1
|
Kuzmenko NV, Tsyrlin VA, Pliss MG. [Meta-analysis of experimental studies of the effect of melatonin monotherapy on the levels of thyroid hormones and glucocorticoids in rats kept under standard condition]. PROBLEMY ENDOKRINOLOGII 2024; 70:91-105. [PMID: 39509641 DOI: 10.14341/probl13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 11/15/2024]
Abstract
BACKGROUND Melatonin is known to modulate circadian and seasonal rhythms in metabolism, reproduction, and behavior. However, the effect of exogenous melatonin supplementation on the functioning of the thyroid and adrenal glands in species without a clear seasonality in reproduction is still unclear. AIM Using a meta-analysis of publications, to investigate the effect of melatonin monotherapy on the concentrations of pituitary thyroid-stimulating hormone, thyroid hormones (TG), pituitary adrenocorticotropic hormone and corticosterone (CS) in rats kept under standard laboratory conditions. MATERIALS AND METHODS In our work, using the Review Manager 5.3 program, we conducted a meta-analysis of publications examining the effect of melatonin monotherapy on the functioning of the thyroid gland (22 papers) and adrenal glands (20 papers) in rats kept under standard conditions. RESULTS According to the results of our meta-analysis, the effects of melatonin on the levels of TG and CS depend on the dose and duration of therapy. A decrease in TG and CS was associated with therapy lasting no more than 4-5 weeks and with high doses of melatonin. An increase in CS and a trend toward increased TG levels were observed with longer therapy. However, a few studies have observed a decrease in TG with very long-term melatonin therapy (≥32 weeks). Among all TGs, total thyroxine (T4) showed maximum sensitivity to exogenous melatonin, which indicates the influence of melatonin on the secretory function of the thyroid gland. In addition, melatonin increased the relative weight of the adrenal glands. There was no convincing evidence that the effects of melatonin were influenced by the route and timing of administration, or the timing of blood sampling. CONCLUSION As a result, exogenous melatonin can modulate TG and CS levels, even in species without a clear seasonality in reproductive function.
Collapse
Affiliation(s)
- N V Kuzmenko
- Almazov National Medical Research Centre; First Pavlov State Medical University of St. Petersburg
| | | | - M G Pliss
- Almazov National Medical Research Centre
| |
Collapse
|
2
|
Romero MDM, Martín-González MZ, Aragonès G, Muguerza B, Remesar X, Arola-Arnal A, Fernández-López JA. Time-of-Day Adrenal Modulation of Corticosterone Synthesis is Affected by Sex and Diet but Not by Proanthocyanidins in Rat. Mol Nutr Food Res 2024; 68:e2400323. [PMID: 39148153 DOI: 10.1002/mnfr.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Indexed: 08/17/2024]
Abstract
SCOPE The aim of this study is to investigate the effect of time-of-day on serum hormones and gene expression in adrenal glands, studying the impact of sex, obesogenic diet, and timing of proanthocyanidins administration, with a focus on glucocorticoids synthesis by this gland. METHODS AND RESULTS Female and male rats, assigned to a standard chow or a cafeteria diet-fed group, receive a daily oral dose of a grape seed proanthocyanidin extract (GSPE), or a vehicle (when light is turned on, or when light is turned off). Corticosterone, estradiol, and testosterone serum levels, and the expression analysis of clock genes and genes related to corticosterone synthesis pathway, are assessed. Serum hormone levels exhibited a marked time-of-day effect also see in the expression of scavenger receptor class B member 1 (Scarb1) and cyp11b genes. The correlation between these two genes and period circadian regulator 2 (Per2) is also extended to other clock genes, although to a lesser extent: cryptochrome (Cry) and nuclear receptor subfamily 1 group D member 1 (Rev-erba). CONCLUSION The strong correlations found suggest an important role of local Per2 (but also of Cry and Rev-erbA) in regulating the expression of the enzymes involved in the corticosterone synthesis pathway. The expression of clock genes in adrenals is influenced by sex and diet but not by GSPE.
Collapse
Affiliation(s)
- Maria-Del-Mar Romero
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, 08028, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Miguel Z Martín-González
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Gerard Aragonès
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Begoña Muguerza
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, 08028, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, Barcelona, 08028, Spain
| | - Anna Arola-Arnal
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, 08028, Spain
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - José-Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, 08028, Spain
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, Barcelona, 08028, Spain
| |
Collapse
|
3
|
Khezri MR, Hsueh H, Mohammadipanah S, Khalili Fard J, Ghasemnejad‐Berenji M. The interplay between the PI3K/AKT pathway and circadian clock in physiologic and cancer-related pathologic conditions. Cell Prolif 2024; 57:e13608. [PMID: 38336976 PMCID: PMC11216939 DOI: 10.1111/cpr.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/15/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The circadian clock is responsible for the regulation of different cellular processes, and its disturbance has been linked to the development of different diseases, such as cancer. The main molecular mechanism for this issue has been linked to the crosstalk between core clock regulators and intracellular pathways responsible for cell survival. The PI3K/AKT signalling pathway is one of the most known intracellular pathways in the case of cancer initiation and progression. This pathway regulates different aspects of cell survival including proliferation, apoptosis, metabolism, and response to environmental stimuli. Accumulating evidence indicates that there is a link between the PI3K/AKT pathway activity and circadian rhythm in physiologic and cancer-related pathogenesis. Different classes of PI3Ks and AKT isoforms are involved in regulating circadian clock components in a transcriptional and functional manner. Reversely, core clock components induce a rhythmic fashion in PI3K and AKT activity in physiologic and pathogenic conditions. The aim of this review is to re-examine the interplay between this pathway and circadian clock components in normal condition and cancer pathogenesis, which provides a better understanding of how circadian rhythms may be involved in cancer progression.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Hsiang‐Yin Hsueh
- The Ohio State University Graduate Program in Molecular, Cellular and Developmental BiologyThe Ohio State UniversityColumbusOhioUSA
| | - Somayeh Mohammadipanah
- Reproductive Health Research Center, Clinical Research InstituteUrmia University of Medical SciencesUrmiaIran
| | - Javad Khalili Fard
- Department of Pharmacology and Toxicology, Faculty of PharmacyTabriz University of Medical SciencesTabrizIran
| | - Morteza Ghasemnejad‐Berenji
- Department of Pharmacology and Toxicology, Faculty of PharmacyUrmia University of Medical SciencesUrmiaIran
- Research Center for Experimental and Applied Pharmaceutical SciencesUrmia University of Medical SciencesUrmiaIran
| |
Collapse
|
4
|
Weinert D, Gubin D. Chronobiological Study Designs. CHRONOBIOLOGY AND CHRONOMEDICINE 2024:579-609. [DOI: 10.1039/bk9781839167553-00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The chapter describes experimental designs for various chronobiological studies aimed at basic research and clinical trials, with an emphasis on circadian rhythms. In the first part, various methods of data collection, particularly longitudinal and transverse sampling and their relative merits, are discussed. Thereafter, specific methods and their constraints for monitoring marker rhythms are presented. Variables that are most effective in characterizing the endogenous pacemaker and those of clinical relevance are discussed. Besides melatonin and core body temperature rhythms, which are widely accepted as the gold standard for representing the circadian clock, rhythms of cortisol concentration, physical activity, sleep parameters and chronotypes are considered. The relevance of stable rhythms with appropriate internal and external phase relationships for health and wellbeing, as well as adverse effects of certain rhythm alterations are discussed. The last part describes two experimental designs that allow separating endogenous and exogenous components of biological rhythms, the constant routine and the forced desynchronization protocols.
Collapse
Affiliation(s)
- Dietmar Weinert
- aInstitute for Biology/Zoology, Martin Luther University, Halle-Wittenberg, Germany
| | - Denis Gubin
- bDepartment of Biology, Medical University, 625023 Tyumen, Russia
| |
Collapse
|
5
|
Elberling F, Spulber S, Bose R, Keung HY, Ahola V, Zheng Z, Ceccatelli S. Sex Differences in Long-term Outcome of Prenatal Exposure to Excess Glucocorticoids-Implications for Development of Psychiatric Disorders. Mol Neurobiol 2023; 60:7346-7361. [PMID: 37561236 PMCID: PMC10657788 DOI: 10.1007/s12035-023-03522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023]
Abstract
Exposure to prenatal insults, such as excess glucocorticoids (GC), may lead to pathological outcomes, including neuropsychiatric disorders. The aim of the present study was to investigate the long-term effects of in utero exposure to the synthetic GC analog dexamethasone (Dex) in adult female offspring. We monitored spontaneous activity in the home cage under a constant 12 h/12 h light/dark cycle, as well as the changes following a 6-h advance of dark onset (phase shift). For comparison, we re-analysed data previously recorded in males. Dex-exposed females were spontaneously more active, and the activity onset re-entrained slower than in controls. In contrast, Dex-exposed males were less active, and the activity onset re-entrained faster than in controls. Following the phase shift, control females displayed a transient reorganisation of behaviour in light and virtually no change in dark, while Dex-exposed females showed limited variations from baseline in both light and dark, suggesting weaker photic entrainment. Next, we ran bulk RNA-sequencing in the suprachiasmatic nucleus (SCN) of Dex and control females. SPIA pathway analysis of ~ 2300 differentially expressed genes identified significantly downregulated dopamine signalling, and upregulated glutamate and GABA signalling. We selected a set of candidate genes matching the behaviour alterations and found consistent differential regulation for ~ 73% of tested genes in SCN and hippocampus tissue samples. Taken together, our data highlight sex differences in the outcome of prenatal exposure to excess GC in adult mice: in contrast to depression-like behaviour in males, the phenotype in females, defined by behaviour and differential gene expression, is consistent with ADHD models.
Collapse
Affiliation(s)
- Frederik Elberling
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Stefan Spulber
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden.
| | - Raj Bose
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| | - Hoi Yee Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, 15W Science and Technology W Ave, Sha Tin, Hong Kong Special Administrative Region, People's Republic of China
| | - Sandra Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Biomedicum, Solnavägen 9, 171 77, Stockholm, Sweden
| |
Collapse
|
6
|
Robertson-Dixon I, Murphy MJ, Crewther SG, Riddell N. The Influence of Light Wavelength on Human HPA Axis Rhythms: A Systematic Review. Life (Basel) 2023; 13:1968. [PMID: 37895351 PMCID: PMC10608196 DOI: 10.3390/life13101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Environmental light entrains many physiological and behavioural processes to the 24 h solar cycle. Such light-driven circadian rhythms are centrally controlled by the suprachiasmatic nucleus (SCN), which receives information from the short-wavelength-sensitive intrinsically photosensitive retinal ganglion cells. The SCN synchronizes local clocks throughout the body affecting sleep/wake routines and the secretion of neuroendocrine-linked hormones such as melatonin from the pineal gland and cortisol via the hypothalamic pituitary adrenal (HPA) axis. Although the effects of light parameters on melatonin have been recently reviewed, whether the experimental variation of the spectral power distribution and intensity of light can induce changes in cortisol rhythms remains unclear. Thus, this systematic review evaluated the effects of daytime exposure to lights of different spectral wavelength characteristics and luminance intensity on the cortisol levels in healthy individuals. A search of the PubMed, Web of Science, EMBASE, CINAHL, Medline, PsycINFO and Cochrane Library databases on 19 June 2023 identified 3418 articles, of which 12 studies (profiling 337 participants) met the inclusion and risk of bias criteria. An analysis of the literature indicated that exposure to bright lights of any colour during the late night or early morning can induce significant increases in cortisol secretion relative to time-matched dim light comparison conditions. Furthermore, exposure to bright lights with stronger short-wavelength (blue/green) components in the early morning typically induced greater increases in cortisol relative to lights with stronger long-wavelength (red) components. Thus, the circadian regulation of cortisol is sensitive to the wavelength composition of environmental lighting, in line with the more commonly studied melatonin. As such, wavelength characteristics should be optimized and reported in light intervention studies (particularly for the investigation of cortisol-associated disorders and HPA axis function), and exposure to short-wavelength light during sensitive periods should be carefully considered in constructed environments (e.g., bedroom and classroom lighting and device screens).
Collapse
Affiliation(s)
- Isabella Robertson-Dixon
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia; (I.R.-D.); (M.J.M.); (S.G.C.)
| | - Melanie J. Murphy
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia; (I.R.-D.); (M.J.M.); (S.G.C.)
| | - Sheila G. Crewther
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia; (I.R.-D.); (M.J.M.); (S.G.C.)
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Nina Riddell
- Department of Psychology, Counselling and Therapy, La Trobe University, Melbourne, VIC 3086, Australia; (I.R.-D.); (M.J.M.); (S.G.C.)
| |
Collapse
|
7
|
BaHammam AS, Pirzada A. Timing Matters: The Interplay between Early Mealtime, Circadian Rhythms, Gene Expression, Circadian Hormones, and Metabolism-A Narrative Review. Clocks Sleep 2023; 5:507-535. [PMID: 37754352 PMCID: PMC10528427 DOI: 10.3390/clockssleep5030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Achieving synchronization between the central and peripheral body clocks is essential for ensuring optimal metabolic function. Meal timing is an emerging field of research that investigates the influence of eating patterns on our circadian rhythm, metabolism, and overall health. This narrative review examines the relationship between meal timing, circadian rhythm, clock genes, circadian hormones, and metabolic function. It analyzes the existing literature and experimental data to explore the connection between mealtime, circadian rhythms, and metabolic processes. The available evidence highlights the importance of aligning mealtime with the body's natural rhythms to promote metabolic health and prevent metabolic disorders. Specifically, studies show that consuming meals later in the day is associated with an elevated prevalence of metabolic disorders, while early time-restricted eating, such as having an early breakfast and an earlier dinner, improves levels of glucose in the blood and substrate oxidation. Circadian hormones, including cortisol and melatonin, interact with mealtimes and play vital roles in regulating metabolic processes. Cortisol, aligned with dawn in diurnal mammals, activates energy reserves, stimulates appetite, influences clock gene expression, and synchronizes peripheral clocks. Consuming meals during periods of elevated melatonin levels, specifically during the circadian night, has been correlated with potential implications for glucose tolerance. Understanding the mechanisms of central and peripheral clock synchronization, including genetics, interactions with chronotype, sleep duration, and hormonal changes, provides valuable insights for optimizing dietary strategies and timing. This knowledge contributes to improved overall health and well-being by aligning mealtime with the body's natural circadian rhythm.
Collapse
Affiliation(s)
- Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11324, Saudi Arabia
| | - Abdulrouf Pirzada
- North Cumbria Integrated Care (NCIC), National Health Service (NHS), Carlisle CA2 7HY, UK;
| |
Collapse
|
8
|
Nobari H, Azarian S, Saedmocheshi S, Valdés-Badilla P, García Calvo T. Narrative review: The role of circadian rhythm on sports performance, hormonal regulation, immune system function, and injury prevention in athletes. Heliyon 2023; 9:e19636. [PMID: 37809566 PMCID: PMC10558889 DOI: 10.1016/j.heliyon.2023.e19636] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives This study was a narrative review of the importance of circadian rhythm (CR), describes the underlying mechanisms of CR in sports performance, emphasizes the reciprocal link between CR, endocrine homeostasis and sex differences, and the unique role of the circadian clock in immune system function and coordination. Method As a narrative review study, a comprehensive search was conducted in PubMed, Scopus, and Web of Science (core collection) databases using the keywords "circadian rhythm", "sports performance", "hormonal regulation", "immune system", and "injury prevention". Inclusion criteria were studies published in English and peer-reviewed journals until July 2023. Studies that examined the role of CR in sports performance, hormonal status, immune system function, and injury prevention in athletes were selected for review. Results CR is followed by almost all physiological and biochemical activities in the human body. In humans, the superchiasmatic nucleus controls many daily biorhythms under solar time, including the sleep-wake cycle. A body of literature indicates that the peak performance of essential indicators of sports performance is primarily in the afternoon hours, and the evening of actions occurs roughly at the peak of core body temperature. Recent studies have demonstrated that the time of day that exercise is performed affects the achievement of good physical performance. This review also shows various biomarkers of cellular damage in weariness and the underlying mechanisms of diurnal fluctuations. According to the clock, CR can be synchronized with photonic and non-photonic stimuli (i.e., temperature, physical activity, and food intake), and feeding patterns and diet changes can affect CR and redox markers. It also emphasizes the reciprocal links between CR and endocrine homeostasis, the specific role of the circadian clock in coordinating immune system function, and the relationship between circadian clocks and sex differences. Conclusion The interaction between insufficient sleep and time of day on performance has been established in this study because it is crucial to balance training, recovery, and sleep duration to attain optimal sports performance.
Collapse
Affiliation(s)
- Hadi Nobari
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Somayeh Azarian
- Department of Exercise Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, 56199-11367, Iran
| | - Saber Saedmocheshi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj, 66177-15175, Iran
| | - Pablo Valdés-Badilla
- Department of Physical Activity Sciences, Faculty of Education Sciences, Universidad Católica del Maule, Talca, 3530000, Chile
- Sports Coach Career, School of Education, Universidad Viña del Mar, Viña del Mar, 2520000, Chile
| | - Tomás García Calvo
- Faculty of Sport Sciences, University of Extremadura, 10003, Cáceres, Spain
| |
Collapse
|
9
|
Yu Q, Guo Q, Jin S, Gao C, Zheng P, Li DP, Wu Y. Melatonin suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity in the hypothalamus. Front Physiol 2023; 14:1166246. [PMID: 37064887 PMCID: PMC10090494 DOI: 10.3389/fphys.2023.1166246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Melatonin (5-methoxy-N-acetyl-tryptamine) is a circadian hormone synthesized and secreted by the pineal gland. In addition to regulating circadian rhythms of many physiological functions, melatonin is involved in regulating autonomic nervous function and blood pressure. Hypothalamus paraventricular nucleus (PVN), receiving melatonin projections from the superchiasmatic nucleus, is a critical brain region to regulate neuroendocrine and cardiovascular function. Here, we determined the synaptic mechanisms involved in the effect of melatonin on the sympathetic outflow and blood pressure.Methods and Results: Microinjection of melatonin into the PVN produced a depressor effect and decreased renal sympathetic nerve activity (RSNA). While microinjection of luzindole, a non-selective melatonin receptor antagonist, into the PVN did not change melatonin-induced sympathoinhibition, GABAA receptor antagonist bicuculline eliminated melatonin-induced sympathoinhibition. Furthermore, melatonin decreased firing rate of retrogradely labeled PVN neurons which project to the rostral ventrolateral medulla (RVLM), an effect was not altered by luzindole but eliminated by bicuculline. Melatonin significantly increased the amplitude of spontaneous and evoked GABAergic inhibitory synaptic currents, as well as GABA-induced currents.Conclusion: These data suggest that melatonin in the PVN suppresses sympathetic vasomotor tone through enhancing GABAA receptor activity. This study provides novel information for understanding the cellular mechanisms involved in the effect of melatonin on regulating blood pressure and sympathetic output.
Collapse
Affiliation(s)
- Qiyao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Office of Academic Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Chao Gao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Peiru Zheng
- Department of Medicine, University of Missouri, Columbia, KY, United States
| | - De-Pei Li
- Department of Medicine, University of Missouri, Columbia, KY, United States
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
- *Correspondence: Yuming Wu,
| |
Collapse
|
10
|
Vega-Beyhart A, Araujo-Castro M, Hanzu FA, Casals G. Cortisol: Analytical and clinical determinants. Adv Clin Chem 2023; 113:235-271. [PMID: 36858647 DOI: 10.1016/bs.acc.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cortisol, the main human glucocorticoid, is synthesized from cholesterol in the adrenal cortex and predominantly metabolized by the liver. Interpretation of quantitative results from the analysis of serum, urine and saliva is complicated by variation in circadian rhythm, response to stress as well as the presence of protein-bound and free forms. Interestingly, cortisol is the only hormone routinely measured in serum, urine, and saliva. Preanalytical and analytical challenges arise in each matrix and are further compounded by the use of various stimulation and suppression tests commonly employed in clinical practice. Although not yet included in clinical guidelines, measurement of cortisol in hair may be of interest in specific situations. Immunoassays are the most widely used methods in clinical laboratories to measure cortisol, but they are susceptible to interference from synthetic and endogenous steroids, generally producing a variable overestimation of true cortisol results, especially in urine. Analysis by mass spectrometry provides higher specificity and allows simultaneous measurement of multiple steroids including synthetic steroids, thus reducing diagnostic uncertainty. An integrated review of cortisol in various disease states is also addressed.
Collapse
Affiliation(s)
- Arturo Vega-Beyhart
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain
| | - Marta Araujo-Castro
- Department of Endocrinology and Metabolism, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Felicia A Hanzu
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Endocrinology and Nutrition, Hospital Clinic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Gregori Casals
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Service of Biochemistry and Molecular Genetics, Hospital Clinic, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Fundamental Care and Medical-Surgical Nursing, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Obstructive Sleep Apnea, Circadian Clock Disruption, and Metabolic Consequences. Metabolites 2022; 13:metabo13010060. [PMID: 36676985 PMCID: PMC9863434 DOI: 10.3390/metabo13010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic disorder characterized by recurrent episodes of apnea and hypopnea during sleep. It is associated with various cardiovascular and metabolic complications, including type 2 diabetes mellitus (T2DM) and obesity. Many pathways can be responsible for T2DM development in OSA patients, e.g., those related to HIF-1 and SIRT1 expression. Moreover, epigenetic mechanisms, such as miRNA181a or miRNA199, are postulated to play a pivotal role in this link. It has been proven that OSA increases the occurrence of circadian clock disruption, which is also a risk factor for metabolic disease development. Circadian clock disruption impairs the metabolism of glucose, lipids, and the secretion of bile acids. Therefore, OSA-induced circadian clock disruption may be a potential, complex, underlying pathway involved in developing and exacerbating metabolic diseases among OSA patients. The current paper summarizes the available information pertaining to the relationship between OSA and circadian clock disruption in the context of potential mechanisms leading to metabolic disorders.
Collapse
|
12
|
Walker JJ, Romanò N. Fast dynamics in the HPA axis: Insight from mathematical and experimental studies. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 27:100403. [PMID: 36632146 PMCID: PMC9823091 DOI: 10.1016/j.coemr.2022.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterised by complex dynamics spanning several timescales. This ranges from slow circadian rhythms in blood hormone concentration to faster ultradian pulses of hormone secretion and even more rapid oscillations in electrical and calcium activity in neuroendocrine cells of the hypothalamus and pituitary gland. Here, we focus on the system's oscillations on the short timescale. We highlight some of the mathematical modelling and experimental work that has been carried out to characterise the mechanisms regulating this highly dynamic mode of neuroendocrine signalling and discuss some future directions that may be explored to enhance understanding of HPA function.
Collapse
Affiliation(s)
- Jamie J. Walker
- Department of Mathematics and Statistics, Faculty of Environment, Science and Economy, University of Exeter, UK,Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, UK,Corresponding author: Walker, Jamie J
| | - Nicola Romanò
- Centre for Discovery Brain Sciences, University of Edinburgh, UK,Corresponding author: Romanò, Nicola twitter icon
| |
Collapse
|
13
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shiftwork. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
14
|
Galinde AAS, Al-Mughales F, Oster H, Heyde I. Different levels of circadian (de)synchrony -- where does it hurt? F1000Res 2022; 11:1323. [PMID: 37125019 PMCID: PMC10130703 DOI: 10.12688/f1000research.127234.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
A network of cellular timers ensures the maintenance of homeostasis by temporal modulation of physiological processes across the day. These so-called circadian clocks are synchronized to geophysical time by external time cues (or zeitgebers). In modern societies, natural environmental cycles are disrupted by artificial lighting, around-the-clock availability of food or shift work. Such contradictory zeitgeber input promotes chronodisruption, i.e., the perturbation of internal circadian rhythms, resulting in adverse health outcomes. While this phenomenon is well described, it is still poorly understood at which level of organization perturbed rhythms impact on health and wellbeing. In this review, we discuss different levels of chronodisruption and what is known about their health effects. We summarize the results of disrupted phase coherence between external and internal time vs. misalignment of tissue clocks amongst each other, i.e., internal desynchrony. Last, phase incoherence can also occur at the tissue level itself. Here, alterations in phase coordination can emerge between cellular clocks of the same tissue or between different clock genes within the single cell. A better understanding of the mechanisms of circadian misalignment and its effects on physiology will help to find effective tools to prevent or treat disorders arising from modern-day chronodisruptive environments.
Collapse
Affiliation(s)
- Ankita AS. Galinde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Faheem Al-Mughales
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
- Biochemistry Department, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Henrik Oster
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| | - Isabel Heyde
- Institute of Neurobiology, Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, 23562, Germany
| |
Collapse
|
15
|
Checa-Ros A, D’Marco L. Role of Omega-3 Fatty Acids as Non-Photic Zeitgebers and Circadian Clock Synchronizers. Int J Mol Sci 2022; 23:12162. [PMID: 36293015 PMCID: PMC9603208 DOI: 10.3390/ijms232012162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 10/23/2024] Open
Abstract
Omega-3 fatty acids (ω-3 FAs) are well-known for their actions on immune/inflammatory and neurological pathways, functions that are also under circadian clock regulation. The daily photoperiod represents the primary circadian synchronizer ('zeitgeber'), although diverse studies have pointed towards an influence of dietary FAs on the biological clock. A comprehensive literature review was conducted following predefined selection criteria with the aim of updating the evidence on the molecular mechanisms behind circadian rhythm regulation by ω-3 FAs. We collected preclinical and clinical studies, systematic reviews, and metanalyses focused on the effect of ω-3 FAs on circadian rhythms. Twenty animal (conducted on rodents and piglets) and human trials and one observational study providing evidence on the regulation of neurological, inflammatory/immune, metabolic, reproductive, cardiovascular, and biochemical processes by ω-3 FAs via clock genes were discussed. The evidence suggests that ω-3 FAs may serve as non-photic zeitgebers and prove therapeutically beneficial for circadian disruption-related pathologies. Future work should focus on the role of clock genes as a target for the therapeutic use of ω-3 FAs in inflammatory and neurological disorders, as well as on the bidirectional association between the molecular clock and ω-3 FAs.
Collapse
Affiliation(s)
- Ana Checa-Ros
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Aston Institute of Health and Neurosciences, School of Life & Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Luis D’Marco
- Department of Medicine and Surgery, Faculty of Health Sciences, Universidad Cardenal Herrera—CEU, CEU Universities, 46115 Valencia, Spain
- Department of Nephrology, Hospital General Universitario de Valencia, 46014 Valencia, Spain
| |
Collapse
|
16
|
Gao F, Ma J, Yu YQ, Gao XF, Bai Y, Sun Y, Liu J, Liu X, Barry DM, Wilhelm S, Piccinni-Ash T, Wang N, Liu D, Ross RA, Hao Y, Huang X, Jia JJ, Yang Q, Zheng H, van Nispen J, Chen J, Li H, Zhang J, Li YQ, Chen ZF. A non-canonical retina-ipRGCs-SCN-PVT visual pathway for mediating contagious itch behavior. Cell Rep 2022; 41:111444. [PMID: 36198265 PMCID: PMC9595067 DOI: 10.1016/j.celrep.2022.111444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Contagious itch behavior informs conspecifics of adverse environment and is crucial for the survival of social animals. Gastrin-releasing peptide (GRP) and its receptor (GRPR) in the suprachiasmatic nucleus (SCN) of the hypothalamus mediates contagious itch behavior in mice. Here, we show that intrinsically photosensitive retina ganglion cells (ipRGCs) convey visual itch information, independently of melanopsin, from the retina to GRP neurons via PACAP-PAC1R signaling. Moreover, GRPR neurons relay itch information to the paraventricular nucleus of the thalamus (PVT). Surprisingly, neither the visual cortex nor superior colliculus is involved in contagious itch. In vivo calcium imaging and extracellular recordings reveal contagious itch-specific neural dynamics of GRPR neurons. Thus, we propose that the retina-ipRGC-SCN-PVT pathway constitutes a previously unknown visual pathway that probably evolved for motion vision that encodes salient environmental cues and enables animals to imitate behaviors of conspecifics as an anticipatory mechanism to cope with adverse conditions. It has been shown that GRP-GRPR neuropeptide signaling in the SCN is important for contagious itch behavior in mice. Gao et al. find that SCN-projecting ipRGCs are sufficient to relay itch information from the retina to the SCN by releasing neuropeptide PACAP to activate the GRP-GRPR pathway.
Collapse
Affiliation(s)
- Fang Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jun Ma
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yao-Qing Yu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, P. R. China
| | - Xiao-Fei Gao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai 200434, P. R. China
| | - Yang Bai
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China,Present address: Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang 110016, P. R. China
| | - Yi Sun
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China,Present address: Binzhou Medical University, Yantai 264003, P. R. China
| | - Juan Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xianyu Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Devin M. Barry
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven Wilhelm
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyler Piccinni-Ash
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Na Wang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, P. R. China
| | - Dongyang Liu
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Pain Management, the State Key Clinical Specialty in Pain Medicine, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P.R. China
| | - Rachel A. Ross
- Department of Neuroscience, Psychiatry and Medicine, Albert Einstein College of Medicine Rose F. Kennedy Center, Bronx, NY, USA
| | - Yan Hao
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Department of Pediatrics, Tongji Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan 430030, P. R. China
| | - Xu Huang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Jin-Jing Jia
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: College of Life Sciences, Xinyang Normal University, Xinyang 464000, P. R. China
| | - Qianyi Yang
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hao Zheng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Johan van Nispen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Present address: Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, P. R. China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, P. R. China
| | - Zhou-Feng Chen
- Center for the Study of Itch and Sensory Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA,Departments of Anesthesiology, Medicine, Psychiatry and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA,Lead contact,Correspondence:
| |
Collapse
|
17
|
Moeller JS, Bever SR, Finn SL, Phumsatitpong C, Browne MF, Kriegsfeld LJ. Circadian Regulation of Hormonal Timing and the Pathophysiology of Circadian Dysregulation. Compr Physiol 2022; 12:4185-4214. [PMID: 36073751 DOI: 10.1002/cphy.c220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.
Collapse
Affiliation(s)
- Jacob S Moeller
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA
| | - Savannah R Bever
- Department of Psychology, University of California, Berkeley, California, USA
| | - Samantha L Finn
- Department of Psychology, University of California, Berkeley, California, USA
| | | | - Madison F Browne
- Department of Psychology, University of California, Berkeley, California, USA
| | - Lance J Kriegsfeld
- Graduate Group in Endocrinology, University of California, Berkeley, California, USA.,Department of Psychology, University of California, Berkeley, California, USA.,Department of Integrative Biology, University of California, Berkeley, California, USA.,The Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| |
Collapse
|
18
|
Schoonderwoerd RA, de Torres Gutiérrez P, Blommers R, van Beurden AW, Coenen TCJJ, Klett NJ, Michel SH, Meijer JH. Inhibitory responses to retinohypothalamic tract stimulation in the circadian clock of the diurnal rodent Rhabdomys pumilio. FASEB J 2022; 36:e22415. [PMID: 35867045 PMCID: PMC9544711 DOI: 10.1096/fj.202200477r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/24/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
In both diurnal and nocturnal mammals, the timing of activity is regulated by the central circadian clock of the suprachiasmatic nucleus (SCN). The SCN is synchronized to the external light cycle via the retinohypothalamic tract (RHT). To investigate potential differences in light processing between nocturnal mice and the diurnal rodent Rhabdomys pumilio, we mimicked retinal input by stimulation of the RHT ex vivo. Using Ca2+ imaging, we observed excitations as well as inhibitions of SCN neurons in response to electrical RHT stimulation. In mice, the vast majority of responses were excitatory (85%), whereas in Rhabdomys, the proportion of excitatory and inhibitory responses was similar (51% excitatory, 49% inhibitory). Glutamate blockers AP5 and CNQX blocked the excitatory responses to RHT stimulation but did not abolish the inhibitory responses in mice or Rhabdomys, indicating that the inhibitions were monosynaptically transmitted via the RHT. Simultaneous application of glutamate blockers with the GABAA antagonist gabazine blocked all inhibitory responses in mice, but not in Rhabdomys. Collectively, our results indicate that in Rhabdomys, considerably more inhibitory responses to light are present and that these responses are driven directly by the RHT. We propose that this increased proportion of inhibitory input could reflect a difference in the entrainment mechanism employed by diurnal rodents.
Collapse
Affiliation(s)
- Robin A Schoonderwoerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ruben Blommers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anouk W van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tineke C J J Coenen
- Central Animal Facility, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathan J Klett
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan H Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
19
|
Circadian clock, diurnal glucose metabolic rhythm, and dawn phenomenon. Trends Neurosci 2022; 45:471-482. [PMID: 35466006 PMCID: PMC9117496 DOI: 10.1016/j.tins.2022.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 01/28/2023]
Abstract
The circadian clock provides cue-independent anticipatory signals for diurnal rhythms of baseline glucose levels and glucose tolerance. The central circadian clock is located in the hypothalamic suprachiasmatic nucleus (SCN), which comprises primarily GABAergic neurons. The SCN clock regulates physiological diurnal rhythms of endogenous glucose production (EGP) and hepatic insulin sensitivity through neurohumoral mechanisms. Disruption of the molecular circadian clock is associated with the extended dawn phenomenon (DP) in type 2 diabetes (T2D), referring to hyperglycemia in the early morning without nocturnal hypoglycemia. The DP affects nearly half of patients with diabetes, with poorly defined etiology and a lack of targeted therapy. Here we review neural and secreted factors in physiological diurnal rhythms of glucose metabolism and their pathological implications for the DP.
Collapse
|
20
|
Schroder EA, Burgess DE, Johnson SR, Ono M, Seward T, Elayi CS, Esser KA, Delisle BP. Timing of food intake in mice unmasks a role for the cardiomyocyte circadian clock mechanism in limiting QT-interval prolongation. Chronobiol Int 2022; 39:525-534. [PMID: 34875962 PMCID: PMC8989643 DOI: 10.1080/07420528.2021.2011307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cardiac electrophysiological studies demonstrate that restricting the feeding of mice to the light cycle (time restricted feeding or TRF) causes a pronounced change in heart rate and ventricular repolarization as measured by the RR- and QT-interval, respectively. TRF slows heart rate and shifts the peak (acrophase) of the day/night rhythms in the RR- and QT-intervals from the light to the dark cycle. This study tested the hypothesis that these changes in cardiac electrophysiology are driven by the cardiomyocyte circadian clock mechanism. We determined the impact that TRF had on RR- and QT-intervals in control mice or mice that had the cardiomyocyte circadian clock mechanism disrupted by inducing the deletion of Bmal1 in adult cardiomyocytes (iCSΔBmal1-/- mice). In control and iCSΔBmal1-/- mice, TRF increased the RR-intervals measured during the dark cycle and shifted the acrophase of the day/night rhythm in the RR-interval from the light to the dark cycle. Compared to control mice, TRF caused a larger prolongation of the QT-interval measured from iCSΔBmal1-/- mice during the dark cycle. The larger QT-interval prolongation in the iCSΔBmal1-/- mice caused an increased mean and amplitude in the day/night rhythm of the QT-interval. There was not a difference in the TRF-induced shift in the day/night rhythm of the QT-interval measured from control or iCSΔBmal1-/- mice. We conclude that the cardiomyocyte circadian clock does not drive the changes in heart rate or ventricular repolarization with TRF. However, TRF unmasks an important role for the cardiomyocyte circadian clock to prevent excessive QT-interval prolongation, especially at slow heart rates.
Collapse
Affiliation(s)
- Elizabeth A. Schroder
- Department of Physiology University of Kentucky, Lexington, KY, USA,Internal Medicine, Pulmonary, University of Kentucky, Lexington, KY, USA
| | - Don E. Burgess
- Department of Physiology University of Kentucky, Lexington, KY, USA
| | | | - Makoto Ono
- Department of Physiology University of Kentucky, Lexington, KY, USA
| | - Tanya Seward
- Department of Physiology University of Kentucky, Lexington, KY, USA
| | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Brian P. Delisle
- Department of Physiology University of Kentucky, Lexington, KY, USA
| |
Collapse
|
21
|
Gray KJ, Gibbs JE. Adaptive immunity, chronic inflammation and the clock. Semin Immunopathol 2022; 44:209-224. [PMID: 35233691 PMCID: PMC8901482 DOI: 10.1007/s00281-022-00919-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
The adaptive arm of the immune system facilitates recognition of specific foreign pathogens and, via the action of T and B lymphocytes, induces a fine-tuned response to target the pathogen and develop immunological memory. The functionality of the adaptive immune system exhibits daily 24-h variation both in homeostatic processes (such as lymphocyte trafficking and development of T lymphocyte subsets) and in responses to challenge. Here, we discuss how the circadian clock exerts influence over the function of the adaptive immune system, considering the roles of cell intrinsic clockwork machinery and cell extrinsic rhythmic signals. Inappropriate or misguided actions of the adaptive immune system can lead to development of autoimmune diseases such as rheumatoid arthritis, ulcerative colitis and multiple sclerosis. Growing evidence indicates that disturbance of the circadian clock has negative impact on development and progression of these chronic inflammatory diseases and we examine current understanding of clock-immune interactions in the setting of these inflammatory conditions. A greater appreciation of circadian control of adaptive immunity will facilitate further understanding of mechanisms driving daily variation in disease states and drive improvements in the diagnosis and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kathryn J Gray
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
22
|
Park JS, Kim YJ, Heo W, Kim S. The Study of Variation of Metabolites by Sleep Deficiency, and Intervention Possibility of Aerobic Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052774. [PMID: 35270465 PMCID: PMC8910362 DOI: 10.3390/ijerph19052774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/19/2022]
Abstract
The purpose of this study is to determine the difference in sleep-related factors and metabolites between normal sleep (NS) and sleep deficiency (SD) and to analyze the variations in metabolites according to the intensity of aerobic exercise under SD conditions. This study was conducted on 32 healthy male university students. Participants experienced both NS (8 h of sleep per night for 3 consecutive days) and SD (4 h of sleep per night for 3 consecutive days). After the SD period, the participants underwent treatment for 30 min by the assigned group [sleep supplement after SD (SSD), low-intensity aerobic exercise after SD (LES), moderate-intensity aerobic exercise after SD (MES), high-intensity aerobic exercise after SD (HES)]. For analysis, sleep-related factors were measured, and metabolites were analyzed by untargeted metabolite analysis using gas chromatography-time-of-flight mass spectrometry. As a result, SD showed that total sleep time (TST), duration of rapid eye movement (REM), duration of light sleep, and duration of deep sleep were significantly decreased compared to NS, whereas the Pittsburgh sleep quality index (PSQI), Epworth sleepiness scale (ESS), and visual analogue scale (VAS) were significantly increased compared to NS. The difference in metabolites between NS and SD showed that there were significant changes in the seven metabolites. There were 18 metabolites that changed according to the treatment groups in SD conditions. In summary, SD can exacerbate sleep quality, induce daytime sleepiness, increase fatigue, and increase metabolites that cause insulin resistance. Aerobic exercise under SD conditions can reduce metabolites that induce insulin resistance and increase the metabolites that help relieve depression caused by SD. However, HES has a negative effect, which increases fatigue, whereas LES has no negative effect. Thus, this study suggests that LES is the most appropriate exercise method under SD conditions.
Collapse
Affiliation(s)
- Jong-Suk Park
- School of Global Sport Studies, Korea University, Sejong-si 30019, Korea;
| | - Young-Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong-si 30019, Korea;
| | - Wan Heo
- Department of Food Science and Engineering, Seowon University, Cheongju-si 28674, Korea;
| | - Sangho Kim
- School of Global Sport Studies, Korea University, Sejong-si 30019, Korea;
- Correspondence: ; Tel.: +82-44-860-1371
| |
Collapse
|
23
|
Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Mannelli LDC, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther 2022; 7:41. [PMID: 35136018 PMCID: PMC8825842 DOI: 10.1038/s41392-022-00899-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The term “circadian rhythms” describes endogenous oscillations with ca. 24-h period associated with the earth’s daily rotation and light/dark cycle. Such rhythms reflect the existence of an intrinsic circadian clock that temporally orchestrates physiological processes to adapt the internal environment with the external cues. At the molecular level, the circadian clock consists of multiple sets of transcription factors resulting in autoregulatory transcription-translation feedback loops. Notably, in addition to their primary role as generator of circadian rhythm, the biological clock plays a key role in controlling physiological functions of almost all tissues and organs. It regulates several intracellular signaling pathways, ranging from cell proliferation, DNA damage repair and response, angiogenesis, metabolic and redox homeostasis, to inflammatory and immune response. In this review, we summarize findings showing the crosstalk between the circadian molecular clock and some key intracellular pathways, describing a scenario wherein their reciprocal regulation impinges upon several aspects of mammalian physiology. Moreover, based on evidence indicating that circadian rhythms can be challenged by environmental factors, social behaviors, as well as pre-existing pathological conditions, we discuss implications of circadian misalignment in human pathologies, such as cancer and inflammatory diseases. Accordingly, disruption of circadian rhythm has been reported to affect several physiological processes that are relevant to human diseases. Expanding our understanding of this field represents an intriguing and transversal medicine challenge in order to establish a circadian precision medicine.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristina Travelli
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Davide Voltan
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | | | - Marco Racchi
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
24
|
Thrivikraman KV, Kinkead B, Owens MJ, Rapaport MH, Plotsky PM. Locus Coeruleus Noradrenergic Modulation of Diurnal Corticosterone, Stress Reactivity, and Cardiovascular Homeostasis in Male Rats. Neuroendocrinology 2022; 112:763-776. [PMID: 34649254 PMCID: PMC9037608 DOI: 10.1159/000520192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/13/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Activation of the locus coeruleus-noradrenergic (LC-NA) system during awakening is associated with an increase in plasma corticosterone and cardiovascular tone. These studies evaluate the role of the LC in this corticosterone and cardiovascular response. METHODS Male rats, on day 0, were treated intraperitoneally with either DSP4 (50 mg/kg body weight) (DSP), an LC-NA specific neurotoxin, or normal saline (SAL). On day 10, animals were surgically prepared with jugular vein (hypothalamic-pituitary-adrenal [HPA] axis) or carotid artery (hemodynamics) catheters and experiments performed on day 14. HPA axis activity, diurnally (circadian) and after stress (transient hemorrhage [14 mL/kg body weight] or air puff-startle), and basal and post-hemorrhage hemodynamics were evaluated. On day 16, brain regions from a subset of rats were dissected for norepinephrine and corticotropin-releasing factor (CRF) assay. RESULTS In DSP rats compared to SAL rats, (1) regional brain norepinephrine was decreased, but there was no change in median eminence or olfactory bulb CRF content; (2) during HPA axis acrophase, the plasma corticosterone response was blunted; (3) after hemorrhage and air puff-startle, the plasma adrenocorticotropic hormone response was attenuated, whereas the corticosterone response was dependent on stressor category; (4) under basal conditions, hemodynamic measures exhibited altered blood flow dynamics and systemic vasodilation; and (5) after hemorrhage, hemodynamics exhibited asynchronous responses. CONCLUSION LC-NA modulation of diurnal and stress-induced HPA axis reactivity occurs via distinct neurocircuits. The integrity of the LC-NA system is important to maintain blood flow dynamics. The importance of increases in plasma corticosterone at acrophase to maintain short- and long-term cardiovascular homeostasis is discussed.
Collapse
Affiliation(s)
- K. V. Thrivikraman
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Becky Kinkead
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Michael J. Owens
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark H. Rapaport
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Paul M. Plotsky
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Goncharova N, Chigarova O, Oganyan T. Age-related and individual features of the HPA axis stress responsiveness under constant light in nonhuman primates. Front Endocrinol (Lausanne) 2022; 13:1051882. [PMID: 36699023 PMCID: PMC9870316 DOI: 10.3389/fendo.2022.1051882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is a key adaptive neuroendocrine system, dysfunction of which plays an important role in the increasing incidence of stress-dependent age-related pathology. Among the environmental factors effecting increase age-related diseases, great importance is given to disturbances of the light-dark schedule, particularly with increased illumination at night. While disruption of the light-dark schedule has long been recognized as a powerful behavioral stressor, little is known regarding stress reactivity of the HPA under constant light (CL) conditions, especially with aging and depending on the features of stress behavior. The purpose of this investigation was to study the age-related and individual features of the HPA axis response to acute stress exposure (ASE) under chronic CL in nonhuman primates that are known to differ in behavioral responsiveness to stress. Young and old female rhesus monkeys (with control standard behavior or anxiety and depression-like behavior) were exposed to CL (24 h light/day, 330-400 lux for 4 to 8 weeks). Control young and old monkeys were exposed to standard lighting (SL) with natural light during the day and darkness at night. All animals were subjected to ASE (restriction of mobility for 2 hours), functional tests with corticotrophin-releasing hormone and arginine-vasopressin, and study of circadian rhythms of cortisol and pineal melatonin secretion. For the first time an inhibitory effect of CL on the reaction of the adrenal cortex to ASE was revealed in all individuals, regardless of age and preexisting behavior stress reactivity, the mechanisms of which were age-dependent: due to inhibition of the pituitary ACTH secretion in young animals and mainly not affecting the ACTH secretion in old individuals. There were no significant changes in melatonin secretion both in young and old animals. The observed CL inhibition of adrenal cortical reactivity to ASE may be useful to correct increased vulnerability to ASE observed in individuals with preexisting anxiety and depression-like stress behaviors. On the other hand, the CL induced decrease in adrenal stress reactivity of behaviorally normal animals suggests a potential risk of reducing the adaptive capacity of the organism under conditions of continuous light exposure.
Collapse
|
26
|
Jones JR, Chaturvedi S, Granados-Fuentes D, Herzog ED. Circadian neurons in the paraventricular nucleus entrain and sustain daily rhythms in glucocorticoids. Nat Commun 2021; 12:5763. [PMID: 34599158 PMCID: PMC8486846 DOI: 10.1038/s41467-021-25959-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Signals from the central circadian pacemaker, the suprachiasmatic nucleus (SCN), must be decoded to generate daily rhythms in hormone release. Here, we hypothesized that the SCN entrains rhythms in the paraventricular nucleus (PVN) to time the daily release of corticosterone. In vivo recording revealed a critical circuit from SCN vasoactive intestinal peptide (SCNVIP)-producing neurons to PVN corticotropin-releasing hormone (PVNCRH)-producing neurons. PVNCRH neurons peak in clock gene expression around midday and in calcium activity about three hours later. Loss of the clock gene Bmal1 in CRH neurons results in arrhythmic PVNCRH calcium activity and dramatically reduces the amplitude and precision of daily corticosterone release. SCNVIP activation reduces (and inactivation increases) corticosterone release and PVNCRH calcium activity, and daily SCNVIP activation entrains PVN clock gene rhythms by inhibiting PVNCRH neurons. We conclude that daily corticosterone release depends on coordinated clock gene and neuronal activity rhythms in both SCNVIP and PVNCRH neurons.
Collapse
Affiliation(s)
- Jeff R Jones
- Department of Biology, Washington University, St. Louis, St. Louis, MO, USA
- Department of Biology, Texas A&M University, College Station, College Station, TX, USA
| | - Sneha Chaturvedi
- Department of Biology, Washington University, St. Louis, St. Louis, MO, USA
| | | | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, St. Louis, MO, USA.
| |
Collapse
|
27
|
Goh GH, Mark PJ, Blache D, Binks D, Parsons R, Rawashdeh O, Maloney SK. Diet-altered body temperature rhythms are associated with altered rhythms of clock gene expression in peripheral tissues in vivo. J Therm Biol 2021; 100:102983. [PMID: 34503769 DOI: 10.1016/j.jtherbio.2021.102983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Temperature rhythms can act as potent signals for the modulation of the amplitude and phase of clock gene expression in peripheral organs in vitro, but the relevance of the circadian rhythm of core body temperature (Tc) as a modulating signal in vivo has not yet been investigated. Using calorie restriction and cafeteria feeding, we induced a larger and a dampened Tc amplitude, respectively, in male Wistar rats, and investigated the circadian expression profile of the core clock genes Bmal1, Per2, Cry1, and Rev-erbα, the heat-responsive genes heat shock protein 90 (Hsp90) and cold-inducible RNA binding protein (Cirbp), and Pgc1α, Pparα/γ/δ, Glut1/4, and Chop10 in the liver, skeletal muscle, white adipose tissue (WAT), and adrenal glands. Diet-altered Tc rhythms differentially affected the profiles of clock genes, Hsp90, and Cirbp expression in peripheral tissues. Greater Tc amplitudes elicited by calorie restriction were associated with large amplitudes of Hsp90 and Cirbp expression in the liver and WAT, in which larger amplitudes of clock gene expression were also observed. The amplitudes of metabolic gene expression were greater in the WAT, but not in the liver, in calorie-restricted rats. Conversely, diet-altered Tc rhythms were not translated to distinct changes in the amplitude of Hsp90, Cirbp, or clock or metabolic genes in the skeletal muscle or adrenal glands. While it was not possible to disentangle the effects of diet and temperature in this model, taken together with previous in vitro studies, our study presents novel data consistent with the notion that the circadian Tc rhythm can modulate the amplitude of circadian gene expression in vivo. The different responses of Hsp90 and Cirbp in peripheral tissues may be linked to the tissue-specific responses of peripheral clocks to diet and/or body temperature rhythms, but the association with the amplitude of metabolic gene expression is limited to the WAT.
Collapse
Affiliation(s)
- Grace H Goh
- School of Human Biology, University of Western Australia, Crawley, 6009, Australia.
| | - Peter J Mark
- School of Human Biology, University of Western Australia, Crawley, 6009, Australia
| | - Dominique Blache
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, 6009, Australia
| | - Daniel Binks
- School of Human Biology, University of Western Australia, Crawley, 6009, Australia
| | - Rex Parsons
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shane K Maloney
- School of Human Biology, University of Western Australia, Crawley, 6009, Australia
| |
Collapse
|
28
|
Cogswell D, Bisesi P, Markwald RR, Cruickshank-Quinn C, Quinn K, McHill A, Melanson EL, Reisdorph N, Wright KP, Depner CM. Identification of a Preliminary Plasma Metabolome-based Biomarker for Circadian Phase in Humans. J Biol Rhythms 2021; 36:369-383. [PMID: 34182829 PMCID: PMC9134127 DOI: 10.1177/07487304211025402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Measuring individual circadian phase is important to diagnose and treat circadian rhythm sleep-wake disorders and circadian misalignment, inform chronotherapy, and advance circadian science. Initial findings using blood transcriptomics to predict the circadian phase marker dim-light melatonin onset (DLMO) show promise. Alternatively, there are limited attempts using metabolomics to predict DLMO and no known omics-based biomarkers predict dim-light melatonin offset (DLMOff). We analyzed the human plasma metabolome during adequate and insufficient sleep to predict DLMO and DLMOff using one blood sample. Sixteen (8 male/8 female) healthy participants aged 22.4 ± 4.8 years (mean ± SD) completed an in-laboratory study with 3 baseline days (9 h sleep opportunity/night), followed by a randomized cross-over protocol with 9-h adequate sleep and 5-h insufficient sleep conditions, each lasting 5 days. Blood was collected hourly during the final 24 h of each condition to independently determine DLMO and DLMOff. Blood samples collected every 4 h were analyzed by untargeted metabolomics and were randomly split into training (68%) and test (32%) sets for biomarker analyses. DLMO and DLMOff biomarker models were developed using partial least squares regression in the training set followed by performance assessments using the test set. At baseline, the DLMOff model showed the highest performance (0.91 R2 and 1.1 ± 1.1 h median absolute error ± interquartile range [MdAE ± IQR]), with significantly (p < 0.01) lower prediction error versus the DLMO model. When all conditions (baseline, 9 h, and 5 h) were included in performance analyses, the DLMO (0.60 R2; 2.2 ± 2.8 h MdAE; 44% of the samples with an error under 2 h) and DLMOff (0.62 R2; 1.8 ± 2.6 h MdAE; 51% of the samples with an error under 2 h) models were not statistically different. These findings show promise for metabolomics-based biomarkers of circadian phase and highlight the need to test biomarkers that predict multiple circadian phase markers under different physiological conditions.
Collapse
Affiliation(s)
- D Cogswell
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
| | - P Bisesi
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
| | - R R Markwald
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
| | - C Cruickshank-Quinn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - K Quinn
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - A McHill
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon
| | - E L Melanson
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, Colorado
| | - N Reisdorph
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - K P Wright
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - C M Depner
- Sleep and Chronobiology Laboratory, University of Colorado, Boulder, Boulder, Colorado
- Department of Health and Kinesiology, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
29
|
Buijs RM, Soto Tinoco EC, Hurtado Alvarado G, Escobar C. The circadian system: From clocks to physiology. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:233-247. [PMID: 34225965 DOI: 10.1016/b978-0-12-819975-6.00013-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The circadian system, composed of the central autonomous clock, the suprachiasmatic nucleus (SCN), and systems of the body that follow the signals of the SCN, continuously change the homeostatic set points of the body over the day-night cycle. Changes in the body's physiological state that do not agree with the time of the day feedback to the hypothalamus, and provide input to the SCN to adjust the condition, thus reaching another set point required by the changed conditions. This allows the adjustment of the set points to another level when environmental conditions change, which is thought to promote adaptation and survival. In fasting, the body temperature drops to a lower level only at the beginning of the sleep phase. Stressful conditions raise blood pressure relatively more during the active period than during the rest phase. Extensive, mostly reciprocal SCN interactions, with hypothalamic networks, induce these physiological adjustments by hormonal and autonomic control of the body's organs. More importantly, in addition to SCN's hormonal and autonomic influences, SCN induced behavior, such as rhythmic food intake, induces the oscillation of many genes in all tissues, including the so-called clock genes, which have an essential role as a transcriptional driving force for numerous cellular processes. Consequently, the light-dark cycle, the rhythm of the SCN, and the resulting rhythm in behavior need to be perfectly synchronized, especially where it involves synchronizing food intake with the activity phase. If these rhythms are not synchronous for extended periods of times, such as during shift work, light exposure at night, or frequent night eating, disease may develop. As such, our circadian system is a perfect illustration of how hypothalamic-driven processes depend on and interact with each other and need to be in seamless synchrony with the body's physiology.
Collapse
Affiliation(s)
- Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico.
| | - Eva C Soto Tinoco
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Gabriela Hurtado Alvarado
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carolina Escobar
- Faculty of Medicine, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
30
|
Buijs RM, Hurtado-Alvarado G, Soto-Tinoco E. Vasopressin: An output signal from the suprachiasmatic nucleus to prepare physiology and behaviour for the resting phase. J Neuroendocrinol 2021; 33:e12998. [PMID: 34189788 DOI: 10.1111/jne.12998] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023]
Abstract
Vasopressin (VP) is an important hormone produced in the supraoptic (SON) and paraventricular nucleus (PVN) with antidiuretic and vasoconstrictor functions in the periphery. As one of the first discovered peptide hormones, VP was also shown to act as a neurotransmitter, where VP is produced and released under the influence of various stimuli. VP is one of the core signals via which the biological clock, the suprachiasmatic nucleus (SCN), imposes its rhythm on its target structures and its production and release is influenced by the rhythm of clock genes and the light/dark cycle. This is contrasted with VP production and release from the bed nucleus of the stria terminalis and the medial amygdala, which is influenced by gonadal hormones, as well as with VP originating from the PVN and SON, which is released in the neural lobe and central targets. The release of VP from the SCN signals the near arrival of the resting phase in rodents and prepares their physiology accordingly by down-modulating corticosterone secretion, the reproductive cycle and locomotor activity. All these circadian variables are regulated within very narrow boundaries at a specific time of the day, where day-to-day variation is less than 5% at any particular hour. However, the circadian peak values can be at least ten times higher than the circadian trough values, indicating the need for an elaborate feedback system to inform the SCN and other participating nuclei about the actual levels reached during the circadian cycle. In short, the interplay between SCN circadian output and peripheral feedback to the SCN is essential for the adequate organisation of all circadian rhythms in physiology and behaviour.
Collapse
Affiliation(s)
- Ruud M Buijs
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Gabriela Hurtado-Alvarado
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Eva Soto-Tinoco
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
31
|
Stoynev AG, Ikonomov OC, Stoynev NA. Suprachiasmatic hypothalamic nuclei (SCN) in regulation of homeostasis: a role beyond circadian control? BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1920125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alexander G. Stoynev
- Department of Pathophysiology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| | - Ognian C. Ikonomov
- Department of Physiology, Wayne State University School of Medicine, Detroit, USA
| | - Nikolay A. Stoynev
- Department of Physiology, Faculty of Medicine, Medical University, Sofia, Bulgaria
| |
Collapse
|
32
|
Effects of Overtraining Status on the Cortisol Awakening Response-Endocrine and Metabolic Responses on Overtraining Syndrome (EROS-CAR). Int J Sports Physiol Perform 2021; 16:965-973. [PMID: 33662935 DOI: 10.1123/ijspp.2020-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 11/18/2022]
Abstract
The cortisol awakening response (CAR) is a distinct component of the circadian cortisol profile and has promise as a biomarker for the monitoring of athlete readiness and training status. Although some studies have suggested the CAR may be affected by the development of overtraining syndrome (OTS), this has yet to be systematically investigated. PURPOSE To compare the CAR and diurnal cortisol slope between athletes diagnosed with OTS, healthy athletes, and sedentary controls. METHODS This study was a secondary analysis of data from the Endocrine and Metabolic Responses on Overtraining study. Male participants were recruited to either OTS, healthy athlete, or sedentary control groups. The participants produced saliva samples immediately after waking (S1), 30 minutes after waking (S2), at 16:00 hours, and at 23:00 hours. Salivary cortisol concentration was determined by an electrochemiluminescence assay. Mixed-effects models were used to assess the conditional effect of group (sedentary controls, OTS, and healthy athletes) on the change in cortisol over time. Separate models were fit for the awakening samples (S1 and S2) and for the diurnal slope (linear change across S1, 16:00 h, and 23:00 h). RESULTS The models demonstrated significant time-by-group interaction for OTS for the 2 cortisol concentrations collected during the awakening period (β = -9.33, P < .001), but not for the diurnal cortisol slope (β = 0.02, P = .80). CONCLUSIONS These results suggest the CAR may be associated with OTS and should be considered within a panel of biomarkers. Further research is necessary to determine whether alterations in the CAR may precede the diagnosis of OTS.
Collapse
|
33
|
Weger BD, Gobet C, David FPA, Atger F, Martin E, Phillips NE, Charpagne A, Weger M, Naef F, Gachon F. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. Proc Natl Acad Sci U S A 2021; 118:e2015803118. [PMID: 33452134 PMCID: PMC7826335 DOI: 10.1073/pnas.2015803118] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The circadian clock and feeding rhythms are both important regulators of rhythmic gene expression in the liver. To further dissect the respective contributions of feeding and the clock, we analyzed differential rhythmicity of liver tissue samples across several conditions. We developed a statistical method tailored to compare rhythmic liver messenger RNA (mRNA) expression in mouse knockout models of multiple clock genes, as well as PARbZip output transcription factors (Hlf/Dbp/Tef). Mice were exposed to ad libitum or night-restricted feeding under regular light-dark cycles. During ad libitum feeding, genetic ablation of the core clock attenuated rhythmic-feeding patterns, which could be restored by the night-restricted feeding regimen. High-amplitude mRNA expression rhythms in wild-type livers were driven by the circadian clock, but rhythmic feeding also contributed to rhythmic gene expression, albeit with significantly lower amplitudes. We observed that Bmal1 and Cry1/2 knockouts differed in their residual rhythmic gene expression. Differences in mean expression levels between wild types and knockouts correlated with rhythmic gene expression in wild type. Surprisingly, in PARbZip knockout mice, the mean expression levels of PARbZip targets were more strongly impacted than their rhythms, potentially due to the rhythmic activity of the D-box-repressor NFIL3. Genes that lost rhythmicity in PARbZip knockouts were identified to be indirect targets. Our findings provide insights into the diurnal transcriptome in mouse liver as we identified the differential contributions of several core clock regulators. In addition, we gained more insights on the specific effects of the feeding-fasting cycle.
Collapse
Affiliation(s)
- Benjamin D Weger
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| | - Cédric Gobet
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fabrice P A David
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Gene Expression Core Facility, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- BioInformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Florian Atger
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
- Department of Pharmacology and Toxicology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Eva Martin
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Nicholas E Phillips
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Aline Charpagne
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland;
| | - Frédéric Gachon
- Société des Produits Nestlé, Nestlé Research, CH-1015 Lausanne, Switzerland;
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia QLD-4072, Australia
| |
Collapse
|
34
|
Androulakis IP. Circadian rhythms and the HPA axis: A systems view. WIREs Mech Dis 2021; 13:e1518. [PMID: 33438348 DOI: 10.1002/wsbm.1518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022]
Abstract
The circadian timing system comprises a network of time-keeping clocks distributed across a living host whose responsibility is to allocate resources and distribute functions temporally to optimize fitness. The molecular structures generating these rhythms have evolved to accommodate the rotation of the earth in an attempt to primarily match the light/dark periods during the 24-hr day. To maintain synchrony of timing across and within tissues, information from the central clock, located in the suprachiasmatic nucleus, is conveyed using systemic signals. Leading among those signals are endocrine hormones, and while the hypothalamic-pituitary-adrenal axis through the release of glucocorticoids is a major pacesetter. Interestingly, the fundamental units at the molecular and physiological scales that generate local and systemic signals share critical structural properties. These properties enable time-keeping systems to generate rhythmic signals and allow them to adopt specific properties as they interact with each other and the external environment. The purpose of this review is to provide a broad overview of these structures, discuss their functional characteristics, and describe some of their fundamental properties as these related to health and disease. This article is categorized under: Immune System Diseases > Computational Models Immune System Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Ioannis P Androulakis
- Biomedical Engineering Department, Chemical & Biochemical Engineering Department, Rutgers University, New Brunswick, New Jersey.,Department of Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
35
|
Kalsbeek A, Buijs RM. Organization of the neuroendocrine and autonomic hypothalamic paraventricular nucleus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:45-63. [PMID: 34225948 DOI: 10.1016/b978-0-12-820107-7.00004-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major function of the nervous system is to maintain a relatively constant internal environment. The distinction between our external environment (i.e., the environment that we live in and that is subject to major changes, such as temperature, humidity, and food availability) and our internal environment (i.e., the environment formed by the fluids surrounding our bodily tissues and that has a very stable composition) was pointed out in 1878 by Claude Bernard (1814-1878). Later on, it was indicated by Walter Cannon (1871-1945) that the internal environment is not really constant, but rather shows limited variability. Cannon named the mechanism maintaining this limited variability homeostasis. Claude Bernard envisioned that, for optimal health, all physiologic processes in the body needed to maintain homeostasis and should be in perfect harmony with each other. This is illustrated by the fact that, for instance, during the sleep-wake cycle important elements of our physiology such as body temperature, circulating glucose, and cortisol levels show important variations but are in perfect synchrony with each other. These variations are driven by the biologic clock in interaction with hypothalamic target areas, among which is the paraventricular nucleus of the hypothalamus (PVN), a core brain structure that controls the neuroendocrine and autonomic nervous systems and thus is key for integrating central and peripheral information and implementing homeostasis. This chapter focuses on the anatomic connections between the biologic clock and the PVN to modulate homeostasis according to the daily sleep-wake rhythm. Experimental studies have revealed a highly specialized organization of the connections between the clock neurons and neuroendocrine system as well as preautonomic neurons in the PVN. These complex connections ensure a logical coordination between behavioral, endocrine, and metabolic functions that helps the organism maintain homeostasis throughout the day.
Collapse
Affiliation(s)
- Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers (Amsterdam UMC), University of Amsterdam, Amsterdam, The Netherlands; Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
36
|
Romo-Nava F, Buijs RM, McElroy SL. The use of melatonin to mitigate the adverse metabolic side effects of antipsychotics. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:371-382. [PMID: 34225976 DOI: 10.1016/b978-0-12-819975-6.00024-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antipsychotic drugs are efficacious first-line treatments for many individuals diagnosed with a psychiatric illness. However, their adverse metabolic side-effect profile, which resembles the metabolic syndrome, represents a significant clinical problem that increases morbidity and limits treatment adherence. Moreover, the mechanisms involved in antipsychotic-induced adverse metabolic effects (AMEs) are unknown and mitigating strategies and interventions are limited. However, recent clinical trials show that nightly administration of exogenous melatonin may mitigate or even prevent antipsychotic-induced AMEs. This clinical evidence in combination with recent preclinical data implicate the circadian system in antipsychotic-induced AMEs and their mitigation. In this chapter, we provide an overview on the circadian system and its involvement in antipsychotic-induced AMEs, as well as the potential beneficial effect of nightly melatonin administration to mitigate them.
Collapse
Affiliation(s)
- Francisco Romo-Nava
- Lindner Center of HOPE Research Institute, Lindner Center of HOPE, Mason, OH, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Ruud M Buijs
- Hypothalamic Integration Mechanisms Laboratory, Department of Cellular Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Susan L McElroy
- Lindner Center of HOPE Research Institute, Lindner Center of HOPE, Mason, OH, United States; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
37
|
Lim ASP. Diurnal and seasonal molecular rhythms in the human brain and their relation to Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:271-284. [PMID: 34225968 DOI: 10.1016/b978-0-12-819975-6.00017-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diurnal and seasonal rhythms influence many aspects of human physiology including brain function. Moreover, altered diurnal and seasonal behavioral and physiological rhythms have been linked to Alzheimer's disease and related dementias (ADRD). Understanding the molecular basis for these links may lead to identification of novel targets to mitigate the negative impact of normal and abnormal diurnal and seasonal rhythms on ADRD or to alleviate the adverse consequences of ADRD on normal diurnal and seasonal rhythms. Diurnally and seasonally rhythmic gene expression and epigenetic modification in the human neocortex may be a key mechanism underlying these links. This chapter will first review the observed epidemiological links between normal and abnormal diurnal and seasonal rhythmicity, cognitive impairment, and ADRD. Then it will review normal diurnal and seasonal rhythms of brain epigenetic modification and gene expression in model organisms. Finally, it will review evidence for diurnal and seasonal rhythms of epigenetic modification and gene expression the human brain in aging, Alzheimer's disease, and other brain disorders.
Collapse
Affiliation(s)
- Andrew S P Lim
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Ivy JR, Bailey MA. Nondipping Blood Pressure: Predictive or Reactive Failure of Renal Sodium Handling? Physiology (Bethesda) 2021; 36:21-34. [PMID: 33325814 DOI: 10.1152/physiol.00024.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Blood pressure follows a daily rhythm, dipping during nocturnal sleep in humans. Attenuation of this dip (nondipping) is associated with increased risk of cardiovascular disease. Renal control of sodium homeostasis is essential for long-term blood pressure control. Sodium reabsorption and excretion have rhythms that rely on predictive/circadian as well as reactive adaptations. We explore how these rhythms might contribute to blood pressure rhythm in health and disease.
Collapse
Affiliation(s)
- Jessica R Ivy
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew A Bailey
- University/BHF Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
39
|
A matter of time: Circadian clocks in osteoarthritis and the potential of chronotherapy. Exp Gerontol 2020; 143:111163. [PMID: 33227402 DOI: 10.1016/j.exger.2020.111163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/29/2020] [Accepted: 11/14/2020] [Indexed: 02/08/2023]
Abstract
Osteoarthritis (OA) is a common and debilitating joint disease which develops and progresses with age. Despite extensive research into the disease, potent disease-modifying drugs remain elusive. Changes to the character and function of chondrocytes of the articular cartilage underly the pathogenesis of OA. A recently emerging facet of chondrocyte biology that has been implicated in OA pathogenesis is the role of circadian rhythms, and the cellular clock which governs rhythmic gene transcription. Here, we review the role of the chondrocyte's cellular clock in governing normal homeostasis, and explore the wide range of consequences that contribute to OA development when the clock is dysregulated by aging and other factors. Finally, we explore how harnessing this understanding of clock mechanics in aging and OA can be translated into novel treatment strategies, or 'chronotherapies', for patients.
Collapse
|
40
|
Stangerup I, Hannibal J. Localization of Vasoactive Intestinal Polypeptide Receptor 1 (VPAC1) in Hypothalamic Neuroendocrine Oxytocin Neurons; A Potential Role in Circadian Prolactin Secretion. Front Neuroanat 2020; 14:579466. [PMID: 33192343 PMCID: PMC7658414 DOI: 10.3389/fnana.2020.579466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Prolactin (PRL) is a versatile hormone and serves a broad variety of physiological functions besides lactation. The release of PRL from lactotrophs in the pituitary has in rodents been shown to be released with a circadian pattern depending on the physiological state of the animal. The circadian release of PRL seems to be complex involving tonic inhibition by dopamine (DA) neurons on lactotrophs and one or even several releasing factors. Because of the circadian releasing pattern of PRL, neurons in the suprachiasmatic nucleus (SCN), "the brain clock," and especially the neurons expressing neuropeptide vasoactive intestinal polypeptide (VIP), have been suggested to be involved in the circadian regulation of PRL. In the present study, we used fluorescence immunohistochemistry, in situ hybridization histochemistry, confocal microscopy, three-dimensional reconstruction, and highly specific antibodies to visualize the occurrence of VIP receptors 1 and 2 (VPAC1 and VPAC2) in mouse brain hypothalamic sections stained in combination with VIP, oxytocin (OXT), arginine vasopressin (AVP), and DA (tyrosine hydroxylase, TH). We demonstrated that VIP fibers most likely originating from the ventral part of the SCN project to OXT neurons in the magnocellular part of the paraventricular nucleus (PVN). In the PVN, VIP fibers were found in close apposition to OXT neuron exclusively expressing the VPAC1 receptor. Furthermore, we demonstrate that neither OXT neurons nor TH or AVP neurons were expressing the VPAC2 receptor. VPAC1 receptor expression was also found on blood vessels but not in neurons expressing AVP or TH. These findings suggest that VIP signaling from the SCN does not directly target DA neurons involved in PRL secretion. Furthermore, the findings support the notion that VIP from neurons in the SCN could regulate circadian release of OXT in the posterior pituitary or modulate OXT neurons as a releasing factor involved in the circadian regulation of PRL from pituitary lactotrophs.
Collapse
Affiliation(s)
- Ida Stangerup
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Finger AM, Dibner C, Kramer A. Coupled network of the circadian clocks: a driving force of rhythmic physiology. FEBS Lett 2020; 594:2734-2769. [PMID: 32750151 DOI: 10.1002/1873-3468.13898] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022]
Abstract
The circadian system is composed of coupled endogenous oscillators that allow living beings, including humans, to anticipate and adapt to daily changes in their environment. In mammals, circadian clocks form a hierarchically organized network with a 'master clock' located in the suprachiasmatic nucleus of the hypothalamus, which ensures entrainment of subsidiary oscillators to environmental cycles. Robust rhythmicity of body clocks is indispensable for temporally coordinating organ functions, and the disruption or misalignment of circadian rhythms caused for instance by modern lifestyle is strongly associated with various widespread diseases. This review aims to provide a comprehensive overview of our current knowledge about the molecular architecture and system-level organization of mammalian circadian oscillators. Furthermore, we discuss the regulatory roles of peripheral clocks for cell and organ physiology and their implication in the temporal coordination of metabolism in human health and disease. Finally, we summarize methods for assessing circadian rhythmicity in humans.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Charna Dibner
- Division of Endocrinology, Diabetes, Nutrition, and Patient Education, Department of Medicine, University Hospital of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Diabetes Center, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Achim Kramer
- Laboratory of Chronobiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
42
|
Méndez-Hernández R, Escobar C, Buijs RM. Suprachiasmatic Nucleus-Arcuate Nucleus Axis: Interaction Between Time and Metabolism Essential for Health. Obesity (Silver Spring) 2020; 28 Suppl 1:S10-S17. [PMID: 32538539 DOI: 10.1002/oby.22774] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
In mammals, time and metabolism are tightly coupled variables; this relationship can be illustrated by numerous examples, such as the circadian variation in food intake or the circadian response to a glucose bolus. We review evidence that the interaction between the suprachiasmatic nucleus and the arcuate nucleus plays a key role in the execution of these functions. The nuclei are reciprocally connected via different projections, and this interaction provides an ideal anatomical framework to modify the temporal output of the hypothalamus to metabolic organs as a consequence of the feedback from the periphery. The suprachiasmatic nucleus-arcuate nucleus relationship is essential to integrate metabolic information into the circadian system and thus adapt circadian rhythms in core body temperature, locomotor activity, food intake, and circulating molecules such as glucose and corticosterone. With the rise in obesity-associated diseases in the world population, gaining knowledge about this relationship, and the consequences of disturbing this liaison, is essential to understand the pathogenesis of obesity.
Collapse
Affiliation(s)
- Rebeca Méndez-Hernández
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| |
Collapse
|
43
|
Masís‐Vargas A, Ritsema WI, Mendoza J, Kalsbeek A. Metabolic Effects of Light at Night are Time- and Wavelength-Dependent in Rats. Obesity (Silver Spring) 2020; 28 Suppl 1:S114-S125. [PMID: 32700824 PMCID: PMC7497257 DOI: 10.1002/oby.22874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Intrinsically photosensitive retinal ganglion cells are most sensitive to short wavelengths and reach brain regions that modulate biological rhythms and energy metabolism. The increased exposure nowadays to artificial light at night (ALAN), especially short wavelengths, perturbs our synchronization with the 24-hour solar cycle. Here, the time- and wavelength dependence of the metabolic effects of ALAN are investigated. METHODS Male Wistar rats were exposed to white, blue, or green light at different time points during the dark phase. Locomotor activity, energy expenditure, respiratory exchange ratio (RER), and food intake were recorded. Brains, livers, and blood were collected. RESULTS All wavelengths decreased locomotor activity regardless of time of exposure, but changes in energy expenditure were dependent on the time of exposure. Blue and green light reduced RER at Zeitgeber time 16-18 without changing food intake. Blue light increased period 1 (Per1) gene expression in the liver, while green and white light increased Per2. Blue light decreased plasma glucose and phosphoenolpyruvate carboxykinase (Pepck) expression in the liver. All wavelengths increased c-Fos activity in the suprachiasmatic nucleus, but blue and green light decreased c-Fos activity in the paraventricular nucleus. CONCLUSIONS ALAN affects locomotor activity, energy expenditure, RER, hypothalamic c-Fos expression, and expression of clock and metabolic genes in the liver depending on the time of day and wavelength.
Collapse
Affiliation(s)
- Anayanci Masís‐Vargas
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
- Institute of Cellular and Integrative Neurosciences (INCI)UPR‐3212 CNRSUniversity of StrasbourgStrasbourgFrance
| | - Wayne I.G.R. Ritsema
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences (INCI)UPR‐3212 CNRSUniversity of StrasbourgStrasbourgFrance
| | - Andries Kalsbeek
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)AmsterdamThe Netherlands
| |
Collapse
|
44
|
Fleury G, Masís‐Vargas A, Kalsbeek A. Metabolic Implications of Exposure to Light at Night: Lessons from Animal and Human Studies. Obesity (Silver Spring) 2020; 28 Suppl 1:S18-S28. [PMID: 32700826 PMCID: PMC7497102 DOI: 10.1002/oby.22807] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Lately, the incidence of overweight, obesity, and type 2 diabetes has shown a staggering increase. To prevent and treat these conditions, one must look at their etiology. As life on earth has evolved under the conditions of nature's 24-hour light/dark cycle, it seems likely that exposure to artificial light at night (LAN) would affect physiology. Indeed, ample evidence has shown that LAN impacts many metabolic parameters, at least partly via the biological clock in the suprachiasmatic nucleus of the hypothalamus. This review focuses on the impact of chronic and acute effects of LAN of different wavelengths on locomotor activity, food intake, the sleep/wake cycle, body temperature, melatonin, glucocorticoids, and glucose and lipid metabolism. While chronic LAN disturbs daily rhythms in these parameters, experiments using short-term LAN exposure also have shown acute negative effects in metabolically active peripheral tissues. Experiments using LAN of different wavelengths not only have indicated an important role for melanopsin, the photopigment found in intrinsically photosensitive retinal ganglion cells, but also provided evidence that each wavelength may have a specific impact on energy metabolism. Importantly, exposure to LAN has been shown to impact glucose homeostasis also in humans and to be associated with an increased incidence of overweight, obesity, and atherosclerosis.
Collapse
Affiliation(s)
- Giulia Fleury
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
| | - Anayanci Masís‐Vargas
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
- Institute of Cellular and Integrative Neurosciences (INCI)UPR‐3212 CNRSUniversity of StrasbourgStrasbourgFrance
| | - Andries Kalsbeek
- Department of Endocrinology and MetabolismAmsterdam UMCUniversity of AmsterdamAmsterdamthe Netherlands
- Hypothalamic Integration MechanismsNetherlands Institute for Neuroscience (NIN)Amsterdamthe Netherlands
| |
Collapse
|
45
|
Leach S, Suzuki K. Adrenergic Signaling in Circadian Control of Immunity. Front Immunol 2020; 11:1235. [PMID: 32714319 PMCID: PMC7344327 DOI: 10.3389/fimmu.2020.01235] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 01/07/2023] Open
Abstract
Circadian rhythms govern a multitude of physiologic processes, both on a cell-intrinsic level and systemically, through the coordinated function of multi-organ biosystems. One such system-the adrenergic system-relies on the catecholamine neurotransmitters, adrenaline and noradrenaline, to carry out a range of biological functions. Production of these catecholamines is under dual regulation by both neural components of the sympathetic nervous system and hormonal mechanisms involving the hypothalamus-pituitary-adrenal axis. Importantly, both neural and hormonal arms receive input from the body's central clock, giving rise to the observed rhythmic variations in catecholamine levels in blood and peripheral tissues. Oscillations in catecholamine signals have the potential to influence various cellular targets expressing adrenergic receptors, including cells of the immune system. This review will focus on ways in which the body's central master clock regulates the adrenergic system to generate circadian rhythms in adrenaline and noradrenaline, and will summarize the existing literature linking circadian control of the adrenergic system to immunologic outcomes. A better understanding of the complex, multi-system pathways involved in the control of adrenergic signals may provide immunologists with new insight into mechanisms of immune regulation and precipitate the discovery of new therapeutics.
Collapse
Affiliation(s)
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
46
|
Alvarez Y, Glotfelty LG, Blank N, Dohnalová L, Thaiss CA. The Microbiome as a Circadian Coordinator of Metabolism. Endocrinology 2020; 161:bqaa059. [PMID: 32291454 PMCID: PMC7899566 DOI: 10.1210/endocr/bqaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
The microbiome is critically involved in the regulation of systemic metabolism. An important but poorly understood facet of this regulation is the diurnal activity of the microbiome. Herein, we summarize recent developments in our understanding of the diurnal properties of the microbiome and their integration into the circadian regulation of organismal metabolism. The microbiome may be involved in the detrimental consequences of circadian disruption for host metabolism and the development of metabolic disease. At the same time, the mechanisms by which microbiome diurnal activity is integrated into host physiology reveal several translational opportunities by which the time of day can be harnessed to optimize microbiome-based therapies. The study of circadian microbiome properties may thus provide a new avenue for treating disorders associated with circadian disruption from the gut.
Collapse
Affiliation(s)
- Yelina Alvarez
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lila G Glotfelty
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Niklas Blank
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Lenka Dohnalová
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christoph A Thaiss
- Microbiology Department, Institute for Immunology, and Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Angelousi A, Nasiri-Ansari N, Karapanagioti A, Kyriakopoulos G, Aggeli C, Zografos G, Choreftaki T, Parianos C, Kounadi T, Alexandraki K, Randeva HS, Kaltsas G, Papavassiliou AG, Kassi E. Expression of clock-related genes in benign and malignant adrenal tumors. Endocrine 2020; 68:650-659. [PMID: 32147772 DOI: 10.1007/s12020-020-02246-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/26/2020] [Indexed: 01/03/2023]
Abstract
Although the effect of the central clock system on adrenal function has been extensively studied, the role of the peripheral clock system in adrenal tumorigenesis remains largely unexplored. In this study we investigated the expression of clock-related genes in normal adrenocortical tissue and adrenocortical tumors. Twenty-seven fresh frozen human adrenal tissues including 13 cortisol secreting adenomas (CSA), seven aldosterone producing adenomas (APA), and seven adrenocortical carcinomas (ACC) were collected. CLOCK, BMAL1, PER1, CRY1, Rev-ERB, and RORα mRNA and protein expression were determined by qPCR and immunoblotting in pathological tissues and compared with the adjacent normal adrenal tissues. A significant downregulation of PER1, CRY1, and Rev-ERB compared with their normal tissue was demonstrated in CSA. All clock-related genes were overexpressed in APA compared with their normal tissue, albeit not significantly. A significant upregulation of CRY1 and PER1 and downregulation of BMAL1, RORα, and Rev-ERB compared with normal adrenal tissue was observed in ACC. BMAL1 and PER1 were significantly downregulated in APA compared with CSA. CLOCK, CRY1, and PER1 were upregulated, whereas BMAL1, RORα, and Rev-ERB were downregulated in ACC compared with CSA. Our study demonstrated the expression of CLOCK, BMAL1, PER1, CRY1, Rev-ERB, and RORα in normal and pathological human adrenal tissues. Adrenal tumors exhibited altered expression of these genes compared with normal tissue, with specific differences between benign and malignant lesions and between benign tumors arising from glomerulosa vs fasciculata zone. Further studies should clarify whether these alterations could be implicated in adrenocortical tumorigenesis.
Collapse
Affiliation(s)
- Anna Angelousi
- 1st Department of Internal Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Angeliki Karapanagioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Georgios Kyriakopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Chrysanthi Aggeli
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Giorgos Zografos
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Theodosia Choreftaki
- Department of Pathology, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Christos Parianos
- 3rd Department of Surgery, General Hospital of Athens "G. Gennimatas", Athens, Greece
| | - Theodora Kounadi
- Department of Endocrinology and Diabetes Center, Athens General Hospital "G. Gennimatas", Athens, Greece
| | - Krystallenia Alexandraki
- 1st Department of Propaedeutic Internal Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Harpal S Randeva
- Division of Translational and Experimental Medicine, Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Gregory Kaltsas
- 1st Department of Propaedeutic Internal Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece
| | - Eva Kassi
- 1st Department of Internal Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, Goudi, 11527, Athens, Greece.
| |
Collapse
|
48
|
Benitah SA, Welz PS. Circadian Regulation of Adult Stem Cell Homeostasis and Aging. Cell Stem Cell 2020; 26:817-831. [DOI: 10.1016/j.stem.2020.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Paul S, Hanna L, Harding C, Hayter EA, Walmsley L, Bechtold DA, Brown TM. Output from VIP cells of the mammalian central clock regulates daily physiological rhythms. Nat Commun 2020; 11:1453. [PMID: 32193397 PMCID: PMC7081308 DOI: 10.1038/s41467-020-15277-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing. VIP-expressing neurons play a central role in circadian timekeeping within the mammalian central clock. Here the authors use opto- and chemogenetic approaches to show that VIP neuronal activity regulates rhythmic activity in downstream hypothalamic target neurons and their physiological functions.
Collapse
Affiliation(s)
- Sarika Paul
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Lydia Hanna
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.,School of Pharmacy, University of Reading, Reading, UK
| | - Court Harding
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Edward A Hayter
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - David A Bechtold
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.
| |
Collapse
|
50
|
Law R, Clow A. Stress, the cortisol awakening response and cognitive function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 150:187-217. [PMID: 32204832 DOI: 10.1016/bs.irn.2020.01.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is evidence that stress-induced disruption of the circadian rhythm of cortisol secretion, has negative consequences for brain health. The cortisol awakening response (CAR) is the most prominent and dynamic aspect of this rhythm. It has complex regulatory mechanisms making it distinct from the rest of the cortisol circadian rhythm, and is frequently investigated as a biomarker of stress and potential intermediary between stress and impaired brain function. Despite this, the precise function of the CAR within the healthy cortisol circadian rhythm remains poorly understood. Cortisol is a powerful hormone known to influence cognition in multiple and complex ways. Studies of the CAR and cognitive function have used varied methodological approaches which have produced similarly varied findings. The present review considers the accumulating evidence linking stress, attenuation of the CAR and reduced cognitive function, and seeks to contextualize the many findings to study populations, cognitive measures, and CAR methodologies employed. Associations between the CAR and both memory and executive functions are discussed in relation to its potential role as a neuroendocrine time of day signal that synchronizes peripheral clocks throughout the brain to enable optimum function, and recommendations for future research are provided.
Collapse
Affiliation(s)
- Robin Law
- Psychology, School of Social Sciences, University of Westminster, London, England.
| | - Angela Clow
- Psychology, School of Social Sciences, University of Westminster, London, England
| |
Collapse
|