1
|
Broekhuis JM, Lu D, Aryal RP, Matsumoto Y, Pepi LE, Chaves N, Gomez-Mayorga JL, James BC, Cummings RD. Thyroid Carcinoma Glycoproteins Express Altered N-Glycans with 3-O-Sulfated Galactose Residues. Biomolecules 2024; 14:1482. [PMID: 39766189 PMCID: PMC11727208 DOI: 10.3390/biom14121482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 01/15/2025] Open
Abstract
Aberrant protein glycosylation is a hallmark alteration of cancer and is highly associated with cancer progression. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, but the N-glycosylation of its glycoproteins has not been well characterized. In this work, we analyzed multiple freshly prepared PTC specimens along with paired normal tissue obtained from thyroidectomies. Glycomic analyses focused on Asn-linked (N)-glycans and employed mass spectrometry (MS), along with Western blot approaches of total solubilized materials that were examined for binding by specific lectins and a monoclonal antibody (mAb) O6, specific for 3-O-sulfated galactose residues. We observed major differences in PTC versus paired normal specimens, as PTC specimens exhibited higher levels of N-glycan branching and bisection with N-acetylglucosamine residues, consistent with RNAseq data. We also found that 3-O-sulfated galactose was present in N-glycans of multiple glycoproteins from both PTC and control specimens, as recognized by the O6 mAb and as confirmed by MS analyses. These results provide new insights into the N-glycans present in glycoproteins of thyroid cancer and context for further studies of these altered glycans as biomarkers and targets for therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (J.M.B.); (D.L.); (R.P.A.); (Y.M.); (L.E.P.); (N.C.); (J.L.G.-M.); (B.C.J.)
| |
Collapse
|
2
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
3
|
Mohamed KA, Kruf S, Büll C. Putting a cap on the glycome: Dissecting human sialyltransferase functions. Carbohydr Res 2024; 544:109242. [PMID: 39167930 DOI: 10.1016/j.carres.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
Collapse
Affiliation(s)
- Khadra A Mohamed
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Stijn Kruf
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Bakhit M, Fujii M. Bioinformatic Analysis of Gene Expression Related to Sialic Acid Biosynthesis in Patients With Medulloblastoma. Cureus 2024; 16:e59997. [PMID: 38854216 PMCID: PMC11162302 DOI: 10.7759/cureus.59997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background Sialic acid, a critical component for cell membrane integrity, undergoes complex biosynthesis involving enzymes like sialyltransferases (STs), impacting cancer progression. Aberrant sialylation by STs is implicated in cancer growth, invasion, and therapy resistance. Medulloblastoma (MB), a pediatric brain tumor with distinct subgroups and variable genetic alterations, poses uncertainty regarding the implications of sialylation. Methodology This study employs bioinformatic analyses on bulk and single-cell RNA-sequenced samples to explore atypical gene expressions linked to sialic acid metabolism in MB. A list of sialic biosynthesis-related genes was compiled using the STRING database. Data of MB samples from bulk and single-cell RNA sequencing were obtained from open-source repositories and were differentially analyzed, focusing on molecular subgroups (WNT, SHH, Group 3, and Group 4). The study employed survival analyses, specifically Cox regression, to analyze the overall survival (OS) data obtained through bulk RNA sequencing. Results Thirty-eight genes/proteins related to sialic acid metabolism were identified. Differential expression analysis between WNT and Group 3 and WNT and Group 4 revealed significant differences in seven and eleven genes, respectively, with consistent ST6GAL2 expression disparities (false discovery rate [FDR] P-value < 0.01, log2FC > 0.58). Elevated ST6GAL2 expression correlated with improved OS, with mortality risk reductions ranging from 26% to 48% (P-value < 0.006, Bonferroni-corrected threshold). Conclusions Elevated ST6GAL2 expression correlated with improved OS in diverse MB sample subsets, suggesting potential mechanisms in inhibiting tumor progression and enhancing immune response, requiring experimental validation.
Collapse
Affiliation(s)
| | - Masazumi Fujii
- Neurosurgery, Fukushima Medical University, Fukushima, JPN
| |
Collapse
|
5
|
Liu R, Yu X, Cao X, Wang X, Liang Y, Qi W, Ye Y, Zao X. Downregulation of ST6GAL2 Correlates to Liver Inflammation and Predicts Adverse Prognosis in Hepatocellular Carcinoma. J Inflamm Res 2024; 17:565-580. [PMID: 38318244 PMCID: PMC10843983 DOI: 10.2147/jir.s437291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
Purpose ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 2 (ST6GAL2), a member of the sialic acid transferase family, is differentially expressed in diverse cancers. However, it remains poorly understood in tumorigenesis and impacts on immune cell infiltration (ICI) in hepatocellular carcinoma (HCC). Patients and Methods Herein, the expression, diagnosis, prognosis, functional enrichment, genetic alterations, immune characteristics, and targeted drugs of ST6GAL2 in HCC were researched by conducting bioinformatics analysis, in vivo, and in vitro experiments. Results ST6GAL2 was remarkably decreased in HCC compared to non-tumor tissues, portending a poor prognosis associated with high DNA methylation levels. Functional enrichment and GSVA analyses revealed that ST6GAL2 might function through the extracellular matrix, PI3K-Akt signaling pathways, and tumor inflammation signature. We found that ST6GAL2 expression was proportional to ICI, immunostimulator, and immune subtypes. ST6GAL2 expression first increased and then decreased during the progression of liver inflammation to HCC. The dysfunctional experiment indicated that ST6GAL2 might exert immunosuppressive effects during HCC progression through regulating ICI. Several broad-spectrum anticancer drugs were obtained by drug sensitivity prediction analysis of ST6GAL2. Conclusion In conclusion, ST6GAL2 was a reliable prognostic biomarker strongly associated with ICI, and could be a potential immunotherapeutic target for HCC.
Collapse
Affiliation(s)
- Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xudong Yu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xuyun Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, People’s Republic of China
| | - Yijun Liang
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Institute of Liver Diseases, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, People’s Republic of China
| |
Collapse
|
6
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
7
|
Klarić TS, Gudelj I, Santpere G, Novokmet M, Vučković F, Ma S, Doll HM, Risgaard R, Bathla S, Karger A, Nairn AC, Luria V, Bečeheli I, Sherwood CC, Ely JJ, Hof PR, Sousa AM, Josić D, Lauc G, Sestan N. Human-specific features and developmental dynamics of the brain N-glycome. SCIENCE ADVANCES 2023; 9:eadg2615. [PMID: 38055821 PMCID: PMC10699788 DOI: 10.1126/sciadv.adg2615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Comparative "omics" studies have revealed unique aspects of human neurobiology, yet an evolutionary perspective of the brain N-glycome is lacking. We performed multiregional characterization of rat, macaque, chimpanzee, and human brain N-glycomes using chromatography and mass spectrometry and then integrated these data with complementary glycotranscriptomic data. We found that, in primates, the brain N-glycome has diverged more rapidly than the underlying transcriptomic framework, providing a means for rapidly generating additional interspecies diversity. Our data suggest that brain N-glycome evolution in hominids has been characterized by an overall increase in complexity coupled with a shift toward increased usage of α(2-6)-linked N-acetylneuraminic acid. Moreover, interspecies differences in the cell type expression pattern of key glycogenes were identified, including some human-specific differences, which may underpin this evolutionary divergence. Last, by comparing the prenatal and adult human brain N-glycomes, we uncovered region-specific neurodevelopmental pathways that lead to distinct spatial N-glycosylation profiles in the mature brain.
Collapse
Affiliation(s)
- Thomas S. Klarić
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Ivan Gudelj
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Hospital del Mar Research Institute, Barcelona, Catalonia, Spain
| | | | | | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Hannah M. Doll
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan Risgaard
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Shveta Bathla
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Amir Karger
- IT Research Computing, Harvard Medical School, Boston, MA, USA
| | - Angus C. Nairn
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Victor Luria
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, USA
| | | | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - John J. Ely
- Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- MAEBIOS, Alamogordo, NM, USA
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - André M. M. Sousa
- Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Departments of Genetics and Comparative Medicine, Kavli Institute for Neuroscience, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
8
|
Makarava N, Katorcha E, Chang JCY, Lau JTY, Baskakov IV. Deficiency in ST6GAL1, one of the two α2,6-sialyltransferases, has only a minor effect on the pathogenesis of prion disease. Front Mol Biosci 2022; 9:1058602. [PMID: 36452458 PMCID: PMC9702343 DOI: 10.3389/fmolb.2022.1058602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 10/22/2023] Open
Abstract
Prion diseases are a group of fatal neurodegenerative diseases caused by misfolding of the normal cellular form of the prion protein or PrPC, into a disease-associated self-replicating state or PrPSc. PrPC and PrPSc are posttranslationally modified with N-linked glycans, in which the terminal positions occupied by sialic acids residues are attached to galactose predominantly via α2-6 linkages. The sialylation status of PrPSc is an important determinant of prion disease pathogenesis, as it dictates the rate of prion replication and controls the fate of prions in an organism. The current study tests whether a knockout of ST6Gal1, one of the two mammalian sialyltransferases that catalyze the sialylation of glycans via α2-6 linkages, reduces the sialylation status of PrPSc and alters prion disease pathogenesis. We found that a global knockout of ST6Gal1 in mice significantly reduces the α2-6 sialylation of the brain parenchyma, as determined by staining with Sambucus Nigra agglutinin. However, the sialylation of PrPSc remained stable and the incubation time to disease increased only modestly in ST6Gal1 knockout mice (ST6Gal1-KO). A lack of significant changes in the PrPSc sialylation status and prion pathogenesis is attributed to the redundancy in sialylation and, in particular, the plausible involvement of a second member of the sialyltransferase family that sialylate via α2-6 linkages, ST6Gal2.
Collapse
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elizaveta Katorcha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jennifer Chen-Yu Chang
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph T. Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Fliniaux I, Marchand G, Molinaro C, Decloquement M, Martoriati A, Marin M, Bodart JF, Harduin-Lepers A, Cailliau K. Diversity of sialic acids and sialoglycoproteins in gametes and at fertilization. Front Cell Dev Biol 2022; 10:982931. [PMID: 36340022 PMCID: PMC9630641 DOI: 10.3389/fcell.2022.982931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/10/2022] [Indexed: 09/22/2023] Open
Abstract
Sialic acids are a family of 9-carbon monosaccharides with particular physicochemical properties. They modulate the biological functions of the molecules that carry them and are involved in several steps of the reproductive process. Sialoglycoproteins participate in the balance between species recognition and specificity, and the mechanisms of these aspects remain an issue in gametes formation and binding in metazoan reproduction. Sialoglycoproteins form a specific coat at the gametes surface and specific polysialylated chains are present on marine species oocytes. Spermatozoa are submitted to critical sialic acid changes in the female reproductive tract facilitating their migration, their survival through the modulation of the female innate immune response, and the final oocyte-binding event. To decipher the role of sialic acids in gametes and at fertilization, the dynamical changes of enzymes involved in their synthesis and removal have to be further considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
10
|
Hyun SW, Feng C, Liu A, Lillehoj EP, Trotta R, Kingsbury TJ, Passaniti A, Lugkey KN, Chauhan S, Cipollo JF, Luzina IG, Atamas SP, Cross AS, Goldblum SE. Altered sialidase expression in human myeloid cells undergoing apoptosis and differentiation. Sci Rep 2022; 12:14173. [PMID: 35986080 PMCID: PMC9390117 DOI: 10.1038/s41598-022-18448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/11/2022] [Indexed: 11/10/2022] Open
Abstract
To gain insight into sialic acid biology and sialidase/neuraminidase (NEU) expression in mature human neutrophil (PMN)s, we studied NEU activity and expression in PMNs and the HL60 promyelocytic leukemic cell line, and changes that might occur in PMNs undergoing apoptosis and HL60 cells during their differentiation into PMN-like cells. Mature human PMNs contained NEU activity and expressed NEU2, but not NEU1, the NEU1 chaperone, protective protein/cathepsin A(PPCA), NEU3, and NEU4 proteins. In proapoptotic PMNs, NEU2 protein expression increased > 30.0-fold. Granulocyte colony-stimulating factor protected against NEU2 protein upregulation, PMN surface desialylation and apoptosis. In response to 3 distinct differentiating agents, dimethylformamide, dimethylsulfoxide, and retinoic acid, total NEU activity in differentiated HL60 (dHL60) cells was dramatically reduced compared to that of nondifferentiated cells. With differentiation, NEU1 protein levels decreased > 85%, PPCA and NEU2 proteins increased > 12.0-fold, and 3.0-fold, respectively, NEU3 remained unchanged, and NEU4 increased 1.7-fold by day 3, and then returned to baseline. In dHL60 cells, lectin blotting revealed decreased α2,3-linked and increased α2,6-linked sialylation. dHL60 cells displayed increased adhesion to and migration across human bone marrow-derived endothelium and increased bacterial phagocytosis. Therefore, myeloid apoptosis and differentiation provoke changes in NEU catalytic activity and protein expression, surface sialylation, and functional responsiveness.
Collapse
|
11
|
Dworkin LA, Clausen H, Joshi HJ. Applying transcriptomics to studyglycosylation at the cell type level. iScience 2022; 25:104419. [PMID: 35663018 PMCID: PMC9156939 DOI: 10.1016/j.isci.2022.104419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
The complex multi-step process of glycosylation occurs in a single cell, yet current analytics generally cannot measure the output (the glycome) of a single cell. Here, we addressed this discordance by investigating how single cell RNA-seq data can be used to characterize the state of the glycosylation machinery and metabolic network in a single cell. The metabolic network involves 214 glycosylation and modification enzymes outlined in our previously built atlas of cellular glycosylation pathways. We studied differential mRNA regulation of enzymes at the organ and single cell level, finding that most of the general protein and lipid oligosaccharide scaffolds are produced by enzymes exhibiting limited transcriptional regulation among cells. We predict key enzymes within different glycosylation pathways to be highly transcriptionally regulated as regulatable hotspots of the cellular glycome. We designed the Glycopacity software that enables investigators to extract and interpret glycosylation information from transcriptome data and define hotspots of regulation. RNA-seq can provide information on the glycosylation metabolic network state It is possible to readout glycosylation capacity from single cell RNA-seq data Genes regulating the biosynthesis of common glycan scaffolds show little regulation Key enzymes in the glycosylation network are predicted to be regulatable hotspots
Collapse
Affiliation(s)
- Leo Alexander Dworkin
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Hiren Jitendra Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Corresponding author
| |
Collapse
|
12
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Fecal Microbiota Transplantation Increases Colonic IL-25 and Dampens Tissue Inflammation in Patients with Recurrent Clostridioides difficile. mSphere 2021; 6:e0066921. [PMID: 34704776 PMCID: PMC8550158 DOI: 10.1128/msphere.00669-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Clostridioides difficile infection (CDI) is the most common hospital-acquired infection in the United States. Antibiotic-induced dysbiosis is the primary cause of susceptibility, and fecal microbiota transplantation (FMT) has emerged as an effective therapy for recurrence. We previously demonstrated in the mouse model of CDI that antibiotic-induced dysbiosis reduced colonic expression of interleukin 25 (IL-25) and that FMT protected in part by restoring IL-25 signaling. Here, we conducted a prospective study in humans to test if FMT induced IL-25 expression in the colons of patients with recurrent CDI (rCDI). Colonic biopsy specimens and blood were collected at the time of FMT and 60 days later. Colon biopsy specimens were analyzed for IL-25 protein levels, total tissue transcriptome, and epithelium-associated microbiota before and after FMT, and peripheral immune cells were immunophenotyped. FMT increased alpha diversity of the colonic microbiota and levels of IL-25 in colonic tissue. In addition, FMT increased expression of homeostatic genes and repressed inflammatory genes. Finally, circulating Th17 cells were decreased post-FMT. The increase in levels of the cytokine IL-25 accompanied by decreased inflammation is consistent with FMT acting in part to protect from recurrent CDI via restoration of commensal activation of type 2 immunity. IMPORTANCE Fecal microbiota transplantation (FMT) is an effective treatment for C. difficile infection for most patients; however, introducing a complex mixture of microbes also has had unintended consequences for some patients. Attempts to create a standardized probiotic therapeutic that recapitulates the efficacy of FMT have been unsuccessful to date. We sought to understand what immune markers are changed in patients undergoing FMT to treat recurrent C. difficile infection and identified an immune signaling molecule, IL-25, that was restored by FMT. This finding indicates that adjunctive therapy with IL-25 could be useful in treating C. difficile infection.
Collapse
|
14
|
Heffner KM, Wang Q, Hizal DB, Can Ö, Betenbaugh MJ. Glycoengineering of Mammalian Expression Systems on a Cellular Level. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021. [PMID: 29532110 DOI: 10.1007/10_2017_57] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mammalian expression systems such as Chinese hamster ovary (CHO), mouse myeloma (NS0), and human embryonic kidney (HEK) cells serve a critical role in the biotechnology industry as the production host of choice for recombinant protein therapeutics. Most of the recombinant biologics are glycoproteins that contain complex oligosaccharide or glycan attachments representing a principal component of product quality. Both N-glycans and O-glycans are present in these mammalian cells, but the engineering of N-linked glycosylation is of critical interest in industry and many efforts have been directed to improve this pathway. This is because altering the N-glycan composition can change the product quality of recombinant biotherapeutics in mammalian hosts. In addition, sialylation and fucosylation represent components of the glycosylation pathway that affect circulatory half-life and antibody-dependent cellular cytotoxicity, respectively. In this chapter, we first offer an overview of the glycosylation, sialylation, and fucosylation networks in mammalian cells, specifically CHO cells, which are extensively used in antibody production. Next, genetic engineering technologies used in CHO cells to modulate glycosylation pathways are described. We provide examples of their use in CHO cell engineering approaches to highlight these technologies further. Specifically, we describe efforts to overexpress glycosyltransferases and sialyltransfereases, and efforts to decrease sialidase cleavage and fucosylation. Finally, this chapter covers new strategies and future directions of CHO cell glycoengineering, such as the application of glycoproteomics, glycomics, and the integration of 'omics' approaches to identify, quantify, and characterize the glycosylated proteins in CHO cells. Graphical Abstract.
Collapse
Affiliation(s)
- Kelley M Heffner
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deniz Baycin Hizal
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Özge Can
- Department of Medical Engineering, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Bombyx mori β1,4-N-acetylgalactosaminyltransferase possesses relaxed donor substrate specificity in N-glycan synthesis. Sci Rep 2021; 11:5505. [PMID: 33750826 PMCID: PMC7943597 DOI: 10.1038/s41598-021-84771-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
N-Glycosylation is one of the most important post-translational protein modifications in eukaryotic cells. Although more than 200 N-glycogenes contributing to N-glycan biosynthesis have been identified and characterized, the information on insect N-glycosylation is still limited. Here, focusing on insect N-glycosylation, we characterized Bombyx mori N-acetylgalactosaminyltransferase (BmGalNAcT) participating in complex N-glycan biosynthesis in mammals. BmGalNAcT localized at the Golgi and was ubiquitously expressed in every organ and in the developmental stage of the middle silk gland of fifth instar larvae. Analysis of recombinant BmGalNAcT expressed in Sf9 cells showed that BmGalNAcT transferred GalNAc to non-reducing terminals of GlcNAcβ1,2-R with β1,4-linkage. In addition, BmGalNAcT mediated transfer of galactose and N-acetylglucosamine residues but not transfer of either glucose or glucuronic acid from the UDP-sugar donor substrate to the N-glycan. Despite this tri-functional sugar transfer activity, however, most of the endogenous glycoproteins of insect cells were present without GalNAc, Gal, or GlcNAc residues at the non-reducing terminal of β1,2-GlcNAc residue(s). Moreover, overexpression of BmGalNAcT in insect cells had no effect on N-acetylgalactosaminylation, galactosylation, or N-acetylglucosaminylation of the major N-glycan during biosynthesis. These results suggested that B. mori has a novel multifunctional glycosyltransferase, but the N-glycosylation is highly and strictly regulated by the endogenous N-glycosylation machineries.
Collapse
|
16
|
Cheng J, Wang R, Zhong G, Chen X, Cheng Y, Li W, Yang Y. ST6GAL2 Downregulation Inhibits Cell Adhesion and Invasion and is Associated with Improved Patient Survival in Breast Cancer. Onco Targets Ther 2020; 13:903-914. [PMID: 32099394 PMCID: PMC6996233 DOI: 10.2147/ott.s230847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Breast cancer is one of the most common and serious types of cancer, with a particularly unfavorable prognosis. Although dysregulation of β-galactoside α 2,6-sialyltransferase 2 (ST6GAL2) has been observed in multiple cancers, the mechanism involved remains to be clarified. In this study, we focused on the potential function of ST6GAL2 in the regulation of breast cancer. METHODS Flow cytometry and CCK-8 were used to measure markers of the cell cycle proliferation, adhesion, and invasion. Real-time PCR and immunohistochemistry analysis were used to detect the expression levels of ST6GAL2 in breast cancer tissues. Western blot was used to analyze the expression level of genes correlated with focal adhesion and metastasis pathways in breast cancer cells. RESULTS ST6GAL2 expression levels were higher in breast cancer tissues as compared to healthy tissues. ST6GAL2 expression was associated with tumor stage, survival time, and estrogen receptor (ER)/progesterone receptor (PR)/human epidermal growth factor receptor 2 (HER2) status of breast cancer patients. Silence of ST6GAL2 inhibited cancer progression by arresting cell cycle progression at G0/G1 phase and inhibiting cell adhesion and invasion. ST6GAL2 was positively correlated with focal adhesion and metastasis pathways, and its downregulation inhibited the expression of ICAM-1, VCAM-1, CD24, MMP2, MMP9, and CXCR4. CONCLUSION These findings indicated that ST6GAL2 might serve as a useful potential target for treatment of breast cancer.
Collapse
Affiliation(s)
- Junchi Cheng
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Rong Wang
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Guansheng Zhong
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou310003, People’s Republic of China
| | - Xi Chen
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Yun Cheng
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Wei Li
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| | - Yunshan Yang
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310000, People’s Republic of China
| |
Collapse
|
17
|
Li F, Ding J. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell 2019; 10:550-565. [PMID: 30478534 PMCID: PMC6626595 DOI: 10.1007/s13238-018-0597-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
Sialylation, or the covalent addition of sialic acid to the terminal end of glycoproteins, is a biologically important modification that is involved in embryonic development, neurodevelopment, reprogramming, oncogenesis and immune responses. In this review, we have given a comprehensive overview of the current literature on the involvement of sialylation in cell fate decision during development, reprogramming and cancer progression. Sialylation is essential for early embryonic development and the deletion of UDP-GlcNAc 2-epimerase, a rate-limiting enzyme in sialic acid biosynthesis, is embryonically lethal. Furthermore, the sialyltransferase ST6GAL1 is required for somatic cell reprogramming, and its downregulation is associated with decreased reprogramming efficiency. In addition, sialylation levels and patterns are altered during cancer progression, indicating the potential of sialylated molecules as cancer biomarkers. Taken together, the current evidences demonstrate that sialylation is involved in crucial cell fate decision.
Collapse
Affiliation(s)
- Fenjie Li
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Junjun Ding
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Houeix B, Cairns MT. Engineering of CHO cells for the production of vertebrate recombinant sialyltransferases. PeerJ 2019; 7:e5788. [PMID: 30775162 PMCID: PMC6375257 DOI: 10.7717/peerj.5788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/19/2018] [Indexed: 11/24/2022] Open
Abstract
Background Sialyltransferases (SIATs) are a family of enzymes that transfer sialic acid (Sia) to glycan chains on glycoproteins, glycolipids, and oligosaccharides. They play key roles in determining cell–cell and cell-matrix interactions and are important in neuronal development, immune regulation, protein stability and clearance. Most fully characterized SIATs are of mammalian origin and these have been used for in vitro and in vivo modification of glycans. Additional versatility could be achieved by the use of animal SIATs from other species that live in much more variable environments. Our aim was to generate a panel of stable CHO cell lines expressing a range of vertebrate SIATs with different physicochemical and functional properties. Methods The soluble forms of various animal ST6Gal and ST3Gal enzymes were stably expressed from a Gateway-modified secretion vector in CHO cells. The secreted proteins were IMAC-purified from serum-free media. Functionality of the protein was initially assessed by lectin binding to the host CHO cells. Activity of purified proteins was determined by a number of approaches that included a phosphate-linked sialyltransferase assay, HILIC-HPLC identification of sialyllactose products and enzyme-linked lectin assay (ELLA). Results A range of sialyltransferase from mammals, birds and fish were stably expressed in CHO Flp-In cells. The stable cell lines expressing ST6Gal1 modify the glycans on the surface of the CHO cells as detected by fluorescently labelled lectin microscopy. The catalytic domains, as isolated by Ni Sepharose from culture media, have enzymatic activities comparable to commercial enzymes. Sialyllactoses were identified by HILIC-HPLC on incubation of the enzymes from lactose or whey permeate. The enzymes also increased SNA-I labelling of asialofetuin when incubated in a plate format. Conclusion Stable cell lines are available that may provide options for the in vivo sialylation of glycoproteins. Proteins are active and should display a variety of biological and physicochemical properties based on the animal source of the enzyme.
Collapse
Affiliation(s)
- Benoit Houeix
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| | - Michael T Cairns
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway, Ireland
| |
Collapse
|
19
|
Choi HJ, Chung TW, Choi HJ, Han JH, Choi JH, Kim CH, Ha KT. Increased α2-6 sialylation of endometrial cells contributes to the development of endometriosis. Exp Mol Med 2018; 50:1-12. [PMID: 30542051 PMCID: PMC6290765 DOI: 10.1038/s12276-018-0167-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/30/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
Endometriosis is a disease characterized by implants of endometrial tissue outside the uterine cavity and is strongly associated with infertility. Focal adhesion of endometrial tissue to the peritoneum is an indication of incipient endometriosis. In this study, we examined the effect of various cytokines that are known to be involved in the pathology of endometriosis on endometrial cell adhesion. Among the investigated cytokines, transforming growth factor-β1 (TGF-β1) increased adhesion of endometrial cells to the mesothelium through induction of α2-6 sialylation. The expression levels of β-galactoside α2-6 sialyltransferase (ST6Gal) 1 and ST6Gal2 were increased through activation of TGF-βRI/SMAD2/3 signaling in endometrial cells. In addition, we discovered that terminal sialic acid glycan epitopes of endometrial cells engage with sialic acid-binding immunoglobulin-like lectin-9 expressed on mesothelial cell surfaces. Interestingly, in an in vivo mouse endometriosis model, inhibition of endogenous sialic acid binding by a NeuAcα2-6Galβ1-4GlcNAc injection diminished TGF-β1-induced formation of endometriosis lesions. Based on these results, we suggest that increased sialylation of endometrial cells by TGF-β1 promotes the attachment of endometrium to the peritoneum, encouraging endometriosis outbreaks. A growth factor involved in cell differentiation and proliferation contributes to the development of endometriosis by stimulating a protein modification mechanism that increases the adhesiveness of cells lining the uterus. Endometriosis results when these cells, known as endometrial cells, start growing outside the uterus causing pelvic pain, heavy periods and, in some cases, infertility. Ki-Tae Ha at Pusan National University, Yangsan, South Korea, and colleagues found that transforming growth factor-β1 signaling promoted the addition of sialic acid sugar units onto endometrial cell surface proteins. This modification enhanced the adhesion of endometrial cells to mesothelial cells, which line other internal organs, and the formation of endometriosis lesions in mice. Preventing sialic acid binding to its mesothelial cell receptor reduced lesion formation. The findings reveal a new molecular mechanism underlying endometriosis and a potential treatment strategy.
Collapse
Affiliation(s)
- Hee-Jin Choi
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Tae-Wook Chung
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Hee-Jung Choi
- Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Jung Ho Han
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea.,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences and Department of Oriental Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Cheorl-Ho Kim
- Department of Biological Science, Sungkyunkwan University, Suwon, Kyunggi-do, 16419, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Seoul, Republic of Korea. .,Healthy Aging Korean Medical Research Center, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea. .,Graduate Training Program of Korean Medicine for Healthy-aging, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea.
| |
Collapse
|
20
|
Xu Y, Fan Y, Ye J, Wang F, Nie Q, Wang L, Wang PG, Cao H, Cheng J. Successfully Engineering a Bacterial Sialyltransferase for Regioselective α2,6-sialylation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01993] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yangyang Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Yueyuan Fan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Jinfeng Ye
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250012, P. R. China
| | - Faxing Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Quandeng Nie
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Peng George Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| | - Hongzhi Cao
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250012, P. R. China
| | - Jiansong Cheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, P. R. China
| |
Collapse
|
21
|
Wen KC, Sung PL, Hsieh SL, Chou YT, Lee OKS, Wu CW, Wang PH. α2,3-sialyltransferase type I regulates migration and peritoneal dissemination of ovarian cancer cells. Oncotarget 2018; 8:29013-29027. [PMID: 28423672 PMCID: PMC5438708 DOI: 10.18632/oncotarget.15994] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
Epithelial ovarian cancer (EOC) has the highest mortality rate among gynecologic cancers due to advanced stage presentation, peritoneal dissemination, and refractory ascites at diagnosis. We investigated the role of α2,3-sialyltransferase type I (ST3GalI) by analyzing human ovarian cancer datasets and human EOC tissue arrays. We found that high expression of ST3GalI was associated with advanced stage EOC. Transwell migration and cell invasion assays showed that high ST3GalI expression enhanced migration of EOC cells. We also observed that there was a linear relation between ST3GalI expression and epidermal growth factor receptor (EGFR) signaling in EOC patients, and that high ST3GalI expression blocked the effect of EGFR inhibitors. Co-Immunoprecipitation experiments demonstrated that ST3GalI and EGFR were present in the same protein complex. Inhibition of ST3GalI using a competitive inhibitor, Soyasaponin I (SsaI), inhibited tumor cell migration and dissemination in the in vivo mouse model with transplanted MOSEC cells. Further, SsaI synergistically enhanced the anti-tumor effects of EGFR inhibitor on EOC cells. Our study demonstrates that ST3GalI regulates ovarian cancer cell migration and peritoneal dissemination via EGFR signaling. This suggests α2,3-linked sialylation inhibitors in combination with EGFR inhibitors could be effective agents for the treatment of EOC.
Collapse
Affiliation(s)
- Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan
| | - Pi-Lin Sung
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Chou
- Institute of Biotechnology and Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Stem Cell Research Center, National Yang-Ming University, Taipei, Taiwan.,Taipei City Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Biomedical Science, Academia Sinica, Taipei, Taiwan
| | - Peng-Hui Wang
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Department of Obstetrics and Gynecology, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Abstract
Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Bojiao Yin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., 220 Maryland Hall, Baltimore, MD, 21218, USA.
| |
Collapse
|
23
|
Nio-Kobayashi J, Abidin HBZ, Brown JK, Iwanaga T, Horne AW, Duncan WC. Cigarette smoking alters sialylation in the Fallopian tube of women, with implications for the pathogenesis of ectopic pregnancy. Mol Reprod Dev 2016; 83:1083-1091. [PMID: 27704662 DOI: 10.1002/mrd.22747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/03/2016] [Indexed: 11/08/2022]
Abstract
Sialylation creates a negative charge on the cell surface that can interfere with blastocyst implantation. For example, α2,6-sialylation on terminal galactose, catalyzed by the sialyltransferase ST6GAL1, inhibits the binding of galectin-1, a β-galactoside-binding lectin. We recently reported the potential involvement of galectin-1 and -3 in the pathogenesis of tubal ectopic pregnancy; however, the precise role of galectins and their ligand glycoconjugates remain unclear. Here, we investigated the expression of the genes encoding α2,3- and α2,6-galactoside sialyltransferases (ST3GAL1-6 and ST6GAL1-2) and the localization of sialic acids in the Fallopian tube of women with or without ectopic implantation. ST6GAL1 expression was higher in the mid-secretory phase than the proliferative phase of non-pregnant women (P < 0.0001), whereas ST6GAL1 (P < 0.0001), ST3GAL3 (P = 0.0029), ST3GAL5 (P = 0.0089), and ST3GAL6 (P = 0.0018) were all lower in Fallopian tubes with ectopic implantations. α2,3- and α2,6-sialic acids, however, both remained enriched on the surface of Fallopian tube epithelium. Cigarette smoking, a major risk factor for tubal ectopic pregnancy, was associated with reduced mid-secretory-phase expression of ST6GAL1 (P = 0.0298), but elevated expression of ST3GAL5 (P = 0.0006), an enzyme known to be involved in ciliogenesis. Indeed, sialic acid-containing ciliated inclusion cysts, which are associated with abnormal ciliogenesis, were observed within the epithelium at a higher frequency in women who smoked (P = 0.0177), suggesting that abnormal ciliogenesis is associated with smoking. Thus, cigarette smoking alters sialylation in the Fallopian tube epithelium, and is potentially a source of decreased tubal transport and increased receptivity for blastocyst in the human Fallopian tube. Mol. Reprod. Dev. 83: 1083-1091, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hazirah B Z Abidin
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Jeremy K Brown
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Andrew W Horne
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - W Colin Duncan
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Lu J, Isaji T, Im S, Fukuda T, Kameyama A, Gu J. Expression of N-Acetylglucosaminyltransferase III Suppresses α2,3-Sialylation, and Its Distinctive Functions in Cell Migration Are Attributed to α2,6-Sialylation Levels. J Biol Chem 2016; 291:5708-5720. [PMID: 26801611 DOI: 10.1074/jbc.m115.712836] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 11/06/2022] Open
Abstract
N-Acetylglucosaminyltransferase III (GnT-III), which catalyzes the addition of the bisecting GlcNAc branch on N-glycans, is usually described as a metastasis suppressor. Overexpression of GnT-III inhibited migration in multiple types of tumor cells. However, these results seem controversial to the clinical observations for the increased expression of GnT-III in human hepatomas, glioma, and ovarian cancers. Here, we present evidence that these inconsistencies are mainly attributed to the different expression pattern of cell sialylation. In detail, we show that overexpression of GnT-III significantly inhibits α2,3-sialylation but not α2,6-sialylation. The migratory ability of cells without or with a low level of α2,6-sialylation is consistently suppressed after GnT-III overexpression. In contrast, the effects of GnT-III overexpression are variable in tumor cells that are highly α2,6-sialylated. Overexpression of GnT-III promotes the cell migration in glioma cells U-251 and hepatoma cells HepG2, although it has little influence in human breast cancer cell MDA-MB-231 and gastric cancer cell MKN-45. Interestingly, up-regulation of α2,6-sialylation by overexpressing β-galactoside α2,6-sialyltranferase 1 in the α2,6-hyposialylated HeLa-S3 cells abolishes the anti-migratory effects of GnT-III. Conversely, depletion of α2,6-sialylation by knock-out of β-galactoside α2,6-sialyltranferase 1 in α2,6-hypersialylated HepG2 cells endows GnT-III with the anti-migratory ability. Taken together, our data clearly demonstrate that high expression of α2,6-sialylation on the cell surface could affect the anti-migratory role of GnT-III, which provides an insight into the mechanistic roles of GnT-III in tumor metastasis.
Collapse
Affiliation(s)
- Jishun Lu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558 and
| | - Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558 and
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558 and
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558 and
| | - Akihiko Kameyama
- the Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai, Miyagi, 981-8558 and.
| |
Collapse
|
25
|
Zhao Y, Li Y, Ma H, Dong W, Zhou H, Song X, Zhang J, Jia L. Modification of sialylation mediates the invasive properties and chemosensitivity of human hepatocellular carcinoma. Mol Cell Proteomics 2013; 13:520-36. [PMID: 24255131 DOI: 10.1074/mcp.m113.034025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aberrant sialylation is closely associated with malignant phenotypes of tumor cells, including invasiveness and metastasis. This study investigated sialylation with regard to the modification of invasive properties and chemosensitivity in human hepatocellular carcinoma (HCC) cell lines and the association between the sialyltransferase gene family and clinicopathological characteristics in HCC patients. Using mass spectrometry analysis, we found that the composition profiling of sialylated N-glycans differed between MHCC97H and MHCC97L cells with different metastatic potential. The expressional profiles of 20 sialyltransferase genes showed differential expression in two cell lines, transitional and tumor tissues, from the same patients. Two genes, ST6GAL1 and ST8SIA2, were detected as overexpressed in MHCC97H and MHCC97L cells. The altered expression levels of ST6GAL1 and ST8SIA2 corresponded to a changed invasive phenotype and chemosensitivity of MHCC97H and MHCC97L cells both in vitro and in vivo. Further data indicated that manipulation of the expression of the two genes led to altered activity of the phosphoinositide-3 kinase (PI3K)/Akt signaling pathway. Targeting the PI3K/Akt pathway by its specific inhibitor wortmannin or by Akt RNA interference resulted in a reduced capacity for invasion and chemoresistance of MHCC97H cells. Our results imply that sialylation may function as an internal factor, regulating the invasion and chemosensitivity of HCC, probably through ST6GAL1 or ST8SIA2 regulation of the activity of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yongfu Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tumor-associated glycans and their role in gynecological cancers: accelerating translational research by novel high-throughput approaches. Metabolites 2012; 2:913-39. [PMID: 24957768 PMCID: PMC3901231 DOI: 10.3390/metabo2040913] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/08/2012] [Accepted: 11/09/2012] [Indexed: 02/06/2023] Open
Abstract
Glycans are important partners in many biological processes, including carcinogenesis. The rapidly developing field of functional glycomics becomes one of the frontiers of biology and biomedicine. Aberrant glycosylation of proteins and lipids occurs commonly during malignant transformation and leads to the expression of specific tumor-associated glycans. The appearance of aberrant glycans on carcinoma cells is typically associated with grade, invasion, metastasis and overall poor prognosis. Cancer-associated carbohydrates are mostly located on the surface of cancer cells and are therefore potential diagnostic biomarkers. Currently, there is increasing interest in cancer-associated aberrant glycosylation, with growing numbers of characteristic cancer targets being detected every day. Breast and ovarian cancer are the most common and lethal malignancies in women, respectively, and potential glycan biomarkers hold promise for early detection and targeted therapies. However, the acceleration of research and comprehensive multi-target investigation of cancer-specific glycans could only be successfully achieved with the help of a combination of novel high-throughput glycomic approaches.
Collapse
|
27
|
Villar-Portela S, Muinelo-Romay L, Cuevas E, Gil-Martín E, Fernández-Briera A. Disease-free survival of colorectal cancer patients in relation to CDw75 antigen expression. Pathobiology 2011; 78:201-9. [PMID: 21778787 DOI: 10.1159/000326768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/21/2011] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE CDw75 is an α(2,6)-sialylated antigen associated with a poor prognosis in gastric cancer. In the present study, we examined if CDw75 expression in colorectal cancer (CRC) predicts tumour recurrence. Besides, we evaluated CDw75 expression in different colorectal tissue specimens to clarify their role in tumour development and progression. METHODS We analyzed CDw75 expression in 34 specimens of healthy disease-free colorectal mucosa, 19 specimens of inflammatory colorectal mucosa, 73 colorectal adenomas, 35 specimens of healthy tissue and 101 specimens of tumoural tissue from CRC patients. RESULTS None of the healthy disease-free and inflammatory colorectal mucosa specimens showed the presence of the epitope. CDw75 was expressed in 26% of the colorectal adenomas. In healthy and tumoural tissue from CRC patients, CDw75 was detected in 22.9% and 82.2% of the specimens, respectively. CDw75 expression in tumoural tissue was correlated with growth pattern (p = 0.044), Dukes stage (p = 0.002), TNM stage (p = 0.020) and distant metastasis (p = 0.005). Survival analysis showed that CDw75 expression is not associated with tumour recurrence. CONCLUSION CDw75 expression in CRC is not a prognostic factor for predicting disease-free survival. Nevertheless, CDw75 expression may be a good marker of tumour progression and of the malignant potential of CRC.
Collapse
Affiliation(s)
- Susana Villar-Portela
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain
| | | | | | | | | |
Collapse
|
28
|
Swindall AF, Bellis SL. Sialylation of the Fas death receptor by ST6Gal-I provides protection against Fas-mediated apoptosis in colon carcinoma cells. J Biol Chem 2011; 286:22982-90. [PMID: 21550977 PMCID: PMC3123066 DOI: 10.1074/jbc.m110.211375] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 04/28/2011] [Indexed: 01/28/2023] Open
Abstract
The glycosyltransferase, ST6Gal-I, adds sialic acid in an α2-6 linkage to the N-glycans of membrane and secreted glycoproteins. Up-regulation of ST6Gal-I occurs in many cancers, including colon carcinoma, and correlates with metastasis and poor prognosis. However, mechanisms by which ST6Gal-I facilitates tumor progression remain poorly understood due to limited knowledge of enzyme substrates. Herein we identify the death receptor, Fas (CD95), as an ST6Gal-I substrate, and show that α2-6 sialylation of Fas confers protection against Fas-mediated apoptosis. Intriguingly, differences in ST6Gal-I activity do not affect the function of DR4 or DR5 death receptors upon treatment with TRAIL, implicating a selective effect of ST6Gal-I on the Fas receptor. Using ST6Gal-I knockdown and forced overexpression colon carcinoma cell models, we find that α2-6 sialylation of Fas prevents apoptosis stimulated by FasL as well as the Fas-activating antibody, CH11, as evidenced by decreased activation of caspases 8 and 3. We also show that α2-6 sialylation of Fas does not alter the binding of CH11, but rather inhibits the capacity of Fas to induce apoptosis by blocking the association of FADD with Fas cytoplasmic tails, an event that initiates death-inducing signaling complex formation. Furthermore, α2-6 sialylation of Fas inhibits Fas internalization, which is required for apoptotic signaling. Although dysregulated Fas activity is a well known mechanism through which tumors evade apoptosis, the current study is the first to link Fas insensitivity to the actions of a specific sialyltransferase. This finding establishes a new paradigm by which death receptor function is impaired for the self-protection of tumors against apoptosis.
Collapse
Affiliation(s)
- Amanda F. Swindall
- From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Susan L. Bellis
- From the Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
29
|
Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues. Glycobiology 2010; 21:584-94. [DOI: 10.1093/glycob/cwq200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
30
|
Petit D, Mir AM, Petit JM, Thisse C, Delannoy P, Oriol R, Thisse B, Harduin-Lepers A. Molecular phylogeny and functional genomics of beta-galactoside alpha2,6-sialyltransferases that explain ubiquitous expression of st6gal1 gene in amniotes. J Biol Chem 2010; 285:38399-414. [PMID: 20855889 DOI: 10.1074/jbc.m110.163931] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sialyltransferases are key enzymes in the biosynthesis of sialoglycoconjugates that catalyze the transfer of sialic residue from its activated form to an oligosaccharidic acceptor. β-Galactoside α2,6-sialyltransferases ST6Gal I and ST6Gal II are the two unique members of the ST6Gal family described in higher vertebrates. The availability of genome sequences enabled the identification of more distantly related invertebrates' st6gal gene sequences and allowed us to propose a scenario of their evolution. Using a phylogenomic approach, we present further evidence of an accelerated evolution of the st6gal1 genes both in their genomic regulatory sequences and in their coding sequence in reptiles, birds, and mammals known as amniotes, whereas st6gal2 genes conserve an ancestral profile of expression throughout vertebrate evolution.
Collapse
Affiliation(s)
- Daniel Petit
- Unité de Génétique Moléculaire Animale, Université de Limoges Faculté des Sciences et Techniques, INRA UMR 1061, 123 Avenue Albert Thomas, 87060 Limoges, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Korekane H, Matsumoto A, Ota F, Hasegawa T, Misonou Y, Shida K, Miyamoto Y, Taniguchi N. Involvement of ST6Gal I in the biosynthesis of a unique human colon cancer biomarker candidate, alpha2,6-sialylated blood group type 2H (ST2H) antigen. J Biochem 2010; 148:359-70. [PMID: 20656882 DOI: 10.1093/jb/mvq077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The alpha2,6-sialylated blood group type 2H (ST2H) antigen (Fucalpha1-2(NeuAcalpha2-6)Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-Cer) is a fucoganglioside found in human colon cancer tissues. To elucidate an enzyme responsible for the ST2H antigen formation, we screened some partially purified candidate enzymes, alpha2,6-sialyltransferases, ST6Gal I and ST6Gal II, and alpha1,2-fucosyltransferases, FUT1 and FUT2 for their activities towards pyridylaminated type 2H (Fucalpha1-2Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) or LS-tetrasaccharide c (LST-c: NeuAcalpha2-6Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc-PA) as acceptor substrates. Here we show the ST6Gal I transfers NeuAc from the donor CMP-NeuAc to the terminal Gal of PA-type 2H, which formed the ST2H antigen, but the others could not synthesize it. Using a recombinant ST6Gal I, enzymatic reactions with two types of acceptors, PA-type 2H and PA-lacto-N-neotetraose (LNnT), were kinetically analysed. On the basis of catalytic efficiency (V(max)/K(m)), the specificity of ST6Gal I towards the PA-type 2H was estimated to be 42 times lower than that for PA-LNnT. The overexpression of ST6Gal I in human colon cancer DLD-1 cells effectively resulted in the ST2H antigen formation, as judged by LC-ESI-IT-MS. Many lines of evidence suggest the up-regulation of ST6Gal I in human colon cancer specimens. Collectively, these findings indicate that ST6Gal I is responsible for ST2H antigen biosynthesis in human colon cancer cells.
Collapse
Affiliation(s)
- Hiroaki Korekane
- Department of Disease Glycomics (Seikagaku Corporation), The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Pérez-Garay M, Arteta B, Pagès L, de Llorens R, de Bolòs C, Vidal-Vanaclocha F, Peracaula R. alpha2,3-sialyltransferase ST3Gal III modulates pancreatic cancer cell motility and adhesion in vitro and enhances its metastatic potential in vivo. PLoS One 2010; 5. [PMID: 20824144 PMCID: PMC2931708 DOI: 10.1371/journal.pone.0012524] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/31/2010] [Indexed: 01/15/2023] Open
Abstract
Background Cell surface sialylation is emerging as an important feature of cancer cell metastasis. Sialyltransferase expression has been reported to be altered in tumours and may account for the formation of sialylated tumour antigens. We have focused on the influence of alpha-2,3-sialyltransferase ST3Gal III in key steps of the pancreatic tumorigenic process. Methodology/Principal Findings ST3Gal III overexpressing pancreatic adenocarcinoma cell lines Capan-1 and MDAPanc-28 were generated. They showed an increase of the tumour associated antigen sialyl-Lewisx. The transfectants' E-selectin binding capacity was proportional to cell surface sialyl-Lewisx levels. Cellular migration positively correlated with ST3Gal III and sialyl-Lewisx levels. Moreover, intrasplenic injection of the ST3Gal III transfected cells into athymic nude mice showed a decrease in survival and higher metastasis formation when compared to the mock cells. Conclusion In summary, the overexpression of ST3Gal III in these pancreatic adenocarcinoma cell lines underlines the role of this enzyme and its product in key steps of tumour progression such as adhesion, migration and metastasis formation.
Collapse
Affiliation(s)
- Marta Pérez-Garay
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Beatriz Arteta
- Department of Cell Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Spain
| | - Lluís Pagès
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Rafael de Llorens
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Carme de Bolòs
- Cancer Research Program, IMIM-Hospital del Mar, Barcelona, Spain
| | - Fernando Vidal-Vanaclocha
- Department of Cell Biology and Histology, School of Medicine and Dentistry, Basque Country University, Leioa, Spain
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
- * E-mail:
| |
Collapse
|
33
|
Abstract
In vertebrates, sialylated glycans participate in a wide range of biological processes and affect the development and function of the nervous system. While the complexity of glycosylation and the functional redundancy among sialyltransferases provide obstacles for revealing biological roles of sialylation in mammals, Drosophila possesses a sole vertebrate-type sialyltransferase, Drosophila sialyltransferase (DSiaT), with significant homology to its mammalian counterparts, suggesting that Drosophila could be a suitable model to investigate the function of sialylation. To explore this possibility and investigate the role of sialylation in Drosophila, we inactivated DSiaT in vivo by gene targeting and analyzed phenotypes of DSiaT mutants using a combination of behavioral, immunolabeling, electrophysiological, and pharmacological approaches. Our experiments demonstrated that DSiaT expression is restricted to a subset of CNS neurons throughout development. We found that DSiaT mutations result in significantly decreased life span, locomotor abnormalities, temperature-sensitive paralysis, and defects of neuromuscular junctions. Our results indicate that DSiaT regulates neuronal excitability and affects the function of a voltage-gated sodium channel. Finally, we showed that sialyltransferase activity is required for DSiaT function in vivo, which suggests that DSiaT mutant phenotypes result from a defect in sialylation of N-glycans. This work provided the first evidence that sialylation has an important biological function in protostomes, while also revealing a novel, nervous system-specific function of alpha2,6-sialylation. Thus, our data shed light on one of the most ancient functions of sialic acids in metazoan organisms and suggest a possibility that this function is evolutionarily conserved between flies and mammals.
Collapse
|
34
|
Costa-Nogueira C, Villar-Portela S, Cuevas E, Gil-Martín E, Fernández-Briera A. Synthesis and expression of CDw75 antigen in human colorectal cancer. BMC Cancer 2009; 9:431. [PMID: 20003255 PMCID: PMC2803195 DOI: 10.1186/1471-2407-9-431] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 12/10/2009] [Indexed: 11/29/2022] Open
Abstract
Background Increased ST6Gal I activity has been associated with the α(2,6)sialylation enhancement of membrane glycoconjugates observed in metastatic colorectal carcinomas (CRC). Siaα(2,6)Galβ(1,4)GlcNAc sequence, known as CDw75, is a sialylated carbohydrate determinant generated by the ST6Gal I. This epitope has been reported to be associated with the progression of gastric and colorectal tumours, hence there are only a few conclusive studies to date. Methods By radioisotopic techniques we evaluated the ST6Gal I activity in healthy, transitional and tumour tissues from 43 patients with CRC. By immunohistochemistry we assessed the CDw75 expression in 25 colorectal adenomas, 43 tumours, 13 transitional and 28 healthy tissues of CRC patients. Results ST6Gal I activity was likewise found to be statistically higher in tumour tissue respect to healthy tissue from CRC patients. CDw75 expression was positive in 20% of colorectal adenomas. Furthermore, 70% of tumour specimens and 8.3% of transitional specimens were positive for CDw75 expression, whereas none of the healthy ones showed the presence of the epitope. Conclusion The major contribution of this study is the inclusion of data from transitional tissue and the analysis of CDw75 antigen expression in CRC and in colorectal adenomas, little known so far. ST6Gal I activity and CDw75 antigen expression were increased in CRC. Although their comparison did not reach the statistical significance, a great extent of patients showed both, an enhanced tumour ST6Gal I activity and an increased CDw75 expression in the tumour tissue. So, these two variables may play a role in malignant transformation. The expression of CDw75 in colorectal adenomas suggests that this antigen may be a tumour marker in CRC.
Collapse
Affiliation(s)
- Clotilde Costa-Nogueira
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo, Spain.
| | | | | | | | | |
Collapse
|
35
|
Bi S, Baum LG. Sialic acids in T cell development and function. Biochim Biophys Acta Gen Subj 2009; 1790:1599-610. [DOI: 10.1016/j.bbagen.2009.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 11/16/2022]
|
36
|
Lehoux S, Groux-Degroote S, Cazet A, Dhaenens CM, Maurage CA, Caillet-Boudin ML, Delannoy P, Krzewinski-Recchi MA. Transcriptional regulation of the human ST6GAL2 gene in cerebral cortex and neuronal cells. Glycoconj J 2009; 27:99-114. [PMID: 19768537 DOI: 10.1007/s10719-009-9260-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/26/2009] [Accepted: 09/01/2009] [Indexed: 11/27/2022]
Abstract
The second human beta-galactoside alpha-2,6-sialyltransferase (hST6Gal II) differs from hST6Gal I, the first member of ST6Gal family, in substrate specificity and tissue expression pattern. While ST6GAL1 gene is expressed in almost all human tissues, ST6GAL2 shows a restricted tissue-specific pattern of expression, mostly expressed in embryonic and adult brain. In order to understand the mechanisms involved in the transcriptional regulation of ST6GAL2, we first characterized the transcription start sites (TSS) in SH-SY5Y neuroblastoma cells. 5' RACE experiments revealed multiple TSS located on three first alternative 5' exons, termed EX, EY and EZ, which are unusually close on the genomic sequence and are all located more than 42 kbp upstream of the first common coding exon. Using Taqman duplex Q-PCR, we showed that the ST6GAL2 transcripts initiated by EX or EY are mainly expressed in both brain-related cell lines and human cerebral cortex, testifying for the use of a similar transcriptional regulation in vivo. Furthermore, we also showed for the first time hST6Gal II protein expression in the different lobes of the human cortex. Luciferase reporter assays allowed us to define two sequences upstream EX and EY with a high and moderate promoter activity, respectively. Bioinformatics analysis and site-directed mutagenesis showed that NF-kappaB and NRSF are likely to act as transcriptional repressors, whereas neuronal-related development factors Sox5, Puralpha and Olf1, are likely to act as transcriptional activators of ST6GAL2. This suggests that ST6GAL2 transcription could be potentially activated for specific neuronal functions.
Collapse
Affiliation(s)
- Sylvain Lehoux
- Structural and Functional Glycobiology Unit, UMR CNRS 8576, University of Sciences and Technologies of Lille, 59655, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Laporte B, Gonzalez-Hilarion S, Maftah A, Petit JM. The second bovine beta-galactoside-alpha2,6-sialyltransferase (ST6Gal II): genomic organization and stimulation of its in vitro expression by IL-6 in bovine mammary epithelial cells. Glycobiology 2009; 19:1082-93. [PMID: 19617256 DOI: 10.1093/glycob/cwp094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have cloned a cDNA sequence encoding the second bovine beta-galactoside-alpha2,6-sialyltransferase whose sequence shares more than 75% of identity with hST6Gal II cDNA coding sequence. The bovine gene, located on BTA 11, spans over 50 kbp with five exons (E1-E5) containing the 1488 bp open reading frame and a 5'-untranslated exon (E0). The gene expression pattern reveals a specific tissue distribution (brain, lungs, spleen, salivary, and mammary glands) compared to ST6Gal I which is ubiquitously expressed. We identified for bovine ST6Gal II three kinds of transcripts which differ by their 5'-untranslated regions. Among them, two transcripts are brain specific whereas the third one is found in all of the tissues expressing the gene. Two pFlag-bST6Gal II vector constructions were separately transfected in COS-1 cells in order to express either membrane-bound or soluble active forms of ST6Gal II. Enzymatic assays with these two forms indicated that the enzyme used the LacdiNAc structure (GalNAcbeta1,4GlcNAc) as a better acceptor substrate than the Type II (Galbeta1-4GlcNAc) disaccharide. Moreover, the enzyme's efficiency is improved when the acceptor substrate is provided as a free oligosaccharide rather than as a protein-bound oligosaccharide. In order to investigate the potential role of ST6Gal II during the acute phase of inflammation, we used primary cultures of bovine mammary epithelial cells which were stimulated with pro-inflammatory cytokines. It appears that the ST6Gal II gene was upregulated in cells stimulated by IL-6. This result suggested that alpha2,6-sialylation mediated by this gene could contribute to organism's response to infections.
Collapse
Affiliation(s)
- Benoit Laporte
- UMR1061, Unité de Génétique Moléculaire Animale, Université de Limoges, INRA, IFR N degrees 145 GEIST, France
| | | | | | | |
Collapse
|
38
|
Malagolini N, Chiricolo M, Marini M, Dall'Olio F. Exposure of 2,6-sialylated lactosaminic chains marks apoptotic and necrotic death in different cell types. Glycobiology 2008; 19:172-81. [DOI: 10.1093/glycob/cwn122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Varki A. Multiple changes in sialic acid biology during human evolution. Glycoconj J 2008; 26:231-45. [PMID: 18777136 PMCID: PMC7087641 DOI: 10.1007/s10719-008-9183-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 08/09/2008] [Accepted: 08/18/2008] [Indexed: 12/13/2022]
Abstract
Humans are genetically very similar to “great apes”, (chimpanzees, bonobos, gorillas and orangutans), our closest evolutionary relatives. We have discovered multiple genetic and biochemical differences between humans and these other hominids, in relation to sialic acids and in Siglecs (Sia-recognizing Ig superfamily lectins). An inactivating mutation in the CMAH gene eliminated human expression of N-glycolylneuraminic acid (Neu5Gc) a major sialic acid in “great apes”. Additional human-specific changes have been found, affecting at least 10 of the <60 genes known to be involved in the biology of sialic acids. There are potential implications for unique features of humans, as well as for human susceptibility or resistance to disease. Additionally, metabolic incorporation of Neu5Gc from animal-derived materials occurs into biotherapeutic molecules and cellular preparations - and into human tissues from dietary sources, particularly red meat and milk products. As humans also have varying and sometime high levels of circulating anti-Neu5Gc antibodies, there are implications for biotechnology products, and for some human diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ajit Varki
- Center for Academic Research and Training in Anthropogeny, Department of Medicine, University of California, San Diego, 9500 Gilman Dr MC 0687, La Jolla, CA 92093-0687, USA.
| |
Collapse
|
40
|
|
41
|
Sialylation in protostomes: a perspective from Drosophila genetics and biochemistry. Glycoconj J 2008; 26:313-24. [PMID: 18568399 DOI: 10.1007/s10719-008-9154-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 12/20/2022]
Abstract
Numerous studies have revealed important functions for sialylation in both prokaryotes and higher animals. However, the genetic and biochemical potential for sialylation in Drosophila has only been confirmed recently. Recent studies suggest significant similarities between the sialylation pathways of vertebrates and insects and provide evidence for their common evolutionary origin. These new data support the hypothesis that sialylation in insects is a specialized and developmentally regulated process which likely plays a prominent role in the nervous system. Yet several key issues remain to be addressed in Drosophila, including the initiation of sialic acid de novo biosynthesis and understanding the structure and function of sialylated glycoconjugates. This review discusses our current knowledge of the Drosophila sialylation pathway, as compared to the pathway in bacteria and vertebrates. We arrive at the conclusion that Drosophila is emerging as a useful model organism that is poised to shed new light on the function of sialylation not only in protostomes, but also in a larger evolutionary context.
Collapse
|
42
|
Santos L, Draves KE, Boton M, Grewal PK, Marth JD, Clark EA. Dendritic cell-dependent inhibition of B cell proliferation requires CD22. THE JOURNAL OF IMMUNOLOGY 2008; 180:4561-9. [PMID: 18354178 DOI: 10.4049/jimmunol.180.7.4561] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent studies have shown that dendritic cells (DCs) regulate B cell functions. In this study, we report that bone marrow (BM)-derived immature DCs, but not mature DCs, can inhibit BCR-induced proliferation of B cells in a contact-dependent manner. This inhibition is overcome by treatment with BAFF and is dependent on the BCR coreceptor CD22; however, it is not dependent on expression of the CD22 glycan ligand(s) produced by ST6Gal-I sialyltransferase. We found that a second CD22 ligand (CD22L) is expressed on CD11c(+) splenic and BM-derived DCs, which does not contain ST6Gal-I-generated sialic acids and which, unlike the B cell-associated CD22L, is resistant to neuraminidase treatment and sodium metaperiodate oxidation. Examination of splenic and BM B cell subsets in CD22 and ST6Gal-I knockout mice revealed that ST6Gal-I-generated B cell CD22L plays a role in splenic B cell development, whereas the maintenance of long-lived mature BM B cells depends only on CD22 and not on alpha2,6-sialic acids produced by ST6Gal-I. We propose that the two distinct CD22L have different functions. The alpha2,6-sialic acid-containing glycoprotein is important for splenic B cell subset development, whereas the DC-associated ST6Gal-I-independent CD22L may be required for the maintenance of long-lived mature B cells in the BM.
Collapse
Affiliation(s)
- Lorna Santos
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
43
|
IL-6 and IL-8 increase the expression of glycosyltransferases and sulfotransferases involved in the biosynthesis of sialylated and/or sulfated Lewisx epitopes in the human bronchial mucosa. Biochem J 2008; 410:213-23. [DOI: 10.1042/bj20070958] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bronchial mucins from patients suffering from CF (cystic fibrosis) exhibit glycosylation alterations, especially increased amounts of the sialyl-Lewisx (NeuAcα2-3Galβ1-4[Fucα1-3]GlcNAc-R) and 6-sulfo-sialyl-Lewisx (NeuAcα2-3Galβ1-4[Fucα1-3][SO3H-6]GlcNAc-R) terminal structures. These epitopes are preferential receptors for Pseudomonas aeruginosa, the bacteria responsible for the chronicity of airway infection and involved in the morbidity and early death of CF patients. However, these glycosylation changes cannot be directly linked to defects in CFTR (CF transmembrane conductance regulator) gene expression since cells that secrete airway mucins express no or very low amounts of the protein. Several studies have shown that inflammation may affect glycosylation and sulfation of various glycoproteins, including mucins. In the present study, we show that incubation of macroscopically healthy fragments of human bronchial mucosa with IL-6 (interleukin-6) or IL-8 results in a significant increase in the expression of α1,3/4-fucosyltransferases [FUT11 (fucosyltransferase 11 gene) and FUT3], α2-6- and α2,3-sialyltransferases [ST3GAL6 (α2,3-sialyltransferase 6 gene) and ST6GAL2 (α2,6-sialyltransferase 2 gene)] and GlcNAc-6-O-sulfotransferases [CHST4 (carbohydrate sulfotransferase 4 gene) and CHST6] mRNA. In parallel, the amounts of sialyl-Lewisx and 6-sulfo-sialyl-Lewisx epitopes at the periphery of high-molecular-mass proteins, including MUC4, were also increased. In conclusion, our results indicate that IL-6 and -8 may contribute to the increased levels of sialyl-Lewisx and 6-sulfo-sialyl-Lewisx epitopes on human airway mucins from patients with CF.
Collapse
|
44
|
Surface alpha 2-3- and alpha 2-6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis. Glycoconj J 2007; 25:259-68. [PMID: 18080182 DOI: 10.1007/s10719-007-9092-6] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 08/24/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
Several glycoconjugates are involved in the immune response. Sialic acid is frequently the glycan terminal sugar and it may modulate immune interactions. Dendritic cells (DCs) are antigen-presenting cells with high endocytic capacity and a central role in immune regulation. On this basis, DCs derived from monocytes (mo-DC) are utilised in immunotherapy, though many features are ignored and their use is still limited. We analyzed the surface sialylated glycans expressed during human mo-DC generation. This was monitored by lectin binding and analysis of sialyltransferases (ST) at the mRNA level and by specific enzymatic assays. We showed that alpha 2-3-sialylated O-glycans and alpha 2-6- and alpha 2-3-sialylated N-glycans are present in monocytes and their expression increases during mo-DC differentiation. Three main ST genes are committed with this rearrangement: ST6Gal1 is specifically involved in the augmented alpha 2-6-sialylated N-glycans; ST3Gal1 contributes for the alpha2-3-sialylation of O-glycans, particularly T antigens; and ST3Gal4 may contribute for the increased alpha2-3-sialylated N-glycans. Upon mo-DC maturation, ST6Gal1 and ST3Gal4 are downregulated and ST3Gal1 is altered in a stimulus-dependent manner. We also observed that removing surface sialic acid of immature mo-DC by neuraminidase significantly decreased its endocytic capacity, while it increased in monocytes. Our results indicate the STs expression modulates the increased expression of surface sialylated structures during mo-DC generation, which is probably related with changes in cell mechanisms. The ST downregulation after mo-DC maturation probably results in a decreased sialylation or sialylated glycoconjugates involved in the endocytosis, contributing to the downregulation of one or more antigen-uptake mechanisms specific of mo-DC.
Collapse
|
45
|
Blixt O, Allin K, Bohorov O, Liu X, Andersson-Sand H, Hoffmann J, Razi N. Glycan microarrays for screening sialyltransferase specificities. Glycoconj J 2007; 25:59-68. [PMID: 17914671 DOI: 10.1007/s10719-007-9062-z] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/22/2007] [Accepted: 06/29/2007] [Indexed: 11/27/2022]
Abstract
Here we demonstrate that glycan microarrays can be used for high-throughput acceptor specificity screening of various recombinant sialyltransferases. Cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) was biotinylated at position 9 of N-acetylneuraminic acid (Neu5Ac) by chemoenzymatic synthesis generating CMP-9Biot-Neu5Ac. The activated sugar nucleotide was used as donor substrate for various mammalian sialyltranferases which transferred biotinylated sialic acids simultaneously onto glycan acceptors immobilized onto a microarray glass slide. Biotinylated glycans detected with fluorescein-streptavidin conjugate to generate a specificity profile for each enzyme both confirming previously known specificities and reveal additional specificity information. Human alpha2,6sialyltransferase-I (hST6Gal-I) also sialylates chitobiose structures (GlcNAcbeta1-4GlcNAc)(n) including N-glycans, rat alpha2,3sialyltransferase (rST3Gal-III) tolerates fucosylated acceptors such as Lewis(a), human alpha2,3sialyltransferase-IV (hST3Gal-IV) broadly sialylates oligosaccharides of types 1-4 and porcine alpha2,3sialyltransferase-I (pST3Gal-I) sialylates ganglio-oligosaccharides and core 2 O-glycans in our array system. Several of these sialyltransferases perform a substitution reaction and exchange a sialylated acceptor with a biotinylated sialic acid but are restricted to the most specific acceptor substrates. Thus, this method allows for a rapid generation of enzyme specificity information and can be used towards synthesis of new carbohydrate compounds and expand the glycan array compound library.
Collapse
Affiliation(s)
- Ola Blixt
- Glycan Array Synthesis Core-D, Consortium for Functional Glycomics, Department of Molecular Biology, CB216, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Gong M, Garige M, Hirsch K, Lakshman MR. Liver Galbeta1,4GlcNAc alpha2,6-sialyltransferase is down-regulated in human alcoholics: possible cause for the appearance of asialoconjugates. Metabolism 2007; 56:1241-7. [PMID: 17697868 PMCID: PMC2000840 DOI: 10.1016/j.metabol.2007.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Accepted: 04/10/2007] [Indexed: 11/19/2022]
Abstract
Galbetal,4GlcNAc alpha2,6-sialyltransferase (ST6GalI) mediates the glycosylation of proteins and lipids to form functionally important glycoproteins and glycolipids in the Golgi compartment. Our previous work demonstrated that long-term ethanol feeding in rats caused a marked 59% decrease in ST6GalI activity as well as ST6GalI messenger RNA (mRNA) level in the liver that was due to decreased stability of the mRNA. Clinical observations show that down-regulation of ST6GalI gene and consequent impaired activity of ST6GalI seems to be the major cause for the appearance of asialoconjugates in the blood of long-term alcoholics. The plasma carbohydrate-deficient transferrin (CDT) and sialic acid index of plasma apolipoprotein J were also altered in the alcoholic group compared with the nondrinkers. We have now investigated how alcohol affects the gene regulation of ST6GalI and the possible mechanism in postmortem human liver specimens taken from nondrinkers, moderate alcohol drinkers, and heavy alcohol drinkers. Real-time polymerase chain reaction analyses of the liver RNA extract showed that ST6GalI mRNA level was progressively decreased by 49% in moderate drinkers (P < .01) and by 69% in heavy drinkers (P < .01) compared with nondrinkers. Western blot analysis showed that liver ST6GalI protein level was negligibly decreased in moderate drinkers but decreased by 30% (P < .05) in heavy drinkers compared with nondrinkers. We further demonstrated a single ST6GalI mRNA-binding protein complex in the normal human liver extract, which progressively decreased in the liver extracts of moderate and heavy alcohol drinkers. Thus, it is concluded that the appearance of asialoconjugates in alcoholics is possibly due to the down-regulation of ST6GalI gene expression.
Collapse
Affiliation(s)
- Maokai Gong
- Department of Biochemistry, Molecular Biology and Medicine, the George Washington University, Washington DC
| | - Mamatha Garige
- Department of Biochemistry, Molecular Biology and Medicine, the George Washington University, Washington DC
| | - Kenneth Hirsch
- Gastroenterology, Hepatology & Nutrition Section, Veterans Affairs Medical Center, Washington D.C
| | - M. Raj Lakshman
- The Lipid Research Laboratory, Veterans Affairs Medical Center, Washington D.C., and Department of Biochemistry, Molecular Biology and Medicine, the George Washington University, Washington DC
| |
Collapse
|
47
|
Glaser L, Conenello G, Paulson J, Palese P. Effective replication of human influenza viruses in mice lacking a major alpha2,6 sialyltransferase. Virus Res 2007; 126:9-18. [PMID: 17313986 DOI: 10.1016/j.virusres.2007.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/11/2007] [Accepted: 01/13/2007] [Indexed: 12/22/2022]
Abstract
The hemagglutinins of influenza viruses isolated from humans typically prefer binding to sialic acid in an alpha2,6 linkage. Presumably, the virus uses the presence of these receptors on the respiratory tract to gain entrance into the host cell. The ST6Gal I sialyltransferase knock-out mouse lacks the main enzyme necessary for the attachment of alpha2,6 sialic acid to N-linked glycoproteins on the cell surface. Yet even in the absence of detectable alpha2,6 sialic acid in the mouse respiratory tract, human influenza viruses can still infect these mice and grow to similar titers in the lung and trachea as compared to wild-type animals. This work demonstrates that the presence of a major alpha2,6 sialic acid on N-linked glycoproteins is not essential for human influenza virus infection in mice.
Collapse
Affiliation(s)
- Laurel Glaser
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
48
|
Takashima S, Abe T, Yoshida S, Kawahigashi H, Saito T, Tsuji S, Tsujimoto M. Analysis of Sialyltransferase-Like Proteins from Oryza sativa. ACTA ACUST UNITED AC 2006; 139:279-87. [PMID: 16452316 DOI: 10.1093/jb/mvj029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sialic acids are widely distributed among living creatures, from bacteria to mammals, but it has been commonly accepted that they do not exist in plants. However, with the progress of genome analyses, putative gene homologs of animal sialyltransferases have been detected in the genome of some plants. In this study, we cloned three genes from Oryza sativa (Japanese rice) that encode sialyltransferase-like proteins, designated OsSTLP1, 2, and 3, and analyzed the enzymatic activity of the proteins. OsSTLP1, 2, and 3 consist of 393, 396, and 384 amino acids, respectively, and each contains sequences similar to the sialyl motifs that are highly conserved among animal sialyltransferases. The recombinant soluble forms of OsSTLPs produced by COS-7 cells were analyzed for sialyltransferase-like activity. OsSTLP1 exhibited such activity toward the oligosaccharide Galbeta1,4GlcNAc and such glycoproteins as asialofetuin, alpha1-acid glycoprotein, and asialo-alpha1-acid glycoprotein; OsSTLP3 exhibited similar activity toward asialofetuin; and OsSTLP2 exhibited no sialyltransferase-like activity. The sialic acid transferred by OsSTLP1 or 3 was linked to galactose of Galbeta1,4GlcNAc through alpha2,6-linkage. This is the first report of plant proteins having sialyltransferase-like activity.
Collapse
Affiliation(s)
- Shou Takashima
- Cellular Biochemistry Laboratory and Plant Functions Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Rohfritsch PF, Joosten JAF, Krzewinski-Recchi MA, Harduin-Lepers A, Laporte B, Juliant S, Cerutti M, Delannoy P, Vliegenthart JFG, Kamerling JP. Probing the substrate specificity of four different sialyltransferases using synthetic beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->O) (CH(2))7CH3 analogues general activating effect of replacing N-acetylglucosamine by N-propionylglucosamine. Biochim Biophys Acta Gen Subj 2006; 1760:685-92. [PMID: 16439063 DOI: 10.1016/j.bbagen.2005.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/02/2005] [Accepted: 12/12/2005] [Indexed: 11/26/2022]
Abstract
The acceptor specificities of ST3Gal III, ST3Gal IV, ST6Gal I and ST6Gal II were investigated using a panel of beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->O)(CH(2))(7)CH(3) analogues. Modifications introduced at either C2, C3, C4, C5, or C6 of terminal D-Gal, as well as N-propionylation instead of N-acetylation of subterminal D-GlcN were tested for their influence on the alpha-2,3- and alpha-2,6-sialyltransferase acceptor activities. Both ST3Gal enzymes displayed the same narrow acceptor specificity, and only accept reduction of the Gal C2 hydroxyl function. The ST6Gal enzymes, however, do not have the same acceptor specificity. ST6Gal II seems less tolerant towards modifications at Gal C3 and C4 than ST6Gal I, and prefers beta-D-GalpNAc-(1-->4)-beta-D-GlcpNAc (LacdiNAc) as an acceptor substrate, as shown by replacing the Gal C2 hydroxyl group with an N-acetyl function. Finally, a particularly striking feature of all tested sialyltransferases is the activating effect of replacing the N-acetyl function of subterminal GlcNAc by an N-propionyl function.
Collapse
Affiliation(s)
- Philippe F Rohfritsch
- Bijvoet Center, Department of Bio-Organic Chemistry, Utrecht University, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Vázquez-Martín C, Gil-Martín E, Fernández-Briera A. Elevation of ST6Gal I activity in malignant and transitional tissue in human colorectal cancer. Oncology 2005; 69:436-44. [PMID: 16319516 DOI: 10.1159/000089999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 10/01/2005] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The aim of the present study was to investigate the activity of CMP-NeuAc:Galbeta(1,4)GlcNAc sialyltransferase (ST6Gal I) in colorectal cancer (CRC). METHODS ST6Gal I activity was determined in healthy, transitional and tumor tissues from the same patient using asialotransferrin and N-acetyllactosamine as acceptors. RESULTS ST6Gal I activities with asialotransferrin (n = 85) and N-acetyllactosamine (n = 40) as acceptors were statistically significantly enhanced in CRC tissue compared with healthy mucosa from the same patient (p = 0.001). Using transitional tissue (n = 27), enhancement versus healthy tissue was observed (p < 0.05). A positive correlation was found between ST6Gal I activity with N-acetyllactosamine and asialotransferrin in healthy (n = 32), tumorous (n = 32) and transitional tissue (n = 27), supporting the fact that the same enzyme was detected using both acceptors. Furthermore, we studied the relationship between some patients' clinicopathological features and ST6Gal I activity. Although the differences were not statistically significant, the levels of ST6Gal I activity in tumorous and transitional tissues varied with the histological grade of the tumor; however, we failed to find a correlation with the AJCC tumor classification. CONCLUSIONS This work reports enhanced ST6Gal I activity in tumor and transitional tissues from CRC patients. However, our overall results suggest that ST6Gal I activity is not indicative of the patient's outcome.
Collapse
Affiliation(s)
- Cristina Vázquez-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Spain
| | | | | |
Collapse
|