm. In this concentration range, chromium uptake was dependent on the concentration in the medium. Metallothioneins, involved in heavy metal binding, were measured by capillary electrophoresis (CE), and showed a dose-response induction. Protein profile analyzed by two-dimensional gel electrophoresis showed differential expression of several proteins. Identification of spots of upregulated proteins was performed by MALDI mass spectrometry. Results showed that proteins induced by heavy metal exposure are principally involved in oxidative stress tolerance or in other stress pathways. Induction of proteins implicated in sugar metabolism was also observed. Identification of factors involved in plant response may lead to a better understanding of the mechanisms involved in cell protection and tolerance. This information could be used to improve agricultural production and environmental quality.
Collapse
Affiliation(s)
- M Labra
- DISAT, Università di Milano-Bicocca, P.zza della Scienza 1, 20126 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Galbraith DW, Birnbaum K. Global studies of cell type-specific gene expression in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:451-75. [PMID: 16669770 DOI: 10.1146/annurev.arplant.57.032905.105302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Technological advances in expression profiling and in the ability to collect minute quantities of tissues have come together to allow a growing number of global transcriptional studies at the cell level in plants. Microarray technology, with a choice of cDNA or oligo-based slides, is now well established, with commercial full-genome platforms for rice and Arabidopsis and extensive expressed sequence tag (EST)-based designs for many other species. Microdissection and cell sorting are two established methodologies that have been used in conjunction with microarrays to provide an early glimpse of the transcriptional landscape at the level of individual cell types. The results indicate that much of the transcriptome is compartmentalized. A minor but consistent percentage of transcripts appear to be unique to specific cell types. Functional analyses of cell-specific patterns of gene expression are providing important clues to cell-specific functions. The spatial dissection of the transcriptome has also yielded insights into the localized mediators of hormone inputs and promises to provide detail on cell-specific effects of microRNAs.
Collapse
Affiliation(s)
- David W Galbraith
- Department of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
46
|
Coemans B, Matsumura H, Terauchi R, Remy S, Swennen R, Sági L. SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:1118-26. [PMID: 16133315 DOI: 10.1007/s00122-005-0039-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Accepted: 07/04/2005] [Indexed: 05/04/2023]
Abstract
Super-serial analysis of gene expression (SuperSAGE) was used to characterize, for the first time, the global gene expression pattern in banana (Musa acuminata). A total of 10,196 tags were generated from leaf tissue, representing 5,292 expressed genes. Forty-nine tags of the top 100 most abundantly expressed transcripts were annotated by homology to cDNA or EST sequences. Typically for leaf tissue, analysis of the transcript profiles showed that the majority of the abundant transcripts are involved in energy production, mainly photosynthesis. However, the most abundant tag was derived from a type 3 metallothionein transcript, which accounted for nearly 3% of total transcripts analysed. Furthermore, the 26-bp long SuperSAGE tags were applied in 3'-rapid amplification of cDNA ends (3'RACE) for the identification of unknown tags. In combination with thermal asymmetric interlaced PCR (TAIL-PCR), this allowed the recovery of a full gene sequence of a novel NADPH:protochlorophyllide oxidoreductase, the key enzyme in chlorophyll biosynthesis. SuperSAGE in conjunction with 3'RACE and TAIL-PCR will be a powerful tool for transcriptomics of non-model, but otherwise important organisms.
Collapse
Affiliation(s)
- Bert Coemans
- Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The application of transcriptomics to study host-pathogen interactions has already brought important insights into the mechanisms of pathogenesis, and is expanding further keeping pace with the accumulation of genomic sequences of host organisms (human and economically important organisms such as food crops) and their pathogens (viruses, bacteria, fungi and protozoa). In this review, we introduce SuperSAGE, a substantially improved variant of serial analysis of gene expression (SAGE), as a potent tool for the transcriptomics of host-pathogen interactions. Notably, the generation of 26 bp tags in the SuperSAGE procedure allows to decipher the 'interaction transcriptome', i.e. the simultaneous monitoring of quantitative gene expression, of both a host and one of its eukaryotic pathogens. The potential of SuperSAGE tags for a rapid functional analysis of target genes is also discussed.
Collapse
Affiliation(s)
- Hideo Matsumura
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Poroyko V, Hejlek LG, Spollen WG, Springer GK, Nguyen HT, Sharp RE, Bohnert HJ. The maize root transcriptome by serial analysis of gene expression. PLANT PHYSIOLOGY 2005; 138:1700-10. [PMID: 15965024 PMCID: PMC1176439 DOI: 10.1104/pp.104.057638] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Serial Analysis of Gene Expression was used to define number and relative abundance of transcripts in the root tip of well-watered maize seedlings (Zea mays cv FR697). In total, 161,320 tags represented a minimum of 14,850 genes, based on at least two tags detected per transcript. The root transcriptome has been sampled to an estimated copy number of approximately five transcripts per cell. An extrapolation from the data and testing of single-tag identifiers by reverse transcription-PCR indicated that the maize root transcriptome should amount to at least 22,000 expressed genes. Frequency ranged from low copy number (2-5, 68.8%) to highly abundant transcripts (100-->1,200; 1%). Quantitative reverse transcription-PCR for selected transcripts indicated high correlation with tag frequency. Computational analysis compared this set with known maize transcripts and other root transcriptome models. Among the 14,850 tags, 7,010 (47%) were found for which no maize cDNA or gene model existed. Comparing the maize root transcriptome with that in other plants indicated that highly expressed transcripts differed substantially; less than 5% of the most abundant transcripts were shared between maize and Arabidopsis (Arabidopsis thaliana). Transcript categories highlight functions of the maize root tip. Significant variation in abundance characterizes transcripts derived from isoforms of individual enzymes in biochemical pathways.
Collapse
Affiliation(s)
- V Poroyko
- Department of Plant Biology , University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Bao J, Lee S, Chen C, Zhang X, Zhang Y, Liu S, Clark T, Wang J, Cao M, Yang H, Wang SM, Yu J. Serial analysis of gene expression study of a hybrid rice strain (LYP9) and its parental cultivars. PLANT PHYSIOLOGY 2005; 138:1216-31. [PMID: 16009997 PMCID: PMC1176396 DOI: 10.1104/pp.105.060988] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Using the serial analysis of gene expression technique, we surveyed transcriptomes of three major tissues (panicles, leaves, and roots) of a super-hybrid rice (Oryza sativa) strain, LYP9, in comparison to its parental cultivars, 93-11 (indica) and PA64s (japonica). We acquired 465,679 tags from the serial analysis of gene expression libraries, which were consolidated into 68,483 unique tags. Focusing our initial functional analyses on a subset of the data that are supported by full-length cDNAs and the tags (genes) differentially expressed in the hybrid at a significant level (P<0.01), we identified 595 up-regulated (22 tags in panicles, 228 in leaves, and 345 in roots) and 25 down-regulated (seven tags in panicles, 15 in leaves, and three in roots) in LYP9. Most of the tag-identified and up-regulated genes were found related to enhancing carbon- and nitrogen-assimilation, including photosynthesis in leaves, nitrogen uptake in roots, and rapid growth in both roots and panicles. Among the down-regulated genes in LYP9, there is an essential enzyme in photorespiration, alanine:glyoxylate aminotransferase 1. Our study adds a new set of data crucial for the understanding of molecular mechanisms of heterosis and gene regulation networks of the cultivated rice.
Collapse
Affiliation(s)
- JingYue Bao
- Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Asamizu E, Nakamura Y, Sato S, Tabata S. Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:487-98. [PMID: 15915647 DOI: 10.1094/mpmi-18-0487] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We performed a comprehensive transcript analysis on the early stage of root nodulation in the model legume Lotus japonicus by serial analysis of gene expression (SAGE). SAGE libraries were made from uninfected roots and nodulating roots abundant in nodule primordia, and 85,482 and 80,233 SAGE tags were recovered, respectively. Comparison of the tag frequency identified 407 tag species that appeared in significantly greater numbers in the nodulating root than in the uninfected root, and the converse was found for 428 tag species. Gene identification of the tags was performed by matching them to L. japonicus expressed sequence tag sequences. We made several novel findings by applying SAGE to transcript analysis of legume root nodulation. A gene that showed the most significant increase in tag number upon nodulation has not been described previously. Different levels of transcription induction among leghemoglobin gene paralogs were found, indicating the effectiveness of SAGE in discriminating different gene family members. We identified genes for 44 unknown tags by means of reverse SAGE. We found 11 antisense tags that increased during nodulation, indicating that regulation of gene expression by antisense transcripts may occur in an organ-dependent manner.
Collapse
Affiliation(s)
- Erika Asamizu
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan.
| | | | | | | |
Collapse
|