1
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
2
|
Giordano F, Comità S, Venneri G, Rago V, Naimo GD, De Amicis F, De Bartolo A, Tundis R, Mauro L, Panno ML. Poncirus trifoliata (L.) Raf. Seed Extract Induces Cell Cycle Arrest and Apoptosis in the Androgen Receptor Positive LNCaP Prostate Cancer Cells. Int J Mol Sci 2023; 24:16351. [PMID: 38003541 PMCID: PMC10671002 DOI: 10.3390/ijms242216351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Stefano Comità
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Giulia Venneri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Anna De Bartolo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.C.); (G.V.); (V.R.); (G.D.N.); (F.D.A.); (R.T.); (M.L.P.)
| |
Collapse
|
3
|
da Silva VAP, Abboud RDS, Contreiras EC, Boaventura GT, Chagas MA. Avocado Oil ( Persea americana) Reduces Epithelial Proliferation on Benign Prostatic Hyperplasia. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:783-789. [PMID: 37871299 DOI: 10.1080/27697061.2023.2179552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVE The aim of this study is to evaluate the effect of avocado oil on the histoarchitecture of the prostate of normal rats and on rats with induced benign prostatic hyperplasia using computerized histomorphometry and immunohistochemistry. METHODS Twenty-eight Wistar rats were divided into four groups: the control group (CG), the avocado oil group (AOG) fed with avocado oil-based diet, the induced group (IG), and the avocado oil testosterone-induced group (AOIG). Prostate hyperplasia was induced by subcutaneous implantation of silicone pellets, filled with testosterone, to promote androgen stimulation. After 12 weeks, the rats were euthanized, and their prostates were removed. The material was prepared for paraffin processing and stained using hematoxylin-eosin and immunostaining for p63 nuclear antigen. RESULTS The mean epithelial thickness obtained from AOIG (19.44 ± 2.62 µm) was significantly reduced compared to that from IG (27.02 ± 4.1 µm). The average alveolar area in AOIG was 0.100 ± 0.03, which was greater than that of CG. The immunostaining for p63 in basal cells in AOIG was 17.77% ± 2.72 of the total area, a result greater than that in AOG (12.13% ± 2.04) and CG (12.01 ± 2.05). Collagen remodeling was observed with thicker fibers predominating in CG and AOG over thinner fibers in IG and AOIG. CONCLUSION The results suggest that avocado oil has a protective effect on the prostatic epithelium of Wistar rats subjected to long-term induced prostate hyperplasia.
Collapse
Affiliation(s)
- Vivian Alves Pereira da Silva
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology, Biomedic Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Renato de Souza Abboud
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology, Biomedic Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Ellen Cortez Contreiras
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology, Biomedic Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Gilson Teles Boaventura
- Laboratory of Experimental Nutrition. Departament of Nutrition and Dietetics, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Mauricio Alves Chagas
- Department of Morphology, Laboratory of Cellular and Extracellular Biomorphology, Biomedic Institute, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Xue C, Zhou Q, Xi H, Zhou J. Radiomics: A review of current applications and possibilities in the assessment of tumor microenvironment. Diagn Interv Imaging 2023; 104:113-122. [PMID: 36283933 DOI: 10.1016/j.diii.2022.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
With the recent success in the application of immunotherapy for treating various advanced cancers, the tumor microenvironment has rapidly become an important field of research. The tumor microenvironment is complex and its characteristics strongly influence disease biology and potentially responses to systemic therapy. Accurate preoperative assessment of tumor microenvironment is of great significance for the formulation of an immunotherapy strategy and evaluation of patient prognosis. As a research hotspot in medical image analysis technology, radiomics has been applied in the auxiliary diagnosis of the tumor microenvironment. This article reviews the current status of radiomics in the elective application on tumor microenvironment and discusses potential prospects.
Collapse
Affiliation(s)
- Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Chengguan District, Lanzhou, 730030, China; Second Clinical School, Lanzhou University, Lanzhou, 730030, China; Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, 730030, China.
| |
Collapse
|
5
|
Belluomo R, Khodaei A, Amin Yavari S. Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects. Acta Biomater 2023; 156:234-249. [PMID: 36028198 DOI: 10.1016/j.actbio.2022.08.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
Bone tissue exhibits critical factors for metastatic cancer cells and represents an extremely pleasant spot for further growth of tumors. The number of metastatic bone lesions and primary tumors that arise directly from cells comprised in the bone milieu is constantly increasing. Bioceramics have recently received significant attention in bone tissue engineering and local drug delivery applications. Additionally, additive manufacturing of bioceramics offers unprecedented advantages including the possibilities to fill irregular voids after the resection and fabricate patient-specific implants. Herein, we investigated the recent advances in additively manufactured bioceramics and ceramic-based composites that were used in the local bone tumor treatment and reconstruction of bone tumor defects. Furthermore, it has been extensively explained how to bi-functionalize ceramics-based biomaterials and what current limitations impede their clinical application. We have also discussed the importance of further development into ceramic-based biomaterials and molecular biology of bone tumors to: (1) discover new potential therapeutic targets to enhance conventional therapies, (2) local delivering of bio-molecular agents in a customized and "smart" way, and (3) accomplish a complete elimination of tumor cells in order to prevent tumor recurrence formation. We emphasized that by developing the research focus on the introduction of novel 3D-printed bioceramics with unique properties such as stimuli responsiveness, it will be possible to fabricate smart bioceramics that promote bone regeneration while minimizing the side-effects and effectively eradicate bone tumors while promoting bone regeneration. In fact, by combining all these therapeutic strategies and additive manufacturing, it is likely to provide personalized tumor-targeting therapies for cancer patients in the foreseeable future. STATEMENT OF SIGNIFICANCE: To increase the survival rates of cancer patients, different strategies such as surgery, reconstruction, chemotherapy, radiotherapy, etc have proven to be essential. Nonetheless, these therapeutic protocols have reached a plateau in their effectiveness due to limitations including drug resistance, tumor recurrence after surgery, toxic side-effects, and impaired bone regeneration following tumor resection. Hence, novel approaches to specifically and locally attack cancer cells, while also regenerating the damaged bony tissue, have being developed in the past years. This review sheds light to the novel approaches that enhance local bone tumor therapy and reconstruction procedures by combining additive manufacturing of ceramic biomaterials and other polymers, bioactive molecules, nanoparticles to affect bone tumor functions, metabolism, and microenvironment.
Collapse
Affiliation(s)
- Ruggero Belluomo
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands
| | - Azin Khodaei
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht 3508GA, the Netherlands; Regenerative Medicine Utrecht, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Wang L, Han H, Wang Z, Shi L, Yang M, Qin Y. Targeting the Microenvironment in Esophageal Cancer. Front Cell Dev Biol 2021; 9:684966. [PMID: 34513829 PMCID: PMC8427432 DOI: 10.3389/fcell.2021.684966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal cancer (EC) is the eighth most common type of cancer and the sixth leading cause of cancer-related deaths worldwide. At present, the clinical treatment for EC is based mainly on radical surgery, chemotherapy, and radiotherapy. However, due to the limited efficacy of conventional treatments and the serious adverse reactions, the outcome is still unsatisfactory (the 5-year survival rate for patients is less than 25%). Thus, it is extremely important and urgent to identify new therapeutic targets. The concept of tumor microenvironment (TME) has attracted increased attention since it was proposed. Recent studies have shown that TME is an important therapeutic target for EC. Microenvironment-targeting therapies such as immunotherapy and antiangiogenic therapy have played an indispensable role in prolonging survival and improving the prognosis of patients with EC. In addition, many new drugs and therapies that have been developed to target microenvironment may become treatment options in the future. We summarize the microenvironment of EC and the latest advances in microenvironment-targeting therapies in this review.
Collapse
Affiliation(s)
- Lei Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Huiqiong Han
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Zehua Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Litong Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Mei Yang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
The Effects of Resveratrol on Prostate Cancer through Targeting the Tumor Microenvironment. J Xenobiot 2021; 11:16-32. [PMID: 33535458 PMCID: PMC7931005 DOI: 10.3390/jox11010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is one of the most common cancers diagnosed in men in the United States and the second leading cause of cancer-related deaths worldwide. Since over 60% of prostate cancer cases occur in men over 65 years of age, and this population will increase steadily in the coming years, prostate cancer will be a major cancer-related burden in the foreseeable future. Accumulating data from more recent research suggest that the tumor microenvironment (TME) plays a previously unrecognized role in every stage of cancer development, including initiation, proliferation, and metastasis. Prostate cancer is not only diagnosed in the late stages of life, but also progresses relatively slowly. This makes prostate cancer an ideal model system for exploring the potential of natural products as cancer prevention and/or treatment reagents because they usually act relatively slowly compared to most synthetic drugs. Resveratrol (RSV) is a naturally occurring stilbenoid and possesses strong anti-cancer properties with few adverse effects. Accumulating data from both in vitro and in vivo experiments indicate that RSV can interfere with prostate cancer initiation and progression by targeting the TME. Therefore, this review is aimed to summarize the recent advancement in RSV-inhibited prostate cancer initiation, proliferation, and metastasis as well as the underlying molecular mechanisms, with particular emphasis on the effect of RSV on TME. This will not only better our understanding of prostate cancer TMEs, but also pave the way for the development of RSV as a potential reagent for prostate cancer prevention and/or therapy.
Collapse
|
8
|
Qallandar OB, Ebrahimi F, Islam F, Wahab R, Qiao B, Reher P, Gopalan V, Lam AKY. Bone Invasive Properties of Oral Squamous Cell Carcinoma and its Interactions with Alveolar Bone Cells: An In Vitro Study. Curr Cancer Drug Targets 2020; 19:631-640. [PMID: 30387395 DOI: 10.2174/1568009618666181102144317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Co-culture of cancer cells with alveolar bone cells could modulate bone invasion and destructions. However, the mechanisms of interaction between oral squamous cell carcinoma (OSCC) and bone cells remain unclear. OBJECTIVE The aim of this study is to analyse the direct and indirect effects of OSCC cells in the stimulation of osteolytic activity and bone invasion. METHODS Direct co-culture was achieved by culturing OSCC (TCA8113) with a primary alveolar bone cell line. In the indirect co-culture, the supernatant of TCA8113 cells was collected to culture the alveolar bone cells. To assess the bone invasion properties, in vitro assays were performed. RESULTS The proliferation of co-cultured cancer cells was significantly (p<0.05) higher in comparison to the monolayer control cells. However, the proliferation rates were not significantly different between direct and indirect co-cultured cells with indirect co-cultured cells proliferated slightly more than the direct co-cultured cells. Invasion and migration capacities of co-cultured OSCC and alveolar bone cells enhanced significantly (p<0.05) when compared to that of control monolayer counterparts. Most importantly, we noted that OSCC cells directly co-cultured with alveolar bone cells stimulated pronounced bone collagen destruction. In addition, stem cells and epithelialmesenchymal transition markers have shown significant changes in their expression in co-cultured cells. CONCLUSION In conclusion, the findings of this study highlight the importance of the interaction of alveolar bone cells and OSCC cells in co-culture setting in the pathogenesis of bone invasion. This may help in the development of potential future biotherapies for bone invasion in OSCC.
Collapse
Affiliation(s)
- Omel Baneen Qallandar
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| | - Faeza Ebrahimi
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Farhadul Islam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Riajul Wahab
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Bin Qiao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Peter Reher
- School of Dentistry and Oral Health, Griffith University, Gold Coast, Queensland, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
9
|
Abstract
The concept that progression of cancer is regulated by interactions of cancer cells with their microenvironment was postulated by Stephen Paget over a century ago. Contemporary tumour microenvironment (TME) research focuses on the identification of tumour-interacting microenvironmental constituents, such as resident or infiltrating non-tumour cells, soluble factors and extracellular matrix components, and the large variety of mechanisms by which these constituents regulate and shape the malignant phenotype of tumour cells. In this Timeline article, we review the developmental phases of the TME paradigm since its initial description. While illuminating controversies, we discuss the importance of interactions between various microenvironmental components and tumour cells and provide an overview and assessment of therapeutic opportunities and modalities by which the TME can be targeted.
Collapse
Affiliation(s)
- Shelly Maman
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Isaac P Witz
- Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Li H, Wang JS, Mu LJ, Shan KS, Li LP, Zhou YB. Promotion of Sema4D expression by tumor-associated macrophages: Significance in gastric carcinoma. World J Gastroenterol 2018; 24:593-601. [PMID: 29434448 PMCID: PMC5799860 DOI: 10.3748/wjg.v24.i5.593] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 09/26/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To study the role of semaphorin 4D (Sema4D) expression promoted by tumor-associated macrophages (TAMs) in gastric carcinoma cells and its clinical significance in the invasion and metastasis of gastric carcinoma. METHODS CD68 and Sema4D expression was analyzed in gastric carcinoma and adjacent normal tissues from 290 patients using the immunohistochemical streptavidin-peroxidase method, and their relationships with clinicopathological features were evaluated. Human M2 macrophages were induced in vitro and co-cultured in non-contact with gastric carcinoma SGC-7901 cells. Changes in the secretory Sema4D level in the SGC-7901 cell supernatant were measured using an enzyme-linked immunosorbent assay. The effects of TAMs on SGC-7901 cell invasion and migration were assessed with invasion and migration assays, respectively. RESULTS CD68 and Sema4D protein expression was significantly higher in gastric carcinoma tissues than in adjacent normal tissues (71.7% vs 33.8% and 74.5% vs 42.8%, respectively; P < 0.01). CD68 and Sema4D protein expression was significantly associated with histological differentiation, TNM stage, and lymph node metastasis (P < 0.05), and their expression levels were positively correlated with one another (r = 0.467, P < 0.01). In the in vitro experiment, secretory Sema4D protein expression was significantly increased in the supernatant of SGC-7901 cells co-cultured with TAMs compared with the blank control (1224.13 ± 29.43 vs 637.15 ± 33.84, P < 0.01). Cell invasion and metastasis were enhanced in the Transwell invasion and migration assays (P < 0.01). CONCLUSION TAMs promote the invasion and metastasis of gastric carcinoma cells possibly through upregulated secretory Sema4D protein expression. Combined detection of TAM markers, CD68 and Sema4D, in gastric carcinoma tissue shows potential to predict the trend of gastric carcinoma progression.
Collapse
Affiliation(s)
- Han Li
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jin-Shen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Lin-Jun Mu
- Department of Emergency Surgery, Weifang People’s Hospital, Weifang 261000, Shandong Province, China
| | - Ke-Shu Shan
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Le-Ping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250012, Shandong Province, China
| | - Yan-Bing Zhou
- Department of General Surgery, Affiliated Hospital of Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
11
|
Derouiche S, Mariot P, Warnier M, Vancauwenberghe E, Bidaux G, Gosset P, Mauroy B, Bonnal JL, Slomianny C, Delcourt P, Dewailly E, Prevarskaya N, Roudbaraki M. Activation of TRPA1 Channel by Antibacterial Agent Triclosan Induces VEGF Secretion in Human Prostate Cancer Stromal Cells. Cancer Prev Res (Phila) 2017; 10:177-187. [PMID: 28096238 DOI: 10.1158/1940-6207.capr-16-0257] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 11/16/2022]
Abstract
Accruing evidence indicates that exposure to environmental compounds may adversely affect human health and promote carcinogenesis. Triclosan (TCS), an antimicrobial agent widely used as a preservative in personal care products, has been shown to act as an endocrine disruptor in hormone-dependent tissues. Here, we demonstrate a new molecular mechanism by which TCS stimulates the secretion by human prostate cancer stromal cells of vascular endothelial growth factor (VEGF), a factor known to promote tumor growth. This mechanism involves an increase in intracellular calcium levels due to the direct activation of a membrane ion channel. Using calcium imaging and electrophysiology techniques, we show for the first time that environmentally relevant concentrations of TCS activate a cation channel of the TRP family, TRPA1 (Transient Receptor Potential Ankirin 1), in primary cultured human prostate cancer stromal cells. The TCS-induced TRPA1 activation increased basal calcium in stromal cells and stimulated the secretion of VEGF and epithelial cells proliferation. Interestingly, immunofluorescence labeling performed on formalin-fixed paraffin-embedded prostate tissues showed an exclusive expression of the TRPA1 channel in prostate cancer stromal cells. Our data demonstrate an impact of the environmental factor TCS on the tumor microenvironment interactions, by activating a tumor stroma-specific TRPA1 ion channel. Cancer Prev Res; 10(3); 177-87. ©2017 AACR.
Collapse
Affiliation(s)
- Sandra Derouiche
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Pascal Mariot
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Marine Warnier
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Eric Vancauwenberghe
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Gabriel Bidaux
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Pierre Gosset
- Département de Pathologies, Laboratoire d'Anatomie et de Cytologie Pathologique, Groupe Hospitalier de l'Institut Catholique de Lille (GHICL), Lille, France
| | - Brigitte Mauroy
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
- Service d'Urologie de l'hôpital St-Philibert, Lomme, France
| | - Jean-Louis Bonnal
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
- Service d'Urologie de l'hôpital St-Philibert, Lomme, France
| | - Christian Slomianny
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Philippe Delcourt
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Etienne Dewailly
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Morad Roudbaraki
- Univ. Lille, Inserm, U1003 - PHYCEL - Physiologie Cellulaire, F-59000 Lille, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, France; Laboratory of Excellence, Ion Channels Science and Therapeutics; Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France.
| |
Collapse
|
12
|
Zhou W, Xu G, Wang Y, Xu Z, Liu X, Xu X, Ren G, Tian K. Oxidative stress induced autophagy in cancer associated fibroblast enhances proliferation and metabolism of colorectal cancer cells. Cell Cycle 2016; 16:73-81. [PMID: 27841696 DOI: 10.1080/15384101.2016.1252882] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumors are comprised of malignant cancer cells and stromal cells which constitute the tumor microenvironment (TME). Previous studies have shown that cancer associated fibroblast (CAF) in TME is an important promoter of tumor initiation and progression. However, the underlying molecular mechanisms by which CAFs influence the growth of colorectal cancer cells (CRCs) have not been clearly elucidated. In this study, by using a non-contact co-culture system between human colorectal fibroblasts (CCD-18-co) and CRCs (LoVo, SW480, and SW620), we found that fibroblasts existing in tumor microenvironment positively influenced the metabolism of colorectal cancer cells, through its autophagy and oxidative stress pathway which were initially induced by neighboring tumor cells. Therefore, our data provided a novel possibility to develop fibroblasts as a potential target to treat CRC.
Collapse
Affiliation(s)
- Wenjing Zhou
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China.,b Department of Neurosurgery , Qilu Hospital of Shandong University and Brain Science Research Institute, Shandong University , Jinan , China
| | - Gang Xu
- c Department of Gastroenterology , 456 Hospital of PLA , Jinan , Shandong , China
| | - Yunqiu Wang
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Ziao Xu
- d The First Affiliated Hospital of Anhui Medical University , Hefei , Anhui , China
| | - Xiaofei Liu
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Xia Xu
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Guijie Ren
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| | - Keli Tian
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , Shandong , China
| |
Collapse
|
13
|
Mauri G, Jachetti E, Comuzzi B, Dugo M, Arioli I, Miotti S, Sangaletti S, Di Carlo E, Tripodo C, Colombo MP. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers. Oncotarget 2016; 7:3905-20. [PMID: 26700622 PMCID: PMC4826179 DOI: 10.18632/oncotarget.6678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022] Open
Abstract
Osteopontin (OPN) is a secreted glycoprotein, that belongs to the non-structural extracellular matrix (ECM), and its over expression in human prostate cancer has been associated with disease progression, androgen independence and metastatic ability. Nevertheless, the pathophysiology of OPN in prostate tumorigenesis has never been studied. We crossed TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice with OPN deficient (OPN-/-) mice and followed tumor onset and progression in these double mutants. Ultrasound examination detected the early onset of a rapidly growing, homogeneous and spherical tumor in about 60% of OPN-/- TRAMP mice. Such neoplasms seldom occurred in parental TRAMP mice otherwise prone to adenocarcinomas and were characterized for being androgen receptor negative, highly proliferative and endowed with neuroendocrine (NE) features. Gene expression profiling showed up-regulation of genes involved in tumor progression, cell cycle and neuronal differentiation in OPN-deficient versus wild type TRAMP tumors. Down-regulated genes included key genes of TGFa pathway, including SMAD3 and Filamin, which were confirmed at the protein level. Furthermore, NE genes and particularly those characterizing early prostatic lesions of OPN-deficient mice were found to correlate with those of human prostate NE tumours. These data underscore a novel role of OPN in the early stages of prostate cancer growth, protecting against the development of aggressive NE tumors.
Collapse
Affiliation(s)
- Giorgio Mauri
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133, Milano, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133, Milano, Italy
| | - Barbara Comuzzi
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133, Milano, Italy
| | - Matteo Dugo
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133, Milano, Italy
| | - Ivano Arioli
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133, Milano, Italy
| | - Silvia Miotti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133, Milano, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133, Milano, Italy
| | - Emma Di Carlo
- Department of Medicine and Science of Aging, Section of Anatomic Pathology and Molecular Medicine, "G. d'Annunzio" University, 66100, Chieti, Italy.,Ce.S.I. Aging Research Center, "G. d'Annunzio" University Foundation, 66100, Chieti, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90127, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, 20133, Milano, Italy
| |
Collapse
|
14
|
Josson S, Chung LWK, Gururajan M. microRNAs and Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 889:105-18. [PMID: 26658999 DOI: 10.1007/978-3-319-23730-5_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
microRNAs are noncoding RNAs that are important for embryonic stem cell development and epithelial to mesenchymal transition (EMT). Tumor cells hijack EMT and stemness to grow and metastasize to distant organs including bone. In the tumor microenvironment, tumor cells interact with the stromal fibroblasts at the primary and metastatic sites and this interaction leads to tumor growth, EMT, and bone metastasis. Tumor-stromal interactions are a dynamic process that involves both cell-cell communications and extracellular vesicles and soluble factors. Growing body of evidence suggests that microRNAs are part of the payload that comprises the extracellular vesicles. microRNAs induce reactive stroma and thus convert normal stroma into tumor-associated stroma to promote aggressive tumorigenicity in vitro and in vivo. Landmark published studies demonstrate that expression of specific microRNAs of DLK1-DIO3 stem cell cluster correlates with patient survival in metastatic prostate cancer. Thus, microRNAs mediate tumor growth, EMT, and metastasis through cell intrinsic mechanisms and extracellular communications and could be novel biomarkers and therapeutic targets in bone metastatic prostate cancer.
Collapse
Affiliation(s)
- Sajni Josson
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA. .,Neostrata Inc., Princeton, NJ, 08540, USA.
| | - Leland W K Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Murali Gururajan
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA. .,Bristol-Myers Squibb Inc., Princeton, NJ, 08543, USA.
| |
Collapse
|
15
|
Singh S, Zheng Y, Jagadeeswaran G, Ebron JS, Sikand K, Gupta S, Sunker R, Shukla GC. Deep sequencing of small RNA libraries from human prostate epithelial and stromal cells reveal distinct pattern of microRNAs primarily predicted to target growth factors. Cancer Lett 2015; 371:262-73. [PMID: 26655274 DOI: 10.1016/j.canlet.2015.10.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 01/14/2023]
Abstract
Complex epithelial and stromal cell interactions are required during the development and progression of prostate cancer. Regulatory small non-coding microRNAs (miRNAs) participate in the spatiotemporal regulation of messenger RNA (mRNA) and regulation of translation affecting a large number of genes involved in prostate carcinogenesis. In this study, through deep-sequencing of size fractionated small RNA libraries we profiled the miRNAs of prostate epithelial (PrEC) and stromal (PrSC) cells. Over 50 million reads were obtained for PrEC in which 860,468 were unique sequences. Similarly, nearly 76 million reads for PrSC were obtained in which over 1 million were unique reads. Expression of many miRNAs of broadly conserved and poorly conserved miRNA families were identified. Sixteen highly expressed miRNAs with significant change in expression in PrSC than PrEC were further analyzed in silico. ConsensusPathDB showed the target genes of these miRNAs were significantly involved in adherence junction, cell adhesion, EGRF, TGF-β and androgen signaling. Let-7 family of tumor-suppressor miRNAs expression was highly pervasive in both, PrEC and PrSC cells. In addition, we have also identified several miRNAs that are unique to PrEC or PrSC cells and their predicted putative targets are a group of transcription factors. This study provides perspective on the miRNA expression in PrEC and PrSC, and reveals a global trend in miRNA interactome. We conclude that the most abundant miRNAs are potential regulators of development and differentiation of the prostate gland by targeting a set of growth factors. Additionally, high level expression of the most members of let-7 family miRNAs suggests their role in the fine tuning of the growth and proliferation of prostate epithelial and stromal cells.
Collapse
Affiliation(s)
- Savita Singh
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jey Sabith Ebron
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Kavleen Sikand
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University South Campus, Sector-25, Chandigarh, India
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University & University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ramanjulu Sunker
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Girish C Shukla
- Center of Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA; Department of Biological Sciences, Cleveland State University, Cleveland, OH 44115, USA.
| |
Collapse
|
16
|
Liu Y, Zhao X, Sun X, Li Y, Wang Z, Jiang J, Han H, Shen W, Corrigan CJ, Sun Y. Expression of IL-17A, E, and F and their receptors in human prostatic cancer: Comparison with benign prostatic hyperplasia. Prostate 2015; 75:1844-56. [PMID: 26356122 DOI: 10.1002/pros.23058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/16/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Benign prostatic hyperplasia (BPH) and prostate cancer (PCa) are the most common urological diseases in elderly men. Although studies suggest the cytokine family might be associated with BPH and PCa, there has been no systematic comparisons of expression of IL-17A, E, F and their receptors, infiltration of inflammatory cells, and changes in structural cells in PCa and BPH. METHODS Immunohistochemistry was employed to evaluate immunoreactivity for IL-17A, E, F and their receptors IL-17RA, IL-17BR, and IL-17CR, infiltration of inflammatory cells, and changes in structural cells including endothelial cells, fibroblasts, and smooth muscle cells in prostate tissues from subjects with PCa or BPH as well as controls. RESULTS Immunostaining showed that expression of immunoreactivity for IL-17A, IL-17RA, IL-17E, and IL-17F was significantly elevated in prostatic tissue from BPH and PCa compared with that in controls, which was accompanied by increased numbers of infiltrating inflammatory cells and CD31(+) blood vessels. Compared with BPH, PCa was characterized by reduced immunoreactivity for IL-17BR and reduced numbers of CD68(+) macrophages, fibroblasts, and smooth muscle cells, although there was a trend for these changes to correlate with disease severity in both PCa and BPH. CONCLUSION Our data are compatible with hypothesis that IL-17A acting through IL-17RA, but not IL-17CR contribute to the pathogenesis of BPH and PCa. In contrast, IL-17E interacting with the IL-17BR might have an anti-tumor effect.
Collapse
Affiliation(s)
- Yanbo Liu
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
| | - Xiaohui Zhao
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
| | - Xuemei Sun
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
| | - Yongmei Li
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
| | - Zhenjiang Wang
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
| | - Jing Jiang
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
| | - Huiming Han
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
| | - Weigao Shen
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
| | - Chris J Corrigan
- Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| | - Ying Sun
- Clinical Immunology Research Centre, Beihua University, Jilin City, Jilin, China
- Division of Asthma, Allergy and Lung Biology, King's College London, London, UK
| |
Collapse
|
17
|
Kang MM, Shan SL, Wen XY, Shan HS, Wang ZJ. Tumor-Suppression Mechanisms of Protein Tyrosine Phosphatase O and Clinical Applications. Asian Pac J Cancer Prev 2015; 16:6215-23. [PMID: 26434819 DOI: 10.7314/apjcp.2015.16.15.6215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Tyrosine phosphorylation plays an important role in regulating human physiological and pathological processes. Functional stabilization of tyrosine phosphorylation largely contributes to the balanced, coordinated regulation of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Research has revealed PTPs play an important suppressive role in carcinogenesis and progression by reversing oncoprotein functions. Receptor-type protein tyrosine phosphatase O (PTPRO) as one member of the PTPs family has also been identified to have some roles in tumor development. Some reports have shown PTPRO over-expression in tumors can not only inhibit the frequency of tumor cell division and induce tumor cell death, but also suppress migration. However, the tumor-suppression mechanisms are very complex and understanding is incomplete, which in some degree blocks the further development of PTPRO. Hence, in order to resolve this problem, we here have summarized research findings to draw meaningful conclusions. We found tumor-suppression mechanisms of PTPRO to be diverse, such as controlling G0/G1 of the tumor cell proliferation cycle, inhibiting substrate phosphorylation, down-regulating transcription activators and other activities. In clinical anticancer efforts, expression level of PTPRO in tumors can not only serve as a biomarker to monitor the prognosis of patients, but act as an epigenetic biomarker for noninvasive diagnosis. In addition, the re-activation of PTPRO in tumor tissues, not only can induce tumor volume reduction, but also enhance the susceptibility to chemotherapy drugs. So, we can propose that these research findings of PTPRO will not only support new study ideas and directions for other tumor- suppressors, importantly, but also supply a theoretical basis for researching new molecular targeting agents in the future.
Collapse
Affiliation(s)
- Man-Man Kang
- The Center of Radiation Oncology, the 82th Hospital of People's Liberation Army of China, Huaian, Jiangsu, China E-mail : ,
| | | | | | | | | |
Collapse
|
18
|
The presence of extensive retraction clefts in invasive breast carcinomas correlates with lymphatic invasion and nodal metastasis and predicts poor outcome: a prospective validation study of 2742 consecutive cases. Am J Surg Pathol 2015; 39:325-37. [PMID: 25353283 DOI: 10.1097/pas.0000000000000339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We previously reported that the presence of extensive retraction clefts (RC) in breast cancers correlates with increasing tumor size and grade as well as lymphatic tumor spread and predicts poor outcome. This study is a prospective validation of our prior results. Consecutive cases of invasive breast carcinoma (n=2742) were reviewed to determine the diagnoses, including histologic type, grade, presence of lymphovascular invasion (LVI), and extent of RC. No differences were found in the extent of RC between corresponding core needle biopsy and surgical samples. Extent of RC showed a significant correlation with tumor size, grade, LVI, and nodal metastasis in both core needle biopsy and surgical specimens. These associations remained significant in subset analyses of small (≤1 cm), node-negative and node-positive tumors. Extensive RC predicted poor recurrence-free (P<0.0001) and overall (P<0.0001) survival and remained significant in subset analyses of node-negative (P=0.0015 and 0.0021, respectively) and node-positive (P=0.0039 and 0.0214, respectively) cases. Carcinomas without LVI but extensive RC were associated with better outcome than carcinomas with LVI but worse than those without LVI and low RC. This prospective study confirms that the presence of extensive RC in invasive breast carcinomas correlates with aggressive tumor features and lymphatic tumor spread. Extensive RC appears to be an independent factor predictive of poor outcome in node-negative and node-positive disease. Our results support the hypothesis that RCs are the morphologic reflection of biological changes in tumor cells playing a role in lymphatic tumor spread and likely represent an early stage of LVI with similar clinical implications.
Collapse
|
19
|
Freire J, Domínguez-Hormaetxe S, Pereda S, De Juan A, Vega A, Simón L, Gómez-Román J. Collagen, type XI, alpha 1: An accurate marker for differential diagnosis of breast carcinoma invasiveness in core needle biopsies. Pathol Res Pract 2014; 210:879-84. [DOI: 10.1016/j.prp.2014.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/06/2014] [Accepted: 07/22/2014] [Indexed: 12/01/2022]
|
20
|
Role of the adjacent stroma cells in prostate cancer development and progression: synergy between TGF-β and IGF signaling. BIOMED RESEARCH INTERNATIONAL 2014; 2014:502093. [PMID: 25089270 PMCID: PMC4095744 DOI: 10.1155/2014/502093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 05/28/2014] [Indexed: 02/04/2023]
Abstract
This review postulates the role of transforming growth factor-beta (TGF-β) and insulin-like growth factor (IGF-I/IGF-II) signaling in stromal cells during prostate carcinogenesis and progression. It is known that stromal cells have a reciprocal relationship to the adjacent epithelial cells in the maintenance of structural and functional integrity of the prostate. An interaction between TGF-β and IGF signaling occupies a central part in this stromal-epithelial interaction. An increase in TGF-β and IGF signaling will set off the imbalance of this relationship and will lead to cancer development. A continuous input from TGF-β and IGF in the tumor microenvironment will result in cancer progression. Understanding of these events can help prevention, diagnosis, and therapy of prostate cancer.
Collapse
|
21
|
Mas-Oliva J, Navarro-Vidal E, Tapia-Vieyra JV. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells. PLoS One 2014; 9:e86089. [PMID: 24465888 PMCID: PMC3899214 DOI: 10.1371/journal.pone.0086089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 12/11/2013] [Indexed: 12/03/2022] Open
Abstract
Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.
Collapse
Affiliation(s)
- Jaime Mas-Oliva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, México D.F., México
| | - Enrique Navarro-Vidal
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F., México
| | | |
Collapse
|
22
|
Abstract
Despite significant advances in surgery, radiotherapy and chemotherapy to treat prostate cancer (CaP), many patients die of secondary disease (metastases). Current therapeutic approaches are limited, and there is no cure for metastatic castration-resistant prostate cancer (CRPC). Epithelial cell adhesion molecule (EpCAM, also known as CD326) is a transmembrane glycoprotein that is highly expressed in rapidly proliferating carcinomas and plays an important role in the prevention of cell-cell adhesion, cell signalling, migration, proliferation and differentiation. Stably and highly expressed EpCAM has been found in primary CaP tissues, effusions and CaP metastases, making it an ideal candidate of tumour-associated antigen to detect metastasis of CaP cells in the circulation as well as a promising therapeutic target to control metastatic CRPC disease. In this review, we discuss the implications of the newly identified roles of EpCAM in terms of its diagnostic and metastatic relevance to CaP. We also summarize EpCAM expression in human CaP and EpCAM-mediated signalling pathways in cancer metastasis. Finally, emerging and innovative approaches to the management of the disease and expanding potential therapeutic applications of EpCAM for targeted strategies in future CaP therapy will be explored.
Collapse
|
23
|
Heaphy CM, Yoon GS, Peskoe SB, Joshu CE, Lee TK, Giovannucci E, Mucci LA, Kenfield SA, Stampfer MJ, Hicks JL, De Marzo AM, Platz EA, Meeker AK. Prostate cancer cell telomere length variability and stromal cell telomere length as prognostic markers for metastasis and death. Cancer Discov 2013; 3:1130-41. [PMID: 23779129 DOI: 10.1158/2159-8290.cd-13-0135] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Current prognostic indicators are imperfect predictors of outcome in men with clinically localized prostate cancer. Thus, tissue-based markers are urgently needed to improve treatment and surveillance decision-making. Given that shortened telomeres enhance chromosomal instability and such instability is a hallmark of metastatic lesions, we hypothesized that alterations in telomere length in the primary cancer would predict risk of progression to metastasis and prostate cancer death. To test this hypothesis, we conducted a prospective cohort study of 596 surgically treated men who participated in the ongoing Health Professionals Follow-up Study. Men who had the combination of more variable telomere length among prostate cancer cells (cell-to-cell) and shorter telomere length in prostate cancer-associated stromal (CAS) cells were substantially more likely to progress to metastasis or die of their prostate cancer. These findings point to the translational potential of this telomere biomarker for prognostication and risk stratification for individualized therapeutic and surveillance strategies. SIGNIFICANCE In this prospective study, the combination of more variable telomere length among cancer cells and shorter telomere length in CAS cells was strongly associated with progression to metastasis and prostate cancer death, pointing to the translational potential for prognostication and risk stratifi cation for individualized therapeutic and surveillance strategies.
Collapse
Affiliation(s)
- Christopher M Heaphy
- 1Department of Pathology; 2James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine; 3Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health; 4Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland; Departments of 5Nutrition and 6Epidemiology, Harvard School of Public Health; and 7Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; 8Department of Pathology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Thy-1-Interacting Molecules and Cellular Signaling in Cis and Trans. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:163-216. [DOI: 10.1016/b978-0-12-407695-2.00004-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Lai KP, Huang CK, Chang YJ, Chung CY, Yamashita S, Li L, Lee SO, Yeh S, Chang C. New therapeutic approach to suppress castration-resistant prostate cancer using ASC-J9 via targeting androgen receptor in selective prostate cells. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:460-73. [PMID: 23219429 DOI: 10.1016/j.ajpath.2012.10.029] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 10/02/2012] [Accepted: 10/31/2012] [Indexed: 11/20/2022]
Abstract
Using androgen receptor (AR) knockout mice to determine AR functions in selective prostate cancer (PCa) cells, we determined that AR might play differential roles in various cell types, either to promote or suppress PCa development/progression. These observations partially explain the failure of current androgen deprivation therapy (ADT) to reduce/prevent androgen binding to AR in every cell. Herein, we identified the AR degradation enhancer ASC-J9, which selectively degrades AR protein via interruption of the AR-AR selective coregulator interaction. Such selective interruption could, therefore, suppress AR-mediated PCa growth in the androgen-sensitive stage before ADT and in the castration-resistant stage after ADT. Mechanistic dissection suggested that ASC-J9 could activate the proteasome-dependent pathway to promote AR degradation through the enhanced association of AR-Mdm2 complex. The consequences of ASC-J9-promoted AR degradation included reduced androgen binding to AR, AR N-C terminal interaction, and AR nuclear translocation. Such inhibitory regulation could then result in suppression of AR transactivation and AR-mediated cell growth in eight different mouse models, including intact or castrated nude mice xenografted with androgen-sensitive LNCaP cells or androgen-insensitive C81 cells and castrated nude mice xenografted with castration-resistant C4-2 and CWR22Rv1 cells, and TRAMP and Pten(+/-) mice. These results demonstrate that ASC-J9 could serve as an AR degradation enhancer that effectively suppresses PCa development/progression in the androgen-sensitive and castration-resistant stages.
Collapse
Affiliation(s)
- Kuo-Pao Lai
- Department of Pathology, Urology, and Radiation Oncology, the George Whipple Laboratory for Cancer Research, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Loriot Y, Massard C, Fizazi K. Recent developments in treatments targeting castration-resistant prostate cancer bone metastases. Ann Oncol 2012; 23:1085-1094. [PMID: 22267211 DOI: 10.1093/annonc/mdr573] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Prostate cancer is the most common male cancer and one of the top causes of male cancer-related death. Most patients with prostate cancer respond to initial androgen deprivation therapy before progressing to castration-resistant prostate cancer (CRPC) and eventually developing bone metastases. Growth of prostate cancer metastases in the bone microenvironment produces numerous factors that disrupt the dynamic equilibrium of osteogenesis and osteolysis existing in healthy bone, leading to progressive morbidity, poor quality of life, and increased treatment costs. MATERIALS AND METHODS Relevant studies of CRPC and targeted therapies were identified from literature and clinical trial databases, websites, and conference abstracts. RESULTS Available data on agents potentially targeting bone metastatic CRPC or the bone microenvironment in patients with CRPC are discussed, including inhibitors of tumor growth/survival and bone turnover (SRC family kinase inhibitors, endothelin-1 inhibitors, MET inhibitors, and thalidomide and its derivatives), inhibitors of bone turnover (bisphosphonates and receptor activator of nuclear factor-kB ligand inhibitors), antiangiogenic agents (vascular endothelial growth factor receptor and platelet-derived growth factor blockers), prostate cancer vaccines, and bone-directed radiopharmaceuticals. CONCLUSIONS With increasing data availability demonstrating tumor-bone microenvironment interactions and routine incorporation of bone-related end points into CRPC trials, bone microenvironment-targeted agents are likely to become an increasingly important component of CRPC treatment.
Collapse
Affiliation(s)
- Y Loriot
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Sud, Villejuif, France.
| | - C Massard
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Sud, Villejuif, France
| | - K Fizazi
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Sud, Villejuif, France
| |
Collapse
|
27
|
Ribeiro R, Monteiro C, Cunha V, Oliveira MJ, Freitas M, Fraga A, Príncipe P, Lobato C, Lobo F, Morais A, Silva V, Sanches-Magalhães J, Oliveira J, Pina F, Mota-Pinto A, Lopes C, Medeiros R. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:32. [PMID: 22469146 PMCID: PMC3379940 DOI: 10.1186/1756-9966-31-32] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/02/2012] [Indexed: 12/13/2022]
Abstract
Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) and pre-peritoneal visceral (VIS) anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs) 2 and 9 activity. The effects of those conditioned media (CM) on growth and migration of hormone-refractory (PC-3) and hormone-sensitive (LNCaP) prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF) as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration. Conclusions Our findings suggest that the PP depot has the potential to modulate extra-prostatic tumor cells' microenvironment through increased MMPs activity and to promote prostate cancer cell survival and migration. Adipocyte-derived factors likely have a relevant proliferative and motile role.
Collapse
Affiliation(s)
- Ricardo Ribeiro
- Molecular Oncology Group-CI, Portuguese Institute of Oncology, Porto, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
A mitotically active, cellular tumor stroma and/or inflammatory cells associated with tumor cells may contribute to intermediate or high Oncotype DX Recurrence Scores in low-grade invasive breast carcinomas. Mod Pathol 2012; 25:556-66. [PMID: 22173289 DOI: 10.1038/modpathol.2011.194] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oncotype DX is an RT-PCR-based 21-gene assay validated to provide prognostic and predictive information in the form of a Recurrence Score in patients with estrogen receptor-positive, lymph node-negative breast cancer. Although the Recurrence Score was shown to correlate with several histopathological tumor features, there is a significant proportion of cases showing an apparent discrepancy between Recurrence Score and risk estimates based on the traditional clinicopathological tumor features. In this study, we tested whether a proliferating, cellular stroma and/or admixed inflammatory cells may result in an artificially increased Recurrence Score in low-grade invasive breast cancers. We analyzed the histopathological features in 141 low-grade invasive breast carcinomas, including 41 special type (tubular, cribriform and mucinous) carcinomas, with available Recurrence Score. The tumor stroma was evaluated for increased cellularity and presence of inflammatory cells. Double immunohistochemical stains for pancytokeratin and Ki-67 was performed to assess the cell proliferation in tumor vs stromal/inflammatory cells. The clinicopathological features of tumors with Recurrence Score <18 (low risk) were compared with those with Recurrence Score ≥18 (intermediate/high risk). Carcinomas associated with Recurrence Score ≥18 showed lower progesterone receptor immunoreactivity, increased stromal cellularity and presence of inflammatory cells associated with the tumor. Double immunohistochemical stains showed significantly increased proliferation in stromal/inflammatory cells compared with carcinoma cells in cases associated with Recurrence Score ≥18. A Ki-67-positive stromal/tumor cells ratio of >1 predicted Recurrence Score ≥18 with an area under the curve of 0.8967 on receiver operator curve analysis (P<0.0001). Our results suggest that the presence of increased stromal cellularity and/or associated inflammatory cells in low-grade invasive breast carcinomas may contribute to an apparently increased risk of recurrence according to Oncotype DX Recurrence Score. Careful assessment and correlation with histopathological features in such cases may help in determining the appropriate patient management.
Collapse
|
29
|
Li X, Sterling JA, Fan KH, Vessella RL, Shyr Y, Hayward SW, Matrisian LM, Bhowmick NA. Loss of TGF-β responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions. Mol Cancer Res 2012; 10:494-503. [PMID: 22290877 DOI: 10.1158/1541-7786.mcr-11-0506] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Loss of TGF-β type II receptor (TβRII, encoded by Tgfbr2) expression in the prostate stroma contributes to prostate cancer initiation, progression, and invasion. We evaluated whether TβRII loss also affected prostate cancer bone metastatic growth. Immunohistologic analysis revealed that TβRII expression was lost in cancer-associated fibroblasts in human prostate cancer bone metastatic tissues. We recapitulated the human situation with a conditional stromal Tgfbr2 knockout (Tgfbr2-KO) mouse model. Conditioned media from primary cultured Tgfbr2-KO or control Tgfbr2-flox prostatic fibroblasts (koPFCM or wtPFCM, respectively) were applied to C4-2B prostate cancer cells before grafting the cells tibially. We found that koPFCM promoted prostate cancer cell growth in the bone and development of early mixed osteoblastic/osteolytic bone lesions. Furthermore, the koPFCM promoted greater C4-2B adhesion to type-I collagen, the major component of bone matrix, compared to wtPFCM-treated C4-2B. Cytokine antibody array analysis revealed that koPFCM had more than two-fold elevation in granulocyte colony-stimulating factor and CXCL1, CXCL16, and CXCL5 expression relative to wtPFCM. Interestingly, neutralizing antibodies of CXCL16 or CXCL1 were able to reduce koPFCM-associated C4-2B type-I collagen adhesion to that comparable with wtPFCM-mediated adhesion. Collectively, our data indicate that loss of TGF-β responsiveness in prostatic fibroblasts results in upregulation of CXCL16 and CXCL1 and that these paracrine signals increase prostate cancer cell adhesion in the bone matrix. These microenvironment changes at the primary tumor site can mediate early establishment of prostate cancer cells in the bone and support subsequent tumor development at the metastatic site.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Nashville, TN 37203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jiang Q, Han BM, Zhao FJ, Hong Y, Xia SJ. The differential effects of prostate stromal cells derived from different zones on prostate cancer epithelial cells under the action of sex hormones. Asian J Androl 2011; 13:798-805. [PMID: 21765438 DOI: 10.1038/aja.2011.22] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
It is well known that prostate cancer (PCa) occurs predominantly in the peripheral zone (PZ), whereas benign prostatic hyperplasia (BPH) typically develops in the transition zone. To identify possible mechanisms underlying zonal differences, we compared the effects of prostate stromal cells derived from the peripheral zone (PZsc) and the transition zone (TZsc) on a PCa epithelial cell line (PC3) in the presence of sex hormones. First, we observed that androgen receptor (AR) mRNA was more highly expressed in PZsc than TZsc when the cells were treated with dihydrotestosterone (DHT) and β-oestradiol (E2) (P<0.05). By ELISA, we looked for differences in the secretion of peptide growth factors from PZsc and TZsc. We found that keratinocyte growth factor (KGF) secretion increased with increasing concentrations of DHT (P<0.01) and was higher in PZsc than TZsc. Under treatment with DHT plus E2, PZsc secreted more transforming growth factor-β1 (TGF-β1) than TZsc, but this pattern was reversed when the cells were treated with E2 only. With increasing concentrations of DHT, insulin-like growth factor-1 (IGF-1) secretion increased in PZsc but decreased in TZsc. To further characterize the effects of PZsc and TZsc on PC3 cells, we developed a coculture model and performed MTT assays, Western blot analysis and real-time RT-PCR. We found that PZsc promoted PC3 cell proliferation and progression better than TZsc, particularly when treated with 10 nmol l(-1) DHT plus 10 nmol l(-1) E2. In conclusion, our data suggest that PZsc may have a greater capacity to induce PCa development and progression than TZsc via growth factors regulated by sex hormones. These findings provide possible mechanisms underlying zonal differences in prostate diseases, which may aid the search for novel therapeutic targets for PCa.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Urology, Shanghai First People's Hospital, Institute of Urology, Shanghai Jiao Tong University, Shanghai 200080, China
| | | | | | | | | |
Collapse
|
31
|
Sakai I, Miyake H, Terakawa T, Fujisawa M. Inhibition of tumor growth and sensitization to chemotherapy by RNA interference targeting interleukin-6 in the androgen-independent human prostate cancer PC3 model. Cancer Sci 2011; 102:769-75. [PMID: 21214673 DOI: 10.1111/j.1349-7006.2011.01854.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The objective of the present study was to investigate the inhibitory effects of interleukin-6 (IL-6) secretion by androgen-independent human prostate cancer PC3 cells on their growth and chemosensitivity. In this study, we established PC3 in which the expression vector containing short hairpin RNA (shRNA) targeting IL-6 was introduced (PC3/sh-IL6). Changes in the growth and sensitivity to docetaxel in PC3/sh-IL6 were compared with those in PC3 transfected with control vector alone (PC3/Co). Concentration of IL-6 in the culture supernatant from PC3/sh-IL6 was approximately 20% of that from PC3/Co. Both in vitro and in vivo, the growth of PC3/sh-IL-6 was significantly inferior to that of PC3/Co, accompanying downregulation of Bcl-2, Bcl-xL, phosphorylated Akt, p44/42 mitogen-activated protein kinase, and signal transducers and activation of transcription 3 in PC3/sh-IL-6 compared with that in PC3/Co. Despite the higher sensitivity of PC3/sh-IL6 to docetaxel than that of PC3/Co, the secretion of IL-6 by both cell lines was increased after treatment with docetaxel due to the formation of positive autocrine loops between these cell lines and NFκB signaling pathways. Furthermore, combined treatment with the proteasome inhibitor bortezomib, which completely inhibited the docetaxel-induced IL-6 secretion via the inactivation of NFκB signaling, resulted in the marked sensitization of these cell lines to docetaxel both in vitro and in vivo. These findings suggest that suppressed IL-6 secretion using shRNA, either alone or in combination with docetaxel and bortezomib, could be a useful therapeutic strategy against androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Iori Sakai
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | |
Collapse
|
32
|
Pascal LE, Ai J, Vêncio RZN, Vêncio EF, Zhou Y, Page LS, True LD, Wang Z, Liu AY. Differential Inductive Signaling of CD90 Prostate Cancer-Associated Fibroblasts Compared to Normal Tissue Stromal Mesenchyme Cells. CANCER MICROENVIRONMENT 2011; 4:51-9. [PMID: 21505567 PMCID: PMC3047627 DOI: 10.1007/s12307-010-0061-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/16/2010] [Indexed: 12/16/2022]
Abstract
Prostate carcinomas are surrounded by a layer of stromal fibroblastic cells that are characterized by increased expression of CD90. These CD90+ cancer-associated stromal fibroblastic cells differ in gene expression from their normal counterpart, CD49a+CD90lo stromal smooth muscle cells; and were postulated to represent a less differentiated cell type with altered inductive properties. CD90+ stromal cells were isolated from tumor tissue specimens and co-cultured with the pluripotent embryonal carcinoma cell line NCCIT in order to elucidate the impact of tumor-associated stroma on stem cells, and the ‘cancer stem cell.’ Transcriptome analysis identified a notable decreased induction of smooth muscle and prostate stromal genes such as PENK, BMP2 and ChGn compared to previously determined NCCIT response to normal prostate stromal cell induction. CD90+ stromal cell secreted factors induced an increased expression of CD90 and differential induction of genes involved in extracellular matrix remodeling and the RECK pathway in NCCIT. These results suggest that, compared to normal tissue stromal cells, signaling from cancer-associated stromal cells has a markedly different effect on stem cells as represented by NCCIT. Given that stromal cells are important in directing organ-specific differentiation, stromal cells in tumors appear to be defective in this function, which may contribute to abnormal differentiation found in diseases such as cancer.
Collapse
Affiliation(s)
- Laura E. Pascal
- Department of Urology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Institute for Systems Biology, Seattle, WA 98103 USA
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Junkui Ai
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
| | - Ricardo Z. N. Vêncio
- Institute for Systems Biology, Seattle, WA 98103 USA
- Department of Genetics, University of São Paulo’s Medical School, Ribeirão Preto, Brazil
| | - Eneida F. Vêncio
- Department of Urology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Institute for Systems Biology, Seattle, WA 98103 USA
- Present Address: Department of Pathology, School of Dentistry, Federal University of Goias, Goiania, GO Brazil
| | - Yong Zhou
- Institute for Systems Biology, Seattle, WA 98103 USA
| | - Laura S. Page
- Department of Urology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Institute for Systems Biology, Seattle, WA 98103 USA
| | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA 98195 USA
| | - Zhou Wang
- Department of Urology, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232 USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 USA
| | - Alvin Y. Liu
- Department of Urology, and the Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195 USA
- Institute for Systems Biology, Seattle, WA 98103 USA
| |
Collapse
|
33
|
True LD, Zhang H, Ye M, Huang CY, Nelson PS, von Haller PD, Tjoelker LW, Kim JS, Qian WJ, Smith RD, Ellis WJ, Liebeskind ES, Liu AY. CD90/THY1 is overexpressed in prostate cancer-associated fibroblasts and could serve as a cancer biomarker. Mod Pathol 2010; 23:1346-56. [PMID: 20562849 PMCID: PMC2948633 DOI: 10.1038/modpathol.2010.122] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A by-product in the processing of prostate tissue for cell sorting by collagenase digestion is the media supernatant that remains after the cells are harvested. These supernatants contain proteins made by the cells within the tissue. Quantitative proteomic analysis of N-glycosylated proteins detected an increased amount of CD90/THY1 in cancer supernatants compared with non-cancer supernatants. Immunohistochemistry showed that in all carcinomas, regardless of Gleason grade, a layer of CD90-positive stromal fibroblastic cells, ∼5 to 10 cells deep, was localized to tumor glands. In contrast, a no more than 1-cell wide girth of CD90-positive stromal cells was found around benign glands. The increased number of CD90-positive stromal cells in cancer correlated with overexpression of CD90 mRNA detected by gene expression analysis of stromal cells obtained by laser-capture microdissection. There is increasing evidence that cancer-associated stroma has a function in both tumor progression and carcinogenesis. Most experiments to identify cancer biomarkers have focused on the cancer cells. CD90, being a marker for prostate cancer-associated stroma, might be a potential biomarker for this cancer. A non-invasive test could be provided by a urine test. Proteomic analysis of urine from patients with prostate cancer identified CD90; conversely, CD90 was not detected in the urine of post-prostatectomy patients. Furthermore, this urinary CD90 protein was a variant CD90 protein not known to be expressed by such cells as lymphocytes that express CD90. These CD90 results were obtained from ∼90 cases consisting of proteomic analysis of tissue and urine, immunohistochemistry, western blot analysis of tissue media, flow cytometry of cells from digested tissue, and reverse transcriptase polymerase chain reaction analysis of isolated stromal cells.
Collapse
Affiliation(s)
- Lawrence D True
- Department of Pathology, University of Washington, Seattle, WA 98195-6100, USA.
| | - Hui Zhang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Mingliang Ye
- Institute for Systems Biology, Seattle, Washington, USA
| | - Chung-Ying Huang
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Peter S Nelson
- Section of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | - Jong-Seo Kim
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Wei-Jun Qian
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Richard D Smith
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - William J Ellis
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Emily S Liebeskind
- Department of Urology, University of Washington, Seattle, Washington, USA,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, Washington, USA,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
Abstract
Prostate cancer represents a major health problem in men worldwide. Androgens are required for the growth and maintenance of the prostate. Androgens act by binding to the androgen receptor (AR), a nuclear receptor transcription factor present in the prostate tissues. Most prostate tumors also retain their androgen dependence; therefore, androgen ablation is usually the preferred initial therapeutic approach for the treatment of advanced prostate cancer patients. This review summarizes the current information regarding the role of androgens in prostate cancer.
Collapse
Affiliation(s)
- Sujit Basu
- Department of Pathology, Ohio State University, Columbus, OH 43210 USA
| | - Donald J. Tindall
- Departments of Urology and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| |
Collapse
|
35
|
Thomas F, Holly JMP, Persad R, Bahl A, Perks CM. Fibronectin confers survival against chemotherapeutic agents but not against radiotherapy in DU145 prostate cancer cells: involvement of the insulin like growth factor-1 receptor. Prostate 2010; 70:856-65. [PMID: 20127733 DOI: 10.1002/pros.21119] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tumor growth is influenced by an increase in cell proliferation and a reduction in apoptosis; both of which are affected by alterations in extracellular matrix (ECM). Our aim was to assess if the susceptibility of prostate cancer cells to apoptosis induced by either chemotherapeutics or radiotherapy was altered by changes in the ECM. METHODS Prostate cancer cell lines LNCaP and DU145 (androgen independent) cells were treated with chemotherapeutics (ceramide and docetaxel) or radiotherapy in the presence or absence of fibronectin, laminin, or vitronectin. Cell death was assessed using Trypan blue cell counting and apoptosis was confirmed by measuring PARP cleavage by Western immunoblotting (WIB). To identify a mechanism of action, changes in the abundance (WIB) or association (immunoprecipitation followed by WIB) of key proteins was also assessed. RESULTS We found that fibronectin, but not laminin or vitronectin activated a survival pathway that protected DU145 but not LNCaP prostate cancer cells against ceramide and docetaxel-induced apoptosis but not that induced by radiotherapy. This survival effect involved the insulin-like growth factor (IGF-I) and beta1 integrin receptors and was associated with an increase in the recruitment of the beta1 integrin to a complex containing the IGF-IR and protein receptor for activated C kinase (RACK-1) and an increase in the abundance of a MAPK-phosphatase-1 (MKP-1). CONCLUSIONS Changes in the ECM associated with disease progression may contribute to resistance to chemotherapeutic drugs but not to radiation therapy. The susceptibility to chemotherapy may be improved by targeting either the IGF-I or beta1 integrin receptors.
Collapse
Affiliation(s)
- Francis Thomas
- Department of Clinical Sciences North Bristol, Southmead Hospital, Bristol, UK.
| | | | | | | | | |
Collapse
|
36
|
TGF-β1 Reverses Inhibition of COX-2 With NS398 and Increases Invasion in Prostate Cancer Cells. Am J Med Sci 2010; 339:425-32. [DOI: 10.1097/maj.0b013e3181d7c9db] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Gregg JL, Brown KE, Mintz EM, Piontkivska H, Fraizer GC. Analysis of gene expression in prostate cancer epithelial and interstitial stromal cells using laser capture microdissection. BMC Cancer 2010; 10:165. [PMID: 20426842 PMCID: PMC2876079 DOI: 10.1186/1471-2407-10-165] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 04/28/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The prostate gland represents a multifaceted system in which prostate epithelia and stroma have distinct physiological roles. To understand the interaction between stroma and glandular epithelia, it is essential to delineate the gene expression profiles of these two tissue types in prostate cancer. Most studies have compared tumor and normal samples by performing global expression analysis using a mixture of cell populations. This report presents the first study of prostate tumor tissue that examines patterns of differential expression between specific cell types using laser capture microdissection (LCM). METHODS LCM was used to isolate distinct cell-type populations and identify their gene expression differences using oligonucleotide microarrays. Ten differentially expressed genes were then analyzed in paired tumor and non-neoplastic prostate tissues by quantitative real-time PCR. Expression patterns of the transcription factors, WT1 and EGR1, were further compared in established prostate cell lines. WT1 protein expression was also examined in prostate tissue microarrays using immunohistochemistry. RESULTS The two-step method of laser capture and microarray analysis identified nearly 500 genes whose expression levels were significantly different in prostate epithelial versus stromal tissues. Several genes expressed in epithelial cells (WT1, GATA2, and FGFR-3) were more highly expressed in neoplastic than in non-neoplastic tissues; conversely several genes expressed in stromal cells (CCL5, CXCL13, IGF-1, FGF-2, and IGFBP3) were more highly expressed in non-neoplastic than in neoplastic tissues. Notably, EGR1 was also differentially expressed between epithelial and stromal tissues. Expression of WT1 and EGR1 in cell lines was consistent with these patterns of differential expression. Importantly, WT1 protein expression was demonstrated in tumor tissues and was absent in normal and benign tissues. CONCLUSIONS The prostate represents a complex mix of cell types and there is a need to analyze distinct cell populations to better understand their potential interactions. In the present study, LCM and microarray analysis were used to identify novel gene expression patterns in prostate cell populations, including identification of WT1 expression in epithelial cells. The relevance of WT1 expression in prostate cancer was confirmed by analysis of tumor tissue and cell lines, suggesting a potential role for WT1 in prostate tumorigenesis.
Collapse
Affiliation(s)
- Jennifer L Gregg
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | | | | | | | | |
Collapse
|
38
|
Sun X, He H, Xie Z, Qian W, Zhau HE, Chung LWK, Marshall FF, Wang R. Matched pairs of human prostate stromal cells display differential tropic effects on LNCaP prostate cancer cells. In Vitro Cell Dev Biol Anim 2010; 46:538-46. [PMID: 20383666 PMCID: PMC2875468 DOI: 10.1007/s11626-010-9309-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 03/11/2010] [Indexed: 01/22/2023]
Abstract
Prostate stromal cells may play binary roles in the process of prostate cancer development. As the first to be encountered by infiltrating prostate cancer cells, prostate stromal cells form the first defense line against prostate cancer progression and metastasis. However, interaction between prostate cancer and stromal cells may facilitate the formation of a tumor microenvironment favoring cancer cell growth and survival. To establish an experimental system for studying the interaction between cancer and stromal cells, we isolated three matched pairs of normal and cancer-associated human prostate stromal clones. In this report, we describe the morphologic and behavioral characteristics of these cells and their effect on LNCaP prostate cancer cells in co-culture. Unlike LNCaP prostate cancer cells, the isolated prostate stromal clones are large fibroblast-like cells with a slow proliferation rate. Growth and survival of these clones are not affected by androgens. The stromal cells display high resistance to serum starvation, while cancer-associated stromal clones have differentiated survival ability. In co-culture experiments, the stromal cells protected some LNCaP prostate cancer cells from death by serum starvation, and cancer-associated stromal clones showed more protection. This work thus established a panel of valuable human prostate stromal cell lines, which could be used in co-culture to study the interaction between prostate cancer and prostate stromal cells.
Collapse
Affiliation(s)
- Xiaojuan Sun
- Molecular Urology and Therapeutics, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, 1365B Clifton Road, NE, Suite B5103, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
He H, Yang X, Davidson AJ, Wu D, Marshall FF, Chung LWK, Zhau HE, Wang R. Progressive epithelial to mesenchymal transitions in ARCaP E prostate cancer cells during xenograft tumor formation and metastasis. Prostate 2010; 70:518-28. [PMID: 19918799 PMCID: PMC3180894 DOI: 10.1002/pros.21086] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The mechanism of epithelial to mesenchymal transition (EMT) could be adopted by tumor cells for migration and invasion. We have reported that ARCaP(E) human prostate cancer cells undergo EMT-like changes during xenograft growth in athymic mice. METHODS In this report, we assessed the extent of EMT by tracking changes in cloned ARCaP(E) cells expressing red fluorescence protein during successive orthotopic prostate tumor formation. Cancer cells with stromal-like morphology were isolated and examined for EMT-like changes. RESULTS EMT-like morphologic and expression changes were detected after one round of in vivo tumor formation. Importantly, when recovered tumor cells were used in second round xenograft tumor formation, a large fraction of ARCaP(E) cells showed drastic EMT-like changes, with markedly enlarged cell size and divergent cell shapes similar to those of mesenchymal stromal cells. The morphologic change was accompanied by increased growth and metastasis, as tumor incidence increased while red fluorescent tumor cells could be detected from circulating blood, bone marrow, peritoneal ascites, and lung of the tumor-bearing mice. Recovered clones from these samples had lost epithelial markers but many showed activated stromal marker vimentin expression. The EMT appeared permanent since the newly acquired morphology was sustained after continuous passages. CONCLUSIONS Results from this study demonstrate that through interaction with the host tumor microenvironment, cancer cells acquire cellular plasticity. During xenograft tumor formation and metastasis, a single clone of cancer cells could yield a heterogeneous population, with a substantial number of tumor cells adopting mesenchymal stroma-like phenotypes.
Collapse
Affiliation(s)
- Hui He
- Department of Urology, the First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China 710061
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Xiaojian Yang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Alec J. Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310
| | - Daqing Wu
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Fray F. Marshall
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Leland W. K. Chung
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Haiyen E. Zhau
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
| | - Ruoxiang Wang
- Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322
- Corresponding to: Dr. Ruoxiang Wang, Department of Urology, Emory University School of Medicine, 1365B Clifton Road, NE, Suite B5103, Atlanta, GA 30322, Tel. (404) 778-5116, FAX. (404) 778-3965,
| |
Collapse
|
40
|
Modulation of prostate cancer cell gene expression by cell-to-cell contact with bone marrow stromal cells or osteoblasts. Clin Exp Metastasis 2009; 26:993-1004. [PMID: 19787436 DOI: 10.1007/s10585-009-9289-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 09/16/2009] [Indexed: 01/19/2023]
Abstract
After prostate cancer cells (PCa) arrive in bone, interactions with cells that include long bone osteoblasts (LBOB) and bone marrow stromal cells (BMSC) lead to metastasis formation. The effect of heterotypic cell-cell contact between PCa cells and BMSC or LBOB on PCa cell gene expression is poorly understood. To establish the role of heterotypic contact in bone metastasis formation, we mixed and co-cultured PC3 cells with rat BMSC, LBOB, or human prostate stromal cells (PS15). PC3 cells were then re-isolated for gene array analysis, and imaged using in situ hybridization to confirm that heterotypic contact regulates gene expression. The gene expression was examined using focused gene arrays containing 96 each of tumor metastasis genes or osteogenesis genes. A total of 18 out of 192 genes in PC3 cells were found to be under or over expressed subsequent to heterotypic contact with BMSC when analyzed. A total of 15 genes out of 192 were regulated in co-culture with LBOB, and 19 genes with PS15. Only two genes, uPA and Collagen III, were regulated by contact with BMSC or LBOB (both are bone derived cells), but not by contact with PS15. The relationship between cell-cell contact and uPA expression was further explored by varying cell ratios in co-culture. uPA over-expression in PC3 was related to the BMSC:PC3 ratio, and was maximum at a 10:1 ratio, where most PC3 cells would be in contact with BMSC, as predicted by a theoretical model of heterotypic contact. In situ staining of micropatterned PC3 and BMSC cells showed that uPA over-expression localizes to regions of heterotypic cell-cell contact. Taken together, our results suggest that heterotypic cell-to-cell contact between PC3 and BMSC proportionally enhances gene expression for uPA, providing a mechanism for localized control of invasiveness.
Collapse
|
41
|
Shigemura K, Isotani S, Wang R, Fujisawa M, Gotoh A, Marshall FF, Zhau HE, Chung LWK. Soluble factors derived from stroma activated androgen receptor phosphorylation in human prostate LNCaP cells: roles of ERK/MAP kinase. Prostate 2009; 69:949-55. [PMID: 19274665 PMCID: PMC2753603 DOI: 10.1002/pros.20944] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Accumulated evidence suggests stromal-epithelial interactions are critical to the progression of prostate cancer. In this study, we characterized AR phosphorylation in LNCaP cells co-cultured with the conditioned medium (CM) from human prostate stromal fibroblasts. METHODS CM harvested from prostate stromal fibroblasts was added to LNCaP cells, and both anchorage-dependent and -independent growth was determined. Status of AR phosphorylation at Ser-81 and Ser-213 was assessed by immunoblot analysis. ERK kinase activity was measured using MBP-2 protein as the substrate. RESULTS The growth of LNCaP cells on plastic dishes increased by 1.7-fold upon exposure to stromal CM or androgen, and their combination resulted in additive growth (2.4-fold). Anchorage-independent growth of LNCaP cells in soft agar, however, was induced synergistically at 80-fold by both stromal CM and androgen. Stromal CM or androgen alone induced LNCaP cell growth by 10- and 26-fold, respectively. We observed ERK kinase inhibitor, U0126, but not phosphatidylinositol 3-kinase (PI-3K), LY294002, or protein kinase A (PKA) inhibitor, H-89, inhibited stromal CM or androgen-induced PSA promoter luciferase activities, and anchorage-independent growth of LNCaP cells. Our results demonstrated for the first time how stromal CM acts in synergy with androgen by activation of ERK kinase and AR phosphorylation at Ser-81 but not Ser-213, for AR-regulated PSA promoter and anchorage-independent growth of human prostate cancer cells. CONCLUSIONS A stromal factor-activated ERK pathway mediated by AR phosphorylation at Ser-81 could be responsible for stimulating the growth of human prostate cancer cells.
Collapse
Affiliation(s)
- Katsumi Shigemura
- Molecular Urology and Therapeutics Program, Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuji Isotani
- Molecular Urology and Therapeutics Program, Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| | - Ruoxiang Wang
- Molecular Urology and Therapeutics Program, Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| | - Masato Fujisawa
- Division of Urology, Department of Organ Therapeutics, Faculty of Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akinobu Gotoh
- Laboratory of Cell and Gene Therapy, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Japan
| | - Fray F. Marshall
- Molecular Urology and Therapeutics Program, Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| | - Haiyen E. Zhau
- Molecular Urology and Therapeutics Program, Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| | - Leland W. K. Chung
- Molecular Urology and Therapeutics Program, Department of Urology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322
| |
Collapse
|
42
|
Zhang X, Wang W, True LD, Vessella RL, Takayama TK. Protease-activated receptor-1 is upregulated in reactive stroma of primary prostate cancer and bone metastasis. Prostate 2009; 69:727-36. [PMID: 19170048 PMCID: PMC2720055 DOI: 10.1002/pros.20920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Prostate cancer progression is partly facilitated by tumor-stroma interactions. We recently reported that protease-activated receptors (PAR-1 and PAR-2) are overexpressed in prostate cancer, and PAR-1 expression in peritumoral stroma is associated with biochemical recurrence. However, the nature of PAR expression in prostate tumor microenvironment is not fully understood. We therefore evaluated PAR-1 and PAR-2 expression in primary prostate cancer and bone metastasis. METHODS PAR-1 and PAR-2 expression in normal, primary prostate cancer and the corresponding bone metastatic tissues were examined by immunohistochemistry, and double-label immunohistochemistry with the use of additional markers. RESULTS PAR-1 was expressed in peritumoral stroma in the majority of primary cancer tissues (83%). Serial sections and double-label immunohistochemistry determined that these PAR-1 expressing stromal cells were predominantly myofibroblasts, the primary cell type in reactive stroma. Analysis of cancer glands revealed that PAR-1 expression was significantly increased in the reactive stroma around higher Gleason grade cancers. PAR-2 was predominantly expressed in the primary cancer cells as well as smooth muscle cells but not in reactive stroma. In bone metastasis, PAR-1 expression in cancer cells was elevated compared to the primary site from the same patient. In the bone reactive stroma, PAR-1 was present in vascular endothelial cells and fibroblasts, while both PAR-1 and PAR-2 were expressed in osteoblasts and osteoclasts. CONCLUSIONS In primary prostate cancer and bone metastasis, PAR-1 is upregulated in reactive stroma and PAR-2 is uniformly overexpressed in carcinoma cells, suggesting these receptors may play potentially different roles in prostate cancer development and metastasis.
Collapse
Affiliation(s)
- Xiaotun Zhang
- Department of Urology, University of Washington, Seattle, Washington
| | - Wenbin Wang
- Department of Urology, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
| | - Lawrence D. True
- Department of Pathology University of Washington, Seattle, Washington
| | | | - Thomas K. Takayama
- Department of Urology, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
- To whom correspondence should be addressed. University of Washington Box 356510 1959 NE Pacific ST Seattle, WA 98195-7350 E-mail: FAX: (206) 543-5368
| |
Collapse
|
43
|
Activin receptor signaling regulates prostatic epithelial cell adhesion and viability. Neoplasia 2009; 11:365-76. [PMID: 19308291 DOI: 10.1593/neo.81544] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022] Open
Abstract
Mutational changes coupled with endocrine, paracrine, and/or autocrine signals regulate cell division during carcinogenesis. The hormone signals remain undefined, although the absolute requirement in vitro for fetal serum indicates the necessity for a fetal serum factor(s) in cell proliferation. Using prostatic cancer cell (PCC) lines as a model of cancer cell proliferation, we have identified the fetal serum component activin A and its signaling through the activin receptor type II (ActRII), as necessary, although not sufficient, for PCC proliferation. Activin A induced Smad2 phosphorylation and PCC proliferation, but only in the presence of fetal bovine serum (FBS). Conversely, activin A antibodies and inhibin A suppressed FBS-induced PCC proliferation confirming activin A as one of multiple serum components required for PCC proliferation. Basic fibroblast growth factor was subsequently shown to synergize activin A-induced PCC proliferation. Inhibition of ActRII signaling using a blocking antibody or antisense-P decreased mature ActRII expression, Smad2 phosphorylation, and the apparent viability of PCCs and neuroblastoma cells grown in FBS. Suppression of ActRII signaling in PCC and neuroblastoma cells did not induce apoptosis as indicated by the ratio of active/inactive caspase 3 but did correlate with increased cell detachment and ADAM-15 expression, a disintegrin whose expression is strongly correlated with prostatic metastasis. These findings indicate that ActRII signaling is required for PCC and neuroblastoma cell viability, with ActRII mediating cell fate via the regulation of cell adhesion. That ActRII signaling governs both cell viability and cell adhesion has important implications for developing therapeutic strategies to regulate cancer growth and metastasis.
Collapse
|
44
|
Feng X. Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. ACTA ACUST UNITED AC 2009; 3:189-196. [PMID: 20161446 DOI: 10.2174/187231309788166398] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bone, a calcified tissue composed of 60% inorganic component (hydroxyapatite), 10% water and 30% organic component (proteins), has three functions: providing mechanical support for locomotion, protecting vital organs, and regulating mineral homeostasis. A lifelong execution of these functions depends on a healthy skeleton, which is maintained by constant bone remodeling in which old bone is removed by the bone-resorbing cell, osteoclasts, and then replaced by new bone formed by the bone-forming cell, osteoblasts. This remodeling process requires a physical interaction of bone with these bone cells. Moreover, numerous cancers including breast and prostate have a high tendency to metastasize to bone, which is in part attributable to the capacity of the tumor cells to attach to bone. The intensive investigation in the past two decades has led to the notion that the cell-bone interaction involves integrins on cell surface and bone matrix proteins. However, the biochemical composition of bone and emerging evidence are inconsistent with this belief. In this review, I will discuss the current understanding of the molecular mechanism underlying the cell-bone interaction. I will also highlight the facts and new findings supporting that the inorganic, rather than the organic, component of bone is likely responsible for cellular attachment.
Collapse
Affiliation(s)
- Xu Feng
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
45
|
Sterin M, Ringel I, Lecht S, Lelkes PI, Lazarovici P. 31P magnetic resonance spectroscopy of endothelial cells grown in three-dimensional matrigel construct as an enabling platform technology: I. The effect of glial cells and valproic acid on phosphometabolite levels. ACTA ACUST UNITED AC 2009; 15:288-98. [PMID: 19065320 DOI: 10.1080/10623320802487841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Very few studies describe endothelial cell (EC) properties under three-dimensional (3D) conditions using (31)P magnetic resonance spectroscopy (MRS). The authors developed a model in which living ECs growing in Matrigel threads (3D conditions) for 5 days are monitored by (31)P MRS, providing the fingerprint of the major EC phosphometabolites. Organic extracts of membranal phospholipids were also analyzed by (31)P MRS. For comparison and as a model for two-dimensional (2D) tissue culture conditions, (31)P MRS spectra of aqueous extracts of EC phosphometabolites grown under 2D conditions were also evaluated. The phosphometabolites fingerprint of the cells cultured under 3D was significantly different from that of ECs maintained under 2D. Moreover, the pattern of phosphometabolites was affected by coculture with C6-glioma cells and upon treatment with valproic acid, which is under clinical investigation as an antioangiogenic anticancer drug. The major effects were modulation of (i) energy metabolism intermediates such as phosphocreatine, (ii) precursors of phospholipids such as phosphomonoesters, and (iii) degradation products of phospholipids such as glycerophosphocholine. This endothelial model will be usefull as an enabling platform technology for tissue engineering.
Collapse
Affiliation(s)
- M Sterin
- Department of Pharmacology and Experimental Therapeutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
46
|
The presence of micropapillary features and retraction artifact in core needle biopsy material predicts lymph node metastasis in breast carcinoma. Am J Surg Pathol 2009; 33:202-10. [PMID: 18987549 DOI: 10.1097/pas.0b013e318185e171] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retraction artifact around tumor cell nests is a characteristic feature of invasive micropapillary carcinoma (IMPC), a special type of breast cancer commonly associated with nodal metastasis. We have recently reported that the extent of retraction artifact in usual invasive ductal carcinomas (IDC) is also a strong predictor of nodal metastasis. We examined whether the presence and extent of micropapillary features and retraction artifact in core needle biopsy of breast cancers can predict nodal metastasis in a prospective series of 47 IMPC and 424 IDC. Micropapillary features were present on core needle biopsy in 28 of 47 IMPC cases. Nodal metastases were found in 21 of 28 and 14 of 19 IMPC cases with and without micropapillary features present on core needle biopsy, respectively. Lymph node metastasis was significantly associated with the presence of micropapillary features, but not with its extent within these tumors. The presence of extensive retraction artifact in core needle biopsy samples of IDC also showed a significant association with nodal metastasis. Our results indicate that the presence of micropapillary features or extensive retraction artifact on core needle biopsy of breast carcinoma can predict nodal metastasis. Our results support the notion that the characteristic clear spaces separating the tumor cells from the stroma in IMPC and IDC of the breast are not a random artifactual phenomenon simply resulting from tissue fixation and processing, but rather they are likely related to altered tumor-stromal interactions, which might have an important role in lymphatic tumor spread.
Collapse
|
47
|
Sung SY, Hsieh CL, Law A, Zhau HE, Pathak S, Multani AS, Lim S, Coleman IM, Wu LC, Figg WD, Dahut WL, Nelson P, Lee JK, Amin MB, Lyles R, Johnstone PAJ, Marshall FF, Chung LWK. Coevolution of prostate cancer and bone stroma in three-dimensional coculture: implications for cancer growth and metastasis. Cancer Res 2009; 68:9996-10003. [PMID: 19047182 DOI: 10.1158/0008-5472.can-08-2492] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human bone stromal cells, after three-dimensional coculture with human prostate cancer (PCa) cells in vitro, underwent permanent cytogenetic and gene expression changes with reactive oxygen species serving as mediators. The evolved stromal cells are highly inductive of human PCa growth in mice, and expressed increased levels of extracellular matrix (versican and tenascin) and chemokine (BDFN, CCL5, CXCL5, and CXCL16) genes. These genes were validated in clinical tissue and/or serum specimens and could be the predictors for invasive and bone metastatic PCa. These results, combined with our previous observations, support the concept of permanent genetic and behavioral changes of PCa epithelial cells after being either cocultured with prostate or bone stromal cells as three-dimensional prostate organoids or grown as tumor xenografts in mice. These observations collectively suggest coevolution of cancer and stromal cells occurred under three-dimensional growth condition, which ultimately accelerates cancer growth and metastasis.
Collapse
Affiliation(s)
- Shian-Ying Sung
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tumor formation of prostate cancer cells influenced by stromal cells from the transitional or peripheral zones of the normal prostate. Asian J Androl 2009; 11:176-82. [PMID: 19122679 DOI: 10.1038/aja.2008.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study was designed to investigate the different involvements of prostatic stromal cells from the normal transitional zone (TZ) or peripheral zone (PZ) in the carcinogenesis of prostate cancer (PCa) epithelial cells (PC-3) in vitro and in vivo co-culture models. Ultra-structures and gene expression profiles of primary cultures of human prostatic stromal cells from the normal TZ or PZ were analyzed by electron microscopy and microarray analysis. In vitro and in vivo co-culture models composed of normal TZ or PZ stromal cells and human PCa PC-3 cells were established. We assessed tumor growth and weight in the in vivo nude mice model. There are morphological and ultra-structural differences in stromal cells from TZ and PZ of the normal prostate. In all, 514 differentially expressed genes were selected by microarray analysis; 483 genes were more highly expressed in stromal cells from TZ and 31 were more highly expressed in those from PZ. Co-culture with PZ stromal cells and transforming growth factor-beta1 (TGF-beta1) increased the tumor growth of PC-3 cells in vitro and in vivo, as well as Bcl-2 expression. On the other hand, stromal cells of TZ suppressed PC-3 cell tumor growth in the mouse model. We conclude that ultra-structures and gene expression differ between the stromal cells from TZ or PZ of the normal prostate, and stroma-epithelium interactions from TZ or PZ might be responsible for the distinct zonal localization of prostate tumor formation.
Collapse
|
49
|
Castelló-Cros R, Cukierman E. Stromagenesis during tumorigenesis: characterization of tumor-associated fibroblasts and stroma-derived 3D matrices. Methods Mol Biol 2009; 522:275-305. [PMID: 19247611 PMCID: PMC2670062 DOI: 10.1007/978-1-59745-413-1_19] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
It is increasingly recognized that interactions between cancer cells and their surrounding stroma are critical for promoting the growth and invasiveness of tumors. For example, cancer cells alter the topography and molecular composition of stromal extracellular matrix by increasing paracrine regulation of fibroblastic stromal cells during early tumor development. In turn, these physical and biochemical alterations of the stroma, profoundly affect the properties of the cancer cells. However, little is known about the cross-talk between stroma and cancer cells, and it is mainly due to the lack of a suitable in vitro system to mimic the stroma in vivo. We present an in vivo-like 3D stromal system derived from fibroblasts harvested from tissue samples representing various stages of stroma progression during tumorigenesis. The chapter describes how to isolate and characterize fibroblasts from a plethora of tissue samples. It describes how to produce and characterize fibroblast-derived 3D matrices. Finally, it describes how to test matrix permissiveness by analyzing the morphology of cancer cells cultured within various 3D matrices.
Collapse
|
50
|
Shao LJ, Shi HY, Ayala G, Rowley D, Zhang M. Haploinsufficiency of the maspin tumor suppressor gene leads to hyperplastic lesions in prostate. Cancer Res 2008; 68:5143-51. [PMID: 18593913 DOI: 10.1158/0008-5472.can-08-0163] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Maspin is a key tumor suppressor gene in prostate and breast cancers with diverse biological functions. However, how maspin regulates prostate tumor progression is not fully understood. In this study, we have used maspin heterozygous knockout mice to determine the effect of maspin haploinsufficiency on prostate development and tumor progression. We report that loss of one copy of maspin gene in Mp(+/-) heterozygous knockout mice leads to the development of prostate hyperplastic lesions, and this effect was mediated through decreased level of cyclin-dependent kinase inhibitors p21 and p27. Prostate hyperplastic lesions in Mp(+/-) mice also induced stromal reaction, which occurred in both aged prostate tissues and in neonatal prostates during early ductal morphogenesis. We showed that maspin was also expressed in prostate smooth muscle cells (PSMC), and recombinant maspin increased PSMC cell adhesion but inhibited cell proliferation. We also observed a defective interaction between epithelial cells and basement membrane in the prostate of Mp(+/-) mice, which was accompanied with a changed pattern of matrix deposition and a loss of epithelial cell polarity. Therefore, we have identified a novel property of maspin, which involves the control of the proliferation in prostate epithelial and smooth muscle cells. This is the first report that a partial loss of maspin caused an early developmental defect of the prostate and prostate hyperplastic lesions in mouse.
Collapse
Affiliation(s)
- Long-jiang Shao
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|