1
|
Hsu TY, Hsu LN, Chen SY, Juang BT. MUT-7 Provides Molecular Insight into the Werner Syndrome Exonuclease. Cells 2021; 10:cells10123457. [PMID: 34943966 PMCID: PMC8700014 DOI: 10.3390/cells10123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 11/24/2022] Open
Abstract
Werner syndrome (WS) is a rare recessive genetic disease characterized by premature aging. Individuals with this disorder develop normally during childhood, but their physiological conditions exacerbate the aging process in late adolescence. WS is caused by mutation of the human WS gene (WRN), which encodes two main domains, a 3′-5′ exonuclease and a 3′-5′ helicase. Caenorhabditis elegans expresses human WRN orthologs as two different proteins: MUT-7, which has a 3′-5′ exonuclease domain, and C. elegans WRN-1 (CeWRN-1), which has only helicase domains. These unique proteins dynamically regulate olfactory memory in C. elegans, providing insight into the molecular roles of WRN domains in humans. In this review, we specifically focus on characterizing the function of MUT-7 in small interfering RNA (siRNA) synthesis in the cytoplasm and the roles of siRNA in directing nuclear CeWRN-1 loading onto a heterochromatin complex to induce negative feedback regulation. Further studies on the different contributions of the 3′-5′ exonuclease and helicase domains in the molecular mechanism will provide clues to the accelerated aging processes in WS.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Department of Cell and Tissue Biology, University of California, 513 Parnassus, San Francisco, CA 94143, USA
| | - Ling-Nung Hsu
- Occupational Safety and Health Office, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan;
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan;
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
- Center for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Chiao Tung University, Hsinchu 300, Taiwan
- Correspondence:
| |
Collapse
|
2
|
Veluthambi K, Sunitha S. Targets and Mechanisms of Geminivirus Silencing Suppressor Protein AC2. Front Microbiol 2021; 12:645419. [PMID: 33897657 PMCID: PMC8062710 DOI: 10.3389/fmicb.2021.645419] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Geminiviruses are plant DNA viruses that infect a wide range of plant species and cause significant losses to economically important food and fiber crops. The single-stranded geminiviral genome encodes a small number of proteins which act in an orchestrated manner to infect the host. The fewer proteins encoded by the virus are multifunctional, a mechanism uniquely evolved by the viruses to balance the genome-constraint. The host-mediated resistance against incoming virus includes post-transcriptional gene silencing, transcriptional gene silencing, and expression of defense responsive genes and other cellular regulatory genes. The pathogenicity property of a geminiviral protein is linked to its ability to suppress the host-mediated defense mechanism. This review discusses what is currently known about the targets and mechanism of the viral suppressor AC2/AL2/transcriptional activator protein (TrAP) and explore the biotechnological applications of AC2.
Collapse
Affiliation(s)
- Karuppannan Veluthambi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Sukumaran Sunitha
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
3
|
Hsu TY, Zhang B, L'Etoile ND, Juang BT. C. elegans orthologs MUT-7/CeWRN-1 of Werner syndrome protein regulate neuronal plasticity. eLife 2021; 10:62449. [PMID: 33646120 PMCID: PMC7946423 DOI: 10.7554/elife.62449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Caenorhabditis elegans expresses human Werner syndrome protein (WRN) orthologs as two distinct proteins: MUT-7, with a 3′−5′ exonuclease domain, and CeWRN-1, with helicase domains. How these domains cooperate remains unclear. Here, we demonstrate the different contributions of MUT-7 and CeWRN-1 to 22G small interfering RNA (siRNA) synthesis and the plasticity of neuronal signaling. MUT-7 acts specifically in the cytoplasm to promote siRNA biogenesis and in the nucleus to associate with CeWRN-1. The import of siRNA by the nuclear Argonaute NRDE-3 promotes the loading of the heterochromatin-binding protein HP1 homolog HPL-2 onto specific loci. This heterochromatin complex represses the gene expression of the guanylyl cyclase ODR-1 to direct olfactory plasticity in C. elegans. Our findings suggest that the exonuclease and helicase domains of human WRN may act in concert to promote RNA-dependent loading into a heterochromatin complex, and the failure of this entire process reduces plasticity in postmitotic neurons.
Collapse
Affiliation(s)
- Tsung-Yuan Hsu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Bo Zhang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Noelle D L'Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, United States
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
4
|
Degradation of unmethylated miRNA/miRNA*s by a DEDDy-type 3' to 5' exoribonuclease Atrimmer 2 in Arabidopsis. Proc Natl Acad Sci U S A 2018; 115:E6659-E6667. [PMID: 29941559 DOI: 10.1073/pnas.1721917115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The 3' end methylation catalyzed by HUA Enhancer 1 (HEN1) is a crucial step of small RNA stabilization in plants, yet how unmethylated small RNAs undergo degradation remains largely unknown. Using a reverse genetic approach, we here show that Atrimmer 2 (ATRM2), a DEDDy-type 3' to 5' exoribonuclease, acts in the degradation of unmethylated miRNAs and miRNA*s in Arabidopsis Loss-of-function mutations in ATRM2 partially suppress the morphological defects caused by HEN1 malfunction, with restored levels of a subset of miRNAs and receded expression of corresponding miRNA targets. Dysfunction of ATRM2 has negligible effect on miRNA trimming, and further increase the fertility of hen1 heso1 urt1, a mutant with an almost complete abolishment of miRNA uridylation, indicating that ATRM2 may neither be involved in 3' to 5' trimming nor be the enzyme that specifically degrades uridylated miRNAs. Notably, the fold changes of miRNAs and their corresponding miRNA*s were significantly correlated in hen1 atrm2 versus hen1 Unexpectedly, we observed a marked increase of 3' to 5' trimming of several miRNA*s but not miRNAs in ATRM2 compromised backgrounds. These data suggest an action of ATRM2 on miRNA/miRNA* duplexes, and the existence of an unknown exoribonuclease for specific trimming of miRNA*. This asymmetric effect on miRNA/miRNA* is likely related to Argonaute (AGO) proteins, which can distinguish miRNAs from miRNA*s. Finally, we show that ATRM2 colocalizes and physically interacts with Argonaute 1 (AGO1). Taken together, our results suggest that ATRM2 may be involved in the surveillance of unmethylated miRNA/miRNA* duplexes during the initiation step of RNA-induced silencing complex assembly.
Collapse
|
5
|
Kørner CJ, Pitzalis N, Peña EJ, Erhardt M, Vazquez F, Heinlein M. Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. NATURE PLANTS 2018; 4:157-164. [PMID: 29497161 DOI: 10.1038/s41477-018-0117-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/31/2018] [Indexed: 05/22/2023]
Abstract
Virus-induced diseases cause severe damage to cultivated plants, resulting in crop losses. Certain plant-virus interactions allow disease recovery at later stages of infection and have the potential to reveal important molecular targets for achieving disease control. Although recovery is known to involve antiviral RNA silencing1,2, the specific components of the many plant RNA silencing pathways 3 required for recovery are not known. We found that Arabidopsis thaliana plants infected with oilseed rape mosaic virus (ORMV) undergo symptom recovery. The recovered leaves contain infectious, replicating virus, but exhibit a loss of viral suppressor of RNA silencing (VSR) protein activity. We demonstrate that recovery depends on the 21-22 nt siRNA-mediated post-transcriptional gene silencing (PTGS) pathway and on components of a transcriptional gene silencing (TGS) pathway that is known to facilitate non-cell-autonomous silencing signalling. Collectively, our observations indicate that recovery reflects the establishment of a tolerant state in infected tissues and occurs following robust delivery of antiviral secondary siRNAs from source to sink tissues, and establishment of a dosage able to block the VSR activity involved in the formation of disease symptoms.
Collapse
Affiliation(s)
- Camilla Julie Kørner
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Nicolas Pitzalis
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - Eduardo José Peña
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, UNLP-CONICET, La Plata, Buenos Aires, Argentina
| | - Mathieu Erhardt
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France
| | - Franck Vazquez
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- MDPI, Basel, Switzerland
| | - Manfred Heinlein
- Zurich-Basel Plant Science Center, Department of Environmental Sciences, University of Basel, Basel, Switzerland.
- Université de Strasbourg, CNRS, IBMP UPR 2357, Strasbourg, France.
| |
Collapse
|
6
|
Xu J, Chen Y, Qian L, Mu R, Yuan X, Fang H, Huang X, Xu E, Zhang H, Huang J. A Novel RNA-Binding Protein Involves ABA Signaling by Post-transcriptionally Repressing ABI2. FRONTIERS IN PLANT SCIENCE 2017; 8:24. [PMID: 28174577 PMCID: PMC5258706 DOI: 10.3389/fpls.2017.00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/05/2017] [Indexed: 05/24/2023]
Abstract
The Stress Associated RNA-binding protein 1 (SRP1) repressed by ABA, salt and cold encodes a C2C2-type zinc finger protein in Arabidopsis. The knock-out mutation in srp1 reduced the sensitivity of seed to ABA and salt stress during germination and post-germinative growth stages. In contrast, SRP1-overexpressing seedlings were more sensitive to ABA and salt compared to wild type plants. In the presence of ABA, the transcript levels of ABA signaling and germination-related genes including ABI3. ABI5. EM1 and EM6 were less induced in srp1 compared to WT. Interestingly, expression of ABI2 encoding a protein phosphatase 2C protein were significantly up-regulated in srp1 mutants. By in vitro analysis, SRP1 was identified as a novel RNA-binding protein directly binding to 3'UTR of ABI2 mRNA. Moreover, transient expression assay proved the function of SRP1 in reducing the activity of luciferase whose coding sequence was fused with the ABI2 3'UTR. Together, it is suggested that SRP1 is involved in the ABA signaling by post-transcriptionally repressing ABI2 expression in Arabidopsis.
Collapse
Affiliation(s)
- Jianwen Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Institute of Industrial Crops, Jiangsu Academy of Agricultural ScienceNanjing, China
| | - Yihan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Luofeng Qian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Rong Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Xi Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Huimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Xi Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Enshun Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Ji Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
7
|
Richter KS, Jeske H. KU80, a key factor for non-homologous end-joining, retards geminivirus multiplication. J Gen Virol 2015; 96:2913-2918. [PMID: 26297035 DOI: 10.1099/jgv.0.000224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
KU80 is well-known as a key component of the non-homologous end-joining pathway used to repair DNA double-strand breaks. In addition, the KU80-containing DNA-dependent protein kinase complex in mammals can act as a cytoplasmic sensor for viral DNA to activate innate immune response. We have now, to our knowledge for the first time, demonstrated that the speed of a systemic infection with a plant DNA geminivirus in Arabidopsis thaliana is KU80-dependent. The early emergence of Euphorbia yellow mosaic virus DNA was significantly increased in ku80 knockout mutants compared with wild-type sibling controls. The possible impact of KU80 on geminivirus multiplication by generating non-productive viral DNAs or its role as a pattern-recognition receptor against DNA virus infection is discussed.
Collapse
Affiliation(s)
- Kathrin S Richter
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| |
Collapse
|
8
|
Dey KK, Borth WB, Melzer MJ, Wang ML, Hu JS. Analysis of pineapple mealybug wilt associated virus -1 and -2 for potential RNA silencing suppressors and pathogenicity factors. Viruses 2015; 7:969-95. [PMID: 25751306 PMCID: PMC4379557 DOI: 10.3390/v7030969] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/05/2015] [Accepted: 02/15/2015] [Indexed: 01/02/2023] Open
Abstract
Higher plants use RNA silencing to defend against viral infections. As a counter defense, plant viruses have evolved proteins that suppress RNA silencing. Mealybug wilt of pineapple (MWP), an important disease of pineapple, has been associated with at least three distinct viruses, Pineapple mealybug wilt associated virus -1, -2, and -3 (PMWaV-1, -2, and -3). Selected open reading frames (ORFs) of PMWaV-1 and PMWaV-2 were screened for their local and systemic suppressor activities in Agrobacterium-mediated transient assays using green fluorescent protein (GFP) in Nicotiana benthamiana. Results indicate that PMWaV-2 utilizes a multiple-component RNA silencing suppression mechanism. Two proteins, p20 and CP, target both local and systemic silencing in N. benthamiana, while the p22 and CPd proteins target only systemic silencing. In the related virus PMWaV-1, we found that only one of the encoded proteins, p61, had only systemic suppressor activity. Of all the proteins tested from both viruses, only the PMWaV-2 p20 protein suppressed local silencing induced by double-stranded RNA (dsRNA), but only when low levels of inducing dsRNA were used. None of the proteins analyzed could interfere with the short distance spread of silencing. We examined the mechanism of systemic suppression activity by investigating the effect of PMWaV-2-encoded p20 and CP proteins on secondary siRNAs. Our results suggest that the PMWaV-2 p20 and CP proteins block the systemic silencing signal by repressing production of secondary siRNAs. We also demonstrate that the PMWaV-2 p20 and p22 proteins enhanced the pathogenicity of Potato virus X in N. benthamiana.
Collapse
Affiliation(s)
- Kishore K Dey
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3190 Maile Way, Honolulu, HI 96822, USA.
| | - Wayne B Borth
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3190 Maile Way, Honolulu, HI 96822, USA.
| | - Michael J Melzer
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3190 Maile Way, Honolulu, HI 96822, USA.
| | - Ming-Li Wang
- Hawaii Agricultural Research Center, Kunia, Honolulu, HI 96797, USA.
| | - John S Hu
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3190 Maile Way, Honolulu, HI 96822, USA.
| |
Collapse
|
9
|
Li F, Huang C, Li Z, Zhou X. Suppression of RNA silencing by a plant DNA virus satellite requires a host calmodulin-like protein to repress RDR6 expression. PLoS Pathog 2014; 10:e1003921. [PMID: 24516387 PMCID: PMC3916407 DOI: 10.1371/journal.ppat.1003921] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022] Open
Abstract
In plants, RNA silencing plays a key role in antiviral defense. To counteract host defense, plant viruses encode viral suppressors of RNA silencing (VSRs) that target different effector molecules in the RNA silencing pathway. Evidence has shown that plants also encode endogenous suppressors of RNA silencing (ESRs) that function in proper regulation of RNA silencing. The possibility that these cellular proteins can be subverted by viruses to thwart host defense is intriguing but has not been fully explored. Here we report that the Nicotiana benthamiana calmodulin-like protein Nbrgs-CaM is required for the functions of the VSR βC1, the sole protein encoded by the DNA satellite associated with the geminivirus Tomato yellow leaf curl China virus (TYLCCNV). Nbrgs-CaM expression is up-regulated by the βC1. Transgenic plants over-expressing Nbrgs-CaM displayed developmental abnormities reminiscent of βC1-associated morphological alterations. Nbrgs-CaM suppressed RNA silencing in an Agrobacterium infiltration assay and, when over-expressed, blocked TYLCCNV-induced gene silencing. Genetic evidence showed that Nbrgs-CaM mediated the βC1 functions in silencing suppression and symptom modulation, and was required for efficient virus infection. Moreover, the tobacco and tomato orthologs of Nbrgs-CaM also possessed ESR activity, and were induced by betasatellite to promote virus infection in these Solanaceae hosts. We further demonstrated that βC1-induced Nbrgs-CaM suppressed the production of secondary siRNAs, likely through repressing RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) expression. RDR6-deficient N. benthamiana plants were defective in antiviral response and were hypersensitive to TYLCCNV infection. More significantly, TYLCCNV could overcome host range restrictions to infect Arabidopsis thaliana when the plants carried a RDR6 mutation. These findings demonstrate a distinct mechanism of VSR for suppressing PTGS through usurpation of a host ESR, and highlight an essential role for RDR6 in RNA silencing defense response against geminivirus infection.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Changjun Huang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Arabidopsis non-coding RNA regulation in abiotic stress responses. Int J Mol Sci 2013; 14:22642-54. [PMID: 24252906 PMCID: PMC3856082 DOI: 10.3390/ijms141122642] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 10/31/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Plant growth and productivity are largely affected by environmental stresses. Therefore, plants have evolved unique adaptation mechanisms to abiotic stresses through fine-tuned adjustment of gene expression and metabolism. Recent advanced technologies, such as genome-wide transcriptome analysis, have revealed that a vast amount of non-coding RNAs (ncRNAs) apart from the well-known housekeeping ncRNAs such as rRNAs, tRNAs, small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs) are expressed under abiotic stress conditions. These various types of ncRNAs are involved in chromatin regulation, modulation of RNA stability and translational repression during abiotic stress response. In this review, we summarize recent progress that has been made on ncRNA research in plant abiotic stress response.
Collapse
|
11
|
Cookson SJ, Ollat N. Grafting with rootstocks induces extensive transcriptional re-programming in the shoot apical meristem of grapevine. BMC PLANT BIOLOGY 2013; 13:147. [PMID: 24083813 PMCID: PMC3852942 DOI: 10.1186/1471-2229-13-147] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/27/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Grafting is widely used in the agriculture of fruit-bearing crops; rootstocks are known to confer differences in scion biomass in addition to improving other traits of agricultural interest. However, little is known about the effect of rootstocks on scion gene expression. The objective of this study was to determine whether hetero-grafting the grapevine variety Vitis vinifera cv. 'Cabernet Sauvignon N' with two different rootstocks alters gene expression in the shoot apex in comparison to the auto-grafted control. Cabernet Sauvignon was hetero-grafted with two commercial rootstock genotypes and auto-grafted with itself. Vigor was quantified by measurements of root, stem, leaf and trunk biomass. Gene expression profiling was done using a whole genome grapevine microarray; four pools of five shoot apex samples were harvested 4 months after grafting for each scion/rootstock combination. RESULTS The rootstocks increased stem biomass or conferred increased vigor by the end of the first growth cycle. Globally hetero-grafting two different genotypes together triggered an increase in shoot apex gene expression; however no genes were differentially expressed between the two hetero-grafts. The functional categories related to DNA, chromatin structure, histones, flavonoids and leucine rich repeat containing receptor kinases were the most enriched in the up-regulated genes in the shoot apex of hetero-grafted plants. CONCLUSIONS The choice of rootstock genotype had little effect on the gene expression in the shoot apex; this could suggest that auto- and hetero-grafting was the major factor regulating gene expression.
Collapse
Affiliation(s)
| | - Nathalie Ollat
- INRA, ISVV, EGFV, UMR 1287, Villenave d’Ornon, F-33140, France
| |
Collapse
|
12
|
Rowe JM, Dunigan DD, Blanc G, Gurnon JR, Xia Y, Van Etten JL. Evaluation of higher plant virus resistance genes in the green alga, Chlorella variabilis NC64A, during the early phase of infection with Paramecium bursaria chlorella virus-1. Virology 2013; 442:101-13. [PMID: 23701839 PMCID: PMC4107423 DOI: 10.1016/j.virol.2013.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/18/2013] [Accepted: 04/20/2013] [Indexed: 01/25/2023]
Abstract
With growing industrial interest in algae plus their critical roles in aquatic systems, the need to understand the effects of algal pathogens is increasing. We examined a model algal host-virus system, Chlorella variabilis NC64A and virus, PBCV-1. C. variabilis encodes 375 homologs to genes involved in RNA silencing and in response to virus infection in higher plants. Illumina RNA-Seq data showed that 325 of these homologs were expressed in healthy and early PBCV-1 infected (≤60min) cells. For each of the RNA silencing genes to which homologs were found, mRNA transcripts were detected in healthy and infected cells. C. variabilis, like higher plants, may employ certain RNA silencing pathways to defend itself against virus infection. To our knowledge this is the first examination of RNA silencing genes in algae beyond core proteins, and the first analysis of their transcription during virus infection.
Collapse
Affiliation(s)
- Janet M. Rowe
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - David D. Dunigan
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - Guillaume Blanc
- Structural and Génomique Information Laboratoire, UMR7256 CNRS, Aix-Marseille Université, Marseille, FR-13385, France
| | - James R. Gurnon
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| | - Yuannan Xia
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588-0665, United States
| | - James L. Van Etten
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583-0900, United States
- Nebraska Center for Virology, University of Nebraska, Lincoln, NE 68583-0900, United States
| |
Collapse
|
13
|
Aregger M, Borah BK, Seguin J, Rajeswaran R, Gubaeva EG, Zvereva AS, Windels D, Vazquez F, Blevins T, Farinelli L, Pooggin MM. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog 2012; 8:e1002941. [PMID: 23028332 PMCID: PMC3460622 DOI: 10.1371/journal.ppat.1002941] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 08/18/2012] [Indexed: 11/20/2022] Open
Abstract
In plants, RNA silencing-based antiviral defense is mediated by Dicer-like (DCL) proteins producing short interfering (si)RNAs. In Arabidopsis infected with the bipartite circular DNA geminivirus Cabbage leaf curl virus (CaLCuV), four distinct DCLs produce 21, 22 and 24 nt viral siRNAs. Using deep sequencing and blot hybridization, we found that viral siRNAs of each size-class densely cover the entire viral genome sequences in both polarities, but highly abundant siRNAs correspond primarily to the leftward and rightward transcription units. Double-stranded RNA precursors of viral siRNAs can potentially be generated by host RDR-dependent RNA polymerase (RDR). However, genetic evidence revealed that CaLCuV siRNA biogenesis does not require RDR1, RDR2, or RDR6. By contrast, CaLCuV derivatives engineered to target 30 nt sequences of a GFP transgene by primary viral siRNAs trigger RDR6-dependent production of secondary siRNAs. Viral siRNAs targeting upstream of the GFP stop codon induce secondary siRNAs almost exclusively from sequences downstream of the target site. Conversely, viral siRNAs targeting the GFP 3′-untranslated region (UTR) induce secondary siRNAs mostly upstream of the target site. RDR6-dependent siRNA production is not necessary for robust GFP silencing, except when viral siRNAs targeted GFP 5′-UTR. Furthermore, viral siRNAs targeting the transgene enhancer region cause GFP silencing without secondary siRNA production. We conclude that the majority of viral siRNAs accumulating during geminiviral infection are RDR1/2/6-independent primary siRNAs. Double-stranded RNA precursors of these siRNAs are likely generated by bidirectional readthrough transcription of circular viral DNA by RNA polymerase II. Unlike transgenic mRNA, geminiviral mRNAs appear to be poor templates for RDR-dependent production of secondary siRNAs. RNA silencing directed by small RNAs (sRNAs) regulates gene expression and mediates defense against invasive nucleic acids such as transposons, transgenes and viruses. In plants and some animals, RNA-dependent RNA polymerase (RDR) generates precursors of secondary sRNAs that reinforce silencing. Most plant mRNAs silenced by miRNAs or primary siRNAs do not spawn secondary siRNAs, suggesting that they may have evolved to be poor templates for RDR. By contrast, silenced transgenes often produce RDR-dependent secondary siRNAs. Here we demonstrate that massive production of 21, 22 and 24 nt viral siRNAs in DNA geminivirus-infected Arabidopsis does not require the functional RDRs RDR1, RDR2, or RDR6. Deep sequencing analysis indicates that dsRNA precursors of these primary viral siRNAs are likely generated by RNA polymerase II-mediated bidirectional readthrough transcription on the circular viral DNA. Primary viral siRNAs engineered to target a GFP transgene trigger robust, RDR6-dependent production of secondary siRNAs, indicating that geminivirus infection does not suppress RDR6 activity. We conclude that geminiviral mRNAs, which can potentially be cleaved by primary viral siRNAs, are resistant to RDR-dependent amplification of secondary siRNAs. We speculate that, like most plant mRNAs, geminiviral mRNAs may have evolved to evade RDR activity.
Collapse
Affiliation(s)
- Michael Aregger
- Institute of Botany, University of Basel, Basel, Switzerland
| | | | - Jonathan Seguin
- Institute of Botany, University of Basel, Basel, Switzerland
- Fasteris SA, Plan-les-Ouates, Switzerland
| | | | | | - Anna S. Zvereva
- Institute of Botany, University of Basel, Basel, Switzerland
| | - David Windels
- Institute of Botany, University of Basel, Basel, Switzerland
| | - Franck Vazquez
- Institute of Botany, University of Basel, Basel, Switzerland
| | - Todd Blevins
- Biology Department, Indiana University, Bloomington, Indiana, United States of America
| | | | | |
Collapse
|
14
|
Leibman D, Wolf D, Saharan V, Zelcer A, Arazi T, Yoel S, Gaba V, Gal-On A. A high level of transgenic viral small RNA is associated with broad potyvirus resistance in cucurbits. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1220-1238. [PMID: 21899438 DOI: 10.1094/mpmi-05-11-0128] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gene-silencing has been used to develop resistance against many plant viruses but little is known about the transgenic small-interfering RNA (t-siRNA) that confers this resistance. Transgenic cucumber and melon lines harboring a hairpin construct of the Zucchini yellow mosaic potyvirus (ZYMV) HC-Pro gene accumulated different levels of t-siRNA (6 to 44% of total siRNA) and exhibited resistance to systemic ZYMV infection. Resistance to Watermelon mosaic potyvirus and Papaya ring spot potyvirus-W was also observed in a cucumber line that accumulated high levels of t-siRNA (44% of total siRNA) and displayed significantly increased levels of RNA-dependent RNA (RDR)1 and Argonaute 1, as compared with the other transgenic and nontransformed plants. The majority of the t-siRNA sequences were 21 to 22 nucleotides in length and sense strand biased. The t-siRNA were not uniformly distributed throughout the transgene but concentrated in "hot spots" in a pattern resembling that of the viral siRNA peaks observed in ZYMV-infected cucumber and melon. Mutations in ZYMV at the loci associated with the siRNA peaks did not break this resistance, indicating that hot spot t-siRNA may not be essential for resistance. This study shows that resistance based on gene-silencing can be effective against related viruses and is probably correlated with t-siRNA accumulation and increased expression of RDR1.
Collapse
Affiliation(s)
- Diana Leibman
- Department of Plant Pathology and Weed Sciences, ARO The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Jouannet V, Crespi M. Long Nonprotein-Coding RNAs in Plants. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2011; 51:179-200. [PMID: 21287139 DOI: 10.1007/978-3-642-16502-3_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In recent years, nonprotein-coding RNAs (or npcRNAs) have emerged as a major part of the eukaryotic transcriptome. Many new regulatory npcRNAs or riboregulators riboregulators have been discovered and characterized due to the advent of new genomic approaches. This growing number suggests that npcRNAs could play a more important role than previously believed and significantly contribute to the generation of evolutionary complexity in multicellular organisms. Regulatory npcRNAs range from small RNAs (si/miRNAs) to very large transcripts (or long npcRNAs) and play diverse functions in development and/or environmental stress responses. Small RNAs include an expanding number of 20-40 nt RNAs that function in the regulation of gene expression by affecting mRNA decay and translational inhibition or lead to DNA methylation and gene silencing. They generally involve double-stranded RNA or stem loops and imply transcriptional or posttranscriptional gene silencing (PTGS). RNA silencing besides small interfering RNA and microRNA, gene silencing in plants is also mediated by tasiRNAs (trans-acting siRNAs) and nat-siRNAs (natural antisense mediated siRNAs). In contrast to small RNAs, much less is known about the large and diverse population of long npcRNAs, and only a few have been implicated in diverse functions such as abiotic stress responses, nodulation and flower development, and sex chromosome-specific expression. Moreover, many long npcRNAs act as antisense transcripts or are substrates of the small RNA pathways, thus interfering with a variety of RNA-related metabolisms. An emerging hypothesis is that long npcRNAs, as shown for small si/miRNAs, integrate into ribonucleoprotein particles (RNPs) to modulate their function, localization, or stability to act on target mRNAs. As plants show a remarkable developmental plasticity to adapt their growth to changing environmental conditions, understanding how npcRNAs work may reveal novel mechanisms involved in growth control and differentiation and help to design new tools for biotechnological applications.
Collapse
Affiliation(s)
- Virginie Jouannet
- Centre National de la Recherche Scientifique, Institut des Sciences du Végétal, 91198, Gif-sur-Yvette Cedex, France
| | | |
Collapse
|
16
|
Abstract
Plants have evolved a variety of gene silencing pathways mediated by small RNAs. Mostly 21 or 24 nt in size, these small RNAs repress the expression of sequence homologous genes at the transcriptional, post-transcriptional and translational levels. These pathways, also referred as RNA silencing pathways, play important roles in regulating growth and development as well as in response to both biotic and abiotic stress. Although the molecular basis of these complicated and interconnected pathways has become clear only in recent years, RNA silencing effects were observed and utilized in transgenic plants early in the plant biotechnology era, more than two decades ago. Today, with a better understanding of the pathways, various genetic engineering approaches have been developed to apply RNA silencing more effectively and broadly. In addition to summarizing the current models of RNA silencing, this review discusses examples of its potential uses and related issues concerning its application in plant biotechnology.
Collapse
Affiliation(s)
- Alessandra Frizzi
- Calgene Campus, Monsanto Company, 1920 Fifth Street, Davis, CA 95616, USA
| | | |
Collapse
|
17
|
Jamalkandi SA, Masoudi-Nejad A. Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Funct Integr Genomics 2009; 9:419-32. [DOI: 10.1007/s10142-009-0141-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/24/2022]
|
18
|
Mangwende T, Wang ML, Borth W, Hu J, Moore PH, Mirkov TE, Albert HH. The P0 gene of Sugarcane yellow leaf virus encodes an RNA silencing suppressor with unique activities. Virology 2008; 384:38-50. [PMID: 19046592 DOI: 10.1016/j.virol.2008.10.034] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/25/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
The Sugarcane yellow leaf virus (SCYLV) P0, a member of the highly heterologous proteins of poleroviruses, is a suppressor of posttranscriptional gene silencing (PTGS) and has additional activities not seen in other P0 proteins. The P0 protein in previously tested poleroviruses (Beet western yellows virus and Cucurbit aphid-borne yellows virus), suppresses local, but not systemic, PTGS induced by both sense GFP and inverted repeat GF using its F-box-like domain to mediate destabilization of the Argonaute1 protein. We now report that the SCYLV P0 protein not only suppressed local PTGS induced by sense GFP and inverted repeat GF in Nicotiana benthamiana, but also triggered a dosage dependent cell death phenotype in infiltrated leaves and suppressed systemic sense GFP-PTGS. Deletion of the first 15 N-terminal amino acid residues of SCYLV P0 abolished suppression of both local and systemic PTGS and the induction of cell death. In contrast, only systemic PTGS and cell death were lost when the 15 C-terminal amino acid residues were deleted. We conclude that the 15 C-terminal amino acid residue region of SCYLV P0 is necessary for suppressing systemic PTGS and inducing cell death, but is not required for suppression of local PTGS.
Collapse
|
19
|
Cox LS, Faragher RGA. From old organisms to new molecules: integrative biology and therapeutic targets in accelerated human ageing. Cell Mol Life Sci 2007; 64:2620-41. [PMID: 17660942 PMCID: PMC2773833 DOI: 10.1007/s00018-007-7123-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the basic biology of human ageing is a key milestone in attempting to ameliorate the deleterious consequences of old age. This is an urgent research priority given the global demographic shift towards an ageing population. Although some molecular pathways that have been proposed to contribute to ageing have been discovered using classical biochemistry and genetics, the complex, polygenic and stochastic nature of ageing is such that the process as a whole is not immediately amenable to biochemical analysis. Thus, attempts have been made to elucidate the causes of monogenic progeroid disorders that recapitulate some, if not all, features of normal ageing in the hope that this may contribute to our understanding of normal human ageing. Two canonical progeroid disorders are Werner's syndrome and Hutchinson-Gilford progeroid syndrome (also known as progeria). Because such disorders are essentially phenocopies of ageing, rather than ageing itself, advances made in understanding their pathogenesis must always be contextualised within theories proposed to help explain how the normal process operates. One such possible ageing mechanism is described by the cell senescence hypothesis of ageing. Here, we discuss this hypothesis and demonstrate that it provides a plausible explanation for many of the ageing phenotypes seen in Werner's syndrome and Hutchinson-Gilford progeriod syndrome. The recent exciting advances made in potential therapies for these two syndromes are also reviewed.
Collapse
Affiliation(s)
- L. S. Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - R. G. A. Faragher
- School of Pharmacy and Biomolecular Science, University of Brighton, Cockcroft Building, Moulescoomb, Brighton, BN2 4GJ UK
| |
Collapse
|
20
|
Iwasaki W, Takagi T. Reconstruction of highly heterogeneous gene-content evolution across the three domains of life. ACTA ACUST UNITED AC 2007; 23:i230-9. [PMID: 17646301 DOI: 10.1093/bioinformatics/btm165] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION Reconstruction of gene-content evolutionary history is fundamental in studying the evolution of genomes and biological systems. To reconstruct plausible evolutionary history, rates of gene gain/loss should be estimated by considering the high level of heterogeneity: e.g. genome duplication and parasitization, respectively, result in high rates of gene gain and loss. Gene-content evolution reconstruction methods that consider this heterogeneity and that are both effective in estimating the rates of gene gain and loss and sufficiently efficient to analyze abundant genomic data had not been developed. RESULTS An effective and efficient method for reconstructing heterogeneous gene-content evolution was developed. This method comprises analytically integrable modeling of gene-content evolution, analytical formulation of expectation-maximization and efficient calculation of marginal likelihood using an inside-outside-like algorithm. Simulation tests on the scale of hundreds of genomes showed that both the gene gain/loss rates and evolutionary history were effectively estimated within a few days of computational time. Subsequently, this algorithm was applied to an actual data set of nearly 200 genomes to reconstruct the heterogeneous gene-content evolution across the three domains of life. The reconstructed history, which contained several features consistent with biological observations, showed that the trends of gene-content evolution were not only drastically different between prokaryotes and eukaryotes, but were highly variable within each form of life. The results suggest that heterogeneity should be considered in studies of the evolution of gene content, genomes and biological systems. AVAILABILITY An R script that implements the algorithm is available upon request.
Collapse
Affiliation(s)
- Wataru Iwasaki
- Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568, Japan.
| | | |
Collapse
|
21
|
Fulci V, Macino G. Quelling: post-transcriptional gene silencing guided by small RNAs in Neurospora crassa. Curr Opin Microbiol 2007; 10:199-203. [PMID: 17395524 DOI: 10.1016/j.mib.2007.03.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 03/16/2007] [Indexed: 02/02/2023]
Abstract
The filamentous fungus Neurospora crassa is a model organism for the study of gene silencing. The most characterized gene silencing mechanism in this ascomycete is quelling, which occurs at the post-transcriptional level. Quelling is triggered by the introduction of transgenes and results in silencing of both transgenes and cognate endogenous mRNAs. Quelling is related to co-suppression, observed in plants, and RNA interference in animals; it requires an Argonaute protein and acts by generating small RNA molecules (about 25 nt long), which in turn target mRNAs to be silenced. It has been recently shown that quelling is needed for the taming of transposons but, unlike other model organisms, does not seem to play any role in heterochromatin assembly and maintenance.
Collapse
Affiliation(s)
- Valerio Fulci
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, Viale Regina Elena, 324, 00161, Roma, Italy
| | | |
Collapse
|
22
|
Hernandez-Pinzon I, Yelina NE, Schwach F, Studholme DJ, Baulcombe D, Dalmay T. SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:140-8. [PMID: 17397509 DOI: 10.1111/j.1365-313x.2007.03043.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Post-transcriptional gene silencing (PTGS) is a sequence-specific RNA degradation process conserved in fungi, plants and animals. The trigger of the mechanism is double-stranded RNA derived from transgenic or endogenous loci and formed by intra- or inter-molecular interactions of single-stranded RNAs or the action of RNA-dependent RNA polymerases (RDRs). Double-stranded RNA from various sources is processed by one of the four Dicer-like (DCL) proteins in Arabidopsis, and the resulting short RNAs enter into at least four different pathways, one of which involves the production of trans-acting short interfering RNAs (tasiRNAs). We report here a novel gene (SDE5) that is required for transgene silencing and the production of tasiRNAs. Mutation in SDE5 also results in hyper-susceptibility to cucumber mosaic virus but not turnip mosaic virus. However, like RDR6, SDE5 is not involved in inverted repeat-induced transgene silencing or the biogenesis of microRNAs and 24 nt siRNAs produced by DCL3. Based on these results, we propose that SDE5 acts together with RDR6 in generating double-stranded RNA from specific single-stranded RNAs. As the sequence of SDE5 has sequence features shared by TAP, a human mRNA export factor, we propose that its role could be in the transport of RNA molecules that are converted into a double-stranded form by RDR6.
Collapse
|
23
|
Levi A, Davis A, Hernandez A, Wechter P, Thimmapuram J, Trebitsh T, Tadmor Y, Katzir N, Portnoy V, King S. Genes expressed during the development and ripening of watermelon fruit. PLANT CELL REPORTS 2006; 25:1233-45. [PMID: 16802118 DOI: 10.1007/s00299-006-0163-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Revised: 03/01/2006] [Accepted: 03/25/2006] [Indexed: 05/10/2023]
Abstract
A normalized cDNA library was constructed using watermelon flesh mRNA from three distinct developmental time-points and was subtracted by hybridization with leaf cDNA. Random cDNA clones of the watermelon flesh subtraction library were sequenced from the 5' end in order to identify potentially informative genes associated with fruit setting, development, and ripening. One-thousand and forty-six 5'-end sequences (expressed sequence tags; ESTs) were assembled into 832 non-redundant sequences, designated as "EST-unigenes". Of these 832 "EST-unigenes", 254 ( approximately 30%) have no significant homology to sequences published so far for other plant species. Additionally, 168 "EST-unigenes" ( approximately 20%) correspond to genes with unknown function, whereas 410 "EST-unigenes" ( approximately 50%) correspond to genes with known function in other plant species. These "EST-unigenes" are mainly associated with metabolism, membrane transport, cytoskeleton synthesis and structure, cell wall formation and cell division, signal transduction, nucleic acid binding and transcription factors, defense and stress response, and secondary metabolism. This study provides the scientific community with novel genetic information for watermelon as well as an expanded pool of genes associated with fruit development in watermelon. These genes will be useful targets in future genetic and functional genomic studies of watermelon and its development.
Collapse
Affiliation(s)
- A Levi
- USDA, ARS, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 2006; 133:3539-47. [PMID: 16914499 PMCID: PMC1610107 DOI: 10.1242/dev.02521] [Citation(s) in RCA: 729] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SPL3, SPL4 and SPL5 (SPL3/4/5) are closely related members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE family of transcription factors in Arabidopsis, and have a target site for the microRNA miR156 in their 3' UTR. The phenotype of Arabidopsis plants constitutively expressing miR156-sensitive and miR156-insensitive forms of SPL3/4/5 revealed that all three genes promote vegetative phase change and flowering, and are strongly repressed by miR156. Constitutive expression of miR156a prolonged the expression of juvenile vegetative traits and delayed flowering. This phenotype was largely corrected by constitutive expression of a miR156-insensitive form of SPL3. The juvenile-to-adult transition is accompanied by a decrease in the level of miR156 and an increase in the abundance of SPL3 mRNA. The complementary effect of hasty on the miR156 and SPL3 transcripts, as well as the miR156-dependent temporal expression pattern of a 35S::GUS-SPL3 transgene, suggest that the decrease in miR156 is responsible for the increase in SPL3 expression during this transition. SPL3 mRNA is elevated by mutations in ZIPPY/AGO7, RNA DEPENDENT RNA POLYMERASE 6 (RDR6) and SUPPRESSOR OF GENE SILENCING 3 (SGS3), indicating that it is directly or indirectly regulated by RNAi. However, our results indicate that RNAi does not contribute to the temporal expression pattern of this gene. We conclude that vegetative phase change in Arabidopsis is regulated by an increase in the expression of SPL3 and probably also SPL4 and SPL5, and that this increase is a consequence of a decrease in the level of miR156.
Collapse
Affiliation(s)
- Gang Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | |
Collapse
|
25
|
Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 2006; 16:927-32. [PMID: 16682354 DOI: 10.1016/j.cub.2006.03.035] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 02/28/2006] [Accepted: 03/02/2006] [Indexed: 11/20/2022]
Abstract
trans-acting siRNAs (ta-siRNAs) are endogenous RNAs that direct the cleavage of complementary mRNA targets . TAS gene transcripts are cleaved by miRNAs; the cleavage products are protected against degradation by SGS3, copied into dsRNA by RDR6, and diced into ta-siRNAs by DCL4 . We describe hypomorphic rdr6 and sgs3 Arabidopsis mutants, which do not exhibit the leaf developmental defects observed in null mutants and which, like null alleles, are impaired in sense-transgene-induced posttranscriptional gene silencing and virus resistance. Null rdr6 and sgs3 mutants lack TAS1, TAS2, and TAS3 ta-siRNAs and overaccumulate ARF3/ETTIN and ARF4 mRNAs, which are TAS3 ta-siRNA targets. A hypomorphic rdr6 mutant accumulates wild-type TAS3 ta-siRNA levels but not TAS1 and TAS2 ta-siRNAs, suggesting that TAS3 is required for proper leaf development. Consistently, tas3 but not tas1 or tas2 mutants exhibits leaf morphology defects, and ago7/zip and drb4 mutants, which exhibit leaf morphology defects, lack TAS3 but not TAS1 and TAS2 ta-siRNAs in leaves. These results indicate that the dsRNA binding protein DRB4 is required for proper ta-siRNA production, presumably by interacting with DCL4, an interaction analogous to that of HYL1 with DCL1 during miRNA production , and that TAS3 ta-siRNAs are required for proper leaf development through the action of AGO7/ZIPPY.
Collapse
Affiliation(s)
- Xavier Adenot
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Small RNAs are riboregulators that have critical roles in most eukaryotes. They repress gene expression by acting either on DNA to guide sequence elimination and chromatin remodeling, or on RNA to guide cleavage and translation repression. This review focuses on the various types of post-transcriptional small RNA-directed pathways in plants, describing their roles and their regulations.
Collapse
MESH Headings
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Plant Viruses/pathogenicity
- Plants/genetics
- Plants/metabolism
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, l'Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France.
| |
Collapse
|
27
|
Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F, Hohn T, Pooggin MM. Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 2006; 34:462-71. [PMID: 16421273 PMCID: PMC1342034 DOI: 10.1093/nar/gkj447] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 12/23/2005] [Accepted: 01/03/2006] [Indexed: 11/23/2022] Open
Abstract
DNA geminiviruses are thought to be targets of RNA silencing. Here, we characterize small interfering (si) RNAs-the hallmarks of silencing-associated with Cabbage leaf curl begomovirus in Arabidopsis and African cassava mosaic begomovirus in Nicotiana benthamiana and cassava. We detected 21, 22 and 24 nt siRNAs of both polarities, derived from both the coding and the intergenic regions of these geminiviruses. Genetic evidence showed that all the 24 nt and a substantial fraction of the 22 nt viral siRNAs are generated by the dicer-like proteins DCL3 and DCL2, respectively. The viral siRNAs were 5' end phosphorylated, as shown by phosphatase treatments, and methylated at the 3'-nucleotide, as shown by HEN1 miRNA methylase-dependent resistance to beta-elimination. Similar modifications were found in all types of endogenous and transgene-derived siRNAs tested, but not in a major fraction of siRNAs from a cytoplasmic RNA tobamovirus. We conclude that several distinct silencing pathways are involved in DNA virus-plant interactions.
Collapse
Affiliation(s)
- Rashid Akbergenov
- Institute of Botany, University of BaselSchönbeinstrasse 6, 4056 Basel, Switzerland
| | - Azeddine Si-Ammour
- Friedrich Miescher Institute for Biomedical ResearchMaulbeerstrasse 66, 4058 Basel, Switzerland
| | - Todd Blevins
- Friedrich Miescher Institute for Biomedical ResearchMaulbeerstrasse 66, 4058 Basel, Switzerland
| | - Imran Amin
- Institute of Botany, University of BaselSchönbeinstrasse 6, 4056 Basel, Switzerland
| | - Claudia Kutter
- Friedrich Miescher Institute for Biomedical ResearchMaulbeerstrasse 66, 4058 Basel, Switzerland
| | - Herve Vanderschuren
- Institute of Plant Sciences, ETH-Zurich, LFW E17, Universitätstrasse 28092 Zürich, Switzerland
| | - Peng Zhang
- Institute of Plant Sciences, ETH-Zurich, LFW E17, Universitätstrasse 28092 Zürich, Switzerland
| | - Wilhelm Gruissem
- Institute of Plant Sciences, ETH-Zurich, LFW E17, Universitätstrasse 28092 Zürich, Switzerland
| | - Frederick Meins
- Friedrich Miescher Institute for Biomedical ResearchMaulbeerstrasse 66, 4058 Basel, Switzerland
| | - Thomas Hohn
- Institute of Botany, University of BaselSchönbeinstrasse 6, 4056 Basel, Switzerland
- Friedrich Miescher Institute for Biomedical ResearchMaulbeerstrasse 66, 4058 Basel, Switzerland
| | - Mikhail M. Pooggin
- Institute of Botany, University of BaselSchönbeinstrasse 6, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Li B, Conway N, Navarro S, Comai L, Comai L. A conserved and species-specific functional interaction between the Werner syndrome-like exonuclease atWEX and the Ku heterodimer in Arabidopsis. Nucleic Acids Res 2005; 33:6861-7. [PMID: 16396834 PMCID: PMC1310904 DOI: 10.1093/nar/gki984] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/10/2005] [Accepted: 11/10/2005] [Indexed: 11/13/2022] Open
Abstract
Werner syndrome is associated with mutations in the DNA helicase RecQ3 [a.k.a. Homo sapiens (hs)WRN]. The function of hsWRN is unknown although biochemical studies suggest a role in DNA ends stability and repair. Unlike other RecQ family members, hsWRN possesses an N-terminal domain with exonuclease activity, which is stimulated by interaction with the Ku heterodimer. While this interaction is intriguing, we do not know whether it is important for hsWRN function. Although flies, worms, fungi and plants do not have RecQ-like (RQL) helicases with an intrinsic exonuclease activity, they possess proteins having domains homologous to the hsWRN exonuclease. The genome of Arabidopsis thaliana (at) encodes multiple RQL and a single protein with homology to the WRN exonuclease domain, atWEX (Werner-like Exonuclease). Here we show that atWEX has properties that are similar to hsWRN. atWEX binds to and is stimulated by atKu. Interestingly, stimulation by Ku is species-specific, as hsKu does not stimulate atWEX exonuclease activity. Likewise, atKu fails to enhance the exonuclease activity of hsWRN. Thus, in spite of the differences in structural organization, the functional interaction between WRN-like exonucleases and Ku has been preserved through evolutionary radiation of species, emphasizing the importance of this interaction in cell function.
Collapse
Affiliation(s)
- Baomin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern CaliforniaLA, USA
- Department of Biology, University of WashingtonSeattle, WA, USA
| | - Nathan Conway
- Department of Biology, University of WashingtonSeattle, WA, USA
| | - Sonia Navarro
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern CaliforniaLA, USA
- Department of Biology, University of WashingtonSeattle, WA, USA
| | - Luca Comai
- Department of Biology, University of WashingtonSeattle, WA, USA
| | - Lucio Comai
- To whom correspondence should be addressed. Tel: +1 323 442 3950; Fax: +1 323 442 2764;
| |
Collapse
|
29
|
Gallego ME, White CI. DNA repair and recombination functions in Arabidopsis telomere maintenance. Chromosome Res 2005; 13:481-91. [PMID: 16132813 DOI: 10.1007/s10577-005-0995-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this review, we discuss recent advances in the knowledge of plant telomere maintenance, focusing on the model plant Arabidopsis thaliana and, in particular, on the roles of proteins involved in DNA repair and recombination. The question of the interrelationships between DNA repair and recombination pathways and proteins with telomere function and maintenance is of increasing interest and has been the subject of a number of recent reviews (Cech 2004, d'Adda di Fagagna et al. 2004, Hande 2004, Harrington 2004, Maser and DePinho 2004). Understanding of telomere biology, DNA repair and recombination in plants has rapidly progressed over the last decade, substantially due to genetic approaches in Arabidopsis, and we feel that this is an appropriate time to review current knowledge in this field. A number of recent reviews have dealt more generally with the subject of plant telomere structure and evolution (Riha et al. 2001, McKnight et al. 2002, Riha and Shippen 2003b, McKnight and Shippen 2004, Fajkus et al. 2005) and we thus focus specifically on plant telomere biology in the context of DNA repair and recombination in Arabidopsis.
Collapse
Affiliation(s)
- Maria E Gallego
- UMR 6547 CNRS, Université Blaise Pascal, 24 avenue des Landais, 63177 Aubière, France
| | | |
Collapse
|
30
|
Abstract
RNA silencing refers to a broad range of phenomena sharing the common feature that large, double-stranded RNAs or stem-loop precursors are processed to ca. 21-26 nucleotide small RNAs, which then guide the cleavage of cognate RNAs, block productive translation of these RNAs, or induce methylation of specific target DNAs. Although the core mechanisms are evolutionarily conserved, epigenetic maintenance of silencing by amplification of small RNAs and the elaboration of mobile, RNA-based silencing signals occur predominantly in plants. Plant RNA silencing systems are organized into a network with shared components and overlapping functions. MicroRNAs, and probably trans-acting small RNAs, help regulate development at the posttranscriptional level. Small interfering RNAs associated with transgene- and virus-induced silencing function primarily in defending against foreign nucleic acids. Another system, which is concerned with RNA-directed methylation of DNA repeats, seems to have roles in epigenetic silencing of certain transposable elements and genes under their control.
Collapse
Affiliation(s)
- Frederick Meins
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | | | |
Collapse
|
31
|
Willmann MR, Poethig RS. Time to grow up: the temporal role of smallRNAs in plants. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:548-52. [PMID: 16043388 PMCID: PMC1610105 DOI: 10.1016/j.pbi.2005.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 07/13/2005] [Indexed: 05/03/2023]
Abstract
Over the past two years, several Arabidopsis genes that were initially identified as vegetative phase change mutants have been shown to have roles in smallRNA (sRNA) biogenesis. This has led to the identification of a new class of short interfering RNAs (siRNAs) called trans-acting siRNAs (ta-siRNAs).
Collapse
Affiliation(s)
- Matthew R Willmann
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
32
|
Abstract
Less than a year has elapsed between the discovery of trans-acting small interfering RNAs (tasiRNAs) in plants and the elucidation of the major steps of the corresponding pathway. During tasiRNA biogenesis, polyadenylated RNAs transcribed from non-protein-coding TAS genes are cleaved by a microRNA (miRNA)-programmed RNA-induced silencing complex. In contrast to classical miRNA targets, RDR6 and SGS3 convert one of the TAS RNA cleavage products into double-stranded RNA, which is subsequently processed, in a phase determined by the initial miRNA cleavage site, by DICER-LIKE 4 to generate a 21-nucleotide tasiRNA population. tasiRNAs guide endogenous mRNA cleavage through the action of AGO1 or, perhaps in some cases, AGO7. Some of the tasiRNA targets probably regulate the juvenile-to-adult phase transition, but the roles of other tasiRNA targets remain to be determined.
Collapse
Affiliation(s)
- Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA 78026 Versailles Cedex, France.
| |
Collapse
|
33
|
Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM. Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 2005; 79:2517-27. [PMID: 15681452 PMCID: PMC546592 DOI: 10.1128/jvi.79.4.2517-2527.2005] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bipartite geminiviruses encode a small protein, AC2, that functions as a transactivator of viral transcription and a suppressor of RNA silencing. A relationship between these two functions had not been investigated before. We characterized both of these functions for AC2 from Mungbean yellow mosaic virus-Vigna (MYMV). When transiently expressed in plant protoplasts, MYMV AC2 strongly transactivated the viral promoter; AC2 was detected in the nucleus, and a split nuclear localization signal (NLS) was mapped. In a model Nicotiana benthamiana plant, in which silencing can be triggered biolistically, AC2 reduced local silencing and prevented its systemic spread. Mutations in the AC2 NLS or Zn finger or deletion of its activator domain abolished both these effects, suggesting that suppression of silencing by AC2 requires transactivation of host suppressor(s). In line with this, in Arabidopsis protoplasts, MYMV AC2 or its homologue from African cassava mosaic geminivirus coactivated >30 components of the plant transcriptome, as detected with Affymetrix ATH1 GeneChips. Several corresponding promoters cloned from Arabidopsis were strongly induced by both AC2 proteins. These results suggest that silencing suppression and transcription activation by AC2 are functionally connected and that some of the AC2-inducible host genes discovered here may code for components of an endogenous network that controls silencing.
Collapse
Affiliation(s)
- Daniela Trinks
- Institute of Botany, University of Basel, Schöenbeinstrasse 6, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Braz ASK, Finnegan J, Waterhouse P, Margis R. A plant orthologue of RNase L inhibitor (RLI) is induced in plants showing RNA interference. J Mol Evol 2005; 59:20-30. [PMID: 15383904 DOI: 10.1007/s00239-004-2600-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Accepted: 01/19/2004] [Indexed: 10/26/2022]
Abstract
RNase L inhibitors (RLIs) correspond to a group of soluble proteins from the large ATP binding cassette (ABC) family of proteins. Structurally, RLIs have an N-terminal Fe-S domain and two nucleotide binding domains. Orthologous RLI sequences with more than 48% identity have been found from Archea to Eukaryota, but have not as yet been identified in Eubacteria. Some organisms, like Arabidopsis thaliana and human, have paralogous genes with differential expression patterns, the function of which remains to be determined. Expression of Arabidopsis RLI2 was slightly increased in transgenic plants showing RNA interference, suggesting a role in this pathway.
Collapse
Affiliation(s)
- Antonio Sergio Kimus Braz
- LGMV--Laboratório de Genética Molecular Vegetal, Departamento de Genética, Instituto de Biologia, CCS, Universidade Federal do Rio Janeiro, Ilha do Fundão, 21944-970, Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
35
|
Abstract
In eukaryotes, small RNA molecules engage in sequence-specific interactions to inhibit gene expression by RNA silencing. This process fulfils fundamental regulatory roles, as well as antiviral functions, through the activities of microRNAs and small interfering RNAs. As a counter-defence mechanism, viruses have evolved various anti-silencing strategies that are being progressively unravelled. These studies have not only highlighted our basic understanding of host-parasite interactions, but also provide key insights into the diversity, regulation and evolution of RNA-silencing pathways.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 Rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
36
|
Tops BBJ, Tabara H, Sijen T, Simmer F, Mello CC, Plasterk RHA, Ketting RF. RDE-2 interacts with MUT-7 to mediate RNA interference in Caenorhabditis elegans. Nucleic Acids Res 2005; 33:347-55. [PMID: 15653635 PMCID: PMC546165 DOI: 10.1093/nar/gki183] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In Caenorhabditis elegans, the activity of transposable elements is repressed in the germline. One of the mechanisms involved in this repression is RNA interference (RNAi), a process in which dsRNA targets cleavage of mRNAs in a sequence-specific manner. The first gene found to be involved in RNAi and transposon silencing in C.elegans is mut-7, a gene encoding a putative exoribonuclease. Here, we show that the MUT-7 protein resides in complexes of ∼250 kDa in the nucleus and in the cytosol. In addition, we find that upon triggering of RNAi the cytosolic MUT-7 complex increases in size. This increase is independent of the presence of target RNA, but does depend on the presence of RDE-1 and RDE-4, two proteins involved in small interfering RNA (siRNA) production. Finally, using a yeast two-hybrid screen, we identified RDE-2/MUT-8 as one of the other components of this complex. This protein is encoded by the rde-2/mut-8 locus, previously implicated in RNAi and transposon silencing. Using genetic complementation analysis, we show that the interaction between these two proteins is required for efficient RNAi in vivo. Together these data support a role for the MUT-7/RDE-2 complex downstream of siRNA formation, but upstream of siRNA mediated target RNA recognition, possibly indicating a role in the siRNA amplification step.
Collapse
Affiliation(s)
| | - Hiroaki Tabara
- Department of Cell Biology, Program in Molecular Medicine, University of Massachusetts Cancer CentreWorcester, MA 01605, USA
| | | | | | - Craig C. Mello
- Department of Cell Biology, Program in Molecular Medicine, University of Massachusetts Cancer CentreWorcester, MA 01605, USA
| | - Ronald H. A. Plasterk
- To whom correspondence should be addressed. Tel: +31 30 212 1963; Fax: +31 30 251 6554;
| | | |
Collapse
|
37
|
Sassaki FT, Campos-Pereira T, Maia IDG. The post-transcriptional gene silencing pathway in Eucalyptus. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000400003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
38
|
Abstract
RNA silencing can reduce the expression of specific genes through posttranscriptional gene silencing, the microRNA pathway, and also through transcriptional gene silencing. Posttranscriptional gene silencing also acts as an antivirus mechanism. By suppressing this antivirus defense mechanism, viruses affect all three silencing pathways in addition to the intercellular signaling mechanism that transmits RNA-based messages throughout the plant. Productive virus infection may therefore disrupt the normal gene expression patterns in plants, resulting, at least in part, in a symptomatic phenotype. This review examines the cellular world that viruses exploit to provide some insight into the molecular interactions that occur during the virus infection cycle and how these produce the symptoms on infected plants.
Collapse
Affiliation(s)
- Robin MacDiarmid
- The Horticulture and Food Research Institute of New Zealand Ltd., Auckland, New Zealand.
| |
Collapse
|
39
|
Abstract
Double-stranded RNA (dsRNA) is an important regulator of gene expression in many eukaryotes. It triggers different types of gene silencing that are collectively referred to as RNA silencing or RNA interference. A key step in known silencing pathways is the processing of dsRNAs into short RNA duplexes of characteristic size and structure. These short dsRNAs guide RNA silencing by specific and distinct mechanisms. Many components of the RNA silencing machinery still need to be identified and characterized, but a more complete understanding of the process is imminent.
Collapse
Affiliation(s)
- Gunter Meister
- Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, Box 186, New York, New York 10021, USA
| | | |
Collapse
|
40
|
Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 2004; 18:2368-79. [PMID: 15466488 PMCID: PMC522987 DOI: 10.1101/gad.1231804] [Citation(s) in RCA: 674] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Accepted: 08/12/2004] [Indexed: 12/30/2022]
Abstract
Higher plants undergo a transition from a juvenile to an adult phase of vegetative development prior to flowering. Screens for mutants that undergo this transition precociously produced alleles of two genes required for posttranscriptional gene silencing (PTGS)--SUPPRESSOR OF GENE SILENCING3 (SGS3) and SUPPRESSOR OF GENE SILENCING2(SGS2)/SILENCING DEFECTIVE1 (SDE1)/RNA-DEPENDENT POLYMERASE6 (RDR6). Loss-of-function mutations in these genes have a phenotype similar to that of mutations in the Argonaute gene ZIPPY (ZIP). Epistasis analysis suggests that ZIP, SGS3, SGS2/SDE1/RDR6, and the putative miRNA export receptor, HASTY (HST), operate in the same pathway(s). Microarray analysis revealed a small number of genes whose mRNA is increased in ZIP, SGS3, and SGS2/SDE1/RDR6 mutants, as well as genes that are up-regulated in SGS3 and SGS2/SDE1/RDR6 mutants, but not in ZIP mutants. One of these latter genes (At5g18040) is silenced posttranscriptionally in trans by the sRNA255 family of endogenous, noncoding, small interfering RNAs (siRNAs). The increase in At5g18040 mRNA in SGS3 and SGS2/SDE1/RDR6 mutants is attributable to the absence of sRNA255-like siRNAs in these mutants. These results demonstrate a role for endogenous siRNAs in the regulation of gene expression, and suggest that PTGS plays a central role in the temporal control of shoot development in plants.
Collapse
Affiliation(s)
- Angela Peragine
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | | | |
Collapse
|
41
|
Butaye KMJ, Goderis IJWM, Wouters PFJ, Pues JMTG, Delauré SL, Broekaert WF, Depicker A, Cammue BPA, De Bolle MFC. Stable high-level transgene expression in Arabidopsis thaliana using gene silencing mutants and matrix attachment regions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:440-9. [PMID: 15255872 DOI: 10.1111/j.1365-313x.2004.02144.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Basic and applied research involving transgenic plants often requires consistent high-level expression of transgenes. However, high inter-transformant variability of transgene expression caused by various phenomena, including gene silencing, is frequently observed. Here, we show that stable, high-level transgene expression is obtained using Arabidopsis thaliana post-transcriptional gene silencing (PTGS) sgs2 and sgs3 mutants. In populations of first generation (T1) A. thaliana plants transformed with a beta-glucuronidase (GUS) gene (uidA) driven by the 35S cauliflower mosaic virus promoter (p35S), the incidence of highly expressing transformants shifted from 20% in wild type background to 100% in sgs2 and sgs3 backgrounds. Likewise, when sgs2 mutants were transformed with a cyclin-dependent kinase inhibitor 6 gene under control of p35S, all transformants showed a clear phenotype typified by serrated leaves, whereas such phenotype was only observed in about one of five wild type transformants. p35S-driven uidA expression remained high and steady in T2 sgs2 and sgs3 transformants, in marked contrast to the variable expression patterns observed in wild type T2 populations. We further show that T-DNA constructs flanked by matrix attachment regions of the chicken lysozyme gene (chiMARs) cause a boost in GUS activity by fivefold in sgs2 and 12-fold in sgs3 plants, reaching up to 10% of the total soluble proteins, whereas no such boost is observed in the wild type background. MAR-based plant transformation vectors used in a PTGS mutant background might be of high value for efficient high-throughput screening of transgene-based phenotypes as well as for obtaining extremely high transgene expression in plants.
Collapse
Affiliation(s)
- Katleen M J Butaye
- Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|