1
|
Zhao Y, Dai J, Zhang Z, Chen J, Chen Y, Hu C, Chen X, Guo A. CRISPR-Cas13a-Based Lateral Flow Assay for Detection of Bovine Leukemia Virus. Animals (Basel) 2024; 14:3262. [PMID: 39595314 PMCID: PMC11590953 DOI: 10.3390/ani14223262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), which presents worldwide prevalence. BLV caused substantial economic loss in China around the 1980s; then, it could not be detected for some time, until recently. Due to its latent and chronic characteristics, the efficient and accurate detection of BLV is of utmost significance to the timely implementation of control measures. Therefore, this study harnessed the recombinase-aided amplification (RAA), clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 13a (Cas13a) technology, and lateral flow (LF) strips to develop an efficient method for detection of BLV. In this method, isothermal amplification of the targeted pol gene is performed at 37 °C with a detection threshold of 1 copy/µL, and the procedure is completed in 100 min. This assay demonstrated high selectivity for BLV, as indicated by the absence of a cross-reaction with six common bovine pathogens. Remarkably, 100 blood samples from dairy cows were tested in parallel with a conventional quantitative polymerase chain reaction (qPCR) and this method and the results showed 100% agreement. Furthermore, this method exhibited good repeatability. In conclusion, in this study, we established a sensitive and specific method for BLV detection, which shows promise for application in BLV surveillance.
Collapse
Affiliation(s)
- Yuxi Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwen Dai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China;
| | - Zhen Zhang
- Henan Seed Industry Development Center, Zhengzhou 450045, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Key Laboratory of Development of Veterinary Diagnostic Products, Key Laboratory of Ruminant Bio-Products, China Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Wang J, Sun C, Hu Z, Wang F, Chang J, Gao M, Ye D, Jia Q, Zou H, Willems L, Jiang Z, Yin X. Development of a novel monoclonal antibody-based competitive ELISA for antibody detection against bovine leukemia virus. Int J Biol Macromol 2024; 267:131446. [PMID: 38621561 DOI: 10.1016/j.ijbiomac.2024.131446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Infection with bovine leukemia virus (BLV) leads to enzootic bovine leukosis, the most prevalent neoplastic disease in cattle. Due to the lack of commercially available vaccines, reliable eradication of the disease can be achieved through the testing and elimination of BLV antibody-positive animals. In this study, we developed a novel competitive ELISA (cELISA) to detect antibodies against BLV capsid protein p24. Recombinant p24 protein expressed by Escherichia coli, in combination with the monoclonal antibody 2G11 exhibiting exceptional performance, was used for the establishment of the cELISA. Receiver-operating characteristic curve analysis showed that the sensitivity and specificity of the assay were 98.85 % and 98.13 %, respectively. Furthermore, the established cELISA was specific for detecting BLV-specific antibodies, without cross-reactivity to antisera for six other bovine viruses. Significantly, experimental infection of cattle and sheep with BLV revealed that the cELISA accurately monitors seroconversion. In a performance evaluation, the established cELISA displayed a high agreement with Western blotting and the commercial BLV gp51 cELISA kit in the detection of 242 clinical samples, respectively. In conclusion, the novel p24 cELISA exhibited the potential to be a reliable and efficient diagnostic tool for BLV serological detection with a broad application prospect.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhe Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jitao Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Ming Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dandan Ye
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qi Jia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hui Zou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Luc Willems
- Laboratory of Molecular and Cellular Epigenetics, Grappe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, 4000 Liège, Belgium; Molecular Biology, Teaching and Research Center, University of Liège, 5030 Gembloux, Belgium
| | - Zhigang Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
3
|
Hamada R, Fereig RM, Metwally S. The influence of risk factors on bovine leukemia virus infection and proviral load in egyptian cattle. Vet Res Commun 2024; 48:191-202. [PMID: 37610507 DOI: 10.1007/s11259-023-10198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), which affects cattle globally. In Egypt, BLV control strategies have been ignored because of the shortage of BLV research studies and the silent infection in most animals. This study aimed to identify the risk factors associated with the prevalence of BLV among dairy and beef cattle from six different geographic and climatic provinces in Egypt. Additionally, risk factors affecting the BLV proviral load (PVL) among the positive cattle were targeted. The total BLV prevalence in cattle from six investigated Egyptian provinces was 24.2% (105/433), while the mean PVL (8651.6 copies /105 white blood cells) was absolutely high as estimated by the BLV-CoCoMo-quantitative polymerase chain reaction (qPCR)-2 assay. Analysis of the influence of risk factors (age, sex, breed, production type, farm size, and location) on BLV prevalence indicated that the Holstein breed (OR = 1.582, p = 0.007), beef cattle (OR = 1.088, p = 0.0001), large-size farms (OR = 1.26, p = 0.0001), and cattle from Damietta (OR = 1.43, p = 0.0001) and Cairo (OR = 1.16, p = 0.0001) were ultimately proven the most important risks for BLV infection. The risk factors were analyzed considering the BLV PVL levels in the BLV-positive cases. Significantly high PVL (HPVL) levels were observed in cattle > 5 years old (p < 0.0001), females (p = 0.0008), Holstein (p < 0.0001), dairy cows (p = 0.0053), large-size farms (p < 0.0001), and cattle from Damietta (p < 0.0001) compared to other categories. Contrary, no significant differences in PVL levels were reported between the Native and Mixed cattle breeds (p = 0.13). Ultimately, the logistic regression model indicated that the probability of carrying HPVL in cattle > 5 years is 1.27 (95% CI: 1.03-2.09, p < 0.001) times more likely compared to cattle < 2 years old. In conclusion, the findings were valuably correlating the BLV prevalence with PVL as an indicator of the risk of BLV infection.
Collapse
Affiliation(s)
- Rania Hamada
- Division of Clinical Pathology, Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, 22511, Damanhour, Egypt.
| | - Ragab M Fereig
- Division of Internal Medicine, Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, 83523, Qena City, Qena, Egypt
| | - Samy Metwally
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, 22511, Damanhour, Egypt.
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, 113-8657, Tokyo, Japan.
| |
Collapse
|
4
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
5
|
Hamada R, Metwally S, Matsuura R, Borjigin L, Lo CW, Ali AO, Mohamed AEA, Wada S, Aida Y. BoLA-DRB3 Polymorphism Associated with Bovine Leukemia Virus Infection and Proviral Load in Holstein Cattle in Egypt. Pathogens 2023; 12:1451. [PMID: 38133334 PMCID: PMC10746042 DOI: 10.3390/pathogens12121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most prevalent neoplastic disease of cattle worldwide. The immune response to BLV and disease susceptibility and resistance in cattle are strongly correlated with the bovine leukocyte antigen (BoLA)-DRB3 allelic polymorphism. BLV infection continues to spread in Egypt, in part because the relationships between BLV infection, proviral load in Egypt, and BoLA-DRB3 polymorphism are unknown. Here, we identified 18 previously reported alleles in 121 Holstein cows using a polymerase chain reaction sequence-based typing method. Furthermore, BoLA-DRB3 gene polymorphisms in these animals were investigated for their influence on viral infection. BoLA-DRB3*015:01 and BoLA-DRB3*010:01 were identified as susceptible and resistant alleles, respectively, for BLV infection in the tested Holsteins. In addition, BoLA-DRB3*012:01 was associated with low PVL in previous reports but high PVL in Holstein cattle in Egypt. This study is the first to demonstrate that the BoLA-DRB3 polymorphism confers resistance and susceptibility to PVL and infections of BLV in Holstein cattle in Egypt. Our results can be useful for the disease control and eradication of BLV through genetic selection.
Collapse
Affiliation(s)
- Rania Hamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Samy Metwally
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Division of Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour City 22511, Egypt
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
| | - Chieh-Wen Lo
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Alsagher O. Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Adel E. A. Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City 83523, Egypt; (A.O.A.); (A.E.A.M.)
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan;
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; (R.H.); (S.M.); (R.M.); (L.B.); (C.-W.L.)
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|
7
|
Seroprevalence, Risk Factors and Molecular Identification of Bovine Leukemia Virus in Egyptian Cattle. Animals (Basel) 2021; 11:ani11020319. [PMID: 33513908 PMCID: PMC7912176 DOI: 10.3390/ani11020319] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Bovine leukemia virus (BLV) is distributed worldwide and affects dairy cattle causing significant economic losses. This study’s objective was to assess the risk factors associated with BLV infection and identify the Egyptian BLV strain’s genetic diversity. The overall seroprevalence of BLV infection in Egyptian dairy cattle was 18.2%, and the grazing cattle in the losing house system had a higher probability of getting BLV infection. The sequencing and phylogenetic analysis for one Egyptian BLV strain was performed, and the obtained results confirmed the clustering of Egyptian BLV strain into genotype-1. Abstract Bovine leukemia virus (BLV) is distributed worldwide and affects dairy cattle causing severe economic losses. The BLV has been serologically reported in Egypt, but few studies have evaluated its associated risk factors and genetic classification. Therefore, this study assessed risk factors associated with BLV infection and identified the genetic diversity of the Egyptian strain. The study was conducted on 500 dairy cattle distributed in four Governorates located in Northern Egypt. Overall, the seroprevalence of BLV infection among Egyptian dairy cattle was 18.2%. The grazing cattle in the losing house system had higher odds for BLV seropositivity, and bad practice such as the use of a single needle or one plastic glove for more than one animal was considered a significant risk factor for BLV infection. Besides, the sequencing and phylogenetic analysis for one Egyptian BLV strain was performed, and the obtained results confirmed the clustering of Egyptian BLV strain into genotype-1. The assessment of associated risk factors for BLV infection and determination of its genetic classification are essential to implement an effective control program.
Collapse
|
8
|
Metwally S, Hamada R, Ali AO, Mahmoud HYAH, Baker NM, Mohamed AEA, Wada S, Matsumoto Y, Aida Y. Detection and molecular characterization of bovine leukemia virus in beef cattle presented for slaughter in Egypt. J Vet Med Sci 2020; 82:1676-1684. [PMID: 33087638 PMCID: PMC7719883 DOI: 10.1292/jvms.20-0477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most common neoplastic disease of cattle worldwide and a serious problem
for the cattle industry. Previous studies have shown the molecular prevalence of BLV and the coexistence of BLV genotype-1 and -4 in Egyptian dairy cattle;
however, the molecular characteristics of BLV in Egyptian beef cattle are unknown. Therefore, we collected blood samples of 168 beef cattle from slaughterhouses
in three governorates in Egypt. Based on BLV-CoCoMo-qPCR-2 targeting long terminal repeats and nested PCR targeting the
env-gp51 gene, the BLV provirus infection rates were found to be 47/168 (28.0%) and 42/168 (25.0%), respectively.
Phylogenetic analysis based on 501 bp of the BLV env-gp51 gene from 42 BLV isolates revealed that at least six distinctive strains (b, e, f, g,
x, and z) were prevalent in cattle across the examined regions. Furthermore, phylogenetic analysis of the 420 bp sequence of the BLV env-gp51
region of the six strains against 11 known genotypes showed that the strains b, e, f, and g were clustered into genotype-1, and strains x and z were clustered
into genotype-4. Our results also indicated that strains b and x exist in both dairy and beef cattle in Egypt. The present study is the first to detect and
genotype BLV among beef cattle in Egypt.
Collapse
Affiliation(s)
- Samy Metwally
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour city, El Beheira 22511, Egypt
| | - Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Hassan Y A H Mahmoud
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Nabil M Baker
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour city, El Beheira 22511, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Hamada R, Metwally S, Polat M, Borjigin L, Ali AO, Abdel-Hady AAA, Mohamed AEA, Wada S, Aida Y. Detection and Molecular Characterization of Bovine Leukemia Virus in Egyptian Dairy Cattle. Front Vet Sci 2020; 7:608. [PMID: 33134337 PMCID: PMC7511665 DOI: 10.3389/fvets.2020.00608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 11/23/2022] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis (EBL), the most common neoplastic disease in cattle worldwide. The first EBL outbreak in Egypt was reported in 1997. To date, there are few studies regarding BLV diagnosis using only serological detection and no studies investigating the distribution of BLV provirus, which is the retroviral genome integrated into the host genome, in Egypt. The genetic characteristics of Egyptian BLV strains are also unknown. Therefore, we aimed to detect BLV provirus and determine BLV genetic variability among dairy cattle in Egypt. We collected 270 blood samples of dairy cattle from 24 farms located in five provinces in Egypt. Out of the 270 samples, 58 (21.5%) were positive for BLV provirus. Phylogenetic analysis based on 18 420-bp selected sequences out of 50 isolates of the BLV env-gp51 gene demonstrated that Egyptian BLV isolates were clustered into genotype-1 and-4, among 11 genotypes detected worldwide. Furthermore, phylogenetic analysis and alignment of the 501-bp sequence of the env-gp51 gene revealed that at least six genetically different strains are present in Egypt. Genotype-1 isolates comprised four different strains (G1-a, G1-b, G1-c, and G1-d) and genotype-4 isolates included two different strains (G4-x and G4-y). Moreover, in one farm with 100% infection rate, we identified three isolates of G1-a strain, 35 isolates of G4-x strain, and two isolates of G4-y strain. Overall, this study provides the new report on molecular prevalence of BLV in Egypt and records the coexistence of BLV genotype-1 and-4 in Egyptian cattle.
Collapse
Affiliation(s)
- Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Samy Metwally
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - A A A Abdel-Hady
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| |
Collapse
|
10
|
Selim A, Megahed AA, Kandeel S, Abdelhady A. Risk factor analysis of bovine leukemia virus infection in dairy cattle in Egypt. Comp Immunol Microbiol Infect Dis 2020; 72:101517. [PMID: 32682151 DOI: 10.1016/j.cimid.2020.101517] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/29/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
Identification of the risk factors associated with Enzootic bovine leukosis (EBL) is essential for the adoption of potentially prevention strategies. Accordingly, our objectives were to determine the geographic distribution of Bovine Leukemia Virus (BLV) infection and identify the risk factors associated with cow-level BLV infection in the Egyptian dairy cattle. A cross-sectional study was conducted on 1299 mixed breed cows distributed over four provinces in the Nile Delta of Egypt in 2018. The randomly selected cows on each farm were serologically tested for BLV, and the cow's information was obtained from the farm records. Four variables (geographic location, herd size, number of parities, and age) were used for risk analysis. A total of 230 serum samples (17.7 %) were serologically positive for BLV. The highest prevalence of BLV infection was associated with parity (OR = 3.4, 95 %CI 2.4-4.9) with 80 % probability of being BLV-positive at parity ≥5, followed by herd size (OR = 1.8, 95 %CI 1.4-2.2). However, geographic location seems to have no impact on the prevalence of BLV infection in Egypt. Our findings strongly indicate that the intensive surveillance and effective prevention strategies against BLV infection in Egypt should be provided to multiparous cows with ≥5 parities and live in large farm with more than 200 cows.
Collapse
Affiliation(s)
- Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh, Kalyobiya, 13736, Egypt.
| | - Ameer A Megahed
- Department of Animal Medicine (Internal Medicine), Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh, Kalyobiya, 13736, Egypt; Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Sahar Kandeel
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh, Kalyobiya, 13736, Egypt
| | - Abdelhamed Abdelhady
- Department of Parasitology and Animal Diseases, National Research Center, Dokki, Giza, Egypt
| |
Collapse
|
11
|
Selim A, Marawan MA, Ali AF, Manaa E, AbouelGhaut HA. Seroprevalence of bovine leukemia virus in cattle, buffalo, and camel in Egypt. Trop Anim Health Prod 2019; 52:1207-1210. [PMID: 31686339 DOI: 10.1007/s11250-019-02105-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/09/2019] [Indexed: 12/01/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis. It causes significant economic losses associated with losses due to slaughter and eradication of infected animal from infected area and other indirect economic losses such as restriction on importation of animals and semen from infected area. The main objective of this study was to determine the seroprevalence of BLV antibodies in cattle, buffaloes, and camels in Egypt using ELISA test. Serum samples were collected from 350 cattle, 100 buffaloes, and 100 camels during 2018. The seropositivity for BLV-specific antibody was 20.8%, 9%, and 0% in cattle, buffaloes, and camels, respectively. The result revealed significant association (p < 0.05) between age and seroprevalence of BLV infection in cattle > 4 years (24%) compared with those < 4 years (13%). We found no significant association between pregnancy and herd size and seroprevalence of BLV infection in this study (p > 0.05). Furthermore, the age, pregnancy state, and herd size had significant effect on seroprevalence of BLV infection in buffaloes. This study contributes that BLV is detected in cattle and buffaloes in Egypt and confirms that the camels has resistance against BLV infection. Hence, the control measures are very necessary to combat the transmission of the disease and reduce its economic impact.
Collapse
Affiliation(s)
- Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Banha, Egypt.
| | - Marawan A Marawan
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Abdel-Fattah Ali
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Eman Manaa
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Hassab Allah AbouelGhaut
- Animal production, Research institute, Agriculture Research Center, Ministry of Agriculture, Dokki, Giza, Egypt
| |
Collapse
|
12
|
Kazemimanesh M, Madadgar O, Steinbach F, Choudhury B, Azadmanesh K. Detection and molecular characterization of bovine leukemia virus in various regions of Iran. J Gen Virol 2019; 100:1315-1327. [PMID: 31348000 DOI: 10.1099/jgv.0.001303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purpose. Bovine leukemia virus (BLV) infects cattle worldwide, imposing an economic impact on the dairy cattle industry. The purpose of this study was to evaluate the molecular epidemiology of BLV in Iran.Methodology. Blood samples taken from 280 cows aged over 2 years old from 13 provinces of Iran were used for leukocyte count and blocking ELISA. Genomic DNA was extracted from the peripheral blood leukocytes of BLV-infected samples and fetal lamb kidney cells to perform PCR of partial env, rex and tax genes and long-terminal-repeat region. The PCR products were sequenced, the phylogenetic tree of each gene was constructed, and nucleotide and amino acid sequence pair distances were calculated.Results. The frequency of BLV infection was 32.8 % among animals and was 80 % among provinces. In BLV seropositive animals, the rate of persistent lymphocytosis was 36.9 %. The constructed phylogenetic trees showed the presence of two BLV genotypes (1 and 4) in Iranian strains. As previous studies, our results showed that the env gene was more variable than previously thought, the Rex protein could withstand more amino acid changes compared to the Tax protein, and no significant differences were observed in average changes of the nucleotide of these genes between clinical stages.Conclusions. Our data indicates an increase in the frequency of this infection in Iran. This is the first study report of the presence of BLV genotype 4 in Iranian farms. These findings may have an important role in the control and prevention of BLV infection in Iran and other countries.
Collapse
Affiliation(s)
| | - Omid Madadgar
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Addlestone, UK
| | - Bhudipa Choudhury
- OIE Reference Laboratory for EBL, Department of Virology, Animal and Plant Health Agency, Weybridge, UK
| | - Kayhan Azadmanesh
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Phiri MM, Kaimoyo E, Changula K, Silwamba I, Chambaro HM, Kapila P, Kajihara M, Simuunza M, Muma JB, Pandey GS, Takada A, Mweene AS, Chitanga S, Simulundu E. Molecular detection and characterization of genotype 1 bovine leukemia virus from beef cattle in the traditional sector in Zambia. Arch Virol 2019; 164:2531-2536. [PMID: 31300890 DOI: 10.1007/s00705-019-04350-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/29/2019] [Indexed: 11/28/2022]
Abstract
Whilst bovine leukemia virus (BLV) causes considerable economic losses to the dairy industry worldwide, information on its molecular epidemiology and economic impact in beef cattle is limited. Here, blood from 880 animals from Zambia's major cattle-rearing provinces was screened for BLV by nested PCR. Positive pools were sequenced and phylogenetically analyzed. The estimated pooled prevalence was 2.1%. All strains belonged to genotype 1 and formed a distinct phylogenetic cluster. The study suggests circulation of genotype 1 BLV in beef cattle in these regions. This is the first report on molecular detection and characterization of BLV from beef cattle in Africa.
Collapse
Affiliation(s)
- Mundia M Phiri
- School of Natural Sciences, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Evans Kaimoyo
- School of Natural Sciences, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Katendi Changula
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Isaac Silwamba
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Herman M Chambaro
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Penjaninge Kapila
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Africa Center of Excellence of Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Girja S Pandey
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.,Africa Center of Excellence of Infectious Diseases of Humans and Animals, University of Zambia, Lusaka, Zambia
| | - Simbarashe Chitanga
- School of Health Sciences, The University of Zambia, PO Box 50110, Lusaka, 10101, Zambia
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, PO Box 32379, Lusaka, 10101, Zambia.
| |
Collapse
|
14
|
Ruggiero VJ, Benitez OJ, Tsai YL, Lee PYA, Tsai CF, Lin YC, Chang HFG, Wang HTT, Bartlett P. On-site detection of bovine leukemia virus by a field-deployable automatic nucleic extraction plus insulated isothermal polymerase chain reaction system. J Virol Methods 2018; 259:116-121. [DOI: 10.1016/j.jviromet.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/08/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
|
15
|
Polat M, Takeshima SN, Aida Y. Epidemiology and genetic diversity of bovine leukemia virus. Virol J 2017; 14:209. [PMID: 29096657 PMCID: PMC5669023 DOI: 10.1186/s12985-017-0876-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/10/2022] Open
Abstract
Bovine leukemia virus (BLV), an oncogenic member of the Deltaretrovirus genus, is closely related to human T-cell leukemia virus (HTLV-I and II). BLV infects cattle worldwide and causes important economic losses. In this review, we provide a summary of available information about commonly used diagnostic approaches for the detection of BLV infection, including both serological and viral genome-based methods. We also outline genotyping methods used for the phylogenetic analysis of BLV, including PCR restriction length polymorphism and modern DNA sequencing-based methods. In addition, detailed epidemiological information on the prevalence of BLV in cattle worldwide is presented. Finally, we summarize the various BLV genotypes identified by the phylogenetic analyses of the whole genome and env gp51 sequences of BLV strains in different countries and discuss the distribution of BLV genotypes worldwide.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
16
|
Marawan MA, Mekata H, Hayashi T, Sekiguchi S, Kirino Y, Horii Y, Moustafa AMM, Arnaout FK, Galila ESM, Norimine J. Phylogenetic analysis of env gene of bovine leukemia virus strains spread in Miyazaki prefecture, Japan. J Vet Med Sci 2017; 79:912-916. [PMID: 28331116 PMCID: PMC5447981 DOI: 10.1292/jvms.17-0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To understand how the latest dominant bovine leukemia virus (BLV) strains were introduced and spread in the Miyazaki prefecture, we collected blood samples from 3 geographic areas (north, central and south) and carried out
sequence analysis of the BLV env gene. Two genotypes, genotype I, and III, were identified and the majority of the strains belonged to genotype I (71/74). To clarify a route of BLV introduction, we divided the
strains into 20 subgenotypes based on their nucleotide sequences and performed phylogenetic analysis. Our study indicated that common BLV strains were comparatively evenly distributed even in the area, where the farmers have not
introduced cattle from other areas and the cattle have limited exposure to BLV infection in grazing fields.
Collapse
Affiliation(s)
- Marawan A Marawan
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan.,Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Al Qalyubia Governorate 13511, Egypt
| | - Hirohisa Mekata
- Organization for Promotion of Tenure Track, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Takumi Hayashi
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Satoshi Sekiguchi
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Yumi Kirino
- Project for Zoonoses Education and Research, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Yoichiro Horii
- Division of International Cooperation and Education, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Abdel-Moneim M Moustafa
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Al Qalyubia Governorate 13511, Egypt
| | - Faysal K Arnaout
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Al Qalyubia Governorate 13511, Egypt
| | - El Sayed M Galila
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Al Qalyubia Governorate 13511, Egypt
| | - Junzo Norimine
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan.,Division of International Cooperation and Education, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
17
|
Pandey GS, Simulundu E, Mwiinga D, Samui KL, Mweene AS, Kajihara M, Mangani A, Mwenda R, Ndebe J, Konnai S, Takada A. Clinical and subclinical bovine leukemia virus infection in a dairy cattle herd in Zambia. Arch Virol 2016; 162:1051-1056. [PMID: 28025710 DOI: 10.1007/s00705-016-3205-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leucosis (EBL) and is responsible for substantial economic losses in cattle globally. However, information in Africa on the disease is limited. Here, based on clinical, hematological, pathological and molecular analyses, two clinical cases of EBL were confirmed in a dairy cattle herd in Zambia. In contrast, proviral DNA was detected by PCR in five apparently healthy cows from the same herd, suggesting subclinical BLV infection. Phylogenetic analysis of the env gene showed that the identified BLV clustered with Eurasian genotype 4 strains. This is the first report of confirmed EBL in Zambia.
Collapse
Affiliation(s)
- Girja S Pandey
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia.
| | - Edgar Simulundu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Danstan Mwiinga
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Kenny L Samui
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Masahiro Kajihara
- Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | - Alfred Mangani
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Racheal Mwenda
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia.,Division of Global Epidemiology, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan.,Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
18
|
Khudhair YI, Hasso SA, Yaseen NY, Al-Shammari AM. Serological and molecular detection of bovine leukemia virus in cattle in Iraq. Emerg Microbes Infect 2016; 5:e56. [PMID: 27273225 PMCID: PMC4932651 DOI: 10.1038/emi.2016.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 03/07/2016] [Indexed: 02/04/2023]
Abstract
Bovine leukemia virus (BLV) is highly endemic in many countries, including Iraq, and it impacts the beef and dairy industries. The current study sought to determine the percentage of BLV infection and persistent lymphocytosis (PL) in cattle in central Iraq. Hematological, serological, and molecular observations in cross breeds and local breeds of Iraqi cattle naturally infected with BLV were conducted in the peripheral blood mononuclear cells of 400 cattle (340 cross breed and 60 local breed) using enzyme-linked immunosorbent assay and polymerase chain reaction (PCR). On the basis of the absolute number of lymphocytes, five of the 31 positive PCR cases had PL. Among these leukemic cattle, one case exhibited overt neutrophilia. Serum samples were used to detect BLV antibodies, which were observed in 28 (7%) samples. PCR detected BLV provirus in 31 samples (7.75%). All 28 of the seropositive samples and the 3 seronegative samples were positive using PCR. Associations were observed between bovine leukosis and cattle breed, age and sex. Age-specific analysis showed that the BLV percentage increased with age in both breeds. Female cattle (29 animals; 7.34%) exhibited significantly higher infectivity than male cattle (two animals; 4.34%). In conclusion, comprehensive screening for all affected animals is needed in Iraq; programs that segregate cattle can be an effective and important method to control and/or eliminate the BLV.
Collapse
Affiliation(s)
- Yahia Ismail Khudhair
- Department of Veterinary Medicine, College of Veterinary Medicine, Al-University of Qadisiyah, Al Diwaniyah 58002, Iraq
| | - Saleem Amin Hasso
- Department of Veterinary Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad 10001, Iraq
| | - Nahi Y Yaseen
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad 10001, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad 10001, Iraq
| |
Collapse
|
19
|
Yuan Y, Kitamura-Muramatsu Y, Saito S, Ishizaki H, Nakano M, Haga S, Matoba K, Ohno A, Murakami H, Takeshima SN, Aida Y. Detection of the BLV provirus from nasal secretion and saliva samples using BLV-CoCoMo-qPCR-2: Comparison with blood samples from the same cattle. Virus Res 2015; 210:248-54. [PMID: 26298004 DOI: 10.1016/j.virusres.2015.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
Bovine leukemia virus (BLV) induces enzootic bovine leukosis, which is the most common neoplastic disease in cattle. Sero-epidemiological studies show that BLV infection occurs worldwide. Direct contact between infected and uninfected cattle is thought to be one of the risk factors for BLV transmission. Contact transmission occurs via a mixture of natural sources, blood, and exudates. To confirm that BLV provirus is detectable in these samples, matched blood, nasal secretion, and saliva samples were collected from 50 cattle, and genomic DNA was extracted. BLV-CoCoMo-qPCR-2, an assay developed for the highly sensitive detection of BLV, was then used to measure the proviral load in blood (n=50), nasal secretions (n=48), and saliva (n=47) samples. The results showed that 35 blood samples, 14 nasal secretion samples, and 6 saliva samples were positive for the BLV provirus. Matched blood samples from cattle that were positive for the BLV provirus (either in nasal secretion or saliva samples) were also positive in their blood. The proviral load in the positive blood samples was >14,000 (copies/1×10(5) cells). Thus, even though the proviral load in the nasal secretion and saliva samples was much lower (<380 copies/1×10(5) cells) than that in the peripheral blood, prolonged direct contact between infected and healthy cattle may be considered as a risk factor for BLV transmission.
Collapse
Affiliation(s)
- Yuan Yuan
- RIKEN GENESIS CO., LTD., RIKEN Yokohama Institute, East Research Building 3F, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yuri Kitamura-Muramatsu
- RIKEN GENESIS CO., LTD., RIKEN Yokohama Institute, East Research Building 3F, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Susumu Saito
- RIKEN GENESIS CO., LTD., RIKEN Yokohama Institute, East Research Building 3F, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Hiroshi Ishizaki
- NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Miwa Nakano
- NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Satoshi Haga
- NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Kazuhiro Matoba
- NARO Institute of Livestock and Grassland Science, 768 Senbonmatsu, Nasushiobara, Tochigi 329-2793, Japan
| | - Ayumu Ohno
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hironobu Murakami
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | | | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
20
|
|
21
|
Hemmatzadeh F, Keyvanfar H, Hasan NH, Niap F, Bani Hassan E, Hematzade A, Ebrahimie E, McWhorter A, Ignjatovic J. Interaction between Bovine leukemia virus (BLV) infection and age on telomerase misregulation. Vet Res Commun 2015; 39:97-103. [PMID: 25665900 DOI: 10.1007/s11259-015-9629-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/29/2015] [Indexed: 01/23/2023]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL). BLV can interact with telomerase and inhibits telomere shortening, contributing in leukemogenesis and tumour induction. The role of telomerase in BLV-induced lymphosarcoma and aging has been extensively studied. To date, the interaction of both BLV and aging on telomerase mis-regulation have, however, not been investigated. In the present study, telomerase activity in BLV positive and negative cows was compared over a wide range of ages (11-85 months). Lymphocyte counts were also measured in both BLV positive and negative groups. Telomerase activity was detected in all BLV infected animals with persistent lymphocytosis (PL), especially in older individuals. This study revealed that the cells undergo the natural telomerase shortening even in the presence of an existing viral infection. We also show that viral infection, especially during the PL phase of the disease, increases telomerase activity. A statistically significant interaction between age and viral infection was observed for telomere shortening during BLV infection. Older animals with BLV infection, especially those with persistent lymphocytosis or visible tumors, exhibited a sharp increase in telomerase activity. This study demonstrates that there is a significant interaction between BLV infection and telomerase up-regulation and lymphocytosis.
Collapse
Affiliation(s)
- Farhid Hemmatzadeh
- School of Animal and Veterinary Science, The University of Adelaide, Adelaide, Australia,
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Comparison of the copy numbers of bovine leukemia virus in the lymph nodes of cattle with enzootic bovine leukosis and cattle with latent infection. Arch Virol 2014; 159:2693-7. [DOI: 10.1007/s00705-014-2137-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
23
|
Panei CJ, Takeshima SN, Omori T, Nunoya T, Davis WC, Ishizaki H, Matoba K, Aida Y. Estimation of bovine leukemia virus (BLV) proviral load harbored by lymphocyte subpopulations in BLV-infected cattle at the subclinical stage of enzootic bovine leucosis using BLV-CoCoMo-qPCR. BMC Vet Res 2013; 9:95. [PMID: 23641811 PMCID: PMC3648496 DOI: 10.1186/1746-6148-9-95] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/17/2013] [Indexed: 11/20/2022] Open
Abstract
Background Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis (EBL), which is the most common neoplastic disease of cattle. BLV infection may remain clinically silent at the aleukemic (AL) stage, cause persistent lymphocytosis (PL), or, more rarely, B cell lymphoma. BLV has been identified in B cells, CD2+ T cells, CD3+ T cells, CD4+ T cells, CD8+ T cells, γ/δ T cells, monocytes, and granulocytes in infected cattle that do not have tumors, although the most consistently infected cell is the CD5+ B cell. The mechanism by which BLV causes uncontrolled CD5+ B cell proliferation is unknown. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR) method, BLV-CoCoMo-qPCR, which enabled us to demonstrate that the proviral load correlates not only with BLV infection, as assessed by syncytium formation, but also with BLV disease progression. The present study reports the distribution of BLV provirus in peripheral blood mononuclear cell subpopulations isolated from BLV-infected cows at the subclinical stage of EBL as examined by cell sorting and BLV-CoCoMo-qPCR. Results Phenotypic characterization of five BLV-infected but clinically normal cattle with a proviral load of > 100 copies per 1 × 105 cells identified a high percentage of CD5+ IgM+ cells (but not CD5- IgM+ B cells, CD4+ T cells, or CD8+T cells). These lymphocyte subpopulations were purified from three out of five cattle by cell sorting or using magnetic beads, and the BLV proviral load was estimated using BLV-CoCoMo-qPCR. The CD5+ IgM+ B cell population in all animals harbored a higher BLV proviral load than the other cell populations. The copy number of proviruses infecting CD5- IgM+ B cells, CD4+ cells, and CD8+ T cells (per 1 ml of blood) was 1/34 to 1/4, 1/22 to 1/3, and 1/31 to 1/3, respectively, compared with that in CD5+ IgM+ B cells. Moreover, the BLV provirus remained integrated into the genomic DNA of CD5+ IgM+ B cells, CD5- IgM+ B cells, CD4+ T cells, and CD8+ T cells, even in BLV-infected cattle with a proviral load of <100 copies per 105 cells. Conclusions The results of the recent study showed that, although CD5+ IgM+ B cells were the main cell type targeted in BLV-infected but clinically normal cattle, CD5- IgM+ B cells, CD4+ cells, and CD8+ T cells were infected to a greater extent than previously thought.
Collapse
|
24
|
Jimba M, Takeshima SN, Murakami H, Kohara J, Kobayashi N, Matsuhashi T, Ohmori T, Nunoya T, Aida Y. BLV-CoCoMo-qPCR: a useful tool for evaluating bovine leukemia virus infection status. BMC Vet Res 2012; 8:167. [PMID: 22995575 PMCID: PMC3489618 DOI: 10.1186/1746-6148-8-167] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 09/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide, imposing a severe economic impact on the dairy cattle industry. Recently, we developed a new quantitative real-time polymerase chain reaction (PCR) method using Coordination of Common Motifs (CoCoMo) primers to measure the proviral load of known and novel BLV variants in BLV-infected animals. Indeed, the assay was highly effective in detecting BLV in cattle from a range of international locations. This assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but also with BLV disease progression. In this study, we compared the sensitivity of our BLV-CoCoMo-qPCR method for detecting BLV proviruses with the sensitivities of two real-time PCR systems, and also determined the differences of proviral load with serotests. RESULTS BLV-CoCoMo-qPCR was found to be highly sensitive when compared with the real-time PCR-based TaqMan MGB assay developed by Lew et al. and the commercial TaKaRa cycleave PCR system. The BLV copy number determined by BLV-CoCoMo-qPCR was only partially correlated with the positive rate for anti-BLV antibody as determined by the enzyme-linked immunosorbent assay, passive hemagglutination reaction, or agar gel immunodiffusion. This result indicates that, although serotests are widely used for the diagnosis of BLV infection, it is difficult to detect BLV infection with confidence by using serological tests alone. Two cattle were experimentally infected with BLV. The kinetics of the provirus did not precisely correlate with the change in anti-BLV antibody production. Moreover, both reactions were different in cattle that carried different bovine leukocyte antigen (BoLA)-DRB3 genotypes. CONCLUSIONS Our results suggest that the quantitative measurement of proviral load by BLV-CoCoMo-qPCR is useful tool for evaluating the progression of BLV-induced disease. BLV-CoCoMo-qPCR allows us to monitor the spread of BLV infection in different viewpoint compared with classical serotest.
Collapse
Affiliation(s)
- Mayuko Jimba
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jimba M, Takeshima SN, Matoba K, Endoh D, Aida Y. BLV-CoCoMo-qPCR: Quantitation of bovine leukemia virus proviral load using the CoCoMo algorithm. Retrovirology 2010; 7:91. [PMID: 21044304 PMCID: PMC2988707 DOI: 10.1186/1742-4690-7-91] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 11/02/2010] [Indexed: 01/02/2023] Open
Abstract
Background Bovine leukemia virus (BLV) is closely related to human T-cell leukemia virus (HTLV) and is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly extended course that often involves persistent lymphocytosis and culminates in B-cell lymphomas. BLV provirus remains integrated in cellular genomes, even in the absence of detectable BLV antibodies. Therefore, to understand the mechanism of BLV-induced leukemogenesis and carry out the selection of BLV-infected animals, a detailed evaluation of changes in proviral load throughout the course of disease in BLV-infected cattle is required. The aim of this study was to develop a new quantitative real-time polymerase chain reaction (PCR) method using Coordination of Common Motifs (CoCoMo) primers to measure the proviral load of known and novel BLV variants in clinical animals. Results Degenerate primers were designed from 52 individual BLV long terminal repeat (LTR) sequences identified from 356 BLV sequences in GenBank using the CoCoMo algorithm, which has been developed specifically for the detection of multiple virus species. Among 72 primer sets from 49 candidate primers, the most specific primer set was selected for detection of BLV LTR by melting curve analysis after real-time PCR amplification. An internal BLV TaqMan probe was used to enhance the specificity and sensitivity of the assay, and a parallel amplification of a single-copy host gene (the bovine leukocyte antigen DRA gene) was used to normalize genomic DNA. The assay is highly specific, sensitive, quantitative and reproducible, and was able to detect BLV in a number of samples that were negative using the previously developed nested PCR assay. The assay was also highly effective in detecting BLV in cattle from a range of international locations. Finally, this assay enabled us to demonstrate that proviral load correlates not only with BLV infection capacity as assessed by syncytium formation, but also with BLV disease progression. Conclusions Using our newly developed BLV-CoCoMo-qPCR assay, we were able to detect a wide range of mutated BLV viruses. CoCoMo algorithm may be a useful tool to design degenerate primers for quantification of proviral load for other retroviruses including HTLV and human immunodeficiency virus type 1.
Collapse
Affiliation(s)
- Mayuko Jimba
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | |
Collapse
|
26
|
Kurtinaitiene B, Ambrozaite D, Laurinavicius V, Ramanaviciene A, Ramanavicius A. Amperometric immunosensor for diagnosis of BLV infection. Biosens Bioelectron 2008; 23:1547-54. [PMID: 18294837 DOI: 10.1016/j.bios.2008.01.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 01/07/2008] [Accepted: 01/09/2008] [Indexed: 11/29/2022]
Abstract
A new amperometric immunosensor for detection of antibodies against bovine leukemia protein (gp51) was designed. The detection of antibody-antigen complex formation was based on application of secondary antibodies labeled with horseradish peroxidase (HRP). Ferrocenecarboxylic acid (FCA) and N,N,N',N'-tetramethylbenzidine (TMB) were selected as suitable mediators for this immunosensor. Optimal conditions for amperometric detection were found. Sensitivity of created system was compared with the results of enzyme-linked immunosorbent assay (ELISA) and agar gel immunodiffusion (AGID) reaction, and was sufficient for detection of usual anti-gp51 antibody concentration present in the blood serum of BLV-infected cattle.
Collapse
|
27
|
Zhao X, Buehring GC. Natural genetic variations in bovine leukemia virus envelope gene: Possible effects of selection and escape. Virology 2007; 366:150-65. [PMID: 17498765 DOI: 10.1016/j.virol.2007.03.058] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/05/2007] [Accepted: 03/29/2007] [Indexed: 12/01/2022]
Abstract
Bovine leukemia virus (BLV) is an oncogenic virus widespread in cattle. It belongs to the genus Deltaretrovirus of the family Retroviridae along with human and simian T-lymphotropic viruses. Here we report the addition of 28 new sequences to the current literature of 16 full-length BLV envelope gene sequences. The phylogenetic clustering, genotyping, and geographic distribution of BLV env variations corresponded in most cases. Most natural variations are mapped to the surface of the proposed conformational models of BLV gp51 N-terminus and gp30 external domain, overlapping with or adjacent to immunogenic epitopes. Analyses for evidence of possible selection pressures suggest the BLV env is under stringent negative selection overall, while strong positive selection is indicated for immunogenic epitope G. Natural env deletions bounded by similar flanking sequences were observed in multiple isolates and would result in truncated signal peptides, missing gp51, and aberrant coding frames for other proteins.
Collapse
Affiliation(s)
- Xiangrong Zhao
- Graduate Program in Endocrinology, 3060 Valley Life Science Building, University of California, Berkeley, CA 94720-3140, USA.
| | | |
Collapse
|
28
|
Lew AE, Bock RE, Molloy JB, Minchin CM, Robinson SJ, Steer P. Sensitive and specific detection of proviral bovine leukemia virus by 5' Taq nuclease PCR using a 3' minor groove binder fluorogenic probe. J Virol Methods 2004; 115:167-75. [PMID: 14667532 DOI: 10.1016/j.jviromet.2003.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sensitive assays are required to detect proviral bovine leukemia virus (BLV) in donor cattle used for the in vivo preparation of Australian tick fever vaccines. 5' Taq nuclease assays using 3' minor groove binder DNA probes (TaqManMGB) were developed and compared to conventional PCR assays for sensitive detection of Australian BLV. Seven beef and dairy herds were screened using DNA prepared by a variety of protocols to evaluate these tests. Comparative sensitivities of PCR tests were determined by testing log(10) dilutions of plasmids with inserted BLV sequences. Animals were also screened by the BLV standard agar-gel immunodiffusion test (AGID) and commercial enzyme linked immunosorbent assays (ELISA) for antibodies, and an ELISA for detecting viral antigens expressed (VAE) in lymphocyte cultures. The TaqMan MGB assay based on the pol region was the most sensitive and specific for the detection of BLV. This is the first report of a sensitive BLV 5' Taq nuclease assay.
Collapse
Affiliation(s)
- Ala E Lew
- Agency for Food and Fibre Sciences, Queensland Department of Primary Industries, c/o Locked Mail Bag No. 4, 4105, QLD, Moorooka, Australia.
| | | | | | | | | | | |
Collapse
|