1
|
Georgieva T, Yordanov Y, Yordanova E, Khan MRI, Lyu K, Busov V. Discovery of genes that positively affect biomass and stress associated traits in poplar. FRONTIERS IN PLANT SCIENCE 2024; 15:1468905. [PMID: 39494052 PMCID: PMC11528158 DOI: 10.3389/fpls.2024.1468905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024]
Abstract
Woody biomass serves as a renewable resource for various industries, including pulp and paper production, construction, biofuels, and electricity generation. However, the molecular mechanisms behind biomass traits are poorly understood, which significantly curtails the speed and efficiency of their improvement. We used activation tagging to discover genes that can positively affect tree biomass-associated traits. We generated and screened under greenhouse conditions a population of 2,700 independent activation tagging lines. A total of 761 lines, which had significantly and positively affected at least one biomass-associated trait, were discovered. The tag was positioned in the genome for forty lines which were affected in multiple traits and activation of proximal genes validated for a subset. For two lines we fully recapitulated the phenotype of the original lines through overexpression. Moreover, the overexpression led to more pronounced and additional improvements, not observed in the original lines. Importantly, the overexpression of a Fasciclin-like gene (PtaFLA10) and a Patatin-like gene (PtaPAT) was found to substantially improve biomass, with a 40% increase in dry-stem weight, and enhance drought tolerance, respectively. Additionally, PtaPAT overexpression increased cellulose content, which is crucial for biofuel production. Our work shows that the activation tagging approach applied even on a non-genome saturation scale in a poplar tree can be successfully used for the discovery of genes positively modify biomass productivity. Such dominant forward genetics approaches can aid in biotechnological manipulation of woody biomass traits and help unravel the functions and mechanisms of individual genes, gene families, and regulatory modules.
Collapse
Affiliation(s)
- Tatyana Georgieva
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Yordan Yordanov
- Department of Biological Sciences, Eastern Illinois University, Charleston, IL, United States
| | - Elena Yordanova
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Md Rezaul Islam Khan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Kaiwen Lyu
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
2
|
Kumar S, Singh A, Bist CMS, Sharma M. Advancements in genetic techniques and functional genomics for enhancing crop traits and agricultural sustainability. Brief Funct Genomics 2024; 23:607-623. [PMID: 38679487 DOI: 10.1093/bfgp/elae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Genetic variability is essential for the development of new crop varieties with economically beneficial traits. The traits can be inherited from wild relatives or induced through mutagenesis. Novel genetic elements can then be identified and new gene functions can be predicted. In this study, forward and reverse genetics approaches were described, in addition to their applications in modern crop improvement programs and functional genomics. By using heritable phenotypes and linked genetic markers, forward genetics searches for genes by using traditional genetic mapping and allele frequency estimation. Despite recent advances in sequencing technology, omics and computation, genetic redundancy remains a major challenge in forward genetics. By analyzing close-related genes, we will be able to dissect their functional redundancy and predict possible traits and gene activity patterns. In addition to these predictions, sophisticated reverse gene editing tools can be used to verify them, including TILLING, targeted insertional mutagenesis, gene silencing, gene targeting and genome editing. By using gene knock-down, knock-up and knock-out strategies, these tools are able to detect genetic changes in cells. In addition, epigenome analysis and editing enable the development of novel traits in existing crop cultivars without affecting their genetic makeup by increasing epiallelic variants. Our understanding of gene functions and molecular dynamics of various biological phenomena has been revised by all of these findings. The study also identifies novel genetic targets in crop species to improve yields and stress tolerances through conventional and non-conventional methods. In this article, genetic techniques and functional genomics are specifically discussed and assessed for their potential in crop improvement.
Collapse
Affiliation(s)
- Surender Kumar
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Anupama Singh
- Department of Biotechnology, College of Horticulture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan-173230, Himachal Pradesh, India
| | - Chander Mohan Singh Bist
- Indian Council of Agricultural Research (ICAR)-Central Potato Research Institute, Shimla-171001, Himachal Pradesh, India
| | - Munish Sharma
- Department of Plant Sciences, Central University of Himachal Pradesh, Dharamshala-176215, Himachal Pradesh, India
| |
Collapse
|
3
|
Rong M, Gao SX, Wen D, Xu YH, Wei JH. The LOB domain protein, a novel transcription factor with multiple functions: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108922. [PMID: 39038384 DOI: 10.1016/j.plaphy.2024.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein, named for its LATERAL ORGAN BOUNDARIES (LOB) domain, is a member of a class of specific transcription factors commonly found in plants and is absent from all other groups of organisms. LBD TFs have been systematically identified in about 35 plant species and are involved in regulating various aspects of plant growth and development. However, research on the signaling network and regulatory functions of LBD TFs is insufficient, and only a few members have been studied. Moreover, a comprehensive review of these existing studies is lacking. In this review, the structure, regulatory mechanism and function of LBD TFs in recent years were reviewed in order to better understand the role of LBD TFs in plant growth and development, and to provide a new perspective for the follow-up study of LBD TFs.
Collapse
Affiliation(s)
- Mei Rong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Shi-Xi Gao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Dong Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Yan-Hong Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China.
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State Administration of Traditional Chinese Medicine for Agarwood Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, 570311, China.
| |
Collapse
|
4
|
Hou X, Zhang K, Lyu Y. Functional Study on the Key Gene LaLBD37 Related to the Lily Bulblets Formation. Int J Mol Sci 2024; 25:9456. [PMID: 39273407 PMCID: PMC11395201 DOI: 10.3390/ijms25179456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Oriental hybrid lilies, known for their vibrant colors, diverse flower shapes, and long blooming seasons, require annual bulb propagation in horticultural production. This necessity can lead to higher production costs and limit their use in landscaping. The LA hybrid lily 'Aladdin' has shown strong self-reproduction capabilities in optimal cultivation environments, producing numerous high-quality underground stem bulblets. This makes it a valuable model for studying bulblet formation in lilies under natural conditions. Through transcriptome data analysis of different developmental stages of 'Aladdin' bulblets, the LaLBD37 gene, linked to bulblet formation, was identified. Bioinformatics analysis, subcellular localization studies, and transcriptional activation activity tests were conducted to understand the characteristics of LaLBD37. By introducing the LaLBD37 gene into 'Sorbonne' aseptic seedlings via Agrobacterium-mediated transformation, resistant plants were obtained. Positive plants were identified through various methods such as GUS activity detection, PCR, and fluorescence quantitative PCR. Phenotypic changes in positive plants were observed, and various physiological indicators were measured to confirm the role of LaLBD37 in bulblet formation, including soluble sugar content, starch content, sucrose synthase activity, and endogenous hormone levels. The findings suggest that the LaLBD37 gene plays a significant role in promoting the development of lily bulblets, offering insights for enhancing the reproductive capacity of Oriental hybrid lilies and exploring the molecular mechanisms involved in lily bulb regeneration.
Collapse
Affiliation(s)
- Xinru Hou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Kewen Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Zheng L, Chao Y, Wang Y, Xu Y, Li S. Genome-Wide Analysis of the LBD Gene Family in Melon and Expression Analysis in Response to Wilt Disease Infection. Genes (Basel) 2024; 15:442. [PMID: 38674376 PMCID: PMC11049230 DOI: 10.3390/genes15040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
LBD transcription factors are a class of transcription factors that regulate the formation of lateral organs, establish boundaries, and control secondary metabolism in plants. In this study, we identified 37 melon LBD transcription factors using bioinformatics methods and analyzed their basic information, chromosomal location, collinearity, evolutionary tree, gene structure, and expression patterns. The results showed that the genes were unevenly distributed across the 13 chromosomes of melon plants, with tandem repeats appearing on chromosomes 11 and 12. These 37 transcription factors can be divided into two major categories, Class I and Class II, and seven subfamilies: Ia, Ib, Ic, Id, Ie, IIa, and IIb. Of the 37 included transcription factors, 25 genes each contained between one to three introns, while the other 12 genes did not contain introns. Through cis-acting element analysis, we identified response elements such as salicylic acid, MeJA, abscisic acid, and auxin, gibberellic acid, as well as light response, stress response, and MYB-specific binding sites. Expression pattern analysis showed that genes in the IIb subfamilies play important roles in the growth and development of various organs in melon plants. Expression analysis found that the majority of melon LBD genes were significantly upregulated after infection with wilt disease, with the strongest response observed in the stem.
Collapse
Affiliation(s)
- Ling Zheng
- Department of Biology, Luoyang Normal University, Luoyang 471934, China; (Y.C.); (S.L.)
| | | | | | | | | |
Collapse
|
6
|
Chacuttayapong W, Enoki H, Nabetani Y, Matsui M, Oguchi T, Motohashi R. Transformation of Jatropha curcas L. for production of larger seeds and increased amount of biodiesel. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:247-256. [PMID: 34393603 PMCID: PMC8329273 DOI: 10.5511/plantbiotechnology.21.0422b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/22/2021] [Indexed: 06/13/2023]
Abstract
The development of green energy is important to mitigate global warming. Jatropha (Jatropha curcas L.) is a promising candidate for the production of alternative biofuel, which could reduce the burden on the Earth's resources. Jatropha seeds contain a large quantity of lipids that can be used to produce biofuel, and the rest of the plant has many other uses. Currently, techniques for plant genetic transformation are extensively employed to study, create, and improve the specific characteristics of the target plant. Successful transformation involves the alteration of plants and their genetic materials. The aim of this study was to generate Jatropha plants that can support biofuel production by increasing their seed size using genes found via the rice FOX-hunting system. The present study improved previous protocols, enabling the production of transgenic Jatropha in two steps: the first step involved using auxins and dark incubation to promote root formation in excised shoots and the second step involved delaying the timing of antibiotic selection in the cultivation medium. Transgenic plants were subjected to PCR analysis; the transferred gene expression was confirmed via RT-PCR and the ploidy level was investigated. The results suggest that the genes associated with larger seed size in Arabidopsis thaliana, which were found using the rice FOX-hunting system, produce larger seeds in Jatropha.
Collapse
Affiliation(s)
- Wiluk Chacuttayapong
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Harumi Enoki
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Yusei Nabetani
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Minami Matsui
- Synthetic Genomics Research group, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Taichi Oguchi
- Tsukuba Plant‐Innovation Research Center, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Reiko Motohashi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| |
Collapse
|
7
|
Dean GH, Pang F, Haughn GW, Kunst L. A simple, non-toxic method for separating seeds based on density, and its application in isolating Arabidopsis thaliana seed oil mutants. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11332. [PMID: 32351794 PMCID: PMC7186901 DOI: 10.1002/aps3.11332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/03/2019] [Indexed: 06/11/2023]
Abstract
PREMISE Seed oil is an economically important trait in Brassica oilseed crops. A novel method was developed to isolate Arabidopsis thaliana seeds with altered oil content. METHODS AND RESULTS In A. thaliana, seed oil content is correlated with seed density, with high-oil seeds being less dense than wild type and tending to float in solution, and low-oil seeds being denser and tending to sink. In contrast to previous methods, which used toxic chemicals and density gradient centrifugation, different concentrations of calcium chloride (CaCl2) were employed to separate seeds without the need for centrifugation. The method was validated using known seed oil mutants, and 120,822 T-DNA mutagenized A. thaliana lines were then screened for novel seed density phenotypes. CONCLUSIONS A number of candidate mutants, as well as new alleles of two genes known to influence seed oil biosynthesis, were successfully isolated.
Collapse
Affiliation(s)
- Gillian H Dean
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver V6T 1Z4 Canada
| | - Flora Pang
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver V6T 1Z4 Canada
| | - George W Haughn
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver V6T 1Z4 Canada
| | - Ljerka Kunst
- Department of Botany University of British Columbia 6270 University Boulevard Vancouver V6T 1Z4 Canada
| |
Collapse
|
8
|
Zhang Y, Li Z, Ma B, Hou Q, Wan X. Phylogeny and Functions of LOB Domain Proteins in Plants. Int J Mol Sci 2020; 21:ijms21072278. [PMID: 32224847 PMCID: PMC7178066 DOI: 10.3390/ijms21072278] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Lateral organ boundaries (LOB) domain (LBD) genes, a gene family encoding plant-specific transcription factors, play important roles in plant growth and development. At present, though there have been a number of genome-wide analyses on LBD gene families and functional studies on individual LBD proteins, the diverse functions of LBD family members still confuse researchers and an effective strategy is required to summarize their functional diversity. To further integrate and improve our understanding of the phylogenetic classification, functional characteristics and regulatory mechanisms of LBD proteins, we review and discuss the functional characteristics of LBD proteins according to their classifications under a phylogenetic framework. It is proved that this strategy is effective in the anatomy of diverse functions of LBD family members. Additionally, by phylogenetic analysis, one monocot-specific and one eudicot-specific subclade of LBD proteins were found and their biological significance in monocot and eudicot development were also discussed separately. The review will help us better understand the functional diversity of LBD proteins and facilitate further studies on this plant-specific transcription factor family.
Collapse
Affiliation(s)
- Yuwen Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Biao Ma
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; (Y.Z.); (Z.L.); (B.M.); (Q.H.)
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co., Ltd., Beijing 100192, China
- Correspondence: or ; Tel.: +86-10-6299-5866
| |
Collapse
|
9
|
Luo L, Ando S, Sakamoto Y, Suzuki T, Takahashi H, Ishibashi N, Kojima S, Kurihara D, Higashiyama T, Yamamoto KT, Matsunaga S, Machida C, Sasabe M, Machida Y. The formation of perinucleolar bodies is important for normal leaf development and requires the zinc-finger DNA-binding motif in Arabidopsis ASYMMETRIC LEAVES2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1118-1134. [PMID: 31639235 PMCID: PMC7155070 DOI: 10.1111/tpj.14579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the ASYMMETRIC LEAVES2 (AS2) protein plays a key role in the formation of flat symmetric leaves via direct repression of the abaxial gene ETT/ARF3. AS2 encodes a plant-specific nuclear protein that contains the AS2/LOB domain, which includes a zinc-finger (ZF) motif that is conserved in the AS2/LOB family. We have shown that AS2 binds to the coding DNA of ETT/ARF3, which requires the ZF motif. AS2 is co-localized with AS1 in perinucleolar bodies (AS2 bodies). To identify the amino acid signals in AS2 required for formation of AS2 bodies and function(s) in leaf formation, we constructed recombinant DNAs that encoded mutant AS2 proteins fused to yellow fluorescent protein. We examined the subcellular localization of these proteins in cells of cotyledons and leaf primordia of transgenic plants and cultured cells. The amino acid signals essential for formation of AS2 bodies were located within and adjacent to the ZF motif. Mutant AS2 that failed to form AS2 bodies also failed to rescue the as2-1 mutation. Our results suggest the importance of the formation of AS2 bodies and the nature of interactions of AS2 with its target DNA and nucleolar factors including NUCLEOLIN1. The partial overlap of AS2 bodies with perinucleolar chromocenters with condensed ribosomal RNA genes implies a correlation between AS2 bodies and the chromatin state. Patterns of AS2 bodies in cells during interphase and mitosis in leaf primordia were distinct from those in cultured cells, suggesting that the formation and distribution of AS2 bodies are developmentally modulated in plants.
Collapse
Affiliation(s)
- Lilan Luo
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Present address:
Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Sayuri Ando
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Yuki Sakamoto
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
- Department of Biological SciencesGraduate School of ScienceOsaka University1‐1 Machikaneyama‐choToyonakaOsaka560‐0043Japan
| | - Takanori Suzuki
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Central Research InstituteIshihara Sangyo Kaisha, Ltd.2‐3‐1 Nishi‐ShibukawaKusatsuShiga525‐0025Japan
| | - Hiro Takahashi
- Graduate School of Medical SciencesKanazawa UniversityKakuma‐machiKanazawaIshikawa920‐1192Japan
| | - Nanako Ishibashi
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| | - Shoko Kojima
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Daisuke Kurihara
- JST, PRESTOFuro‐cho, Chikusa‐kuNagoyaAichi464‐8601Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
| | - Tetsuya Higashiyama
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
- Department of Biological SciencesGraduate School of ScienceUniversity of Tokyo7‐3‐1 Hongo, Bukyo‐kuTokyo113‐0033Japan
| | - Kotaro T. Yamamoto
- Division of Biological SciencesFaculty of ScienceHokkaido UniversitySapporo060‐0810Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Michiko Sasabe
- Department of BiologyFaculty of Agriculture and Life ScienceHirosaki University3 Bunkyo‐choHirosaki036‐8561Japan
| | - Yasunori Machida
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| |
Collapse
|
10
|
Ishizawa M, Hashimoto K, Ohtani M, Sano R, Kurihara Y, Kusano H, Demura T, Matsui M, Sato-Nara K. Inhibition of Pre-mRNA Splicing Promotes Root Hair Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:1974-1985. [PMID: 31368506 DOI: 10.1093/pcp/pcz150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Root hairs protruding from epidermal cells increase the surface area for water absorption and nutrient uptake. Various environmental factors including light, oxygen concentration, carbon dioxide concentration, calcium and mycorrhizal associations promote root hair formation in Arabidopsis thaliana. Light regulates the expression of a large number of genes at the transcriptional and post-transcriptional levels; however, there is little information linking the light response to root hair development. In this study, we describe a novel mutant, light-sensitive root-hair development 1 (lrh1), that displays enhanced root hair development in response to light. Hypocotyl and root elongation was inhibited in the lrh1 mutant, which had a late flowering phenotype. We identified the gene encoding the p14 protein, a putative component of the splicing factor 3b complex essential for pre-mRNA splicing, as being responsible for the lrh1 phenotype. Indeed, regulation of alternative splicing was affected in lrh1 mutants and treatment with a splicing inhibitor mimicked the lrh1 phenotype. Genome-wide alterations in pre-mRNA splicing patterns including differential splicing events of light signaling- and circadian clock-related genes were found in lrh1 as well as a difference in transcriptional regulation of multiple genes including upregulation of essential genes for root hair development. These results suggest that pre-mRNA splicing is the key mechanism regulating root hair development in response to light signals.
Collapse
Affiliation(s)
- Miku Ishizawa
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, Japan
| | - Kayo Hashimoto
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Ryosuke Sano
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Yukio Kurihara
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Hiroaki Kusano
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku Suehirocho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kumi Sato-Nara
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, Japan
- Research Group of Biological Sciences, Division of Natural Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, Japan
| |
Collapse
|
11
|
Teng RM, Wang YX, Wang WL, Li H, Shen W, Zhuang J. Genome-wide identification, classification and expression pattern of LBD gene family in Camellia sinensis. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1521303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Rui-Min Teng
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yong-Xin Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wen-Li Wang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wei Shen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Jeon BW, Kim J. Role of LBD14 during ABA-mediated control of root system architecture in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2018; 13:e1507405. [PMID: 30125143 PMCID: PMC6149438 DOI: 10.1080/15592324.2018.1507405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 05/31/2023]
Abstract
The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) gene family encode plant-specific transcription factors that regulate various aspects of plant growth and development. Arabidopsis genome has 42 LBD genes. Several LBD genes, such as LBD16, -18, -29, and -33, have been shown to function in lateral root (LR) development via auxin signaling. Although abscisic acid (ABA) is a well-known antistress plant hormone regulating various plant developmental processes, it also plays a role in LR growth regulation. Our recent study showed that LBD14 expression is downregulated by ABA during the entire steps of LR development. The RNAi-induced downregulation and overexpression of LBD14 indicated that LBD14 promotes LR formation. LBD14RNAi enhanced the ABA-induced suppression of LR density compared with the wild type, suggesting that LBD14 is involved in the ABA-mediated control of LR formation. Our study provides an insight into the signaling mechanism of developmental plasticity whereby ABA controls LR branching via LBD14 downregulation under abiotic stress conditions.
Collapse
Affiliation(s)
- Byeong Wook Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
13
|
Lin X, Gu D, Zhao H, Peng Y, Zhang G, Yuan T, Li M, Wang Z, Wang X, Cui S. LFR is functionally associated with AS2 to mediate leaf development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:598-612. [PMID: 29775508 DOI: 10.1111/tpj.13973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Leaves are essential organs for plants. We previously identified a functional gene possibly encoding a component of the SWI/SNF complex named Leaf and Flower Related (LFR) in Arabidopsis thaliana. Loss-of-function mutants of LFR displayed obvious defects in leaf morphogenesis, indicating its vital role in leaf development. Here an allelic null mutant of ASYMMETRIC LEAVES2 (AS2), as2-6, was isolated as an enhancer of lfr-1 in petiole length, vasculature pattern and leaf margin development. The lfr as2 double-mutants showed enhanced ectopic expression of BREVIPEDICELLUS (BP) compared with each of the single-mutants, which is consistent with their synergistic genetic enhancement in multiple BP-dependent development processes. Moreover, LFR and several putative subunits of the SWI/SNF complex interacted physically with AS2. LFR associated with BP chromatin in an AS1-AS2-dependent manner to promote the nucleosome occupancy for appropriate BP repression in leaves. Taken together, our findings reveal that LFR and the SWI/SNF complex play roles in leaf development at least partly by repressing BP transcription as interacting factors of AS2, which expounds our understanding of BP repression at the chromatin structure level in leaf development.
Collapse
Affiliation(s)
- Xiaowei Lin
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Dandan Gu
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Hongtao Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Yue Peng
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Guofang Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Tingting Yuan
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Mengge Li
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Zhijuan Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Xiutang Wang
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Hebei, 050024, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Normal University, Hebei, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Hebei Normal University, Hebei, 050024, China
- College of Life Science, Hebei Normal University, Hebei, 050024, China
| |
Collapse
|
14
|
Moin M, Bakshi A, Saha A, Dutta M, Kirti PB. Gain-of-function mutagenesis approaches in rice for functional genomics and improvement of crop productivity. Brief Funct Genomics 2018; 16:238-247. [PMID: 28137760 DOI: 10.1093/bfgp/elw041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The epitome of any genome research is to identify all the existing genes in a genome and investigate their roles. Various techniques have been applied to unveil the functions either by silencing or over-expressing the genes by targeted expression or random mutagenesis. Rice is the most appropriate model crop for generating a mutant resource for functional genomic studies because of the availability of high-quality genome sequence and relatively smaller genome size. Rice has syntenic relationships with members of other cereals. Hence, characterization of functionally unknown genes in rice will possibly provide key genetic insights and can lead to comparative genomics involving other cereals. The current review attempts to discuss the available gain-of-function mutagenesis techniques for functional genomics, emphasizing the contemporary approach, activation tagging and alterations to this method for the enhancement of yield and productivity of rice.
Collapse
|
15
|
Ling J, Li R, Nwafor CC, Cheng J, Li M, Xu Q, Wu J, Gan L, Yang Q, Liu C, Chen M, Zhou Y, Cahoon EB, Zhang C. Development of iFOX-hunting as a functional genomic tool and demonstration of its use to identify early senescence-related genes in the polyploid Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:591-602. [PMID: 28718508 PMCID: PMC5787830 DOI: 10.1111/pbi.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 05/20/2023]
Abstract
Functional genomic studies of many polyploid crops, including rapeseed (Brassica napus), are constrained by limited tool sets. Here we report development of a gain-of-function platform, termed 'iFOX (inducible Full-length cDNA OvereXpressor gene)-Hunting', for inducible expression of B. napus seed cDNAs in Arabidopsis. A Gateway-compatible plant gene expression vector containing a methoxyfenozide-inducible constitutive promoter for transgene expression was developed. This vector was used for cloning of random cDNAs from developing B. napus seeds and subsequent Agrobacterium-mediated transformation of Arabidopsis. The inducible promoter of this vector enabled identification of genes upon induction that are otherwise lethal when constitutively overexpressed and to control developmental timing of transgene expression. Evaluation of a subset of the resulting ~6000 Arabidopsis transformants revealed a high percentage of lines with full-length B. napus transgene insertions. Upon induction, numerous iFOX lines with visible phenotypes were identified, including one that displayed early leaf senescence. Phenotypic analysis of this line (rsl-1327) after methoxyfenozide induction indicated high degree of leaf chlorosis. The integrated B. napuscDNA was identified as a homolog of an Arabidopsis acyl-CoA binding protein (ACBP) gene designated BnACBP1-like. The early senescence phenotype conferred by BnACBP1-like was confirmed by constitutive expression of this gene in Arabidopsis and B. napus. Use of the inducible promoter in the iFOX line coupled with RNA-Seq analyses allowed mechanistic clues and a working model for the phenotype associated with BnACBP1-like expression. Our results demonstrate the utility of iFOX-Hunting as a tool for gene discovery and functional characterization of Brassica napus genome.
Collapse
Affiliation(s)
- Juan Ling
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Renjie Li
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chinedu Charles Nwafor
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Department of Crop ScienceBenson Idahosa UniversityBenin CityNigeria
| | - Junluo Cheng
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Qing Xu
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouChina
| | - Lu Gan
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Qingyong Yang
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao Liu
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ming Chen
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Yongming Zhou
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Edgar B. Cahoon
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska‐LincolnLincolnNEUSA
| | - Chunyu Zhang
- National Research Centre of Rapeseed Engineering and TechnologyCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
16
|
Zhang J, Huguet ‐Tapia JC, Hu Y, Jones J, Wang N, Liu S, White FF. Homologues of CsLOB1 in citrus function as disease susceptibility genes in citrus canker. MOLECULAR PLANT PATHOLOGY 2017; 18:798-810. [PMID: 27276658 PMCID: PMC6638217 DOI: 10.1111/mpp.12441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 05/01/2016] [Accepted: 06/05/2016] [Indexed: 05/06/2023]
Abstract
The lateral organ boundary domain (LBD) genes encode a group of plant-specific proteins that function as transcription factors in the regulation of plant growth and development. Citrus sinensis lateral organ boundary 1 (CsLOB1) is a member of the LBD family and functions as a disease susceptibility gene in citrus bacterial canker (CBC). Thirty-four LBD members have been identified from the Citrus sinensis genome. We assessed the potential for additional members of LBD genes in citrus to function as surrogates for CsLOB1 in CBC, and compared host gene expression on induction of different LBD genes. Using custom-designed transcription activator-like (TAL) effectors, two members of the same clade as CsLOB1, named CsLOB2 and CsLOB3, were found to be capable of functioning similarly to CsLOB1 in CBC. RNA sequencing and quantitative reverse transcription-polymerase chain reaction analyses revealed a set of cell wall metabolic genes that are associated with CsLOB1, CsLOB2 and CsLOB3 expression and may represent downstream genes involved in CBC.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| | | | - Yang Hu
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
- Present address:
Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina 100101
| | - Jeffrey Jones
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| | - Nian Wang
- Citrus Research and Education Center/Department of Microbiology and Cell ScienceUniversity of FloridaLake AlfredFLUSA 33850
| | - Sanzhen Liu
- Department of Plant PathologyKansas State UniversityManhattanKSUSA 66506
| | - Frank F. White
- Department of Plant PathologyUniversity of FloridaGainesvilleFLUSA 32611
| |
Collapse
|
17
|
Meng LS, Cao XY, Liu MQ, Jiang JH. The antagonistic or synchronous relationship between ASL/LBD and KNOX homeobox members. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Hellmann E, Swinka C, Heyl A. Novel in vivo screening design for the rapid and cost-effective identification of transcriptional regulators. PHYSIOLOGIA PLANTARUM 2017; 160:2-10. [PMID: 28116793 DOI: 10.1111/ppl.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/22/2016] [Accepted: 01/15/2017] [Indexed: 06/06/2023]
Abstract
Genetic screens are a common tool to identify new modulators in a defined context, e.g. hormonal response or environmental stress. However, most screens are either in vitro or laborious and time-and-space inefficient. Here we present a novel in planta screening approach that shortens the time from the actual screening process to the identification of a new modulator and simultaneously reduces space requirements and costs. The basic features of this screening approach are the creation of luciferase reporter plants which enable a non-invasive readout in a streamlined multiplate reader process, the transformation of those plants with an inducible, Gateway™-compatible expression vector, and a screening setup, in which whole plants at the seedling stage are screened in 96-multiwell plates in the first transformed generation without the use of an expensive charge-coupled device (CCD) camera system. The screening itself and the verification of candidates can be done in as little as 2-3 weeks. The screen enables the analysis of reporter gene activity upon different treatments. Primary positive plants can immediately be selected and grown further. In this study a fast, simple, cost- and space-efficient in planta screening system to detect novel mediators of a given transcriptional response was developed and successfully tested using the cytokinin signal transduction as a test case.
Collapse
Affiliation(s)
- Eva Hellmann
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, 14195, Germany
| | - Christine Swinka
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, 14195, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, 14195, Germany
- Biology Department, Adelphi University, Garden City, NY, 11530-070, US
| |
Collapse
|
19
|
Ye J, Yang Y, Chen B, Shi J, Luo M, Zhan J, Wang X, Liu G, Wang H. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genomics 2017; 18:71. [PMID: 28077071 PMCID: PMC5225578 DOI: 10.1186/s12864-016-3402-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND As the most important yield component in rapeseed (Brassica napus L.), pod number is determined by a series of successive growth and development processes. Pod number shows extensive variation in rapeseed natural germplasm, which is valuable for genetic improvement. However, the genetic and especially the molecular mechanism for this kind of variation are poorly understood. In this study, we conducted QTL mapping and RNA sequencing, respectively, using the BnaZNRIL population and its two parental cultivars Zhongshuang11 and No.73290 which showed significant difference in pod number, primarily due to the difference in floral organ number. RESULT A total of eight QTLs for pod number were identified using BnaZNRIL population with a high-density SNP linkage map, each was distributed on seven linkage groups and explained 5.8-11.9% of phenotypic variance. Then, they were integrated with those previously detected in BnaZNF2 population (deriving from same parents) and resulted in 15 consensus-QTLs. Of which, seven QTLs were identical to other studies, whereas the other eight should be novel. RNA sequencing of the shoot apical meristem (SAM) at the formation stage of floral bud primordia identified 9135 genes that were differentially expressed between the two parents. Gene ontology (GO) analysis showed that the top two enriched groups were S-assimilation, providing an essential nutrient for the synthesis of diverse metabolites, and polyamine metabolism, serving as second messengers that play an essential role in flowering genes initiation. KEGG analysis showed that the top three overrepresented pathways were carbohydrate (707 genes), amino acid (390 genes) and lipid metabolisms (322 genes). In silico mapping showed that 647 DEGs were located within the confidence intervals of 15 consensus QTLs. Based on annotations of Arabidopsis homologs corresponding to DEGs, nine genes related to meristem growth and development were considered as promising candidates for six QTLs. CONCLUSION In this study, we discovered the first repeatable major QTL for pod number in rapeseed. In addition, RNA sequencing was performed for SAM in rapeseed, which provides new insights into the determination of floral organ number. Furthermore, the integration of DEGs and QTLs identified promising candidates for further gene cloning and mechanism study.
Collapse
Affiliation(s)
- Jiang Ye
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Yuhua Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Bo Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| | - Meizhong Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiepeng Zhan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
20
|
Kleinboelting N, Huep G, Weisshaar B. Enhancing the GABI-Kat Arabidopsis thaliana T-DNA Insertion Mutant Database by Incorporating Araport11 Annotation. PLANT & CELL PHYSIOLOGY 2017; 58:e7. [PMID: 28013277 PMCID: PMC5444572 DOI: 10.1093/pcp/pcw205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/11/2016] [Indexed: 05/29/2023]
Abstract
SimpleSearch provides access to a database containing information about T-DNA insertion lines of the GABI-Kat collection of Arabidopsis thaliana mutants. These mutants are an important tool for reverse genetics, and GABI-Kat is the second largest collection of such T-DNA insertion mutants. Insertion sites were deduced from flanking sequence tags (FSTs), and the database contains information about mutant plant lines as well as insertion alleles. Here, we describe improvements within the interface (available at http://www.gabi-kat.de/db/genehits.php) and with regard to the database content that have been realized in the last five years. These improvements include the integration of the Araport11 genome sequence annotation data containing the recently updated A. thaliana structural gene descriptions, an updated visualization component that displays groups of insertions with very similar insertion positions, mapped confirmation sequences, and primers. The visualization component provides a quick way to identify insertions of interest, and access to improved data about the exact structure of confirmed insertion alleles. In addition, the database content has been extended by incorporating additional insertion alleles that were detected during the confirmation process, as well as by adding new FSTs that have been produced during continued efforts to complement gaps in FST availability. Finally, the current database content regarding predicted and confirmed insertion alleles as well as primer sequences has been made available as downloadable flat files.
Collapse
Affiliation(s)
- Nils Kleinboelting
- Center for Biotechnology and Department of Biology, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany
| | - Gunnar Huep
- Center for Biotechnology and Department of Biology, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany
| | - Bernd Weisshaar
- Center for Biotechnology and Department of Biology, Bielefeld University, Universitaetsstrasse 25, D-33615 Bielefeld, Germany
| |
Collapse
|
21
|
Wang Z, Wang Y, Kohalmi SE, Amyot L, Hannoufa A. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2 controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2016; 92:661-674. [PMID: 27605094 DOI: 10.1007/s11103-016-0536-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 08/26/2016] [Indexed: 05/09/2023]
Abstract
A network of genes is coordinately expressed to ensure proper development of floral organs and fruits, which are essential for generating new offspring in flowering plants. In Arabidopsis thaliana, microRNA156 (miR156) plays a role in regulating the development of flowers and siliques by targeting members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Despite the important roles of the miR156/SPL network, our understanding of its downstream genes that are involved in floral organ and silique growth is still incomplete. Here, we report that the miR156/SPL2 regulatory pathway regulates pollen production, fertility rate, and the elongation of floral organs, including petals, sepals, and siliques in Arabidopsis. Transgenic plants exhibiting both overexpression of miR156 and dominant-negative alleles of SPL2 had reduced ASYMMETRIC LEAVES 2 (AS2) transcript levels in their siliques. Furthermore, their fertility phenotype was similar to that of the AS2 loss-of-function mutant. We also demonstrate that the SPL2 protein binds to the 5'UTR of the AS2 gene in vivo, indicating that AS2 is directly regulated by SPL2. Our results suggest that the miR156/SPL2 pathway affects floral organs, silique development and plant fertility, as well as directly regulates AS2 expression.
Collapse
Affiliation(s)
- Zhishuo Wang
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1511 Richmond Street, London, ON, N6A 5B7, Canada
| | - Ying Wang
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, 1511 Richmond Street, London, ON, N6A 5B7, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Susanne E Kohalmi
- Department of Biology, University of Western Ontario, 1511 Richmond Street, London, ON, N6A 5B7, Canada
| | - Lisa Amyot
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, N5V 4T3, Canada.
- Department of Biology, University of Western Ontario, 1511 Richmond Street, London, ON, N6A 5B7, Canada.
| |
Collapse
|
22
|
Cheng H, Gao J, Cai H, Zhu J, Huang H. Gain-of-function in Arabidopsis (GAINA) for identifying functional genes in Hevea brasiliensis. SPRINGERPLUS 2016; 5:1853. [PMID: 27818891 PMCID: PMC5075328 DOI: 10.1186/s40064-016-3523-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Forward genetics approaches are not popularly applied in non-model plants due to their complex genomes, long life cycles, backward genetic studies etc. Researchers have to adopt reverse genetic methods to characterize gene functions in non-model plants individually, the efficiency of which is usually low. RESULTS In this study, we report a gain-of-function in Arabidopsis (GAINA) strategy which can be used for batch identification of functional genes in a plant species. This strategy aims to obtain the gain-of-function of rubber tree genes through overexpressing transformation ready full-length cDNA libraries in Arabidopsis. An initial transformation test produced about two thousand independent transgenic Arabidopsis lines, in which multiple obvious aberrant phenotypes were observed, suggesting the gain-of-function of rubber tree genes. The transferred genes were further isolated and identified. One gene identified to be metallothionein-like protein type 3 gene was further transferred into Arabidopsis and reproduced a similar aberrant phenotype. CONCLUSION The GAINA system proves to be an efficient tool for batch identification of functional genes in Hevea brasiliensis, and also applicable in other non-model plants.
Collapse
Affiliation(s)
- Han Cheng
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, 571737 Hainan People’s Republic of China
| | - Jing Gao
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Haibin Cai
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Jianshun Zhu
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
| | - Huasun Huang
- Key Laboratory of Ministry of Agriculture for Tropical Crops Physiology, Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou City, Hainan People’s Republic of China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, 571737 Hainan People’s Republic of China
| |
Collapse
|
23
|
Nongpiur RC, Singla-Pareek SL, Pareek A. Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants. Curr Genomics 2016; 17:343-57. [PMID: 27499683 PMCID: PMC4955028 DOI: 10.2174/1389202917666160331202517] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
Salinity is one of the major factors which reduces crop production worldwide. Plant responses to salinity are highly complex and involve a plethora of genes. Due to its multigenicity, it has been difficult to attain a complete understanding of how plants respond to salinity. Genomics has progressed tremendously over the past decade and has played a crucial role towards providing necessary knowledge for crop improvement. Through genomics, we have been able to identify and characterize the genes involved in salinity stress response, map out signaling pathways and ultimately utilize this information for improving the salinity tolerance of existing crops. The use of new tools, such as gene pyramiding, in genetic engineering and marker assisted breeding has tremendously enhanced our ability to generate stress tolerant crops. Genome editing technologies such as Zinc finger nucleases, TALENs and CRISPR/Cas9 also provide newer and faster avenues for plant biologists to generate precisely engineered crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067,India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067,India
| |
Collapse
|
24
|
Identification and characterization of Lateral Organ Boundaries Domain genes in mulberry, Morus notabilis. Meta Gene 2016; 8:44-50. [PMID: 27014591 PMCID: PMC4792858 DOI: 10.1016/j.mgene.2014.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/27/2014] [Accepted: 04/01/2014] [Indexed: 11/29/2022] Open
Abstract
Genes from the plant specific Lateral Organ Boundaries Domain (LBD) family encode transcriptional regulators that have a variety of functions in various physiological and developmental processes. In the present study, 31 LBD genes were identified in the mulberry genome. The genome features of all MnLBD genes and phylogenetic studies with Arabidopsis LBD protein sequences, accompanied by the expression analysis of each of the Morus LBD genes provide insights into the functional prediction of mulberry LBDs. The genome-wide surveys of the current mulberry genome have resulted in the identification of catalogs of MnLBD genes that may function in the development of leaf, root, and secondary metabolism in Morus sp. We identified and characterized 31 LBD genes in Morus. We analyzed the expression and phylogeny relationship with Arabidopsis of the Morus LBD genes for function prediction. Morus LBD genes might implicate in variety of functions especially in lateral organ development and secondary metabolism.
Collapse
|
25
|
Liu F, Gong D, Zhang Q, Wang D, Cui M, Zhang Z, Liu G, Wu J, Wang Y. High-throughput generation of an activation-tagged mutant library for functional genomic analyses in tobacco. PLANTA 2015; 241:629-40. [PMID: 25408504 DOI: 10.1007/s00425-014-2186-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is an ideal model system for molecular biological and genetic studies. In this study, activation tagging was used to generate approximately 100,000 transgenic tobacco plants. Southern blot analysis indicated that there were 1.6 T-DNA inserts per line on average in our transformed population. The phenotypes observed include abnormalities in leaf and flower morphology, plant height, flowering time, branching, and fertility. Among 6,000 plants in the T0 generation, 57 displayed obvious phenotypes. Among 4,105 lines in the T1 generation, 311 displayed abnormal phenotypes. Fusion primer and nested integrated PCR was used to identify 963 independent genomic loci of T-DNA insertion sites in 1,257 T1 lines. The distribution of T-DNA insertions was non-uniform and correlated well with the predicted gene density along each chromosome. The insertions were biased toward genic regions and noncoding regions within 5 kb of a gene. Fifteen plants that showed the same phenotype as their parent with a dominant pattern in the T2 generation were chosen randomly to detect the expression levels of genes adjacent to the T-DNA integration sites by semi-quantitative RT-PCR. Fifteen candidate genes were identified. Activation was observed in 7 out of the 15 adjacent genes, including one that was located 13.1 kb away from the enhancer sequence. The activation-tagged population described in this paper will be a highly valuable resource for tobacco functional genomics research using both forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Feng Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Shimada S, Komatsu T, Yamagami A, Nakazawa M, Matsui M, Kawaide H, Natsume M, Osada H, Asami T, Nakano T. Formation and dissociation of the BSS1 protein complex regulates plant development via brassinosteroid signaling. THE PLANT CELL 2015; 27:375-90. [PMID: 25663622 PMCID: PMC4456923 DOI: 10.1105/tpc.114.131508] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/30/2014] [Accepted: 01/20/2015] [Indexed: 05/22/2023]
Abstract
Brassinosteroids (BRs) play important roles in plant development and the response to environmental cues. BIL1/BZR1 is a master transcription factor in BR signaling, but the mechanisms that lead to the finely tuned targeting of BIL1/BZR1 by BRs are unknown. Here, we identified BRZ-SENSITIVE-SHORT HYPOCOTYL1 (BSS1) as a negative regulator of BR signaling in a chemical-biological analysis involving brassinazole (Brz), a specific BR biosynthesis inhibitor. The bss1-1D mutant, which overexpresses BSS1, exhibited a Brz-hypersensitive phenotype in hypocotyl elongation. BSS1 encodes a BTB-POZ domain protein with ankyrin repeats, known as BLADE ON PETIOLE1 (BOP1), which is an important regulator of leaf morphogenesis. The bss1-1D mutant exhibited an increased accumulation of phosphorylated BIL1/BZR1 and a negative regulation of BR-responsive genes. The number of fluorescent BSS1/BOP1-GFP puncta increased in response to Brz treatment, and the puncta were diffused by BR treatment in the root and hypocotyl. We show that BSS1/BOP1 directly interacts with BIL1/BZR1 or BES1. The large protein complex formed between BSS1/BOP1 and BIL1/BZR1 was only detected in the cytosol. The nuclear BIL1/BZR1 increased in the BSS1/BOP1-deficient background and decreased in the BSS1/BOP1-overexpressing background. Our study suggests that the BSS1/BOP1 protein complex inhibits the transport of BIL1/BZR1 to the nucleus from the cytosol and negatively regulates BR signaling.
Collapse
Affiliation(s)
- Setsuko Shimada
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyuki Komatsu
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Ayumi Yamagami
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | - Miki Nakazawa
- RIKEN Genome Science Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Synthetic Genomics Research Team, Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroshi Kawaide
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Masahiro Natsume
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-Cho, Fuchu, Tokyo 183-8509, Japan
| | - Hiroyuki Osada
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Nakano
- Antibiotics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Li Y, Takano T, Liu S. Discovery and characterization of two novel salt-tolerance genes in Puccinellia tenuiflora. Int J Mol Sci 2014; 15:16469-83. [PMID: 25238412 PMCID: PMC4200785 DOI: 10.3390/ijms150916469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/25/2014] [Accepted: 09/05/2014] [Indexed: 01/25/2023] Open
Abstract
Puccinellia tenuiflora is a monocotyledonous halophyte that is able to survive in extreme saline soil environments at an alkaline pH range of 9-10. In this study, we transformed full-length cDNAs of P. tenuiflora into Saccharomyces cerevisiae by using the full-length cDNA over-expressing gene-hunting system to identify novel salt-tolerance genes. In all, 32 yeast clones overexpressing P. tenuiflora cDNA were obtained by screening under NaCl stress conditions; of these, 31 clones showed stronger tolerance to NaCl and were amplified using polymerase chain reaction (PCR) and sequenced. Four novel genes encoding proteins with unknown function were identified; these genes had no homology with genes from higher plants. Of the four isolated genes, two that encoded proteins with two transmembrane domains showed the strongest resistance to 1.3 M NaCl. RT-PCR and northern blot analysis of P. tenuiflora cultured cells confirmed the endogenous NaCl-induced expression of the two proteins. Both of the proteins conferred better tolerance in yeasts to high salt, alkaline and osmotic conditions, some heavy metals and H2O2 stress. Thus, we inferred that the two novel proteins might alleviate oxidative and other stresses in P. tenuiflora.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, University of Tokyo, Nishitokyo-shi, Tokyo 188-0002, Japan.
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin Hexing Road, Harbin 150040, China.
| |
Collapse
|
28
|
Naito T, Yamashino T, Kiba T, Koizumi N, Kojima M, Sakakibara H, Mizuno T. A Link between Cytokinin andASL9(ASYMMETRIC LEAVES 2 LIKE 9) That Belongs to theAS2/LOB(LATERAL ORGAN BOUNDARIES) Family Genes inArabidopsis thaliana. Biosci Biotechnol Biochem 2014; 71:1269-78. [PMID: 17485849 DOI: 10.1271/bbb.60681] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In Arabidopsis thaliana, each member of a large family of AS2/LOB (ASYMMETRIC LEAVES 2/LATERAL ORGAN BOUNDARIES) genes encodes a plant specific protein. They are highly homologous to one other. A mutational lesion in the representative AS2 gene results in the development of anomalous asymmetric leaves, implying that these family members commonly play some roles in plant development. In this study, we found that ectopic overexpression of ASL9 (ASYMMETRIC LEAVES 2 LIKE 9) in transgenic plants displayed a markedly anomalous architecture during the development of adult plants. Then we found that among AS2/LOB family members, ASL9 is distinct from the others in that it is exclusively regulated by the plant hormone cytokinin in a manner dependent on His-Asp phosphorelay signal transduction. We further found that when supplied externally in a medium, cytokinin specifically affected the growth properties of ASL9-ox seedlings. Taken together, the results of this study suggest that the cytokinin-induced ASL9 gene is implicated in regulation of the development of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Takahito Naito
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Khan M, Xu H, Hepworth SR. BLADE-ON-PETIOLE genes: setting boundaries in development and defense. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 215-216:157-71. [PMID: 24388527 DOI: 10.1016/j.plantsci.2013.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/19/2013] [Accepted: 10/31/2013] [Indexed: 05/19/2023]
Abstract
BLADE-ON-PETIOLE (BOP) genes encode an ancient and conserved subclade of BTB-ankryin transcriptional co-activators, divergent in the NPR1 family of plant defense regulators. Arabidopsis BOP1/2 were originally characterized as regulators of leaf and floral patterning. Recent investigation of BOP activity in a variety of land plants provides a more complete picture of their conserved functions at lateral organ boundaries in the determination of leaf, flower, inflorescence, and root nodule architecture. BOPs exert their function in part through promotion of lateral organ boundary genes including ASYMMETRIC LEAVES2, KNOTTED1-LIKE FROM ARABIDOPSIS6, and ARABIDOPSIS THALIANA HOMEOBOX GENE1 whose products restrict growth, promote differentiation, and antagonize meristem activity in various developmental contexts. Mutually antagonistic interactions between BOP and meristem factors are important in maintaining a border between meristem-organ compartments and in controlling irreversible transitions in cell fate associated with differentiation. We also examine intriguing new evidence for BOP function in plant defense. Comparisons to NPR1 highlight previously unexplored mechanisms for co-ordination of development and defense in land plants.
Collapse
Affiliation(s)
- Madiha Khan
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Huasong Xu
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
| | - Shelley R Hepworth
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| |
Collapse
|
30
|
Akiyama K, Kurotani A, Iida K, Kuromori T, Shinozaki K, Sakurai T. RARGE II: an integrated phenotype database of Arabidopsis mutant traits using a controlled vocabulary. PLANT & CELL PHYSIOLOGY 2014; 55:e4. [PMID: 24272250 PMCID: PMC3894705 DOI: 10.1093/pcp/pct165] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/05/2013] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana is one of the most popular experimental plants. However, only 40% of its genes have at least one experimental Gene Ontology (GO) annotation assigned. Systematic observation of mutant phenotypes is an important technique for elucidating gene functions. Indeed, several large-scale phenotypic analyses have been performed and have generated phenotypic data sets from many Arabidopsis mutant lines and overexpressing lines, which are freely available online. Since each Arabidopsis mutant line database uses individual phenotype expression, the differences in the structured term sets used by each database make it difficult to compare data sets and make it impossible to search across databases. Therefore, we obtained publicly available information for a total of 66,209 Arabidopsis mutant lines, including loss-of-function (RATM and TARAPPER) and gain-of-function (AtFOX and OsFOX) lines, and integrated the phenotype data by mapping the descriptions onto Plant Ontology (PO) and Phenotypic Quality Ontology (PATO) terms. This approach made it possible to manage the four different phenotype databases as one large data set. Here, we report a publicly accessible web-based database, the RIKEN Arabidopsis Genome Encyclopedia II (RARGE II; http://rarge-v2.psc.riken.jp/), in which all of the data described in this study are included. Using the database, we demonstrated consistency (in terms of protein function) with a previous study and identified the presumed function of an unknown gene. We provide examples of AT1G21600, which is a subunit in the plastid-encoded RNA polymerase complex, and AT5G56980, which is related to the jasmonic acid signaling pathway.
Collapse
Affiliation(s)
- Kenji Akiyama
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kei Iida
- Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, 606-8501 Japan
| | - Takashi Kuromori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
- *Corresponding author: E-mail, ; Fax, +81-45-503-9665
| |
Collapse
|
31
|
Higuchi-Takeuchi M, Matsui M. Screening for gene function using the FOX (full-length cDNA overexpressor gene) hunting system. Methods Mol Biol 2014; 1056:201-10. [PMID: 24306875 DOI: 10.1007/978-1-62703-592-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutant resources are indispensable for the characterization of the functions of genes. There are two types of mutants, loss-of-function and gain-of-function mutants. Recently, we have developed a novel system in plants that uses a gain-of-function approach and is named as the FOX (full-length cDNA overexpressor gene) hunting system. In this system, Arabidopsis full-length cDNAs (fl-cDNAs) are randomly over-expressed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants. These transgenic plants, or Arabidopsis FOX lines, possess ectopically expressed fl-cDNAs in their genome. Chemical genomics is a newly emerging field that connects chemical biology with genomes. Since each FOX line expresses an excess amount of the protein from the transgene it can be resistant or hypersensitive to bioactive chemicals when the protein is the target for the chemical. In this protocol, we describe the procedure for identification of the fl-cDNAs responsible for the target of the chemical or for the signal transduction pathway involving the chemical.
Collapse
|
32
|
Chen X, Wang H, Li J, Huang H, Xu L. Quantitative control of ASYMMETRIC LEAVES2 expression is critical for leaf axial patterning in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4895-905. [PMID: 24006428 PMCID: PMC3830476 DOI: 10.1093/jxb/ert278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
ASYMMETRIC LEAVES2 (AS2) is one of the key genes required for specifying leaf adaxial identity during leaf adaxial-abaxial polarity establishment. Previous data have shown that, in leaf development, AS2 is directly repressed by an abaxially located transcription factor KANADI1 (KAN1), so that the AS2 transcripts are restricted only in the adaxial leaf domain. It is shown here that, different from the spatial repression by KAN1, the quantitative repression of AS2 in the adaxial domain is also critical for ensuring normal leaf pattern formation. By analysing two gain-of-function as2 mutants, as2-5D and isoginchaku-2D (iso-2D), it is shown that the similar AS2-over-expressed phenotypes of these mutants reflect two different kinds of AS2 misexpression patterns. While as2-5D causes disruption of a KAN1-binding site at the AS2 promoter leading to derepression of AS2 in the abaxial side but without changing its expression level of a leaf, iso-2D results in over-expression of AS2 but without altering its adaxial expression pattern. In addition, it was found that, in iso-2D, levels of histone H3 lysine 27 trimethylation (H3K27me3) and H3K4me3 at the AS2 locus are significantly reduced and increased, respectively, compared with those in the wild type and as2-5D. These results suggest that during leaf patterning, quantitative control of the AS2 expression level might involve epigenetic regulations.
Collapse
Affiliation(s)
| | | | | | | | - Lin Xu
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Chen X, Huang H, Xu L. The CaMV 35S enhancer has a function to change the histone modification state at insertion loci in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2013; 126:841-846. [PMID: 23880941 DOI: 10.1007/s10265-013-0580-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
Chromatin regions with different states usually harbor distinct epigenetic information, through which gene expression is regulated. Recent studies using mammalian cells showed that a chromatin state signature is associated with active developmental enhancers, defined by high levels of histone H3 lysine 27 acetylation (H3K27ac) and strong depletion of H3K27 trimethylation (H3K27me3). These findings also imply that active enhancers may play a role in creating a chromatin state by changing histone modification markers, which in turn affects gene expression. To explore whether an active enhancer in plants affect histone modifications, we investigated the cauliflower mosaic virus 35S enhancer (35Senh) for understanding its action model in Arabidopsis. We report that the 35Senh has a function to change the histone modification pattern at its presenting loci, by characterization of the 35Senh activated BREVIPEDICELLUS (BP) silencing lines and the randomly selected 35Senh activation tagging lines. By analyzing histone modification markers reflecting the plant chromatin state, we show that the 35Senh is generally correlated with the reduced level of H3K27me3 and the increased level of H3K4me3 at the insertion loci. Our data are consistent with those in mammals and suggest that the enhancer sequence correlating with the active chromatin state signature may be generally present in the eukaryotic kingdom.
Collapse
Affiliation(s)
- Xiaofan Chen
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | |
Collapse
|
34
|
Bekh-Ochir D, Shimada S, Yamagami A, Kanda S, Ogawa K, Nakazawa M, Matsui M, Sakuta M, Osada H, Asami T, Nakano T. A novel mitochondrial DnaJ/Hsp40 family protein BIL2 promotes plant growth and resistance against environmental stress in brassinosteroid signaling. PLANTA 2013; 237:1509-25. [PMID: 23494613 PMCID: PMC3664749 DOI: 10.1007/s00425-013-1859-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/01/2013] [Indexed: 05/20/2023]
Abstract
Plant steroid hormones, brassinosteroids, are essential for growth, development and responses to environmental stresses in plants. Although BR signaling proteins are localized in many organelles, i.e., the plasma membrane, nuclei, endoplasmic reticulum and vacuole, the details regarding the BR signaling pathway from perception at the cellular membrane receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) to nuclear events include several steps. Brz (Brz220) is a specific inhibitor of BR biosynthesis. In this study, we used Brz-mediated chemical genetics to identify Brz-insensitive-long hypocotyls 2-1D (bil2-1D). The BIL2 gene encodes a mitochondrial-localized DnaJ/Heat shock protein 40 (DnaJ/Hsp40) family, which is involved in protein folding. BIL2-overexpression plants (BIL2-OX) showed cell elongation under Brz treatment, increasing the growth of plant inflorescence and roots, the regulation of BR-responsive gene expression and suppression against the dwarfed BRI1-deficient mutant. BIL2-OX also showed resistance against the mitochondrial ATPase inhibitor oligomycin and higher levels of exogenous ATP compared with wild-type plants. BIL2 participates in resistance against salinity stress and strong light stress. Our results indicate that BIL2 induces cell elongation during BR signaling through the promotion of ATP synthesis in mitochondria.
Collapse
Affiliation(s)
- Davaapurev Bekh-Ochir
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Setsuko Shimada
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Ayumi Yamagami
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Satomi Kanda
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Kenji Ogawa
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Miki Nakazawa
- RIKEN Genome Science Center, Tsurumi, Kanagawa Yokohama, 230-0045 Japan
| | - Minami Matsui
- RIKEN Plant Science Center, Tsurumi, Kanagawa Yokohama, 230-0045 Japan
| | - Masaaki Sakuta
- Department of Biology, Ochanomizu University, Tokyo, 112-8610 Japan
| | - Hiroyuki Osada
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
| | - Tadao Asami
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
- JST, CREST, 4-1-8 Honcho, Saitama Kawaguchi, 332-0012 Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Takeshi Nakano
- RIKEN Advanced Science Institute, 2-1 Hirosawa, Saitama Wako, 351-0198 Japan
- JST, CREST, 4-1-8 Honcho, Saitama Kawaguchi, 332-0012 Japan
| |
Collapse
|
35
|
Sun X, Feng Z, Meng L, Zhu J, Geitmann A. Arabidopsis ASL11/LBD15 is involved in shoot apical meristem development and regulates WUS expression. PLANTA 2013; 237:1367-78. [PMID: 23397191 DOI: 10.1007/s00425-013-1844-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/09/2013] [Indexed: 05/18/2023]
Abstract
The ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (ASL/LBD) genes encode plant-specific nuclear proteins containing the conserved domain AS2/LOB. In this study, the function of a member of the Arabidopsis thaliana AS2/LOB gene family, ASL11/LBD15, was investigated. The results show that ASL11/LBD15 is expressed in the meristems of shoot apex, root apex, organ boundaries, and developing seeds. Overexpression of ASL11/LBD15 resulted in aberrant arrangements in the tunica cell layers of the shoot apical meristem (SAM). Two-week-old transgenic plants developed needle-like leaves in addition to regular leaves, while 6-week-old transformants displayed clustered cauline leaves suggesting altered SAM development. qRT-PCR analysis revealed that the WUSCHEL (WUS) transcript level was strongly up-regulated in plants overexpressing ASL11/LBD15 compared with the wild-type plants. Furthermore, inducible ASL11/LBD15 ectopic expression activated ectopic expression of WUS and affected the differentiation of leaf epidermal cells. Therefore, our results suggest that ASL11/LBD15 affects cellular differentiation in the SAM and regulates WUS expression.
Collapse
Affiliation(s)
- Xudong Sun
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | | | | | | | | |
Collapse
|
36
|
Wang X, Zhang S, Su L, Liu X, Hao Y. A genome-wide analysis of the LBD (LATERAL ORGAN BOUNDARIES domain) gene family in Malus domestica with a functional characterization of MdLBD11. PLoS One 2013; 8:e57044. [PMID: 23468909 PMCID: PMC3585328 DOI: 10.1371/journal.pone.0057044] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/16/2013] [Indexed: 12/29/2022] Open
Abstract
The plant-specific LBD (LATERAL ORGAN BOUNDARIES domain) genes belong to a major family of transcription factor that encode a zinc finger-like domain. It has been shown that LBD genes play crucial roles in the growth and development of Arabidopsis and other plant species. However, no detailed information concerning this family is available for apple. In the present study, we analyzed the apple (Malus domestica) genome and identified 58 LBD genes. This gene family was tested for its phylogenetic relationships with homologous genes in the Arabidopsis genome, as well as its location in the genome, structure and expression. We also transformed one MdLBD gene into Arabidopsis to evaluate its function. Like Arabidopsis, apple LBD genes also have a conserved CX2CX6CX3C zinc finger-like domain in the N terminus and can be divided into two classes. The expression profile indicated that apple LBD genes exhibited a variety of expression patterns, suggesting that they have diverse functions. At the same time, the expression analysis implied that members of this apple gene family were responsive to hormones and stress and that they may participate in hormone-mediated plant organogenesis, which was demonstrated with the overexpression of the apple LBD gene MdLBD11, resulting in an abnormal phenotype. This phenotype included upward curling leaves, delayed flowering, downward-pointing flowers, siliques and other abnormal traits. Based on these data, we concluded that the MdLBD genes may play an important role in apple growth and development as in Arabidopsis and other species.
Collapse
Affiliation(s)
- Xiaofei Wang
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Shizhong Zhang
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Ling Su
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xin Liu
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yujin Hao
- National Key laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong, China
- National Research Center for Apple Engineering and Technology, Shandong Agricultural University, Tai-An, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- * E-mail:
| |
Collapse
|
37
|
Harb A, Pereira A. Activation tagging using the maize En-I transposon system for the identification of abiotic stress resistance genes in Arabidopsis. Methods Mol Biol 2013; 1057:193-204. [PMID: 23918430 DOI: 10.1007/978-1-62703-568-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Activation tagging is a high-throughput method of overexpressing genes by using an enhancer present in insertion sequences that are randomly inserted in the genome to enhance the expression of adjacent genes. Gain-of-function approaches are advantageous to identify the functions of redundant genes that are not identifiable by knockout (KO) mutations, and for identification of phenotypes with small effects, which are enhanced by activation. An activation tag (ATag) library of 800 lines was generated in Arabidopsis ecotype Columbia using the En-I (Spm) transposon system. The ATag lines were used in a forward genetics strategy to identify novel genes that confer resistance/tolerance to abiotic stresses. The ATag lines were screened for altered drought and salt stress response phenotypes using quantitative assays for biomass accumulation under stress, revealing a number of resistant and sensitive ATag mutants.
Collapse
Affiliation(s)
- Amal Harb
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
| | | |
Collapse
|
38
|
Mangeon A, Lin WC, Springer PS. Functional divergence in the Arabidopsis LOB-domain gene family. PLANT SIGNALING & BEHAVIOR 2012; 7:1544-7. [PMID: 23073009 PMCID: PMC3578889 DOI: 10.4161/psb.22320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis LOB-domain (LBD) gene family is composed by 43 members divided in two classes based on amino acid conservation within the LOB-domain. The LOB domain is known to be responsible for DNA binding and protein-protein interactions. There is very little functional information available for most genes in the LBD family and many lbd single mutants do not exhibit conspicuous phenotypes. One plausible explanation for the limited loss-of-function phenotypes observed in this family is that LBD genes exhibit significant functional redundancy. Here we discuss an example of one phylogenetic subgroup of the LBD family, in which genes that are closely related based on phylogeny exhibit distinctly different expression patterns and do not have overlapping functions. We discuss the challenges of using phylogenetic analyses to predict redundancy in gene families.
Collapse
|
39
|
Thatcher LF, Powell JJ, Aitken EAB, Kazan K, Manners JM. The lateral organ boundaries domain transcription factor LBD20 functions in Fusarium wilt Susceptibility and jasmonate signaling in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:407-18. [PMID: 22786889 PMCID: PMC3440215 DOI: 10.1104/pp.112.199067] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/09/2012] [Indexed: 05/17/2023]
Abstract
The LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD) gene family encodes plant-specific transcriptional regulators functioning in organ development. In a screen of Arabidopsis (Arabidopsis thaliana) sequence-indexed transferred DNA insertion mutants, we found disruption of the LOB DOMAIN-CONTAINING PROTEIN20 (LBD20) gene led to increased resistance to the root-infecting vascular wilt pathogen Fusarium oxysporum. In wild-type plants, LBD20 transcripts were barely detectable in leaves but abundant in roots, where they were further induced after F. oxysporum inoculation or methyl jasmonate treatment. Induction of LBD20 expression in roots was abolished in coronatine insensitive1 (coi1) and myc2 (allelic to jasmonate insensitive1) mutants, suggesting LBD20 may function in jasmonate (JA) signaling. Consistent with this, expression of the JA-regulated THIONIN2.1 (Thi2.1) and VEGETATIVE STORAGE PROTEIN2 (VSP2) genes were up-regulated in shoots of lbd20 following treatment of roots with F. oxysporum or methyl jasmonate. However, PLANT DEFENSIN1.2 expression was unaltered, indicating a repressor role for LBD20 in a branch of the JA-signaling pathway. Plants overexpressing LBD20 (LBD20-OX) had reduced Thi2.1 and VSP2 expression. There was a significant correlation between increased LBD20 expression in the LBD20-OX lines with both Thi2.1 and VSP2 repression, and reduced survival following F. oxysporum infection. Chlorosis resulting from application of F. oxysporum culture filtrate was also reduced in lbd20 leaves relative to the wild type. Taken together, LBD20 is a F. oxysporum susceptibility gene that appears to regulate components of JA signaling downstream of COI1 and MYC2 that are required for full elicitation of F. oxysporum- and JA-dependent responses. To our knowledge, this is the first demonstration of a role for a LBD gene family member in either biotic stress or JA signaling.
Collapse
Affiliation(s)
- Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland 4067, Australia.
| | | | | | | | | |
Collapse
|
40
|
Polko JK, Temanni MR, van Zanten M, van Workum W, Iburg S, Pierik R, Voesenek LACJ, Peeters AJM. Illumina sequencing technology as a method of identifying T-DNA insertion loci in activation-tagged Arabidopsis thaliana plants. MOLECULAR PLANT 2012; 5:948-950. [PMID: 22461665 DOI: 10.1093/mp/sss022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
41
|
Li Z, Li B, Shen WH, Huang H, Dong A. TCP transcription factors interact with AS2 in the repression of class-I KNOX genes in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:99-107. [PMID: 22380849 DOI: 10.1111/j.1365-313x.2012.04973.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf organogenesis occurs within the peripheral zone of the shoot apical meristem (SAM). The initiation and subsequent development of a leaf requires the stable repression of a highly conserved class of plant genes, namely class-I KNOTTED 1-like homeobox (KNOX) genes. In Arabidopsis, this class comprises four members: SHOOT MERISTEMLESS (STM); BREVIPEDICELLUS (BP); KNAT2 and KNAT6. Two transcription factors, ASYMMETRIC LEAVES 1 (AS1) and AS2, are known to form a protein complex to repress BP, KNAT2 and KNAT6. Here, we show that AS2 physically interacts with the microRNA319 (miR319)-regulated CINCINNATA-like TEOSINTE BRANCHED 1-CYCLOIDEA-PCF (TCP) transcription factors in vitro and in vivo. By chromatin immunoprecipitation, we demonstrated that AS2 and TCPs bind to similar regions of the BP and KNAT2 promoters. In addition, DNA-binding activities of the TCP proteins rely on the presence of AS2, as the activities were dramatically reduced in the as2 mutant. The jaw-D mutant, which overexpresses MIR319a to downregulate several target TCP genes, strongly enhanced the as2 phenotypes and caused more severe ectopic expression of BP, KNAT2 and KNAT6. Our results reveal that KNOX repression requires different types of transcription factors that function together to ensure normal leaf development.
Collapse
Affiliation(s)
- Ziyu Li
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
42
|
Matsuda O, Tanaka A, Fujita T, Iba K. Hyperspectral imaging techniques for rapid identification of Arabidopsis mutants with altered leaf pigment status. PLANT & CELL PHYSIOLOGY 2012; 53:1154-70. [PMID: 22470059 PMCID: PMC3367163 DOI: 10.1093/pcp/pcs043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 03/22/2012] [Indexed: 05/18/2023]
Abstract
The spectral reflectance signature of living organisms provides information that closely reflects their physiological status. Because of its high potential for the estimation of geomorphic biological parameters, particularly of gross photosynthesis of plants, two-dimensional spectroscopy, via the use of hyperspectral instruments, has been widely used in remote sensing applications. In genetics research, in contrast, the reflectance phenotype has rarely been the subject of quantitative analysis; its potential for illuminating the pathway leading from the gene to phenotype remains largely unexplored. In this study, we employed hyperspectral imaging techniques to identify Arabidopsis mutants with altered leaf pigment status. The techniques are comprised of two modes; the first is referred to as the 'targeted mode' and the second as the 'non-targeted mode'. The 'targeted' mode is aimed at visualizing individual concentrations and compositional parameters of leaf pigments based on reflectance indices (RIs) developed for Chls a and b, carotenoids and anthocyanins. The 'non-targeted' mode highlights differences in reflectance spectra of leaf samples relative to reference spectra from the wild-type leaves. Through the latter approach, three mutant lines with weak irregular reflectance phenotypes, that are hardly identifiable by simple observation, were isolated. Analysis of these and other mutants revealed that the RI-based targeted pigment estimation was robust at least against changes in trichome density, but was confounded by genetic defects in chloroplast photorelocation movement. Notwithstanding such a limitation, the techniques presented here provide rapid and high-sensitive means to identify genetic mechanisms that coordinate leaf pigment status with developmental stages and/or environmental stress conditions.
Collapse
Affiliation(s)
- Osamu Matsuda
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581 Japan.
| | | | | | | |
Collapse
|
43
|
Yamaguchi N, Yamaguchi A, Abe M, Wagner D, Komeda Y. LEAFY controls Arabidopsis pedicel length and orientation by affecting adaxial-abaxial cell fate. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:844-56. [PMID: 22050454 DOI: 10.1111/j.1365-313x.2011.04836.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Pedicel length and orientation (angle) contribute to the diversity of inflorescence architecture, and are important for optimal positioning of the flowers. However, relatively little is known about pedicel development. We previously described the Arabidopsis CORYMBOSA1 (CRM1)/BIG gene, which affects inflorescence architecture by controlling pedicel elongation and orientation. Here, we performed a suppressor screen using the partial loss-of-function allele crm1-13 to identify genes and pathways that affect pedicel development. We identified a hypomorph allele of the meristem identity regulator LEAFY (LFY) as the suppressor. Consistent with this, crm1 pedicels had elevated LFY levels and conditional gain of LFY function produced downward-bending pedicels. Steroid activation of 35S:LFY-GR plants caused a reduction in the cortical cell length in the abaxial domain and additional defects associated with adaxialization. Further analyses of loss of LFY function revealed that LFY is required for reduced cortical cell elongation at the adaxial side of the pedicel base. Defects in conditional LFY gain-of-function pedicels were correlated with decreased BREVIPEDICELLUS (BP) expression, while ASYMMETRIC LEAVES2 (AS2), a transcriptional repressor of BP, and REVOLUTA, a promoter of adaxial cell fate, were highly and ectopically expressed in LFY gain-of-function pedicels. LFY bound to cis-regulatory regions upstream of AS2, and as2 mutations partially suppressed the pedicel length and orientation defects caused by increased LFY activity. These data suggest that LFY activity promotes adaxial cell fate and hence the proper orientation and length of the pedicel partly by directly activating AS2 expression, which suppresses BP expression.
Collapse
Affiliation(s)
- Nobutoshi Yamaguchi
- Laboratory of Plant Science, Department of Biological Science, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
| | | | | | | | | |
Collapse
|
44
|
Li Y, Pi L, Huang H, Xu L. ATH1 and KNAT2 proteins act together in regulation of plant inflorescence architecture. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1423-33. [PMID: 22140242 PMCID: PMC3276100 DOI: 10.1093/jxb/err376] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 09/05/2011] [Accepted: 10/27/2011] [Indexed: 05/18/2023]
Abstract
The inflorescence of flowering plants is a highly organized structure, not only contributing to plant reproductive processes, but also constituting an important part of the entire plant morphology. Previous studies have revealed that the class-I KNOTTED1-like homeobox (KNOX) genes BREVIPEDICELLUS (BP or KNAT1), KNAT2, and KNAT6 play essential roles in inflorescence architecture. Pedicel morphology is known to contribute greatly to inflorescence architecture, and BP negatively regulates KNAT2 and KNAT6 to ensure that pedicels have a normal upward-pointing orientation. These findings indicate that a genetic network exists in controlling pedicel orientation, but how this network functions in the developmental process remains elusive. Here it is reported that the ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) gene, which belongs to the BELL1-like homeodomain gene family, is a new member participating in regulating pedicel orientation in the class-I KNOX network. In a genetic screening for suppressors of isoginchaku-2D, a gain-of-function ASYMMETRIC LEAVES2 mutant that displays downward-pointing pedicels, a suppressor mutant was obtained. Characterization of this mutant revealed that the mutation corresponds to ATH1. Genetic analysis indicated that ATH1 acts mainly in the KNAT2 pathway. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that ATH1 physically interacts with KNAT2. The data indicate that the ATH1-KNAT2 complex acts redundantly with KNAT6, both of which are negatively regulated by BP during pedicel development.
Collapse
Affiliation(s)
| | | | | | - Lin Xu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Abstract
Insertional mutagenesis is one of the most effective approaches to determine the function of plant genes. However, due to genetic redundancy, loss-of-function mutations often fail to reveal the function of a member of gene families. Activation tagging is a powerful gain-of-function approach to reveal the functions of genes, especially those with high sequence similarity recalcitrant to loss-of-function genetic analyses. Activation tagging randomly inserts a T-DNA fragment containing engineered four copies of enhancer element into a plant genome to activate transcription of flanking genes. We recently generated a new binary vector, pBASTA-AT2, which has been efficiently used to discover genes involved in BR biosynthesis, metabolism, and signal transduction. Compared to pSKI015, a commonly used activation tagging vector, pBASTA-AT2, contains a smaller size of T-DNA and a bigger number of unique restriction sites within the T-DNA region, making cloning of the flanking sequence a lot easier. Our analysis indicated that pBASTA-AT2 gives dramatically improved transformation efficiency relative to pSKI015. In this article, detailed information about this activation tagging vector and the protocol for its application are provided. Three recommended gene cloning approaches based on the use of pBASTA-AT2, including inverse PCR, thermal asymmetric interlaced PCR, and adaptor ligation-mediated PCR, are described to identify T-DNA insertion sites after selection of activation-tagged mutant plants.
Collapse
Affiliation(s)
- Xiaoping Gou
- School of life sciences, Lanzhou University, Lanzhou, China
| | | |
Collapse
|
46
|
Uberti-Manassero NG, Lucero LE, Viola IL, Vegetti AC, Gonzalez DH. The class I protein AtTCP15 modulates plant development through a pathway that overlaps with the one affected by CIN-like TCP proteins. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:809-23. [PMID: 22016421 DOI: 10.1093/jxb/err305] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The function of the class I TCP transcription factor TCP15 from Arabidopsis thaliana has been studied through the analysis of plants that express a fusion of this protein to the EAR repressor domain. Constitutive expression of TCP15-EAR produces growth arrest at the seedling stage, before leaf emergence. Expression of the repressor fusion from the AtTCP15 promoter produces small plants with leaves whose margins progressively curve upwards, starting from the basal part of the lamina. Leaves contain smaller and less differentiated cells, both on the adaxial and abaxial sides. The abaxial domain is relatively enlarged, with disorganized cells separated by empty spaces. TCP15-EAR also affects the growth of leaf petioles, flower pedicels, and anther filaments. Flowers show reduced elongation of the three outer whorls and altered gynoecia with irregular carpel surfaces and enlarged repla. Ectopic stigma-like structures develop from medial and basal parts of the replum. TCP15-EAR produces an increase in expression of the boundary-specific genes LOB, CUC1, and CUC2. Changes in CUC1 and CUC2 expression can be explained by the existence of lower levels of miR164 in leaves and the repression of IAA3/SHY2 and the SAUR-like gene At1g29460 in leaves and flowers. TCP15 binds to the promoter regions of IAA3/SHY2 and At1g29460, suggesting that these genes may be direct targets of the transcription factor. The results indicate that TCP15 regulates the expression of boundary-specific genes through a pathway that affects auxin homeostasis and partially overlaps with the one modulated by class II CIN-like TCP proteins.
Collapse
Affiliation(s)
- Nora G Uberti-Manassero
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | | | |
Collapse
|
47
|
Kaminuma E, Heida N, Yoshizumi T, Nakazawa M, Matsui M, Toyoda T. IN SILICO PHENOTYPIC SCREENING METHOD OF MUTANTS BASED ON STATISTICAL MODELING OF GENETICALLY MIXED SAMPLES. J Bioinform Comput Biol 2011; 3:1281-93. [PMID: 16374907 DOI: 10.1142/s0219720005001557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 06/23/2005] [Accepted: 06/25/2005] [Indexed: 11/18/2022]
Abstract
In comprehensive functional genomics projects, systematic analysis of phenotypes is vital. However, conventional phenotypic screening is done mainly by imprecise visual observation of qualitative traits, and, therefore, in silico screening techniques for quantitative traits are required. In this report, we propose in silico phenotypic screening method that utilizes a Gaussian mixture model for the trait distribution in the offspring of a mutagenized line and the likelihood ratio test between the estimated Gaussian mixture model and the wild-type single Gaussian model. In order to evaluate the proposed method, we performed a screening experiment using real trait data of Arabidopsis. In this experiment, the proposed screening method properly distinguished the mutant line from the wild-type line. Furthermore, we conducted power analysis of the proposed method and two conventional methods under various simulated conditions of sample size and distribution of trait frequency. The result of the power analysis confirmed the effectiveness of the proposed method compared to the conventional methods.
Collapse
Affiliation(s)
- Eli Kaminuma
- Functional Genomics Research Group, Genomic Sciences Center, RIKEN, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Kaminuma E, Heida N, Tsumoto Y, Nakazawa M, Goto N, Konagaya A, Matsui M, Toyoda T. THREE-DIMENSIONAL DEFINITION OF LEAF MORPHOLOGICAL TRAITS OF ARABIDOPSIS IN SILICO PHENOTYPIC ANALYSIS. J Bioinform Comput Biol 2011; 3:401-14. [PMID: 15852512 DOI: 10.1142/s0219720005001119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 10/18/2004] [Accepted: 10/18/2004] [Indexed: 11/18/2022]
Abstract
The detection of phenotypic alterations of mutants and variants is one of the bottlenecks that hinder systematic gene functional studies of the model plant Arabidopsis. In an earlier study, we have addressed this problem by proposing a novel methodology for phenome analysis based on in silico analysis of polygon models that are acquired by 3-dimensional (3D) measurement and which precisely reconstruct the actual plant shape. However, 3D quantitative descriptions of morphological traits are rare, whereas conventional 2D descriptions have already been studied but may lack the necessary precision. In this report, we focus on six major leaf morphological traits, which are commonly used in the current manual mutant screens, and propose new 3D quantitative definitions that describe these traits. In experiments to extract the traits, we found significant differences between two variants of Arabidopsis with respect to blade roundness and blade epinasty. Remarkably, the detected difference between variants in the blade roundness trait was undetectable when using conventional 2D descriptions. Thus, the result of the experiment indicates that the proposed definitions with 3D description may lead to new discoveries of phenotypic alteration in gene functional studies that would not be possible using conventional 2D descriptions.
Collapse
Affiliation(s)
- Eli Kaminuma
- Bioinformatics Group, Genomic Sciences Center, RIKEN, 1-7-22, Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bolle C, Schneider A, Leister D. Perspectives on Systematic Analyses of Gene Function in Arabidopsis thaliana: New Tools, Topics and Trends. Curr Genomics 2011; 12:1-14. [PMID: 21886450 PMCID: PMC3129038 DOI: 10.2174/138920211794520187] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 10/28/2010] [Accepted: 11/23/2010] [Indexed: 11/22/2022] Open
Abstract
Since the sequencing of the nuclear genome of Arabidopsis thaliana ten years ago, various large-scale analyses of gene function have been performed in this model species. In particular, the availability of collections of lines harbouring random T-DNA or transposon insertions, which include mutants for almost all of the ~27,000 A. thaliana genes, has been crucial for the success of forward and reverse genetic approaches. In the foreseeable future, genome-wide phenotypic data from mutant analyses will become available for Arabidopsis, and will stimulate a flood of novel in-depth gene-function analyses. In this review, we consider the present status of resources and concepts for systematic studies of gene function in A. thaliana. Current perspectives on the utility of loss-of-function and gain-of-function mutants will be discussed in light of the genetic and functional redundancy of many A. thaliana genes.
Collapse
Affiliation(s)
- C Bolle
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität München, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
50
|
Sakurai T, Kondou Y, Akiyama K, Kurotani A, Higuchi M, Ichikawa T, Kuroda H, Kusano M, Mori M, Saitou T, Sakakibara H, Sugano S, Suzuki M, Takahashi H, Takahashi S, Takatsuji H, Yokotani N, Yoshizumi T, Saito K, Shinozaki K, Oda K, Hirochika H, Matsui M. RiceFOX: a database of Arabidopsis mutant lines overexpressing rice full-length cDNA that contains a wide range of trait information to facilitate analysis of gene function. PLANT & CELL PHYSIOLOGY 2011; 52:265-73. [PMID: 21186176 PMCID: PMC3037076 DOI: 10.1093/pcp/pcq190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/03/2010] [Indexed: 05/18/2023]
Abstract
Identification of gene function is important not only for basic research but also for applied science, especially with regard to improvements in crop production. For rapid and efficient elucidation of useful traits, we developed a system named FOX hunting (Full-length cDNA Over-eXpressor gene hunting) using full-length cDNAs (fl-cDNAs). A heterologous expression approach provides a solution for the high-throughput characterization of gene functions in agricultural plant species. Since fl-cDNAs contain all the information of functional mRNAs and proteins, we introduced rice fl-cDNAs into Arabidopsis plants for systematic gain-of-function mutation. We generated >30,000 independent Arabidopsis transgenic lines expressing rice fl-cDNAs (rice FOX Arabidopsis mutant lines). These rice FOX Arabidopsis lines were screened systematically for various criteria such as morphology, photosynthesis, UV resistance, element composition, plant hormone profile, metabolite profile/fingerprinting, bacterial resistance, and heat and salt tolerance. The information obtained from these screenings was compiled into a database named 'RiceFOX'. This database contains around 18,000 records of rice FOX Arabidopsis lines and allows users to search against all the observed results, ranging from morphological to invisible traits. The number of searchable items is approximately 100; moreover, the rice FOX Arabidopsis lines can be searched by rice and Arabidopsis gene/protein identifiers, sequence similarity to the introduced rice fl-cDNA and traits. The RiceFOX database is available at http://ricefox.psc.riken.jp/.
Collapse
Affiliation(s)
- Tetsuya Sakurai
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045 Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|