1
|
Wang J, Yan D, Cui H, Zhang R, Ma X, Chen L, Hu C, Wu J. Identification of eight genomic protective alleles for mitochondrial diabetes by Kinship-graph convolutional network. J Diabetes Investig 2024; 15:52-62. [PMID: 38157301 PMCID: PMC10759726 DOI: 10.1111/jdi.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
AIMS Nearly 85% of maternally inherited diabetes and deafness (MIDD) are caused by the m.3243A>G mutation in the mitochondrial DNA. However, the clinical phenotypes of MIDD may also be influenced by the nuclear genome, this study aimed to investigate nuclear genome variants that influence clinical phenotypes associated with m.3243A>G mutation in MIDD based on whole-genome sequencing of the patients belonging to pedigrees. MATERIALS AND METHODS We analyzed a whole-genome sequencing (WGS) dataset from blood samples of 38 MIDD patients with the m.3243A > G mutation belonging to 10 pedigrees, by developing a Kinship-graph convolutional network approach, called Ki-GCN, integrated with the conventional genome-wide association study (GWAS) methods. RESULTS We identified eight protective alleles in the nuclear genome that have protective effects against the onset of MIDD, related deafness, and also type 2 diabetes. Based on these eight protective alleles, we constructed an effective logistic regression model to predict the early or late onset of MIDD patients. CONCLUSIONS There are protective alleles in the nuclear genome that are associated with the onset-age of MIDD patients and might also provide protective effects on the deafness derived from MIDD patients.
Collapse
Affiliation(s)
- Jiahao Wang
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Dandan Yan
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Haoyue Cui
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Rong Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Xiaojing Ma
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Luonan Chen
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiangChina
| | - Cheng Hu
- Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Diabetes InstituteShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Institute for Metabolic DiseaseFengxian Central Hospital Affiliated to Southern Medical UniversityShanghaiChina
| | - Jiarui Wu
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell ScienceChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiangChina
| |
Collapse
|
2
|
Niloy KK, Lowe TL. Injectable systems for long-lasting insulin therapy. Adv Drug Deliv Rev 2023; 203:115121. [PMID: 37898336 DOI: 10.1016/j.addr.2023.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insulin therapy is the mainstay to treat diabetes characterizedd by hyperglycemia. However, its short half-life of only 4-6 min limits its effectiveness in treating chronic diabetes. Advances in recombinant DNA technology and protein engineering have led to several insulin analogue products that have up to 42 h of glycemic control. However, these insulin analogues still require once- or twice-daily injections for optimal glycemic control and have poor patient compliance and adherence issues. To achieve insulin release for more than one day, different injectable delivery systems including microspheres, in situ forming depots, nanoparticles and composite systems have been developed. Several of these delivery systems have advanced to clinical trials for once-weekly insulin injection. This review comprehensively summarizes the developments of injectable insulin analogs and delivery systems covering the whole field of injectable long-lasting insulin technologies from prototype design, preclinical studies, clinical trials to marketed products for the treatment of diabetes.
Collapse
Affiliation(s)
- Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
3
|
Komori T, Kuwahara T. An Update on the Interplay between LRRK2, Rab GTPases and Parkinson's Disease. Biomolecules 2023; 13:1645. [PMID: 38002327 PMCID: PMC10669493 DOI: 10.3390/biom13111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, research on the pathobiology of neurodegenerative diseases has greatly evolved, revealing potential targets and mechanisms linked to their pathogenesis. Parkinson's disease (PD) is no exception, and recent studies point to the involvement of endolysosomal defects in PD. The endolysosomal system, which tightly controls a flow of endocytosed vesicles targeted either for degradation or recycling, is regulated by a number of Rab GTPases. Their associations with leucine-rich repeat kinase 2 (LRRK2), a major causative and risk protein of PD, has also been one of the hot topics in the field. Understanding their interactions and functions is critical for unraveling their contribution to PD pathogenesis. In this review, we summarize recent studies on LRRK2 and Rab GTPases and attempt to provide more insight into the interaction of LRRK2 with each Rab and its relationship to PD.
Collapse
Affiliation(s)
| | - Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Shah DP, Joshi M, Shedaliya U, Krishnakumar A. Recurrent hypoglycemia dampens functional regulation mediated via Neurexin-1, Neuroligin-2 and Mint-1 docking proteins: Intensified complications during diabetes. Cell Signal 2023; 104:110582. [PMID: 36587752 DOI: 10.1016/j.cellsig.2022.110582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Glycemic regulation is important for maintaining critical physiological functions. Extreme variation in levels of circulating glucose are known to affect insulin secretion. Elevated insulin levels result in lowering of circulating glycemic levels culminating into hypoglycemia. Recurrence of hypoglycemia are often noted owing to fasting conditions, untimely meals, irregular dietary consumption, or as a side-effect of disease pathophysiology. Such events of hypoglycemia threaten to hamper the patterns of insulin secretion in diabetic condition. Insulin vesicle docking is a prerequisite phase which ensures anchoring of the vesicles to the β-cell membrane in order to expel the insulin cargo. Neurexin and Neuroligin are the marker docking proteins which assists in the tethering of the insulin granules to the secretory membrane. However, these cell adhesion molecules indirectly affect the glycemic levels by regulating insulin secretion. The effect of extreme levels of glycemic fluctuations on these molecules, and how it affects the docking machinery remains obscure. Our current study demonstrates down-regulated expression of Neurexin-1, Neuroligin-2 and Mint-1 molecules during hyperglycemia, hypoglycemia and diabetic hypoglycemia in rodents as well as for an in-vitro system using MIN6 cell-line. Studies with fluorescently labelled insulin revealed presence of lessened functional insulin secretory granules, concomitant with the alterations in morphology and as a result of hypoglycemia in control and diabetic condition which was found to be further deteriorating. Our studies indicate towards a feeble vesicular anchorage, which may partly be responsible for dwindled insulin secretion during diabetes. However, hypoglycemia poses as a potent diabetic complication in further deteriorating the docking machinery. To the best of our knowledge this is the first report which demonstrates the effect of hypoglycemic events in affecting insulin secretion by weakening insulin vesicular anchorage in normal and diabetic individuals.
Collapse
Affiliation(s)
- Dhriti P Shah
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Madhavi Joshi
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Urja Shedaliya
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amee Krishnakumar
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
5
|
Ataie-Ashtiani S, Forbes B. A Review of the Biosynthesis and Structural Implications of Insulin Gene Mutations Linked to Human Disease. Cells 2023; 12:cells12071008. [PMID: 37048081 PMCID: PMC10093311 DOI: 10.3390/cells12071008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
The discovery of the insulin hormone over 100 years ago, and its subsequent therapeutic application, marked a key landmark in the history of medicine and medical research. The many roles insulin plays in cell metabolism and growth have been revealed by extensive investigations into the structure and function of insulin, the insulin tyrosine kinase receptor (IR), as well as the signalling cascades, which occur upon insulin binding to the IR. In this review, the insulin gene mutations identified as causing disease and the structural implications of these mutations will be discussed. Over 100 studies were evaluated by one reviewing author, and over 70 insulin gene mutations were identified. Mutations may impair insulin gene transcription and translation, preproinsulin trafficking and proinsulin sorting, or insulin-IR interactions. A better understanding of insulin gene mutations and the resultant pathophysiology can give essential insight into the molecular mechanisms underlying impaired insulin biosynthesis and insulin-IR interaction.
Collapse
|
6
|
Zhao G, Xu H, Li H, Zhang J, Gao J, Cai M, Wang H, Shi Y, Wang H. Regulatory Mechanisms of SNAP-25-Associated Insulin Release Revealed by Live-Cell Confocal and Single-Molecule Localization Imaging. Anal Chem 2022; 94:15307-15314. [DOI: 10.1021/acs.analchem.2c02677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guanfang Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
7
|
Nagao M, Lagerstedt JO, Eliasson L. Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells. Diabetol Int 2022; 13:471-479. [PMID: 35694000 PMCID: PMC9174382 DOI: 10.1007/s13340-022-00580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
The sequence of events for secreting insulin in response to glucose in pancreatic β-cells is termed "stimulus-secretion coupling". The core of stimulus-secretion coupling is a process which generates electrical activity in response to glucose uptake and causes Ca2+ oscillation for triggering exocytosis of insulin-containing secretory granules. Prior to exocytosis, the secretory granules are mobilized and docked to the plasma membrane and primed for fusion with the plasma membrane. Together with the final fusion with the plasma membrane, these steps are named the exocytosis process of insulin secretion. The steps involved in the exocytosis process are crucial for insulin release from β-cells and considered indispensable for glucose homeostasis. We recently confirmed a signature of defective exocytosis process in human islets and β-cells of obese donors with type 2 diabetes (T2D). Furthermore, cyclic AMP (cAMP) potentiates glucose-stimulated insulin secretion through mechanisms including accelerating the exocytosis process. In this mini-review, we aimed to organize essential knowledge of the secretory granule exocytosis and its amplification by cAMP. Then, we suggest the fatty acid translocase CD36 as a predisposition in β-cells for causing defective exocytosis, which is considered a pathogenesis of T2D in relation to obesity. Finally, we propose potential therapeutics of the defective exocytosis based on a CD36-neutralizing antibody and on Apolipoprotein A-I (ApoA-I), for improving β-cell function in T2D.
Collapse
Affiliation(s)
- Mototsugu Nagao
- Department of Endocrinology, Diabetes and Metabolism, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603 Japan
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| | - Jens O. Lagerstedt
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
- Novo Nordisk A/S, Copenhagen, Denmark
| | - Lena Eliasson
- Department of Clinical Sciences Malmö, Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, CRC 91-11, Jan Waldenströms Gata 35, 214 28 Malmö, Sweden
| |
Collapse
|
8
|
Chatterjee Bhowmick D, Aslamy A, Bhattacharya S, Oh E, Ahn M, Thurmond DC. DOC2b Enhances β-Cell Function via a Novel Tyrosine Phosphorylation-Dependent Mechanism. Diabetes 2022; 71:1246-1260. [PMID: 35377441 PMCID: PMC9163558 DOI: 10.2337/db21-0681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/13/2022] [Indexed: 11/13/2022]
Abstract
Double C2 domain Β (DOC2b) protein is required for glucose-stimulated insulin secretion (GSIS) in β-cells, the underlying mechanism of which remains unresolved. Our biochemical analysis using primary human islets and human and rodent clonal β-cells revealed that DOC2b is tyrosine phosphorylated within 2 min of glucose stimulation, and Src family kinase member YES is required for this process. Biochemical and functional analysis using DOC2bY301 mutants revealed the requirement of Y301 phosphorylation for the interaction of DOC2b with YES kinase and increased content of VAMP2, a protein on insulin secretory granules, at the plasma membrane (PM), concomitant with DOC2b-mediated enhancement of GSIS in β-cells. Coimmunoprecipitation studies demonstrated an increased association of DOC2b with ERM family proteins in β-cells following glucose stimulation or pervanadate treatment. Y301 phosphorylation-competent DOC2b was required to increase ERM protein activation, and ERM protein knockdown impaired DOC2b-mediated boosting of GSIS, suggesting that tyrosine-phosphorylated DOC2b regulates GSIS via ERM-mediated granule localization to the PM. Taken together, these results demonstrate the glucose-induced posttranslational modification of DOC2b in β-cells, pinpointing the kinase, site of action, and downstream signaling events and revealing a regulatory role of YES kinase at various steps in GSIS. This work will enhance the development of novel therapeutic strategies to restore glucose homeostasis in diabetes.
Collapse
Affiliation(s)
- Diti Chatterjee Bhowmick
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Arianne Aslamy
- Department of Medicine, Cedars-Sinai Medical Center, West Hollywood, CA
| | | | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
9
|
Deng K, Thorn P. Presynaptic-like mechanisms and the control of insulin secretion in pancreatic β-cells. Cell Calcium 2022; 104:102585. [DOI: 10.1016/j.ceca.2022.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
|
10
|
Rohli KE, Boyer CK, Blom SE, Stephens SB. Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production. Biomolecules 2022; 12:335. [PMID: 35204835 PMCID: PMC8869698 DOI: 10.3390/biom12020335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell's secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D.
Collapse
Affiliation(s)
- Kristen E. Rohli
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cierra K. Boyer
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Sandra E. Blom
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; (K.E.R.); (C.K.B.); (S.E.B.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Langlhofer G, Kogel A, Schaefer M. Glucose-induced [Ca2+]i oscillations in β cells are composed of trains of spikes within a subplasmalemmal microdomain. Cell Calcium 2021; 99:102469. [PMID: 34509871 DOI: 10.1016/j.ceca.2021.102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Electrical activity and oscillations of cytosolic Ca2+ concentrations ([Ca2+]i) that trigger insulin release in response to glucose are key functions of pancreatic β cells. Although oscillatory Ca2+ signals have been intensively studied in β cells, their lower frequency did not match that of electrical activity. In addition, the measured peak [Ca2+]i did not reach levels that are typically required by synaptotagmins to elicit the release of insulin-containing vesicles in live-cell experiments. We therefore sought to resolve the Ca2+ dynamics in the subplasmalemmal microdomain that is critical for triggering fast exocytosis. Applying total internal reflection fluorescence (TIRF) microscopy in insulin-producing INS-1E and primary mouse β cells, we resolved extraordinary fast trains of Ca2+ spiking (frequency > 3 s-1) in response to glucose exposure. Using a low-affinity [Ca2+]i indicator dye, we provide experimental evidence that Ca2+ spikes reach low micromolar apparent concentrations in the vicinity of the plasma membrane. Analysis of Ca2+ spikes evoked by repeated depolarization for 10 ms closely matched the Ca2+ dynamics observed upon glucose application. To our knowledge, this is the first study that experimentally demonstrates Ca2+ spikes in β cells with velocities that resemble those of bursting or continuously appearing trains of action potentials (APs) in non-patched cells.
Collapse
Affiliation(s)
- Georg Langlhofer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Alexander Kogel
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
12
|
Mansouri M, Xue S, Hussherr MD, Strittmatter T, Camenisch G, Fussenegger M. Smartphone-Flashlight-Mediated Remote Control of Rapid Insulin Secretion Restores Glucose Homeostasis in Experimental Type-1 Diabetes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101939. [PMID: 34227232 DOI: 10.1002/smll.202101939] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Indexed: 06/13/2023]
Abstract
Emerging digital assessment of biomarkers by linking health-related data obtained from wearable electronic devices and embedded health and fitness sensors in smartphones is opening up the possibility of creating a continuous remote-monitoring platform for disease management. It is considered that the built-in flashlight of smartphones may be utilized to remotely program genetically engineered designer cells for on-demand delivery of protein-based therapeutics. Here, the authors present smartphone-induced insulin release in β-cell line (iβ-cell) technology for traceless light-triggered rapid insulin secretion, employing the light-activatable receptor melanopsin to induce calcium influx and membrane depolarization upon illumination. This iβ-cell-based system enables repeated, reversible secretion of insulin within 15 min in response to light stimulation, with a high induction fold both in vitro and in vivo. It is shown that programmable percutaneous remote control of implanted microencapsulated iβ-cells with a smartphone's flashlight rapidly reverses hyperglycemia in a mouse model of type-1 diabetes.
Collapse
Affiliation(s)
- Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Marie-Didiée Hussherr
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Tobias Strittmatter
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Gieri Camenisch
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
13
|
Wang Z, Li J, Zhang T, Lu T, Wang H, Jia M, Liu J, Xiong J, Zhang D, Wang L. Family-based association study identifies SNAP25 as a susceptibility gene for autism in the Han Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:109985. [PMID: 32479779 DOI: 10.1016/j.pnpbp.2020.109985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/26/2020] [Indexed: 11/18/2022]
Abstract
Autism is a neurodevelopmental disorder with high heritability. Synaptosome associated protein 25 (SNAP25) encodes a presynaptic membrane-binding protein. It plays a crucial role in neurotransmission and may be involved in the pathogenesis of autism. However, the association between SNAP25 and autism in the Han Chinese population remains unclear. To investigate whether single nucleotide polymorphisms (SNPs) in SNAP25 contribute to the risk of autism, we performed a family-based association study of 14 tagSNPs in SNAP25 in 640 Han Chinese autism trios. Our results demonstrated that rs363018 in SNAP25 was significantly associated with autism under both additive (A > G, Z = 3.144, P = .0017) and recessive models (A > G, Z = 3.055, P = .0023) after Bonferroni correction (P < .0036). An additional SNP, rs8636, was nominally associated with autism under the recessive model (C > T, Z = 1.972, P = .0487). Haplotype-based association test revealed that haplotypes A-T (Z = 2.038, P = .0415) and G-T (Z = -3.114, P = .0018) of rs363018-rs362582 were significantly associated with autism after the permutation test (P = .0158). These findings suggest that SNAP25 may represent a susceptibility gene for autism in the Han Chinese population.
Collapse
Affiliation(s)
- Ziqi Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jun Li
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tian Zhang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Han Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Meixiang Jia
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jing Liu
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| | - Jun Xiong
- Haidian Maternal & Child Health Hospital, Beijing 100080, China.
| | - Dai Zhang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lifang Wang
- Peking University Sixth Hospital, Beijing 100191, China; Peking University Institute of Mental Health, Beijing 100191, China; NHC Key Laboratory of Mental Health (Peking University), Beijing 100191, China; National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China.
| |
Collapse
|
14
|
Chatterjee Bhowmick D, Ahn M, Oh E, Veluthakal R, Thurmond DC. Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee β-cell Function and Protection. Int J Mol Sci 2021; 22:1833. [PMID: 33673206 PMCID: PMC7918544 DOI: 10.3390/ijms22041833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to β-cells improves whole-body glucose homeostasis, enhances β-cell function, and surprisingly, protection of β-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of β-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (D.C.B.); (M.A.); (E.O.); (R.V.)
| |
Collapse
|
15
|
Wilhelmi I, Grunwald S, Gimber N, Popp O, Dittmar G, Arumughan A, Wanker EE, Laeger T, Schmoranzer J, Daumke O, Schürmann A. The ARFRP1-dependent Golgi scaffolding protein GOPC is required for insulin secretion from pancreatic β-cells. Mol Metab 2020; 45:101151. [PMID: 33359402 PMCID: PMC7811047 DOI: 10.1016/j.molmet.2020.101151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Objective Hormone secretion from metabolically active tissues, such as pancreatic islets, is governed by specific and highly regulated signaling pathways. Defects in insulin secretion are among the major causes of diabetes. The molecular mechanisms underlying regulated insulin secretion are, however, not yet completely understood. In this work, we studied the role of the GTPase ARFRP1 on insulin secretion from pancreatic β-cells. Methods A β-cell-specific Arfrp1 knockout mouse was phenotypically characterized. Pulldown experiments and mass spectrometry analysis were employed to screen for new ARFRP1-interacting proteins. Co-immunoprecipitation assays as well as super-resolution microscopy were applied for validation. Results The GTPase ARFRP1 interacts with the Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). Both proteins are co-localized at the trans-Golgi network and regulate the first and second phase of insulin secretion by controlling the plasma membrane localization of the SNARE protein SNAP25. Downregulation of both GOPC and ARFRP1 in Min6 cells interferes with the plasma membrane localization of SNAP25 and enhances its degradation, thereby impairing glucose-stimulated insulin release from β-cells. In turn, overexpression of SNAP25 as well as GOPC restores insulin secretion in islets from β-cell-specific Arfrp1 knockout mice. Conclusion Our results identify a hitherto unrecognized pathway required for insulin secretion at the level of trans-Golgi sorting. β-cell specific deletion of the trans-Golgi residing small GTPase ARFRP1 leads to elevated blood glucose levels in mice. GOPC is a newly identified ARFRP1 dependent scaffolding protein. ARFRP1 and GOPC are required for glucose-stimulated insulin secretion from pancreatic β-cells.
Collapse
Affiliation(s)
- Ilka Wilhelmi
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany
| | - Stephan Grunwald
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility - AMBIO, Charité-Universitätsmedizin Berlin, Germany
| | - Oliver Popp
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
| | - Gunnar Dittmar
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany
| | - Anup Arumughan
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Erich E Wanker
- Neuroproteomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin, Germany
| | - Thomas Laeger
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility - AMBIO, Charité-Universitätsmedizin Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Annette Schürmann
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Germany; German Center for Diabetes Research (DZD) Munich Neuherberg, Germany; University of Potsdam, Institute of Nutritional Sciences, Nuthetal, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Germany.
| |
Collapse
|
16
|
Tian JL, Gomeshtapeh FI. Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules 2020; 10:biom10111504. [PMID: 33139642 PMCID: PMC7693894 DOI: 10.3390/biom10111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The primary cilium, an antenna-like structure on most eukaryotic cells, functions in transducing extracellular signals into intracellular responses via the receptors and ion channels distributed along it membrane. Dysfunction of this organelle causes an array of human diseases, known as ciliopathies, that often feature obesity and diabetes; this indicates the primary cilia's active role in energy metabolism, which it controls mainly through hypothalamic neurons, preadipocytes, and pancreatic β-cells. The nutrient sensor, O-GlcNAc, is widely involved in the regulation of energy homeostasis. Not only does O-GlcNAc regulate ciliary length, but it also modifies many components of cilia-mediated metabolic signaling pathways. Therefore, it is likely that O-GlcNAcylation (OGN) plays an important role in regulating energy homeostasis in primary cilia. Abnormal OGN, as seen in cases of obesity and diabetes, may play an important role in primary cilia dysfunction mediated by these pathologies.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-583-5551
| | | |
Collapse
|
17
|
Wang C, Liu Y, Zhu Y, Kong C. Functions of mammalian SIRT4 in cellular metabolism and research progress in human cancer. Oncol Lett 2020; 20:11. [PMID: 32774484 PMCID: PMC7405384 DOI: 10.3892/ol.2020.11872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Sirtuins are mammalian homologs of yeast silent information regulator two (SIRT) and are a highly conserved family of proteins, which act as nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases. The seven sirtuins (SIRT1-7) share a conserved catalytic core domain; however, they have different enzyme activities, biological functions, and subcellular localizations. Among them, mitochondrial SIRT4 possesses ADP-ribosyltransferase, NAD+-dependent deacetylase, lipoamidase, and long-chain deacylase activities and can modulate the function of substrate proteins via ADP-ribosylation, delipoylation, deacetylation and long-chain deacylation. SIRT4 has been shown to play a crucial role in insulin secretion, fatty acid oxidation, amino acid metabolism, ATP homeostasis, apoptosis, neurodegeneration, and cardiovascular diseases. In addition, recent studies have demonstrated that SIRT4 acts as a tumor suppressor. Here, the present review summarizes the enzymatic activities and biological functions of SIRT4, as well as its roles in cellular metabolism and human cancer, which are described in the current literature.
Collapse
Affiliation(s)
- Changming Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yan Liu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuyan Zhu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chuize Kong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Urological Laboratory, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
18
|
Pang H, Wang X, Zhao S, Xi W, Lv J, Qin J, Zhao Q, Che Y, Chen L, Li SJ. Loss of the voltage-gated proton channel Hv1 decreases insulin secretion and leads to hyperglycemia and glucose intolerance in mice. J Biol Chem 2020; 295:3601-3613. [PMID: 31949049 DOI: 10.1074/jbc.ra119.010489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/16/2020] [Indexed: 11/06/2022] Open
Abstract
Insulin secretion by pancreatic islet β-cells is regulated by glucose levels and is accompanied by proton generation. The voltage-gated proton channel Hv1 is present in pancreatic β-cells and extremely selective for protons. However, whether Hv1 is involved in insulin secretion is unclear. Here we demonstrate that Hv1 promotes insulin secretion of pancreatic β-cells and glucose homeostasis. Hv1-deficient mice displayed hyperglycemia and glucose intolerance because of reduced insulin secretion but retained normal peripheral insulin sensitivity. Moreover, Hv1 loss contributed much more to severe glucose intolerance as the mice got older. Islets of Hv1-deficient and heterozygous mice were markedly deficient in glucose- and K+-induced insulin secretion. In perifusion assays, Hv1 deletion dramatically reduced the first and second phase of glucose-stimulated insulin secretion. Islet insulin and proinsulin content was reduced, and histological analysis of pancreas slices revealed an accompanying modest reduction of β-cell mass in Hv1 knockout mice. EM observations also indicated a reduction in insulin granule size, but not granule number or granule docking, in Hv1-deficient mice. Mechanistically, Hv1 loss limited the capacity for glucose-induced membrane depolarization, accompanied by a reduced ability of glucose to raise Ca2+ levels in islets, as evidenced by decreased durations of individual calcium oscillations. Moreover, Hv1 expression was significantly reduced in pancreatic β-cells from streptozotocin-induced diabetic mice, indicating that Hv1 deficiency is associated with β-cell dysfunction and diabetes. We conclude that Hv1 regulates insulin secretion and glucose homeostasis through a mechanism that depends on intracellular Ca2+ levels and membrane depolarization.
Collapse
Affiliation(s)
- Huimin Pang
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xudong Wang
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shiqun Zhao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Wang Xi
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jili Lv
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Jiwei Qin
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Qing Zhao
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yongzhe Che
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Liangyi Chen
- Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Shu Jie Li
- Department of Biophysics, School of Physics Science, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
19
|
Zhang J, Oh E, Merz KE, Aslamy A, Veluthakal R, Salunkhe VA, Ahn M, Tunduguru R, Thurmond DC. DOC2B promotes insulin sensitivity in mice via a novel KLC1-dependent mechanism in skeletal muscle. Diabetologia 2019; 62:845-859. [PMID: 30707251 PMCID: PMC6451670 DOI: 10.1007/s00125-019-4824-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Skeletal muscle accounts for >80% of insulin-stimulated glucose uptake; dysfunction of this process underlies insulin resistance and type 2 diabetes. Insulin sensitivity is impaired in mice deficient in the double C2 domain β (DOC2B) protein, while whole-body overexpression of DOC2B enhances insulin sensitivity. Whether insulin sensitivity in the skeletal muscle is affected directly by DOC2B or is secondary to an effect on other tissues is unknown; the underlying molecular mechanisms also remain unclear. METHODS Human skeletal muscle samples from non-diabetic or type 2 diabetic donors were evaluated for loss of DOC2B during diabetes development. For in vivo analysis, new doxycycline-inducible skeletal-muscle-specific Doc2b-overexpressing mice fed standard or high-fat diets were evaluated for insulin and glucose tolerance, and insulin-stimulated GLUT4 accumulation at the plasma membrane (PM). For in vitro analyses, a DOC2B-overexpressing L6-GLUT4-myc myoblast/myotube culture system was coupled with an insulin resistance paradigm. Biochemical and molecular biology methods such as site-directed mutagenesis, co-immunoprecipitation and mass spectrometry were used to identify the molecular mechanisms linking insulin stimulation to DOC2B. RESULTS We identified loss of DOC2B (55% reduction in RNA and 40% reduction in protein) in the skeletal muscle of human donors with type 2 diabetes. Furthermore, inducible enrichment of DOC2B in skeletal muscle of transgenic mice enhanced whole-body glucose tolerance (AUC decreased by 25% for female mice) and peripheral insulin sensitivity (area over the curve increased by 20% and 26% for female and male mice, respectively) in vivo, underpinned by enhanced insulin-stimulated GLUT4 accumulation at the PM. Moreover, DOC2B enrichment in skeletal muscle protected mice from high-fat-diet-induced peripheral insulin resistance, despite the persistence of obesity. In L6-GLUT4-myc myoblasts, DOC2B enrichment was sufficient to preserve normal insulin-stimulated GLUT4 accumulation at the PM in cells exposed to diabetogenic stimuli. We further identified that DOC2B is phosphorylated on insulin stimulation, enhancing its interaction with a microtubule motor protein, kinesin light chain 1 (KLC1). Mutation of Y301 in DOC2B blocked the insulin-stimulated phosphorylation of DOC2B and interaction with KLC1, and it blunted the ability of DOC2B to enhance insulin-stimulated GLUT4 accumulation at the PM. CONCLUSIONS/INTERPRETATION These results suggest that DOC2B collaborates with KLC1 to regulate insulin-stimulated GLUT4 accumulation at the PM and regulates insulin sensitivity. Our observation provides a basis for pursuing DOC2B as a novel drug target in the muscle to prevent/treat type 2 diabetes.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Anwita Biosciences Inc, San Carlos, CA, USA
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Karla E Merz
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Vishal A Salunkhe
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
20
|
Michael ES, Covic L, Kuliopulos A. Trace amine-associated receptor 1 (TAAR1) promotes anti-diabetic signaling in insulin-secreting cells. J Biol Chem 2019; 294:4401-4411. [PMID: 30670596 DOI: 10.1074/jbc.ra118.005464] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/16/2019] [Indexed: 12/25/2022] Open
Abstract
Pancreatic β-cell failure in type 2 diabetes mellitus is a serious challenge that results in an inability of the pancreas to produce sufficient insulin to properly regulate blood glucose levels. Trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor expressed by β-cells that has recently been proposed as a potential target for improving glycemic control and suppressing binge eating behaviors. We discovered that TAAR1 is coupled to Gαs-signaling pathways in insulin-secreting β-cells to cause protein kinase A (PKA)/exchange protein activated by cAMP (Epac)-dependent release of insulin, activation of RAF proto-oncogene, Ser/Thr kinase (Raf)-mitogen-activated protein kinase (MAPK) signaling, induction of cAMP response element-binding protein (CREB)-insulin receptor substrate 2 (Irs-2), and increased β-cell proliferation. Interestingly, TAAR1 triggered cAMP-mediated calcium influx and release from internal stores, both of which were required for activation of a MAPK cascade utilizing calmodulin-dependent protein kinase II (CaMKII), Raf, and MAPK/ERK kinase 1/2 (MEK1/2). Together, these data identify TAAR1/Gαs-mediated signaling pathways that promote insulin secretion, improved β-cell function and proliferation, and highlight TAAR1 as a promising new target for improving β-cell health in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Emily S Michael
- From the Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Department of Medicine, Tufts University School of Graduate Biomedical Sciences/Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Lidija Covic
- From the Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Department of Medicine, Tufts University School of Graduate Biomedical Sciences/Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Athan Kuliopulos
- From the Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Department of Medicine, Tufts University School of Graduate Biomedical Sciences/Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
21
|
Aslamy A, Oh E, Olson EM, Zhang J, Ahn M, Moin ASM, Tunduguru R, Salunkhe VA, Veluthakal R, Thurmond DC. Doc2b Protects β-Cells Against Inflammatory Damage and Enhances Function. Diabetes 2018; 67:1332-1344. [PMID: 29661782 PMCID: PMC6014558 DOI: 10.2337/db17-1352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/09/2018] [Indexed: 12/12/2022]
Abstract
Loss of functional β-cell mass is an early feature of type 1 diabetes. To release insulin, β-cells require soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes, as well as SNARE complex regulatory proteins like double C2 domain-containing protein β (Doc2b). We hypothesized that Doc2b deficiency or overabundance may confer susceptibility or protection, respectively, to the functional β-cell mass. Indeed, Doc2b+/- knockout mice show an unusually severe response to multiple-low-dose streptozotocin (MLD-STZ), resulting in more apoptotic β-cells and a smaller β-cell mass. In addition, inducible β-cell-specific Doc2b-overexpressing transgenic (βDoc2b-dTg) mice show improved glucose tolerance and resist MLD-STZ-induced disruption of glucose tolerance, fasting hyperglycemia, β-cell apoptosis, and loss of β-cell mass. Mechanistically, Doc2b enrichment enhances glucose-stimulated insulin secretion (GSIS) and SNARE activation and prevents the appearance of apoptotic markers in response to cytokine stress and thapsigargin. Furthermore, expression of a peptide containing the Doc2b tandem C2A and C2B domains is sufficient to confer the beneficial effects of Doc2b enrichment on GSIS, SNARE activation, and apoptosis. These studies demonstrate that Doc2b enrichment in the β-cell protects against diabetogenic and proapoptotic stress. Furthermore, they identify a Doc2b peptide that confers the beneficial effects of Doc2b and may be a therapeutic candidate for protecting functional β-cell mass.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Erika M Olson
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Jing Zhang
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Abu Saleh Md Moin
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Ragadeepthi Tunduguru
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Vishal A Salunkhe
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes and Metabolic Research Institute, Beckman Research Institute of City of Hope, Duarte, CA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
22
|
Waters CD, Hard JJ, Brieuc MSO, Fast DE, Warheit KI, Knudsen CM, Bosch WJ, Naish KA. Genomewide association analyses of fitness traits in captive-reared Chinook salmon: Applications in evaluating conservation strategies. Evol Appl 2018; 11:853-868. [PMID: 29928295 PMCID: PMC5999212 DOI: 10.1111/eva.12599] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
A novel application of genomewide association analyses is to use trait-associated loci to monitor the effects of conservation strategies on potentially adaptive genetic variation. Comparisons of fitness between captive- and wild-origin individuals, for example, do not reveal how captive rearing affects genetic variation underlying fitness traits or which traits are most susceptible to domestication selection. Here, we used data collected across four generations to identify loci associated with six traits in adult Chinook salmon (Oncorhynchus tshawytscha) and then determined how two alternative management approaches for captive rearing affected variation at these loci. Loci associated with date of return to freshwater spawning grounds (return timing), length and weight at return, age at maturity, spawn timing, and daily growth coefficient were identified using 9108 restriction site-associated markers and random forest, an approach suitable for polygenic traits. Mapping of trait-associated loci, gene annotations, and integration of results across multiple studies revealed candidate regions involved in several fitness-related traits. Genotypes at trait-associated loci were then compared between two hatchery populations that were derived from the same source but are now managed as separate lines, one integrated with and one segregated from the wild population. While no broad-scale change was detected across four generations, there were numerous regions where trait-associated loci overlapped with signatures of adaptive divergence previously identified in the two lines. Many regions, primarily with loci linked to return and spawn timing, were either unique to or more divergent in the segregated line, suggesting that these traits may be responding to domestication selection. This study is one of the first to utilize genomic approaches to demonstrate the effectiveness of a conservation strategy, managed gene flow, on trait-associated-and potentially adaptive-loci. The results will promote the development of trait-specific tools to better monitor genetic change in captive and wild populations.
Collapse
Affiliation(s)
- Charles D. Waters
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| | - Jeffrey J. Hard
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Oceanic and Atmospheric AdministrationSeattleWAUSA
| | - Marine S. O. Brieuc
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
- Department of BiosciencesCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloOsloNorway
| | | | | | | | | | - Kerry A. Naish
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
23
|
Alford S, Hamm H, Rodriguez S, Zurawski Z. Gβγ SNARE Interactions and Their Behavioral Effects. Neurochem Res 2018; 44:636-649. [PMID: 29752624 DOI: 10.1007/s11064-018-2531-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/09/2018] [Accepted: 04/16/2018] [Indexed: 11/25/2022]
Abstract
Presynaptic terminals possess interlocking molecular mechanisms that control exocytosis. An example of such complexity is the modulation of release by presynaptic G Protein Coupled Receptors (GPCRs). GPCR ubiquity at synapses-GPCRs are present at every studied presynaptic terminal-underlies their critical importance in synaptic function. GPCRs mediate presynaptic modulation by mechanisms including via classical Gα effectors, but membrane-delimited actions of Gβγ can also alter probability of release by altering presynaptic ionic conductances. This directly or indirectly modifies action potential-evoked presynaptic Ca2+ entry. In addition, Gβγ can interact directly with SNARE complexes responsible for synaptic vesicle fusion to reduce peak cleft neurotransmitter concentrations during evoked release. The interaction of Gβγ with SNARE is displaced via competitive interaction with C2AB-domain containing calcium sensors such as synaptotagmin I in a Ca2+-sensitive manner, restoring exocytosis. Synaptic modulation of this form allows selective inhibition of postsynaptic receptor-mediated responses, and this, in combination with Ca2+ sensitivity of Gβγ effects on SNARE complexes allows for specific behavioral outcomes. One such outcome mediated by 5-HT receptors in the spinal cord seen in all vertebrates shows remarkable synergy between presynaptic effects of Gβγ and postsynaptic 5-HT-mediated changes in activation of Ca2+-dependent K+ channels. While acting through entirely separate cellular compartments and signal transduction pathways, these effects converge on the same effect on locomotion and other critical functions of the central nervous system.
Collapse
Affiliation(s)
- Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA.
| | - Heidi Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| | - Shelagh Rodriguez
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
| | - Zack Zurawski
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, 60612-7308, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232-6600, USA
| |
Collapse
|
24
|
Zhang C, Qian D, Zhao H, Lv N, Yu P, Sun Z. MiR17 improves insulin sensitivity through inhibiting expression of ASK1 and anti-inflammation of macrophages. Biomed Pharmacother 2018; 100:448-454. [PMID: 29477089 DOI: 10.1016/j.biopha.2018.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES MicroRNAs (miRNAs) are involved in the pathological progression of various disease including type 2 diabetes (T2D). Chronic inflammation in adipose tissue is a cause of insulin resistance and T2D. MiR-17 palys an anti-inflammatory role in many biological processes. We hypothesized that miR-17 suppressed inflammatory macrophage that is related to insulin resistance in patients with T2D. METHODS Macrophage migration and secretion of inflammatory cytokines including TNF-α, IL-6 and IL-1β were detected through transwell migration assay and enzyme-linked immunosorbent assay, respectively. Insulin-stimulated glucose uptake was tested by the radioactivity of tritium-labeled glucose in 3T3-L1 adipocytes. Dual luciferase reporter gene assay was employed to evaluate the interaction between miR-17 and 3'UTR of ASK1. RESULTS Our results showed that miR-17 inhibited macrophage infiltration and secretion of TNF-α, IL-6 and IL-1β. Moreover, insulin-stimulated glucose uptake of 3T3-L1 was suppressed by treatment with LPS-induced macrophage conditioned media (CM), whereas the opposite effect was showed after treatment with the CM of macrophages transfected with miR-17. Furthermore, we found that miR-17 directly prevented expression of ASK1 by binding to its 3'UTR. CONCLUSION miR-17 improved inflammation-induced insulin resistance by suppressing ASK1 expression in macrophages. These results indicated that miR-17 had an anti-diabetic acitivity by its anti-inflammation effect on macrophage.
Collapse
Affiliation(s)
- Chen Zhang
- Tianjin Medical University, Tianjin 300070, China; Department of Minimal Invasive Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Dong Qian
- Department of Minimal Invasive Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hongzhi Zhao
- Department of Minimal Invasive Surgery, Tianjin Nankai Hospital, Tianjin 300100, China.
| | - Nan Lv
- Tianjin Institute of Medicine and Pharmaceutical Science, Tianjin, 300020, China
| | - Pei Yu
- Department of Endocrinology, Metabolic Disease Hospital, Tianjin Medical University,Tianjin 300070, China
| | - Zhe Sun
- Department of Minimal Invasive Surgery, Tianjin Nankai Hospital, Tianjin 300100, China
| |
Collapse
|
25
|
Chronic treatment with fluoride affects the jejunum: insights from proteomics and enteric innervation analysis. Sci Rep 2018; 8:3180. [PMID: 29453425 PMCID: PMC5816638 DOI: 10.1038/s41598-018-21533-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/06/2018] [Indexed: 01/29/2023] Open
Abstract
Gastrointestinal symptoms are the first signs of fluoride (F) toxicity. In the present study, the jejunum of rats chronically exposed to F was evaluated by proteomics, as well as by morphological analysis. Wistar rats received water containing 0, 10 or 50 mgF/L during 30 days. HuC/D, neuronal Nitric Oxide (nNOS), Vasoactive Intestinal Peptide (VIP), Calcitonin Gene Related Peptide (CGRP), and Substance P (SP) were detected in the myenteric plexus of the jejunum by immunofluorescence. The density of nNOS-IR neurons was significantly decreased (compared to both control and 10 mgF/L groups), while the VIP-IR varicosities were significantly increased (compared to control) in the group treated with the highest F concentration. Significant morphological changes were seen observed in the density of HUC/D-IR neurons and in the area of SP-IR varicosities for F-treated groups compared to control. Changes in the abundance of various proteins correlated with relevant biological processes, such as protein synthesis, glucose homeostasis and energy metabolism were revealed by proteomics.
Collapse
|
26
|
Korošak D, Slak Rupnik M. Collective Sensing of β-Cells Generates the Metabolic Code. Front Physiol 2018; 9:31. [PMID: 29416515 PMCID: PMC5787558 DOI: 10.3389/fphys.2018.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/09/2018] [Indexed: 01/24/2023] Open
Abstract
Major part of a pancreatic islet is composed of β-cells that secrete insulin, a key hormone regulating influx of nutrients into all cells in a vertebrate organism to support nutrition, housekeeping or energy storage. β-cells constantly communicate with each other using both direct, short-range interactions through gap junctions, and paracrine long-range signaling. However, how these cell interactions shape collective sensing and cell behavior in islets that leads to insulin release is unknown. When stimulated by specific ligands, primarily glucose, β-cells collectively respond with expression of a series of transient Ca2+ changes on several temporal scales. Here we reanalyze a set of Ca2+ spike trains recorded in acute rodent pancreatic tissue slice under physiological conditions. We found strongly correlated states of co-spiking cells coexisting with mostly weak pairwise correlations widespread across the islet. Furthermore, the collective Ca2+ spiking activity in islet shows on-off intermittency with scaling of spiking amplitudes, and stimulus dependent autoassociative memory features. We use a simple spin glass-like model for the functional network of a β-cell collective to describe these findings and argue that Ca2+ spike trains produced by collective sensing of β-cells constitute part of the islet metabolic code that regulates insulin release and limits the islet size.
Collapse
Affiliation(s)
- Dean Korošak
- Institute for Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Maribor, Slovenia.,Percipio Ltd., Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute for Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.,Center for Physiology and Pharmacology, Institute for Physiology, Medical University of Vienna, Vienna, Austria.,Alma Mater Europaea - European Center Maribor, Maribor, Slovenia
| |
Collapse
|
27
|
Zhang XA, Martin TF. High Throughput NPY-Venus and Serotonin Secretion Assays for Regulated Exocytosis in Neuroendocrine Cells. Bio Protoc 2018; 8:e2680. [PMID: 29552592 PMCID: PMC5856254 DOI: 10.21769/bioprotoc.2680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/18/2017] [Accepted: 01/04/2018] [Indexed: 11/02/2022] Open
Abstract
Here we describe two assays to measure dense core vesicle (DCV) exocytosis-mediated cargo secretion in neuroendocrine cells. To conduct siRNA screens for novel genes in regulated DCV exocytosis, we developed a plate reader-based secretion assay using DCV cargo, NPY-Venus, and an orthogonal 3H-serotonin secretion assay. The NPY-Venus secretion assay was successfully used for a high throughput siRNA screen, and the serotonin secretion assay was used to validate hits identified from the screen (Sorensen, 2017; Zhang et al., 2017).
Collapse
Affiliation(s)
- Xingmin Aaron Zhang
- Program in Cellular and Molecular Biology, University of Wisconsin Madison, Madison, WI, USA
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| | - Thomas F.J. Martin
- Department of Biochemistry, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
28
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
30
|
Müller A, Mziaut H, Neukam M, Knoch KP, Solimena M. A 4D view on insulin secretory granule turnover in the β-cell. Diabetes Obes Metab 2017; 19 Suppl 1:107-114. [PMID: 28880479 DOI: 10.1111/dom.13015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/31/2023]
Abstract
Insulin secretory granule (SG) turnover consists of several highly regulated processes allowing for proper β-cell function and insulin secretion. Besides the spatial distribution of insulin SGs, their age has great impact on the likelihood of their secretion and their behaviour within the β-cell. While quantitative measurements performed decades ago demonstrated the preferential secretion of young insulin, new experimental approaches aim to investigate insulin ageing at the granular level. Live-cell imaging, automated image analysis and correlative light and electron microscopy have fostered knowledge of age-defined insulin SG dynamics, their interaction with the cytoskeleton and ultrastructural features. Here, we review our recent work in regards to the connection between insulin SG age, SG dynamics, intracellular location and interaction with other proteins.
Collapse
Affiliation(s)
- Andreas Müller
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Hassan Mziaut
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Klaus-Peter Knoch
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich, University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
| |
Collapse
|
31
|
Félix-Martínez GJ, Godínez-Fernández JR. Modeling the spatiotemporal distribution of Ca
2+
during action potential firing in human pancreatic
β
-cells. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa669f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Aslamy A, Thurmond DC. Exocytosis proteins as novel targets for diabetes prevention and/or remediation? Am J Physiol Regul Integr Comp Physiol 2017; 312:R739-R752. [PMID: 28356294 DOI: 10.1152/ajpregu.00002.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022]
Abstract
Diabetes remains one of the leading causes of morbidity and mortality worldwide, affecting an estimated 422 million adults. In the US, it is predicted that one in every three children born as of 2000 will suffer from diabetes in their lifetime. Type 2 diabetes results from combinatorial defects in pancreatic β-cell glucose-stimulated insulin secretion and in peripheral glucose uptake. Both processes, insulin secretion and glucose uptake, are mediated by exocytosis proteins, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complexes, Sec1/Munc18 (SM), and double C2-domain protein B (DOC2B). Increasing evidence links deficiencies in these exocytosis proteins to diabetes in rodents and humans. Given this, emerging studies aimed at restoring and/or enhancing cellular levels of certain exocytosis proteins point to promising outcomes in maintaining functional β-cell mass and enhancing insulin sensitivity. In doing so, new evidence also shows that enhancing exocytosis protein levels may promote health span and longevity and may also harbor anti-cancer and anti-Alzheimer's disease capabilities. Herein, we present a comprehensive review of the described capabilities of certain exocytosis proteins and how these might be targeted for improving metabolic dysregulation.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and
| | - Debbie C Thurmond
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana; and .,Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
33
|
Eliasson L, Esguerra JLS, Wendt A. Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications. Diabetol Int 2017; 8:139-152. [PMID: 30603317 DOI: 10.1007/s13340-017-0304-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/08/2017] [Indexed: 12/14/2022]
Abstract
The changes in life-style with increased access of food and reduced physical activity have resulted in the global epidemic of obesity. Consequently, individuals with type 2 diabetes and cardiovascular disease have also escalated. A central organ in the development of diabetes is the pancreas, and more specifically the pancreatic beta cells within the islets of Langerhans. Beta cells have been assigned the important task of secreting insulin when blood glucose is increased to lower the glucose level. An early sign of diabetes pathogenesis is lack of first phase insulin response and reduced second phase secretion. In this review, which is based on the foreign investigator award lecture given at the JSDC meeting in Sendai in October 2016, we discuss a possible cellular explanation for the reduced first phase insulin response and how this can be influenced by lipids. Moreover, since patients with cardiovascular disease and high levels of cholesterol are often treated with statins, we summarize recent data regarding effects on statins on glucose homeostasis and insulin secretion. Finally, we suggest microRNAs (miRNAs) as central players in the adjustment of beta cell function during the development of diabetes. We specifically discuss miRNAs regarding their involvement in insulin secretion regulation, differential expression in type 2 diabetes, and potential as biomarkers for prediction of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Lena Eliasson
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Jonathan Lou S Esguerra
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| | - Anna Wendt
- Islet Cell Exocytosis, Department of Clinical Sciences Malmö, Lund University Diabetes Centre, Lund University, Clinical Research Centre, SUS 91-11, Box 50332, 202 13 Malmö, Sweden
| |
Collapse
|
34
|
Safari MR, Omrani MD, Noroozi R, Sayad A, Sarrafzadeh S, Komaki A, Manjili FA, Mazdeh M, Ghaleiha A, Taheri M. Synaptosome-Associated Protein 25 (SNAP25) Gene Association Analysis Revealed Risk Variants for ASD, in Iranian Population. J Mol Neurosci 2016; 61:305-311. [PMID: 27888397 DOI: 10.1007/s12031-016-0860-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is a common, complex neurological condition, affecting approximately 1% of people worldwide. Monogenic neurodevelopmental disorders which showed autistic behavior patterns have suggested synaptic dysfunction, as a key mechanism in the pathophysiology of ASD. Subsequently, genes involved in synaptic signaling have been investigated with a priority for candidate gene studies. A synaptosomal-associated protein 25 (SNAP25) gene plays a crucial role in the central nervous system, contributing to exocytosis by targeting and fusion of vesicles to the cell membrane. Studies have shown a correlation between aberrant expression of the SNAP25 and a variety of brain diseases. Single nucleotide polymorphisms (SNPs) in this gene are associated with several psychiatric diseases, such as bipolar, schizophrenia, and attention-deficit/hyperactivity disorder. The aim of the present study was to investigate whether polymorphisms (rs3746544 and rs1051312) in the regulatory 3'-untranslated region (3'UTR) of the SNAP25 gene have an association with ASD in unrelated Iranian case (N = 524)-control (N = 472) samples. We observed robust association of the rs3746544 SNP and ASD patients, in both allele and haplotype-based analyses. Our results supported the previous observations and indicated a possible role for SNAP25 polymorphisms as susceptibility genetic factors involved in developing ASD.
Collapse
Affiliation(s)
- Mohammad Reza Safari
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, No 23, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran
| | - Rezvan Noroozi
- Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Mehrdokht Mazdeh
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Neurology, Hamadan University of Medical sciences, Hamadan, Iran
| | - Ali Ghaleiha
- Research Center for Behavioral Disorders and Substance Abuse, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Labbafi Nejad Educational Hospital, Shahid Beheshti University of Medical Sciences, No 23, Amir Ebrahimi St, Pasdaran Ave, Tehran, Iran.
| |
Collapse
|
35
|
Guo C, Huang T, Chen A, Chen X, Wang L, Shen F, Gu X. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. ACTA ACUST UNITED AC 2016; 49:e5826. [PMID: 27878229 PMCID: PMC5188858 DOI: 10.1590/1414-431x20165826] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 02/08/2023]
Abstract
Glucagon-like peptide 1 (GLP-1), a kind of gut hormone, is used in the treatment of type 2 diabetes (T2D). Emerging evidence indicates that GLP-1 has anti-inflammatory activity. Chronic inflammation in the adipose tissue of obese individuals is a cause of insulin resistance and T2D. We hypothesized that GLP-1 analogue therapy in patients with T2D could suppress the inflammatory response of macrophages, and therefore inhibit insulin resistance. Our results showed that GLP-1 agonist (exendin-4) not only attenuated macrophage infiltration, but also inhibited the macrophage secretion of inflammatory cytokines including TNF-β, IL-6, and IL-1β. Furthermore, we observed that lipopolysaccharide (LPS)-induced macrophage conditioned media could impair insulin-stimulated glucose uptake. This effect was compensated by treatment with the conditioned media from macrophages treated with the combination of LPS and exendin-4. It was also observed that exendin-4 directly inhibited the activation of NF-κB in macrophages. In conclusion, our results indicated that GLP-1 improved inflammatory macrophage-derived insulin resistance by inhibiting NF-κB pathway and secretion of inflammatory cytokines in macrophages. Furthermore, our observations suggested that the anti-inflammatory effect of GLP-1 on macrophages can contribute to GLP-1 analogue therapy of T2D.
Collapse
Affiliation(s)
- C Guo
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - T Huang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - A Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - X Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - L Wang
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - F Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - X Gu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
36
|
Pan JY, Yuan S, Yu T, Su CL, Liu XL, He J, Li H. Regulation of L-type Ca2+ Channel Activity and Insulin Secretion by Huntingtin-associated Protein 1. J Biol Chem 2016; 291:26352-26363. [PMID: 27624941 DOI: 10.1074/jbc.m116.727990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
Huntingtin-associated protein 1 (Hap1) was originally identified as a protein that binds to the Huntington disease protein, huntingtin. Growing evidence has shown that Hap1 participates in intracellular trafficking via its association with various microtubule-dependent transporters and organelles. Recent studies also revealed that Hap1 is involved in exocytosis such as insulin release from pancreatic β-cells. However, the mechanism underlying the action of Hap1 on insulin release remains to be investigated. We found that Hap1 knock-out mice had a lower plasma basal insulin level than control mice. Using cultured pancreatic β-cell lines, INS-1 cells, we confirmed that decreasing Hap1 reduces the number of secreted vesicles and inhibits vesicle exocytosis. Electrophysiology and imaging of intracellular Ca2+ measurements demonstrated that Hap1 depletion significantly reduces the influx of Ca2+ mediated by L-type Ca2+ channels (Cav). This decrease is not due to reduced expression of Cav1.2 channel mRNA but results from the decreased distribution of Cav1.2 on the plasma membrane of INS-1 cells. Fluorescence recovery after photobleaching showed a defective movement of Cav1.2 in Hap1 silencing INS-1 cells. Our findings suggest that Hap1 is important for insulin secretion of pancreatic β-cells via regulating the intracellular trafficking and plasma membrane localization of Cav1.2, providing new insight into the mechanisms that regulate insulin release from pancreatic β-cells.
Collapse
Affiliation(s)
- Jing-Ying Pan
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Shijin Yuan
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Tao Yu
- the Clinic Laboratory, Wuhan Children's Hospital, Wuhan 430016, China
| | - Cong-Lin Su
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Xiao-Long Liu
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - Jun He
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| | - He Li
- From the Department of Histology and Embryology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 and
| |
Collapse
|
37
|
Nagaraj V, Kazim AS, Helgeson J, Lewold C, Barik S, Buda P, Reinbothe TM, Wennmalm S, Zhang E, Renström E. Elevated Basal Insulin Secretion in Type 2 Diabetes Caused by Reduced Plasma Membrane Cholesterol. Mol Endocrinol 2016; 30:1059-1069. [PMID: 27533789 PMCID: PMC5045496 DOI: 10.1210/me.2016-1023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elevated basal insulin secretion under fasting conditions together with insufficient stimulated insulin release is an important hallmark of type 2 diabetes, but the mechanisms controlling basal insulin secretion remain unclear. Membrane rafts exist in pancreatic islet cells and spatially organize membrane ion channels and proteins controlling exocytosis, which may contribute to the regulation of insulin secretion. Membrane rafts (cholesterol and sphingolipid containing microdomains) were dramatically reduced in human type 2 diabetic and diabetic Goto-Kakizaki (GK) rat islets when compared with healthy islets. Oxidation of membrane cholesterol markedly reduced microdomain staining intensity in healthy human islets, but was without effect in type 2 diabetic islets. Intriguingly, oxidation of cholesterol affected glucose-stimulated insulin secretion only modestly, whereas basal insulin release was elevated. This was accompanied by increased intracellular Ca2+ spike frequency and Ca2+ influx and explained by enhanced single Ca2+ channel activity. These results suggest that the reduced presence of membrane rafts could contribute to the elevated basal insulin secretion seen in type 2 diabetes.
Collapse
Affiliation(s)
- Vini Nagaraj
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Abdulla S Kazim
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Johan Helgeson
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Clemens Lewold
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Satadal Barik
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Pawel Buda
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Thomas M Reinbothe
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Stefan Wennmalm
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Enming Zhang
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| | - Erik Renström
- Department of Clinical Sciences Malmö (V.N., A.S.K., J.H., C.L., S.B., P.B., T.M.R., E.Z., E.R.), Lund University Diabetes Centre, Lund University, SE-20502 Malmö, Sweden; and Science for Life Laboratory (S.W.), KTH Royal Institute of Technology, SE-171 77 Stockholm, Sweden
| |
Collapse
|
38
|
Liu J, Pang ZP. Glucagon-like peptide-1 drives energy metabolism on the synaptic highway. FEBS J 2016; 283:4413-4423. [DOI: 10.1111/febs.13785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/04/2016] [Accepted: 06/16/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Ji Liu
- Child Health Institute of New Jersey; Rutgers University Robert Wood Johnson Medical School; New Brunswick NJ USA
- Department of Neuroscience and Cell Biology; Rutgers University Robert Wood Johnson Medical School; New Brunswick NJ USA
| | - Zhiping P. Pang
- Child Health Institute of New Jersey; Rutgers University Robert Wood Johnson Medical School; New Brunswick NJ USA
- Department of Neuroscience and Cell Biology; Rutgers University Robert Wood Johnson Medical School; New Brunswick NJ USA
| |
Collapse
|
39
|
Dopaminergic drugs in type 2 diabetes and glucose homeostasis. Pharmacol Res 2016; 109:74-80. [DOI: 10.1016/j.phrs.2015.12.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023]
|
40
|
Abstract
High-resolution deep tissue imaging is possible with two-photon excitation microscopy. With the combined application of two-photon imaging and perfusion with a polar fluorescent tracer, we have established a method to detect exocytic events inside secretory tissues. This method displays the spatiotemporal distribution of exocytic sites, dynamics of fusion pores, and modes of exocytosis. In glucose-stimulated pancreatic islets, exocytic events were observed to be synchronized with an increase in cytosolic Ca(2+) concentrations. Full fusion of a single secretory granule is the typical mode of exocytosis and compound exocytosis is inhibited. Because two-photon excitation enables simultaneous multicolor imaging due to the broadened excitation spectra, the distributions and conformational changes in fluorescent-labeled molecules can be simultaneously visualized with exocytic events. Therefore, we can analyze the dynamics of the molecules involved in membrane fusion and their association with exocytosis in living tissues.
Collapse
Affiliation(s)
- Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo
| |
Collapse
|
41
|
Type II PKAs are anchored to mature insulin secretory granules in INS-1 β-cells and required for cAMP-dependent potentiation of exocytosis. Biochimie 2016; 125:32-41. [PMID: 26898328 DOI: 10.1016/j.biochi.2016.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/13/2016] [Indexed: 11/23/2022]
Abstract
Specificity of the cAMP-dependent protein kinase (PKA) pathway relies on an extremely sophisticated compartmentalization mechanism of the kinase within a given cell, based on high-affinity binding of PKA tetramer pools to different A-Kinase Anchoring Proteins (AKAPs). We and others have previously shown that AKAPs-dependent PKA subcellular targeting is a requisite for optimal cAMP-dependent potentiation of insulin exocytosis. We thus hypothesized that a PKA pool may directly anchor to the secretory compartment to potentiate insulin exocytosis. Here, using immunofluorescence analyses combined to subcellular fractionations and purification of insulin secretory granules (ISGs), we identified discrete subpools of type II PKAs, RIIα and RIIβ PKAs, along with the catalytic subunit, physically associated with ISGs within pancreatic insulin-secreting β-cells. Ultrastructural analysis of native rodent β-cells confirmed in vivo the occurrence of PKA on dense-core ISGs. Isoform-selective disruption of binding of PKAs to AKAPs reinforced the requirement of type II PKA isoforms for cAMP potentiation of insulin exocytosis. This granular localization of PKA was of critical importance since siRNA-mediated depletion of either RIIα or RIIβ PKAs resulted in a significant reduction of cAMP-dependent potentiation of insulin release. The present work provides evidence for a previously unrecognized pool of type II PKAs physically anchored to the β-cell ISGs compartment and supports a non-redundant function for type II PKAs during cAMP potentiation of exocytosis.
Collapse
|
42
|
miR-101a and miR-30b contribute to inflammatory cytokine-mediated β-cell dysfunction. J Transl Med 2015; 95:1387-97. [PMID: 26367486 DOI: 10.1038/labinvest.2015.112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/18/2015] [Accepted: 07/06/2015] [Indexed: 12/11/2022] Open
Abstract
Inflammatory cytokines have a critical role in the progressive deterioration of pancreatic β-cell function and development of type 1 diabetes. Prolonged exposure of β-cells to inflammatory cytokines results in gene expression modifications, leading to loss of β-cell function. MicroRNAs (miRNAs) are small non-coding RNAs acting as key regulators of gene expression. Here, we demonstrate that miR-101a and miR-30b are key players in cytokine-mediated β-cell dysfunction. We found that IL-1β induces an increase in miR-101a and miR-30b in MIN6 cells, and that the two miRNAs participate in β-cell dysfunction, including decreased insulin content, gene expression, and increased β-cell death. miR-101a and miR-30b reduce proinsulin expression and insulin content by directly targeting the transcriptional factor Neurod1. In addition, β-cell apoptosis mediated by miR-101a and miR-30b is associated with diminished expression level of the antiapoptotic protein Bcl2. Moreover, we show that miR-101a causes an impairment in glucose-induced insulin secretion by decreasing the expression of the transcription factor Onecut2. Taken together, our findings suggest that changes in the levels of miR-101a and miR-30b contribute to cytokine-mediated β-cell dysfunction occurring during the development and progression of type 1 diabetes.
Collapse
|
43
|
Pepaj M, Bredahl MK, Gjerlaugsen N, Bornstedt ME, Thorsby PM. Discovery of novel vitamin D-regulated proteins in INS-1 cells: a proteomic approach. Diabetes Metab Res Rev 2015; 31:481-91. [PMID: 25449168 DOI: 10.1002/dmrr.2629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/29/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Experimental evidence indicates that vitamin D may have a beneficial role in pancreatic β-cell function. Global gene expression studies have shown that the active metabolite 1,25-dihydroxyvitamin D3 [1,25-(OH)2 D3 ] modulates genes involved in ion transport, lipid metabolism and insulin secretion. METHODS We employed stable isotope labelling by amino acids in cell culture in combination with liquid chromatography-tandem mass spectrometry to quantitatively assess the impact of two vitamin D metabolites, 1,25-(OH)2 D3 and 25-hydroxyvitamin D3 [25-(OH)D3 ], on global protein expression on a model rat β-cell line, insulinoma-derived INS-1 cells. RESULTS Although treatment with 1,25-(OH)2 D3 resulted in 31 differentially expressed proteins, 25-(OH)D3 had no impact on protein expression. Of these 31 proteins, 29 were upregulated, whereas two showed a decrease in abundance. Proteins whose expression levels markedly increased in the presence of 1,25-(OH)2 D3 included Crat, Hmgn2, Protein Tmsbl1 and Gdap1. One of the most important findings in this study is upregulation of proteins implicated in insulin granule motility and insulin exocytosis, suggesting a positive effect on insulin secretion. Moreover, modulation of several membrane transport proteins suggests that 1,25-(OH)2 D3 has an impact on the homeostatic regulation of ions, which is critical for most functions in the β-cell. CONCLUSIONS In this study, we discovered a number of novel 1,25-(OH)2 D3 -regulated proteins, which may contribute to a better understanding of the reported beneficial effects of vitamin D on pancreatic β-cells. All in all, our findings should pave the way for future studies providing insights into molecular mechanisms by which 1,25-(OH)2 D3 regulates protein expression in pancreatic β-cells.
Collapse
Affiliation(s)
- Milaim Pepaj
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - May K Bredahl
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Nina Gjerlaugsen
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Mette E Bornstedt
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Per M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Yao C, Zhuang H, Cheng W, Lin Y, Du P, Yang B, Huang X, Chen S, Hu Q, Hua ZC. FADD phosphorylation impaired islet morphology and function. J Cell Physiol 2015; 230:1448-56. [PMID: 25641109 DOI: 10.1002/jcp.24885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/26/2014] [Indexed: 11/06/2022]
Abstract
Previous studies have indicated that Fas-FasL pathway and its downstream caspase-8 can regulate islet mass and insulin secretion. As a classical adaptor in Fas-FasL signaling, Fas-associated death domain-containing protein (FADD) takes part in many non-apoptosis processes regulated by its phosphorylation. However, its role in islets has not been evaluated to date. Here, through comparative proteomics and bioinformatic analysis on FADD phosphorylated (FADD-D) and wild-type (WT) MEFs, we found three proteins involved in islet differentiation and function were dysregulated due to FADD phosphorylation. The mouse model of FADD-D, which mimics constitutive phosphorylated FADD expression in mice, was further analyzed to address this issue. We confirmed the proteomic results by immunohistological analyses on pancreatic islets. In addition, we found that FADD-D mice displayed decreased islet area, and the glucose stimulated insulin secretion (GSIS) of FADD-D islets was impaired. These data suggest a novel role of FADD in islet development and insulin secretion.
Collapse
Affiliation(s)
- Chun Yao
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Stomatology and Affiliated Stomatological Hospital, Nanjing University, Nanjing, 210093, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jia S, Ivanov A, Blasevic D, Müller T, Purfürst B, Sun W, Chen W, Poy MN, Rajewsky N, Birchmeier C. Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function. EMBO J 2015; 34:1417-33. [PMID: 25828096 PMCID: PMC4492000 DOI: 10.15252/embj.201490819] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Key transcription factors control the gene expression program in mature pancreatic β-cells, but their integration into regulatory networks is little understood. Here, we show that Insm1, Neurod1 and Foxa2 directly interact and together bind regulatory sequences in the genome of mature pancreatic β-cells. We used Insm1 ablation in mature β-cells in mice and found pronounced deficits in insulin secretion and gene expression. Insm1-dependent genes identified previously in developing β-cells markedly differ from the ones identified in the adult. In particular, adult mutant β-cells resemble immature β-cells of newborn mice in gene expression and functional properties. We defined Insm1, Neurod1 and Foxa2 binding sites associated with genes deregulated in Insm1 mutant β-cells. Remarkably, combinatorial binding of Insm1, Neurod1 and Foxa2 but not binding of Insm1 alone explained a significant fraction of gene expression changes. Human genomic sequences corresponding to the murine sites occupied by Insm1/Neurod1/Foxa2 were enriched in single nucleotide polymorphisms associated with glycolytic traits. Thus, our data explain part of the mechanisms by which β-cells maintain maturity: Combinatorial Insm1/Neurod1/Foxa2 binding identifies regulatory sequences that maintain the mature gene expression program in β-cells, and disruption of this network results in functional failure.
Collapse
Affiliation(s)
- Shiqi Jia
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Andranik Ivanov
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dinko Blasevic
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Müller
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Sun
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Chen
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Molecular Mechanisms of Metabolic Disease, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
46
|
Ma X, Guan Y, Hua X. Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic β-cells. J Diabetes 2014; 6:394-402. [PMID: 24725840 DOI: 10.1111/1753-0407.12161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is the primary incretin hormone secreted from the intestine upon uptake of food to stimulate insulin secretion from pancreatic β-cells. GLP-1 exerts its effects by binding to its G-protein coupled receptors and subsequently activating adenylate cyclase, leading to generation of cyclic adenosine monophosphate (cAMP). cAMP stimulates insulin secretion via activation of its effectors PKA and Epac2 in pancreatic β-cells. In addition to its insulinotropic effects, GLP-1 also preserves pancreatic β-cell mass by stimulating β-cell proliferation. Unlike the action of sulphonylureas in lowering blood glucose levels, action of GLP-1 is affected by and interplays with glucose levels. Due to such advantages, GLP-1-based therapeutics have been rapidly developed and used clinically for treatment of type 2 diabetes. However, molecular mechanisms underlying how GLP-1 potentiates diminished glucose-stimulated insulin secretion and β-cell proliferation under diabetic conditions are not well understood. Here, we review the actions of GLP-1 in regulation of insulin secretion and pancreatic β-cell proliferation.
Collapse
Affiliation(s)
- Xiaosong Ma
- Shenzhen University Diabetes Center, Shenzhen, China
| | | | | |
Collapse
|
47
|
Abstract
Evolution has exploited the chemical properties of Ca(2+), which facilitate its reversible binding to the sites of irregular geometry offered by biological macromolecules, to select it as a carrier of cellular signals. A number of proteins bind Ca(2+) to specific sites: those intrinsic to membranes play the most important role in the spatial and temporal regulation of the concentration and movements of Ca(2+) inside cells. Those which are soluble, or organized in non-membranous structures, also decode the Ca(2+) message to be then transmitted to the targets of its regulation. Since Ca(2+) controls the most important processes in the life of cells, it must be very carefully controlled within the cytoplasm, where most of the targets of its signaling function reside. Membrane channels (in the plasma membrane and in the organelles) mediate the entrance of Ca(2+) into the cytoplasm, ATPases, exchangers, and the mitochondrial Ca(2+) uptake system remove Ca(2+) from it. The concentration of Ca(2+) in the external spaces, which is controlled essentially by its dynamic exchanges in the bone system, is much higher than inside cells, and can, under conditions of pathology, generate a situation of dangerous internal Ca(2+) overload. When massive and persistent, the Ca(2+) overload culminates in the death of the cell. Subtle conditions of cellular Ca(2+) dyshomeostasis that affect individual systems that control Ca(2+), generate cell disease phenotypes that are particularly severe in tissues in which the signaling function of Ca(2+) has special importance, e.g., the nervous system.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biology, University of Padova, Via U. Bassi 58/B, I-35131, Padova, Italy,
| | | | | | | |
Collapse
|
48
|
Abstract
The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose-stimulated insulin secretion in pancreatic β-cells. In the present article, we will briefly review the major functions of mitochondria in regard to energy metabolism, and discuss the genetic and environmental factors causing mitochondrial dysfunction in diabetes. In addition, the pathophysiological role of mitochondrial dysfunction in insulin resistance and β-cell dysfunction are discussed. We argue that mitochondrial dysfunction could be the central defect causing the abnormal glucose metabolism in the diabetic state. A deeper understanding of the role of mitochondria in diabetes will provide us with novel insights in the pathophysiology of diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00047.x, 2010).
Collapse
Affiliation(s)
| | - Kyong Soo Park
- Departments of Internal Medicine ; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University College of Medicine
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine
| | - Hong Kyu Lee
- Department of Internal Medicine, Eulji University College of Medicine, Seoul, Korea
| |
Collapse
|
49
|
Kimple ME, Neuman JC, Linnemann AK, Casey PJ. Inhibitory G proteins and their receptors: emerging therapeutic targets for obesity and diabetes. Exp Mol Med 2014; 46:e102. [PMID: 24946790 PMCID: PMC4081554 DOI: 10.1038/emm.2014.40] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 12/21/2022] Open
Abstract
The worldwide prevalence of obesity is steadily increasing, nearly doubling between 1980 and 2008. Obesity is often associated with insulin resistance, a major risk factor for type 2 diabetes mellitus (T2DM): a costly chronic disease and serious public health problem. The underlying cause of T2DM is a failure of the beta cells of the pancreas to continue to produce enough insulin to counteract insulin resistance. Most current T2DM therapeutics do not prevent continued loss of insulin secretion capacity, and those that do have the potential to preserve beta cell mass and function are not effective in all patients. Therefore, developing new methods for preventing and treating obesity and T2DM is very timely and of great significance. There is now considerable literature demonstrating a link between inhibitory guanine nucleotide-binding protein (G protein) and G protein-coupled receptor (GPCR) signaling in insulin-responsive tissues and the pathogenesis of obesity and T2DM. These studies are suggesting new and emerging therapeutic targets for these conditions. In this review, we will discuss inhibitory G proteins and GPCRs that have primary actions in the beta cell and other peripheral sites as therapeutic targets for obesity and T2DM, improving satiety, insulin resistance and/or beta cell biology.
Collapse
Affiliation(s)
- Michelle E Kimple
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua C Neuman
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amelia K Linnemann
- Department of Medicine-Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Patrick J Casey
- Duke University Medical Center Department of Pharmacology and Cancer Biology, Durham, NC, USA
| |
Collapse
|
50
|
Abstract
Background Insulin secreted by pancreatic islet β-cells is the principal regulating hormone of glucose metabolism and plays a key role in controlling glucose level in blood. Impairment of the pancreatic islet function may cause glucose to accumulate in blood, and result in diabetes mellitus. Recent studies have shown that mitochondrial dysfunction has a strong negative effect on insulin secretion. Methods In order to study the cause of dysfunction of pancreatic islets, a multiple cell model containing healthy and unhealthy cells is proposed based on an existing single cell model. A parameter that represents the function of mitochondria is modified for unhealthy cells. A 3-D hexagonal lattice structure is used to model the spatial differences among β-cells in a pancreatic islet. The β-cells in the model are connected through direct electrical connections between neighboring β-cells. Results The simulation results show that the low ratio of total mitochondrial volume over cytoplasm volume per β-cell is a main reason that causes some mitochondria to lose their function. The results also show that the overall insulin secretion will be seriously disrupted when more than 15% of the β-cells in pancreatic islets become unhealthy. Conclusion Analysis of the model shows that the insulin secretion can be reinstated by increasing the glucokinase level. This new discovery sheds light on antidiabetic medication.
Collapse
|