1
|
Akbari M, Parsaei H, Sedaghat K, Mousavi F. Attenuation of morphine conditioned place preference and reinstatement by vitamin D. Behav Pharmacol 2023; 34:404-410. [PMID: 37581227 DOI: 10.1097/fbp.0000000000000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Opioid action in the brain involves the dopamine-reward system as well as non-dopamine pathways. Since vitamin D also modulates the brain's dopamine system, the question of this study was how vitamin D might affect the opioid influences on the reward system. Therefore, the objective of this study was to investigate the possible effect of vitamin D on the conditioned place preference (CPP) induced by morphine, as a valuable model of assessment of the reinforcing properties of opioids by associating the context to the rewarding properties of the addictive drugs. Male Wistar rats were randomly divided into two main groups that either received saline (morphine vehicle) or morphine (5 mg/kg, intraperitoneally) for CPP. Each of the main groups was divided into three vitamin D treatment subgroups: vitamin D vehicle and vitamin D (5 and 10 μg/kg, intraperitoneally). Vitamin D injections were started 1 week ahead of the experiment (two injections) or immediately after post-conditioning and in both cases, it was continued twice weekly throughout the CPP. Administration of vitamin D (10 μg/kg) before conditioning in CPP markedly attenuated morphine expression in the post-conditioning test. Receiving vitamin D (5 or 10 μg/kg) before or after conditioning significantly attenuated morphine reinstatement. Administration of vitamin D after opioid conditioning facilitated morphine memory extinction and attenuated morphine reinstatement. Vitamin D is probably a valuable addition to be considered as a part of the treatment for prevention or minimizing the dependency or relapse to opioids.
Collapse
Affiliation(s)
- Mahdieh Akbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan
| | - Houman Parsaei
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Katayoun Sedaghat
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan
| | - Fatemeh Mousavi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan
| |
Collapse
|
2
|
High throughput 3D gel-based neural organotypic model for cellular assays using fluorescence biosensors. Commun Biol 2022; 5:1236. [PMID: 36371462 PMCID: PMC9653447 DOI: 10.1038/s42003-022-04177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Three-dimensional (3D) organotypic models that capture native-like physiological features of tissues are being pursued as clinically predictive assays for therapeutics development. A range of these models are being developed to mimic brain morphology, physiology, and pathology of neurological diseases. Biofabrication of 3D gel-based cellular systems is emerging as a versatile technology to produce spatially and cell-type tailored, physiologically complex and native-like tissue models. Here we produce 3D fibrin gel-based functional neural co-culture models with human-iPSC differentiated dopaminergic or glutamatergic neurons and astrocytes. We further introduce genetically encoded fluorescence biosensors and optogenetics activation for real time functional measurements of intracellular calcium and levels of dopamine and glutamate neurotransmitters, in a high-throughput compatible plate format. We use pharmacological perturbations to demonstrate that the drug responses of 3D gel-based neural models are like those expected from in-vivo data, and in some cases, in contrast to those observed in the equivalent 2D neural models. Fibrin gel-based 3D co-culture models with human-iPSC differentiated dopaminergic or glutamatergic neurons and astrocytes are shown to be functional using biosensors and can be scaled up for high-throughput assays.
Collapse
|
3
|
Custodio RJP, Kim M, Sayson LV, Ortiz DM, Buctot D, Lee HJ, Cheong JH, Kim HJ. Regulation of clock and clock-controlled genes during morphine reward and reinforcement: Involvement of the period 2 circadian clock. J Psychopharmacol 2022; 36:875-891. [PMID: 35486444 DOI: 10.1177/02698811221089040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Morphine abuse is a devastating disorder that affects millions of people worldwide, and literature evidence indicates a relationship between opioid abuse and the circadian clock. AIM We explored morphine reward and reinforcement using mouse models with Per2 gene modifications (knockout (KO); overexpression (OE)). METHODS Mice were exposed to various behavioral, electroencephalographic, pharmacological, and molecular tests to assess the effects of morphine and identify the underlying mechanisms with a focus on reward and reinforcement and the corresponding involvement of circadian and clock-controlled gene regulation. RESULTS Per2 deletion enhances morphine-induced analgesia, locomotor sensitization, conditioned place preference (CPP), and self-administration (SA) in mice, whereas its overexpression attenuated these effects. In addition, reduced withdrawal was observed in Per2 KO mice, whereas an augmented withdrawal response was observed in Per2 OE mice. Moreover, naloxone and SCH 23390 blocked morphine CPP in Per2 KO and wild-type (WT) mice. The rewarding (CPP) and reinforcing effects (SA) observed in morphine-conditioned and morphine self-administered Per2 KO and WT mice were accompanied by activated μ-opioid and dopamine D1 receptors and TH in the mesolimbic (VTA/NAcc) system. Furthermore, genetic modifications of Per2 in mice innately altered some clock genes in response to morphine. CONCLUSION These findings improve our understanding of the role of Per2 in morphine-induced psychoactive effects. Our data and those obtained in previous studies indicate that targeting Per2 may have applicability in the treatment of substance abuse.
Collapse
Affiliation(s)
- Raly James Perez Custodio
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Republic of Korea.,Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Danilo Buctot
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Lloyd JT, Yee AG, Kalligappa PK, Jabed A, Cheung PY, Todd KL, Karunasinghe RN, Vlajkovic SM, Freestone PS, Lipski J. Dopamine dysregulation and altered responses to drugs affecting dopaminergic transmission in a new dopamine transporter knockout (DAT-KO) rat model. Neuroscience 2022; 491:43-64. [DOI: 10.1016/j.neuroscience.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/10/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022]
|
5
|
Kantak KM. Rodent models of attention-deficit hyperactivity disorder: An updated framework for model validation and therapeutic drug discovery. Pharmacol Biochem Behav 2022; 216:173378. [DOI: 10.1016/j.pbb.2022.173378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/21/2023]
|
6
|
Gock N, Follett J, Rintoul GL, Beischlag TV, Lee FJ. Endosomal recycling and dopamine neurotransmission: Exploring the links between the retromer and Parkinson's disease. Synapse 2022; 76:e22224. [DOI: 10.1002/syn.22224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/17/2021] [Accepted: 01/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Nathan Gock
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Jordan Follett
- Laboratory of Neurogenetics and Neuroscience Department of Neurology University of Florida 1149 Newell Dr Gainesville FL 32610‐0236 United States
| | - Gordon L Rintoul
- Department of Biological Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Timothy V Beischlag
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - Frank J.S. Lee
- Faculty of Health Sciences Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
- Centre for Cell Biology, Development, and Disease Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| |
Collapse
|
7
|
Sabeti M, Ensafi AA, Rezaei B. Polydopamine‐modified MWCNTs‐glassy Carbon Electrode, a Selective Electrochemical Morphine Sensor. ELECTROANAL 2021. [DOI: 10.1002/elan.202100158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Sabeti
- Department of Chemistry Isfahan University of Technology Isfahan 84156–83111 Iran
| | - Ali A. Ensafi
- Department of Chemistry Isfahan University of Technology Isfahan 84156–83111 Iran
| | - B. Rezaei
- Department of Chemistry Isfahan University of Technology Isfahan 84156–83111 Iran
| |
Collapse
|
8
|
Carpenter MD, Manners MT, Heller EA, Blendy JA. Adolescent oxycodone exposure inhibits withdrawal-induced expression of genes associated with the dopamine transmission. Addict Biol 2021; 26:e12994. [PMID: 33325096 DOI: 10.1111/adb.12994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/09/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Prescription opioid misuse is a major public health concern among children and adolescents in the United States. Opioids are the most commonly abused drugs and are the fastest growing drug problem among adolescents. In humans and animals, adolescence is a particularly sensitive period associated with an increased response to drugs of abuse. Our previous studies indicate that oxycodone exposure during adolescence increases morphine reward in adulthood. How early drug exposure mediates long-term changes in the brain and behavior is not known, but epigenetic regulation is a likely mechanism. To address this question, we exposed mice to oxycodone or saline during adolescence and examined epigenetic modifications at genes associated with dopamine activity during adulthood at early and late withdrawal, in the ventral tegmental area (VTA). We then compared these with alterations in the VTA of adult-treated mice following an equivalent duration of exposure and withdrawal to determine if the effects of oxycodone are age dependent. We observed persistence of adolescent-like gene expression following adolescent oxycodone exposure relative to age-matched saline exposed controls, although dopamine-related gene expression was transiently activated at 1 day of withdrawal. Following prolonged withdrawal enrichment of the repressive histone mark, H3K27me3, was maintained, consistent with inhibition of gene regulation following adolescent exposure. By contrast, mice exposed to oxycodone as adults showed loss of the repressive mark and increased gene expression following 28 days of withdrawal following oxycodone exposure. Together, our findings provide evidence that adolescent oxycodone exposure has long-term epigenetic consequences in VTA of the developing brain.
Collapse
Affiliation(s)
- Marco D. Carpenter
- Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania Philadelphia Pennsylvania USA
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania USA
- Penn Epigenetics Institute, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Melissa T. Manners
- Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania Philadelphia Pennsylvania USA
- Department of Biological Sciences University of the Sciences Philadelphia Pennsylvania USA
| | - Elizabeth A. Heller
- Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania Philadelphia Pennsylvania USA
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania USA
- Penn Epigenetics Institute, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania Philadelphia Pennsylvania USA
- Institute for Translational Medicine and Therapeutics University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
9
|
Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine. eNeuro 2021; 8:ENEURO.0081-21.2021. [PMID: 33707203 PMCID: PMC8114902 DOI: 10.1523/eneuro.0081-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Drugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs). Chemogenetic inhibition of VTA DA neurons potently suppressed baseline motor activity, as well as the motor-stimulatory effect of cocaine and morphine, confirming the critical influence of VTA DA neurons and inhibitory G-protein signaling in these neurons on this addiction-related behavior. To resolve the relative influence of GABABR-dependent and D2R-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to drugs of abuse, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D2R and GABABR in VTA DA neurons. Ablation of GABABR or D2R did not impact baseline physiological properties or excitability of VTA DA neurons, but it did preclude the direct somatodendritic inhibitory influence of GABABR or D2R activation. D2R ablation potentiated the motor-stimulatory effect of cocaine in male and female mice, whereas GABABR ablation selectively potentiated cocaine-induced activity in male subjects only. Neither D2R nor GABABR ablation impacted morphine-induced motor activity. Collectively, our data show that cocaine and morphine differ in the extent to which they engage inhibitory G-protein-dependent feedback pathways in VTA DA neurons and highlight key sex differences that may impact susceptibility to various facets of addiction.
Collapse
|
10
|
Salesse C, Charest J, Doucet-Beaupré H, Castonguay AM, Labrecque S, De Koninck P, Lévesque M. Opposite Control of Excitatory and Inhibitory Synapse Formation by Slitrk2 and Slitrk5 on Dopamine Neurons Modulates Hyperactivity Behavior. Cell Rep 2021; 30:2374-2386.e5. [PMID: 32075770 DOI: 10.1016/j.celrep.2020.01.084] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 12/03/2019] [Accepted: 01/24/2020] [Indexed: 11/26/2022] Open
Abstract
The neurodevelopmental origin of hyperactivity disorder has been suggested to involve the dopaminergic system, but the underlying mechanisms are still unknown. Here, transcription factors Lmx1a and Lmx1b are shown to be essential for midbrain dopaminergic (mDA) neuron excitatory synaptic inputs and dendritic development. Strikingly, conditional knockout (cKO) of Lmx1a/b in postmitotic mDA neurons results in marked hyperactivity. In seeking Lmx1a/b target genes, we identify positively regulated Slitrk2 and negatively regulated Slitrk5. These two synaptic adhesion proteins promote excitatory and inhibitory synapses on mDA neurons, respectively. Knocking down Slitrk2 reproduces some of the Lmx1a/b cKO cellular and behavioral phenotypes, whereas Slitrk5 knockdown has opposite effects. The hyperactivity caused by this imbalance in excitatory/inhibitory synaptic inputs on dopamine neurons is reproduced by chronically inhibiting the ventral tegmental area during development using pharmacogenetics. Our study shows that alterations in developing dopaminergic circuits strongly impact locomotor activity, shedding light on mechanisms causing hyperactivity behaviors.
Collapse
Affiliation(s)
- Charleen Salesse
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Julien Charest
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | | | | | - Simon Labrecque
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada
| | - Paul De Koninck
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada; Department of Biochemistry, Microbiology and Bioinformatics, Faculty of Science and Engineering, Université Laval, Québec, QC G1V 0A6, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601 de la Canardière, Québec, QC G1J 2G3, Canada; Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
11
|
Jing MY, Han X, Zhao TY, Wang ZY, Lu GY, Wu N, Song R, Li J. Re-examining the role of ventral tegmental area dopaminergic neurons in motor activity and reinforcement by chemogenetic and optogenetic manipulation in mice. Metab Brain Dis 2019; 34:1421-1430. [PMID: 31313126 DOI: 10.1007/s11011-019-00442-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
Abstract
The precise contributions of ventral tegmental area (VTA) dopaminergic (DAergic) neurons to reward-related behaviors are a longstanding hot topic of debate. Whether the activity of VTA DAergic neurons directly modulates rewarding behaviors remains uncertain. In the present study, we investigated the fundamental role of VTA DAergic neurons in reward-related movement and reinforcement by employing dopamine transporter (DAT)-Cre transgenic mice expressing hM3Dq, hM4Di or channelrhodopsin 2 (ChR2) in VTA DAergic neurons through Cre-inducible adeno-associated viral vector transfection. On the one hand, locomotion was tested in an open field to examine motor activity when VTA DAergic neurons were stimulated or inhibited by injection of the hM3Dq or hM4Di ligand clozapine-N-oxide (CNO), respectively. CNO injection to selectively activate or inhibit VTA DAergic neurons significantly increased or decreased locomotor activity, respectively, compared with vehicle injection, indicating that VTA DAergic neuron stimulation is directly involved in the regulation of motor activity. On the other hand, we used the optical intracranial self-stimulation (oICSS) model to investigate the causal link between reinforcement and VTA DAergic neurons. Active poking behavior but not inactive poking behavior was significantly escalated in a frequency- and pulse duration-dependent manner. In addition, microdialysis revealed that the concentration of dopamine (DA) in the nucleus accumbens (NAc) was enhanced by selective optogenetic activation of VTA DAergic neurons. Furthermore, systemic administration of a DA D1 receptor antagonist significantly decreased oICSS reinforcement. Our research profoundly demonstrates a direct regulatory role of VTA DAergic neurons in movement and reinforcement and provides meaningful guidance for the development of novel treatment strategies for neuropsychiatric diseases related to the malfunction of the reward system.
Collapse
Affiliation(s)
- Man-Yi Jing
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiao Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Tai-Yun Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Zhi-Yuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Guan-Yi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
12
|
Guma E, Rocchetti J, Devenyi GA, Tanti A, Mathieu AP, Lerch JP, Elgbeili G, Courcot B, Mechawar N, Chakravarty MM, Giros B. Role of D3 dopamine receptors in modulating neuroanatomical changes in response to antipsychotic administration. Sci Rep 2019; 9:7850. [PMID: 31127135 PMCID: PMC6534671 DOI: 10.1038/s41598-019-43955-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 05/01/2019] [Indexed: 12/31/2022] Open
Abstract
Clinical research has shown that chronic antipsychotic drug (APD) treatment further decreases cortical gray matter and hippocampus volume, and increases striatal and ventricular volume in patients with schizophrenia. D2-like receptor blockade is necessary for clinical efficacy of the drugs, and may be responsible for inducing these volume changes. However, the role of other D2-like receptors, such as D3, remains unclear. Following our previous work, we undertook a longitudinal study to examine the effects of chronic (9-week) typical (haloperidol (HAL)) and atypical (clozapine (CLZ)) APDs on the neuroanatomy of wild-type (WT) and dopamine D3-knockout (D3KO) mice using magnetic resonance imaging (MRI) and histological assessments in a sub-region of the anterior cingulate cortex (the prelimbic [PL] area) and striatum. D3KO mice had larger striatal volume prior to APD administration, coupled with increased glial and neuronal cell density. Chronic HAL administration increased striatal volume in both WT and D3KO mice, and reduced PL area volume in D3KO mice both at trend level. CLZ increased volume of the PL area of WT mice at trend level, but decreased D3KO PL area glial cell density. Both typical and atypical APD administration induced neuroanatomical remodeling of regions rich in D3 receptor expression, and typically altered in schizophrenia. Our findings provide novel insights on the role of D3 receptors in structural changes observed following APD administration in clinical populations.
Collapse
Affiliation(s)
- Elisa Guma
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Jill Rocchetti
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada
| | - Gabriel A Devenyi
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - Arnaud Tanti
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Axel P Mathieu
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, M5T3H7, Canada.,Department of Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, M5G1X8, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G1L7, Canada.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Guillaume Elgbeili
- Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - Blandine Courcot
- Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada
| | - M Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, Montreal, Quebec, H3H1R3, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada.,Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, H3A2B4, Canada
| | - Bruno Giros
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, H3A2B4, Canada. .,Department of Psychiatry, McGill University, Montreal, Quebec, H3A1A1, Canada. .,Sorbonne University, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U 1130, UPMC Univ Paris 06, UM119, 75005, Paris, France.
| |
Collapse
|
13
|
Park J, Sung JY, Kim DK, Kong ID, Hughes TL, Kim N. Genetic association of human Corticotropin-Releasing Hormone Receptor 1 (CRHR1) with Internet gaming addiction in Korean male adolescents. BMC Psychiatry 2018; 18:396. [PMID: 30572854 PMCID: PMC6302290 DOI: 10.1186/s12888-018-1974-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/05/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The number of people with Internet gaming addiction (IGA) is increasing around the world. IGA is known to be associated with personal characteristics, psychosocial factors, and physiological factors. However, few studies have examined the genetic factors related to IGA. This study aimed to investigate the association between IGA and stress-related genetic variants. METHODS This cross-sectional study was conducted with 230 male high school students in a South Korean city. We selected five stress-related candidate genes: DAT1, DRD4, NET8, CHRNA4, and CRHR1. The DAT1 and DRD4 genes were genotyped by polymerase chain reaction, and the NET8, CHRNA4, and CRHR1 genes were genotyped by pyrosequencing analysis. We performed a Chi-square test to examine the relationship of these five candidate genes to IGA. RESULTS Having the AA genotype and the A allele of the CRHR1 gene (rs28364027) was associated with higher odds of belonging to the IGA participant group (p = .016 and p = .021, respectively) than to the non-IGA group. By contrast, the DAT1, DRD4, NET8, and CHRNA4 gene polymorphisms showed no significant difference between the IGA group and control group. CONCLUSIONS These results indicate that polymorphism of the CRHR1 gene may play an important role in IGA susceptibility in the Korean adolescent male population. These findings provide a justification and foundation for further investigation of genetic factors related to IGA.
Collapse
Affiliation(s)
- Jooyeon Park
- College of Nursing, Keimyung University, Daegu, Republic of Korea
| | - Jin-Young Sung
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - In Deok Kong
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Tonda L Hughes
- School of Nursing and Department of Psychiatry, Columbia University, New York City, USA
| | - Nahyun Kim
- College of Nursing, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
14
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
15
|
Sanchez V, Carpenter MD, Yohn NL, Blendy JA. Long-lasting effects of adolescent oxycodone exposure on reward-related behavior and gene expression in mice. Psychopharmacology (Berl) 2016; 233:3991-4002. [PMID: 27624598 PMCID: PMC5992616 DOI: 10.1007/s00213-016-4425-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 09/04/2016] [Indexed: 11/28/2022]
Abstract
RATIONALE Prescription opioid abuse and transition to heroin use are growing problems in the USA. However, the long-term consequences of adolescent prescription opioid abuse on subsequent drug use and affective-like behavior are unknown. OBJECTIVES This study aims to determine if adolescent exposure to oxycodone alters the rewarding effects of morphine, anxiety-like behavior, and reward-related gene expression later in adulthood. METHODS Adolescent male C57Bl/6 mice were exposed to oxycodone (3 mg/kg/day) via osmotic minipumps for 28 days. Following a 28-day withdrawal period, mice were tested in morphine-conditioned place preference paradigm (CPP), morphine sensitization, open field, marble burying, and forced swim (FST) tests. To determine if effects were specific to adolescent exposure, adult mice were exposed to oxycodone for 28 days and underwent 28 days of withdrawal prior to the same behavioral testing schedule. Expression of reward-related genes including dopamine receptor 1 (D1) and dopamine transporter (DAT) in the nucleus accumbens (NAc) and ventral tegmental area (VTA) was examined. RESULTS Adolescent oxycodone exposure significantly increased (300 %) response to morphine CPP during adulthood and significantly reduced D1 expression (30 %) in the NAc and DAT expression (75 %) in the VTA. Adult oxycodone exposure did not affect subsequent responses to morphine CPP. Oxycodone exposure did not affect the development of morphine sensitization or affective-like behaviors. Corticosterone response to a stressor (FST) was significantly reduced (65 %) in mice exposed to oxycodone during adolescence but not adulthood. CONCLUSIONS Adolescent oxycodone exposure enhances rewarding effects of morphine in adulthood with no effect on other affective-like behaviors.
Collapse
Affiliation(s)
- Victoria Sanchez
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Translational Research Laboratory, 125 South 31st Street, Philadelphia, PA19104, USA
| | - Marco D Carpenter
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Translational Research Laboratory, 125 South 31st Street, Philadelphia, PA19104, USA
| | - Nicole L Yohn
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Translational Research Laboratory, 125 South 31st Street, Philadelphia, PA19104, USA
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Translational Research Laboratory, 125 South 31st Street, Philadelphia, PA19104, USA.
| |
Collapse
|
16
|
Butler B, Sambo D, Khoshbouei H. Alpha-synuclein modulates dopamine neurotransmission. J Chem Neuroanat 2016; 83-84:41-49. [PMID: 27334403 DOI: 10.1016/j.jchemneu.2016.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/03/2016] [Accepted: 06/11/2016] [Indexed: 01/13/2023]
Abstract
Alpha-synuclein is a small, highly charged protein encoded by the synuclein or SNCA gene that is predominantly expressed in central nervous system neurons. Although its physiological function remains enigmatic, alpha-synuclein is implicated in movement disorders such as Parkinson's disease, multiple system atrophy, and in neurodegenerative diseases such as Dementia with Lewy bodies. Here we have focused on reviewing the existing literature pertaining to wild-type alpha-synuclein structure, its properties, and its potential involvement in regulation of dopamine neurotransmission.
Collapse
Affiliation(s)
- Brittany Butler
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611
| | - Danielle Sambo
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611
| | - Habibeh Khoshbouei
- University of Florida, Department of Neuroscience and Department of Psychiatry Gainesville, FL 32611.
| |
Collapse
|
17
|
Dopamine bioavailability in the mPFC modulates operant learning performance in rats: an experimental study with a computational interpretation. Behav Brain Res 2015; 280:92-100. [PMID: 25435314 DOI: 10.1016/j.bbr.2014.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 11/23/2022]
Abstract
Dopamine encodes reward and its prediction in reinforcement learning. Catechol-O-methyltransferase (COMT) activity in the medial prefrontal cortex (mPFC) has been shown to influence cognitive abilities by modifying dopamine clearance. Nevertheless, it is unknown how COMT in the mPFC influences operant learning. Systemic entacapone (50mg/kg), as well as local entacapone (3 pg) and recombinant COMT (17 μg) in the mPFC were administered to male Long Evans rats prior to training in an operant conditioning task. We found that systemic and local administration of the COMT inhibitor entacapone significantly improves learning performance. Conversely, recombinant COMT administration totally impaired learning. These data have been interpreted through a computational model where the phasic firing of dopaminergic neurons was computed by means of a temporal difference algorithm and dopamine bioavailability in the mPFC was simulated with a gating window. The duration of this window was selected to simulate the effects of inhibited or enhanced COMT activity (by entacapone or recombinant COMT respectively). The model accounts for an improved performance reproducing the entacapone effects, and a detrimental impact on learning when the clearance is increased reproducing the recombinant COMT effects. The experimental and computational results show that learning performance can be deeply influenced by COMT manipulations in the mPFC.
Collapse
|
18
|
ZióŁkowska B, Gieryk A, Solecki W, PrzewŁocki R. Temporal and anatomic patterns of immediate-early gene expression in the forebrain of C57BL/6 and DBA/2 mice after morphine administration. Neuroscience 2014; 284:107-124. [PMID: 25290009 DOI: 10.1016/j.neuroscience.2014.09.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
Although morphine was previously reported to produce an instant induction of c-fos in the striatum, our recent studies have demonstrated that the expression of numerous immediate early genes (IEGs) is significantly elevated at delayed time-points (several hours) after morphine administration. To better dissect the time-course of opioid-produced IEG induction, we used in situ hybridization to examine the expression of the IEGs c-fos, zif268 and arc in the mouse forebrain at several time-points after acute morphine injection. To link drug-produced behavioral changes with the activity of specific neuronal complexes, this study was performed comparatively in the C57BL/6 and DBA/2 mouse strains, which differ markedly in their locomotor responses to opioids and opioid reward. Our study demonstrates that morphine produces two episodes of IEG induction, which are separate in time (30 min vs. 4-6 h) and which have different neuroanatomic distribution. At 30 min, one or more IEGs were induced in circumscribed subregions of the dorsal striatum (dStr) and of the nucleus accumbens (NAc) shell, as well as in the lateral septum. The observed inter-strain differences in IEG expression at 30 min support earlier proposals that activation of the dorsomedial striatum may mediate morphine-elicited locomotor stimulation (both effects were present only in the C57BL/6 strain). In contrast, NAc shell activation does not appear to be linked to morphine-elicited changes in locomotor behavior. The second IEG induction (of arc and of zif268) was more widespread, involving most of the dStr and the cortex. The second IEG induction peaked earlier in the DBA/2 mice than in the C57BL/6 mice (4 h compared with 6 h) and displayed no apparent relation to locomotor behavior. This delayed episode of IEG activation, which has largely been overlooked thus far, may contribute to the development of long-term effects of opioids such as tolerance, dependence and/or addiction.
Collapse
Affiliation(s)
- B ZióŁkowska
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland.
| | - A Gieryk
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - W Solecki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Kraków, Poland
| | - R PrzewŁocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Kraków, Poland
| |
Collapse
|
19
|
Lockie SH, Andrews ZB. The hormonal signature of energy deficit: Increasing the value of food reward. Mol Metab 2013; 2:329-36. [PMID: 24327949 DOI: 10.1016/j.molmet.2013.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 02/02/2023] Open
Abstract
Energy deficit is characterised by high ghrelin levels, and low leptin and insulin levels and we suggest that this provides a metabolic signature sensed by the brain to increase motivated behaviour to obtain food. We believe that the hormonal profile of negative energy balance serves to increase the incentive salience (or the value) of a food reinforcer, which in turn leads to increased motivation to obtain this reinforcer. These processes are mediated by a number of alterations in the mesolimbic dopamine system which serves to increase dopamine availability in the forebrain during energy deficit. The currently available evidence suggests that changes in motivational state, rather than hedonic enjoyment of taste, are primarily affected by reduced energy availability. This review aims to clarify the term 'reward' in the metabolic literature and promote more focused discussion in future studies.
Collapse
Affiliation(s)
- Sarah H Lockie
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
20
|
Ziółkowska B, Korostyński M, Piechota M, Kubik J, Przewłocki R. Effects of morphine on immediate-early gene expression in the striatum of C57BL/6J and DBA/2J mice. Pharmacol Rep 2013; 64:1091-104. [PMID: 23238466 DOI: 10.1016/s1734-1140(12)70906-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/22/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Immediate early gene (IEG) induction elicited by drugs of abuse may contribute to development of plastic changes in the brain responsible for drug-induced behavioral changes leading to addiction. The aim of the present study was to characterize the changes in IEG expression in the striatum and nucleus accumbens produced by an acute or chronic administration of morphine. METHODS In order to search for a possible relationship between morphine-induced IEG expression and behavior, the experiment was performed on two inbred strains of mice, C57BL/6J and DBA/2J, which differ markedly in their sensitivity to the rewarding and locomotor stimulatory actions of opiates. Gene expression was assessed using RT-PCR and DNA microarrays. RESULTS The experiments demonstrated a prolonged or a delayed up-regulation of 14 IEG in the striatum at 4 h after morphine administration. Among them, a cluster of 8 genes, including 6 inducible transcription factors (c-fos, fra-2, junB, zif268 (egr1), egr2, NGFI-B) and 2 effector IEG (arc and mkp1) seemed to be regulated in concert in response to morphine. This group of genes was induced to a greater degree after chronic than acute morphine administration selectively in C57BL/6J mice and the difference bore apparently no relationship to opiate-produced locomotor activation. The strain-selective regulation was also demonstrated for cyclin L2 and tPA after an acute morphine injection. CONCLUSIONS Our data indicate that morphine up-regulates many IEG in the mouse striatum at a strikingly delayed time-point and that these changes are genotype-dependent. They also suggest inter-strain differences in the development of striatal neuroadaptations to chronic morphine treatment.
Collapse
Affiliation(s)
- Barbara Ziółkowska
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| | | | | | | | | |
Collapse
|
21
|
Han DH, Lee YS, Yang KC, Kim EY, Lyoo IK, Renshaw PF. Dopamine genes and reward dependence in adolescents with excessive internet video game play. J Addict Med 2013; 1:133-8. [PMID: 21768948 DOI: 10.1097/adm.0b013e31811f465f] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Excessive internet video game play (EIGP) has emerged as a leading cause of behavioral and developmental problems in adolescents. Recent research has implicated the role of striatal dopaminergic system in the behavioral maladaptations associated with EIGP. This study investigates the reward-dependence characteristics in EIGP adolescents as it potentially relates to genetic polymorphisms of the dopaminergic system and temperament. Seventy-nine male EIGP adolescents and 75 age- and gender-matched healthy comparison adolescents were recruited. Associations were tested with respect to the reward-dependence (RD) scale in Cloninger's Temperament and Character Inventory and the frequencies of 3 dopamine polymorphisms: Taq1A1 allele of the dopamine D2 receptor (DRD2 Taq1A1) and Val158Met in the Catecholamine-O-Methyltransferase (COMT) genes. The Taq1A1 and low activity (COMT) alleles were significantly more prevalent in the EIGP group relative to the comparison group. The present EIGP group had significantly higher RD scores than controls. Within the EIGP group, the presence of the Taq1A1 allele correlated with higher RD scores. Our findings suggest that EIGP subjects have higher reward dependency and an increased prevalence of the DRD2 Taq1A1 and COMT alleles. In particular, the DRD2 Taq1A1 allele seems to be associated with reward dependence in EIGP adolescents.
Collapse
Affiliation(s)
- Doug Hyun Han
- From McLean Hospital Brain Imaging Center and Department of Psychiatry (DHH, KCY, IKL, PFR), Harvard Medical School, Belmont, MA; the Department of Psychiatry (YSL, EYK), Chung-Ang University Medical School, Seoul, South Korea; and the Department of Psychiatry (IKL), Seoul National University College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
22
|
Meck WH, Cheng RK, MacDonald CJ, Gainetdinov RR, Caron MG, Çevik MÖ. Gene-dose dependent effects of methamphetamine on interval timing in dopamine-transporter knockout mice. Neuropharmacology 2012; 62:1221-9. [DOI: 10.1016/j.neuropharm.2011.01.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
|
23
|
Tammimäki A, Männistö PT. Effect of genetic modifications in the synaptic dopamine clearance systems on addiction-like behaviour in mice. Basic Clin Pharmacol Toxicol 2010; 108:2-8. [PMID: 21118356 DOI: 10.1111/j.1742-7843.2010.00647.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the last 15 years, genetically modified mouse lines have proved to be a valuable research tool. This review summarizes research that studied addiction-like behaviour in mice that had a targeted mutation in the genes of the synaptic dopamine removal systems, i.e. in the dopamine transporter (DAT), a vesicular monoamine transporter 2 (VMAT2) or two dopamine-metabolizing enzymes (monoamine oxidase, MAO, mainly MAO-A isoenzyme, and catechol-O-methyltransferase, COMT). Majority of the mice are knockouts but also some knock-in and knock down mouse lines are included. Most studies have explored DAT, and it has been shown to be the critical target in addiction to psychostimulants. Its role in the development of addiction-like behaviour to nicotine, opioids or ethanol is less clear. VMAT2 also seems to be linked to psychostimulant addiction. MAO-A and COMT have a minor role in addiction-like behaviour that is further complicated by a sexual dimorphism.
Collapse
Affiliation(s)
- Anne Tammimäki
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Finland.
| | | |
Collapse
|
24
|
González-Cuello A, Mora L, Hidalgo JM, Meca N, Lasheras C, Milanés MV, Laorden ML. Enhanced tyrosine hydroxylase phosphorylation in the nucleus accumbens and nucleus tractus solitarius-A2 cell group after morphine-conditioned place preference. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 382:525-34. [PMID: 20924561 DOI: 10.1007/s00210-010-0567-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/19/2010] [Indexed: 11/28/2022]
Abstract
Although dopamine (DA) has been extensively implicated in the morphine-induced conditioned place preference (CPP; a measure of reward), noradrenaline (NA) and other systems may play a larger role than previously suspected. The mesolimbic DA system, comprised of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), receives noradrenergic innervations from the nucleus tractus solitaries (NTS)-A2 cell group and is modulated by NA. The purpose of the present study was to evaluate the turnover of DA and NA in the NAc and the site-specific phosphorylation of TH in the NAc, VTA, and NTS on the CPP mice conditioned by morphine. A dose-effect curve for morphine-induced CPP (0.5-8 mg/kg, s.c.) was obtained using 6-day conditioning sessions followed by a CPP test. TH phosphorylation was determined by quantitative blot immunolabeling and immunohistochemistry using phosphorylation state-specific antibodies; NA and DA turnover was evaluated by high-performance liquid chromatography. Morphine-induced CPP phosphorylates TH at serine (Ser)40 but not Ser31 in NAc, which is associated with an enhanced of DA and NA turnover. We also found that morphine-induced CPP increased levels of TH phosphorylated at Ser31 and Ser40 in the NTS. The present study demonstrates that morphine-induced CPP might stimulate TH activity and accelerate DA and NA turnover in the NAc via a mechanism involving phosphorylation of TH.
Collapse
Affiliation(s)
- A González-Cuello
- Department of Nursing, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
25
|
Liu F, Jiang H, Zhong W, Wu X, Luo J. Changes in ensemble activity of hippocampus CA1 neurons induced by chronic morphine administration in freely behaving mice. Neuroscience 2010; 171:747-59. [PMID: 20888400 DOI: 10.1016/j.neuroscience.2010.09.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/08/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022]
Abstract
The hippocampus plays an important role in the formation of new memories and spatial navigation. Recently, growing evidence supports the view that it is also involved in addiction to opiates and other drugs. Theoretical and experimental studies suggest that hippocampal neural-network oscillations at specific frequencies and unit firing patterns reflect information of learning and memory encoding. Here, using multichannel recordings from the hippocampal CA1 area in behaving mice, we investigated the phase correlations between the theta (4-10 Hz) and gamma (40-100 Hz) oscillations, and the timing of spikes modulated by these oscillations. Local field potentials and single unit recordings in the CA1 area of mice receiving chronic morphine treatment revealed that the power of the theta rhythm was strongly increased; at the same time, the theta frequency during different behavioral states shifted markedly, and the characteristic coupling of theta and gamma oscillations was altered. Surprisingly, though the gamma oscillation frequency changed, the power of gamma lacking theta did not. Moreover, the timing of pyramidal cell spikes relative to the theta rhythm and the timing of interneuron spikes relative to the gamma rhythm changed during chronic morphine administration. Furthermore, these responses were impaired by a selective D1/D5 receptor antagonist intra-hippocampus injection. These results indicate that chronic morphine administration induced the changes of ensemble activity in the CA1 area, and these changes were dependent on local dopamine receptor activation.
Collapse
Affiliation(s)
- F Liu
- Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of Medicine, 388 Yu Hang Tang Road, Hangzhou 310058, PR China
| | | | | | | | | |
Collapse
|
26
|
Yoo JH, Bailey A, Ansonoff M, Pintar JE, Matifas A, Kieffer BL, Kitchen I. Lack of genotype effect on D1, D2 receptors and dopamine transporter binding in triple MOP-, DOP-, and KOP-opioid receptor knockout mice of three different genetic backgrounds. Synapse 2010; 64:520-7. [PMID: 20196137 DOI: 10.1002/syn.20757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated D1, D2 receptors and dopamine transporter (DAT) binding levels in mice lacking all three opioid receptors and wild-type (WT) mice on three different genetic backgrounds. Quantitative autoradiography was used to determine the level of radioligand binding to the D1 and D2 receptors and DAT labeled with [(3)H]SCH23390, [(3)H]raclopride, and [(3)H]mazindol, respectively in triple-opioid receptor knockout (KO) and WT maintained on C57BL/6 (B6) and 129/SvEvTac (129) as well as C57BL/6 x 129/SvPas (B6 x 129) strains. No significant genotype effect was observed in D1, D2 receptors and DAT binding in any regions analyzed in any of the strains studied, suggesting that a lack of all three opioid receptors does not influence D1, D2 receptors and DAT expression, irrespective of their genetic strain background. However, strain differences were observed in D1 binding between the three strains of mice studied. Lower levels of D1 binding were observed in the substantia nigra of B6 x 129 WT mice compared with the 129 WT mice and in the olfactory tubercle of B6 x 129 WT compared with B6 WT and 129 WT mice. Lower levels of D1 binding were observed in the caudate putamen of B6 x 129 KO mice compared with 129 KO mice. In contrast, no significant strain differences were observed in D2 and DAT binding between the three strains of mice in any regions analyzed. Overall, these results indicate a lack of modulation of the dopaminergic system by the deletion of all three opioid receptors regardless of different background strains.
Collapse
Affiliation(s)
- Ji-Hoon Yoo
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
27
|
Li YC, Gao WJ. GSK-3β activity and hyperdopamine-dependent behaviors. Neurosci Biobehav Rev 2010; 35:645-54. [PMID: 20727368 DOI: 10.1016/j.neubiorev.2010.08.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 07/28/2010] [Accepted: 08/11/2010] [Indexed: 01/28/2023]
Abstract
Dopamine plays important roles in normal brain function and many neuropsychiatric disorders. Classically, dopamine receptors are positively coupled to G protein-mediated signaling to regulate cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA)-dopamine and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) and Ca(2+) pathways. However, emerging evidence indicates that under hyperdopaminergic conditions, the protein kinase B (Akt)-glycogen synthase kinase 3β (GSK-3β) signaling cascade may mediate dopamine actions via D(2)-like receptors. This cAMP-independent signaling pathway involves the regulation of downstream synaptic targets, e.g., AMPA receptor, NMDA receptors, and thus synaptic plasticity. Here we provide an overview of how this novel signaling pathway relays dopamine receptor-mediated responses, particularly hyperdopamine-dependent behaviors. We discuss the relevance of the Akt/GSK-3β signaling cascade for the expression of dopamine-dependent behaviors and the drug actions associated with dopaminergic systems.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department of Neurobiology & Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | |
Collapse
|
28
|
Abstract
Cigarette smoking is the main preventable cause of death in developed countries, and the development of more effective treatments is necessary. Cumulating evidence suggests that cognitive enhancement may contribute to the addictive actions of nicotine. Several studies have demonstrated that nicotine enhances cognitive performance in both smokers and non-smokers. Genetic studies support the role of both dopamine (DA) and nicotinic acetylcholine receptors (nAChRs) associated with nicotine-induced cognitive enhancement. Based on knockout mice studies, beta2 nAChRs are thought to be essential in mediating the cognitive effects of nicotine. alpha7nAChRs are associated with attentional and sensory filtering response, especially in schizophrenic individuals. Genetic variation in D2 type DA receptors and the catechol-O-methyltransferase enzyme appears to moderate cognitive deficits induced by smoking abstinence. Serotonin transporter (5-HTT) gene variation also moderates nicotine-induced improvement in spatial working memory. Less is known about the contribution of genetic variation in DA transporter and D4 type DA receptor genetic variation on the cognitive effects of nicotine. Future research will provide a clearer understanding of the mechanism underlying the cognitive-enhancing actions of nicotine.
Collapse
Affiliation(s)
- Aryeh I Herman
- Department of Psychiatry and VA Connecticut Healthcare System, School of Medicine, Yale University, West Haven, CT 06516, USA
| | | |
Collapse
|
29
|
Morphine-induced physiological and behavioral responses in mice lacking G protein-coupled receptor kinase 6. Drug Alcohol Depend 2009; 104:187-96. [PMID: 19497686 PMCID: PMC2771341 DOI: 10.1016/j.drugalcdep.2009.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 11/23/2022]
Abstract
G protein-coupled receptor kinases (GRKs) are a family of intracellular proteins that desensitize and regulate the responsiveness of G protein-coupled receptors (GPCRs). In the present study, we assessed the contribution of GRK6 to the regulation and responsiveness of the G protein-coupled mu-opioid receptor (microOR) in response to morphine in vitro and in vivo using mice lacking GRK6. In cell culture, overexpression of GRK6 facilitates morphine-induced beta-arrestin2 (betaarrestin2) recruitment and receptor internalization, suggesting that this kinase may play a role in regulating the microOR. In vivo, we find that acute morphine treatment induces greater locomotor activation but less constipation in GRK6 knockout (GRK6-KO) mice compared to their wild-type (WT) littermates. The GRK6-KO mice also appear to be "presensitized" to the locomotor stimulating effects induced by chronic morphine treatment, yet these animals do not display more conditioned place preference than WT mice do. Furthermore, several other morphine-mediated responses which were evaluated, including thermal antinociception, analgesic tolerance, and physical dependence, were not affected by ablation of the GRK6 gene. Collectively, these results suggest that GRK6 may play a role in regulating some, but not all morphine-mediated responses. In addition, these findings underscore that the contribution of a particular regulatory factor to receptor function can differ based upon the specific cell composition and physiology assessed, and illustrate the need for using caution when interpreting the importance of interactions observed in cell culture.
Collapse
|
30
|
Chen J, Rusnak M, Lombroso PJ, Sidhu A. Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur J Neurosci 2009; 29:287-306. [PMID: 19200235 DOI: 10.1111/j.1460-9568.2008.06590.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the mechanisms underlying striatal neurodegeneration are poorly understood, we have shown that striatal pathogenesis may be initiated by high synaptic levels of extracellular dopamine (DA). Here we investigated in rat striatal primary neurons the mobilization of the mitogen-activated protein kinase (MAPK) signaling pathways after treatment with DA. Instead of observing an elevation of the archetypical pro-cytotoxic MAPKs, p-JNK and p-p38 MAPK, we found that DA, acting through D1 DA receptors, induced a sustained stimulation of the phosphorylated form of extracellular signal-regulated kinase (p-ERK) via a cAMP/protein kinase A (PKA)/Rap1/B-Raf / MAPK/ERK kinase (MEK) pathway. Blockade of D2 DA receptors, beta-adrenergic receptors or N-methyl-D-aspartate receptors with receptor-specific antagonists had no significant effect on this process. Activation of D1 DA receptors and PKA by DA caused phosphorylation and inactivation of the striatal-enriched tyrosine phosphatase, an important phosphatase for the dephosphorylation and subsequent inactivation of p-ERK in the striatum. Interestingly, p-ERK was primarily retained in the cytoplasm, with only low amounts translocated to the nucleus. The scaffold protein beta-arrestin2 interacted with both p-ERK and D1 DA receptor, triggering the cytosolic retention of p-ERK and inducing striatal neuronal apoptotic death. These data provide unique insight into a novel role of p-ERK in striatal neurodegeneration.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, Georgetown University, Washington DC 20007, USA
| | | | | | | |
Collapse
|
31
|
Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology (Berl) 2009; 203:561-70. [PMID: 19005643 DOI: 10.1007/s00213-008-1402-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 10/28/2008] [Indexed: 12/16/2022]
Abstract
RATIONALE Environmental conditions during adolescence, a critical period of brain maturation, can have important consequences on subsequent vulnerability to drugs of abuse. We have recently found that the behavioral effects of cocaine as well as its ability to increase expression of zif-268 are reduced in mice reared in enriched environments (EE). OBJECTIVES The present experiments examined whether environmental enrichment has protective influences on the effects of heroin, a drug of addiction whose mechanism of action differs from that of cocaine. MATERIALS AND METHODS Mice were housed either in standard environments (SE) or in EE from weaning to adulthood before any drug exposure. EE were constituted by big housing cages and contained constantly a running wheel and a small house and four to five toys that were changed once a week with new toys of different shapes and colors. We assessed the influence of EE on the ability of heroin to (1) induce conditioned place preferences, (2) induce behavioral sensitization, (3) increase dopamine levels in the nucleus accumbens (NAc), and (4) increase expression of the immediate early gene zif-268 in the striatum. RESULTS Conditioned place preference but not behavioral sensitization was reduced in EE mice compared to SE mice. Heroin induced similar increases in dopamine levels and in the expression of zif-268 in the NAc of EE and SE mice. CONCLUSIONS The rewarding effects of heroin are blunted by EE and appear to be, at least in part, independent from activation of the mesolimbic system.
Collapse
|
32
|
David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P. Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 2008; 33:1746-59. [PMID: 17895918 DOI: 10.1038/sj.npp.1301529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both mu-opioid receptors (MORs) and delta-opioid receptors (DORs) are expressed in the ventral tegmental area (VTA) and are thought to be involved in the addictive properties of opiates. However, their respective contributions to opiate reward remain unclear. We used intracranial self-administration (ICSA) to study the rewarding effects of morphine microinjections into the VTA of male and female MOR-/- and DOR-/- mice. In brains of mice tested for intra-VTA morphine self-administration, we analyzed regional Fos protein expression to investigate the neural circuitry underlying this behavior. Male and female WT and DOR-/- mice exhibited similar self-administration performances, whereas knockout of the MOR gene abolished intra-VTA morphine self-administration at all doses tested. Naloxone (4 mg/kg) disrupted this behavior in WT and DOR mutants, without triggering physical signs of withdrawal. Morphine ICSA was associated with an increase in Fos within the nucleus accumbens, striatum, limbic cortices, amygdala, hippocampus, the lateral mammillary nucleus (LM), and the ventral posteromedial thalamus (VPM). This latter structure was found to express high levels of Fos exclusively in self-administering WT and DOR-/- mice. Abolition of morphine reward in MOR-/- mice was associated with a decrease in Fos-positive neurons in the mesocorticolimbic dopamine system, amygdala, hippocampus (CA1), LM, and a complete absence within the VPM. We conclude that (i) VTA MORs, but not DORs, are critical for morphine reward and (ii) the role of VTA-thalamic projections in opiate reward deserves to be further explored.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Brain/anatomy & histology
- Brain/drug effects
- Brain/metabolism
- Cell Count/methods
- Conditioning, Operant/drug effects
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotics/administration & dosage
- Neurons/drug effects
- Neurons/metabolism
- Oncogene Proteins v-fos/genetics
- Oncogene Proteins v-fos/metabolism
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Opioid, delta/deficiency
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/metabolism
- Self Administration
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Vincent David
- Centre de Neurosciences Intégratives et Cognitives, CNRS UMR 5228/Universités de Bordeaux 1 et 2, Talence, France.
| | | | | | | | | | | |
Collapse
|
33
|
Dopamine transporter mutant mice in experimental neuropharmacology. Naunyn Schmiedebergs Arch Pharmacol 2007; 377:301-13. [PMID: 18057916 DOI: 10.1007/s00210-007-0216-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/02/2007] [Indexed: 12/27/2022]
Abstract
An opportunity to perform targeted genetic manipulations in mice has provided another dimension for modern pharmacological research. Genetically modified mice have become important tools to investigate functions of previously unexplored proteins, define mechanism of action of new and known pharmacological drugs, and validate novel targets for treatment of human disorders. One of the best examples of such use of genetic models in experimental pharmacology represents investigations involving mice deficient in the gene encoding the dopamine transporter (DAT). The dopamine transporter tightly regulates the extracellular dynamics of dopamine by recapturing released neurotransmitter into the presynaptic terminals, and genetic deletion of this protein results in profound alterations in both the presynaptic homeostasis and the extracellular dynamics of dopamine. By using this model of severe dopaminergic dysregulation, significant progress has been made in defining the major target of psychotropic drugs, understanding the mechanisms of their action, unraveling novel signaling events relevant for dopaminergic transmission, and mapping neuronal pathways involved in dopamine-related behaviors. Furthermore, DAT mutant mice provided an opportunity to model in vivo conditions of extreme dopaminergic dysfunction that could be relevant for human disorders such as ADHD, schizophrenia, and Parkinson's disease and, thus, could serve as test systems for developing novel treatments for these and related disorders.
Collapse
|
34
|
Morice E, Billard JM, Denis C, Mathieu F, Betancur C, Epelbaum J, Giros B, Nosten-Bertrand M. Parallel loss of hippocampal LTD and cognitive flexibility in a genetic model of hyperdopaminergia. Neuropsychopharmacology 2007; 32:2108-16. [PMID: 17342172 PMCID: PMC2547847 DOI: 10.1038/sj.npp.1301354] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dopamine-mediated neurotransmission has been implicated in the modulation of synaptic plasticity and in the mechanisms underlying learning and memory. In the present study, we tested different forms of activity-dependent neuronal and behavioral plasticity in knockout mice for the dopamine transporter (DAT-KO), which constitute a unique genetic model of constitutive hyperdopaminergia. We report that DAT-KO mice exhibit slightly increased long-term potentiation and severely decreased long-term depression at hippocampal CA3-CA1 excitatory synapses. Mutant mice also show impaired adaptation to environmental changes in the Morris watermaze. Both the electrophysiological and behavioral phenotypes are reversed by the dopamine antagonist haloperidol, suggesting that hyperdopaminergia is involved in these deficits. These findings support the modulation by dopamine of synaptic plasticity and cognitive flexibility. The behavioral deficits seen in DAT-KO mice are reminiscent of the deficits in executive functions observed in dopamine-related neuropsychiatric disorders, suggesting that the study of DAT-KO mice can contribute to the understanding of the molecular basis of these disorders.
Collapse
Affiliation(s)
- Elise Morice
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| | - Jean-Marie Billard
- Neurobiologie de la Croissance et de la Senescence
INSERM : U549Université Paris Descartes - Paris VCentre Paul Broca
2 Ter, Rue D'Alesia
75014 PARIS ,FR
| | - Cécile Denis
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| | - Flavie Mathieu
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| | - Catalina Betancur
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| | - Jacques Epelbaum
- Neurobiologie de la Croissance et de la Senescence
INSERM : U549Université Paris Descartes - Paris VCentre Paul Broca
2 Ter, Rue D'Alesia
75014 PARIS ,FR
| | - Bruno Giros
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| | - Marika Nosten-Bertrand
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
- * Correspondence should be adressed to: Marika Nosten-Bertrand
| |
Collapse
|
35
|
Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 2007; 12:227-462. [PMID: 17678505 DOI: 10.1111/j.1369-1600.2007.00070.x] [Citation(s) in RCA: 1015] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conditioned place preference (CPP) continues to be one of the most popular models to study the motivational effects of drugs and non-drug treatments in experimental animals. This is obvious from a steady year-to-year increase in the number of publications reporting the use this model. Since the compilation of the preceding review in 1998, more than 1000 new studies using place conditioning have been published, and the aim of the present review is to provide an overview of these recent publications. There are a number of trends and developments that are obvious in the literature of the last decade. First, as more and more knockout and transgenic animals become available, place conditioning is increasingly used to assess the motivational effects of drugs or non-drug rewards in genetically modified animals. Second, there is a still small but growing literature on the use of place conditioning to study the motivational aspects of pain, a field of pre-clinical research that has so far received little attention, because of the lack of appropriate animal models. Third, place conditioning continues to be widely used to study tolerance and sensitization to the rewarding effects of drugs induced by pre-treatment regimens. Fourth, extinction/reinstatement procedures in place conditioning are becoming increasingly popular. This interesting approach is thought to model certain aspects of relapse to addictive behavior and has previously almost exclusively been studied in drug self-administration paradigms. It has now also become established in the place conditioning literature and provides an additional and technically easy approach to this important phenomenon. The enormous number of studies to be covered in this review prevented in-depth discussion of many methodological, pharmacological or neurobiological aspects; to a large extent, the presentation of data had to be limited to a short and condensed summary of the most relevant findings.
Collapse
Affiliation(s)
- Thomas M Tzschentke
- Grünenthal GmbH, Preclinical Research and Development, Department of Pharmacology, Aachen, Germany.
| |
Collapse
|
36
|
Spano MS, Fattore L, Fratta W, Fadda P. The GABAB receptor agonist baclofen prevents heroin-induced reinstatement of heroin-seeking behavior in rats. Neuropharmacology 2007; 52:1555-62. [PMID: 17451755 DOI: 10.1016/j.neuropharm.2007.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/27/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
Opiate addiction is a chronic relapsing disorder characterized by high rates of relapse. The gamma-aminobutyric acid GABA(B) receptor agonist baclofen is known to affect the reinforcing effects of several drugs of abuse, including heroin, as well as to decrease cue-maintained responding for heroin, cocaine and nicotine and suppress alcohol deprivation effect in rats. Here we studied the effect of baclofen on the reinstatement of extinguished heroin-seeking behavior triggered by a priming injection of heroin in abstinent rats trained to stably self-administer heroin (30 microg/kg per infusion) under a continuous reinforcement schedule. Following extinction, the effect of non-contingent non-reinforced primings with heroin, baclofen or heroin/baclofen combination on the resumption of responding was evaluated. Results indicate that heroin priming (0.25mg/kg) promptly reinitiated heroin-seeking behavior, an effect dose-dependently reduced by baclofen at doses (0.625 and 1.25mg/kg) not affecting responding per sè. Importantly, baclofen did not affect locomotion either alone or in combination with heroin, dispelling any doubt as to the eliciting of possible non-specific (motor) effects. The present results show that GABA(B) receptor activation may reduce the propensity to resume drug-induced heroin-seeking behavior thus offering a possible approach in maintaining opiate abstinence.
Collapse
Affiliation(s)
- Maria Sabrina Spano
- Department of Neuroscience, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | | | | | | |
Collapse
|
37
|
Golovko AI, Golovko SI, Leontieva LV. The neurochemistry of the psychological dependence syndrome in addictive diseases of chemical etiology. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Bäckman CM, Malik N, Zhang Y, Shan L, Grinberg A, Hoffer BJ, Westphal H, Tomac AC. Characterization of a mouse strain expressing Cre recombinase from the 3' untranslated region of the dopamine transporter locus. Genesis 2006; 44:383-90. [PMID: 16865686 DOI: 10.1002/dvg.20228] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dopamine (DA) neurotransmission has been implicated in several neurological and psychiatric disorders. The dopamine transporter (DAT) is highly expressed in dopaminergic neurons of the ventral mesencephalon and regulates neurotransmission by transporting DA back into the presynaptic terminals. To mediate restricted DNA recombination events into DA neurons using the Cre/loxP technology, we have generated a knockin mouse expressing Cre recombinase under the transcriptional control of the endogenous DAT promoter. To minimize interference with DAT function by preservation of both DAT alleles, Cre recombinase expression was driven from the 3' untranslated region (3'UTR) of the endogenous DAT gene by means of an internal ribosomal entry sequence. Crossing this murine line with a LacZ reporter showed colocalization of DAT immunocytochemistry and beta-galactosidase staining in all regions analyzed. This knockin mouse can be used for generating tissue specific knockouts in mice carrying genes flanked by loxP sites, and will facilitate the analysis of gene function in dopaminergic neurons.
Collapse
Affiliation(s)
- Cristina M Bäckman
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ide S, Kobayashi H, Ujike H, Ozaki N, Sekine Y, Inada T, Harano M, Komiyama T, Yamada M, Iyo M, Iwata N, Tanaka K, Shen H, Iwahashi K, Itokawa M, Minami M, Satoh M, Ikeda K, Sora I. Linkage disequilibrium and association with methamphetamine dependence/psychosis of mu-opioid receptor gene polymorphisms. THE PHARMACOGENOMICS JOURNAL 2006; 6:179-88. [PMID: 16402083 DOI: 10.1038/sj.tpj.6500355] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Several studies indicate that the mu-opioid receptor plays a role in addiction not only to opiate drugs but also to alcohol and non-opiate addictive drugs. Our studies aim to reveal the associations between gene polymorphisms and methamphetamine (MAP) dependence/psychosis. We newly identified several polymorphisms and four substantial linkage disequilibrium (LD) blocks in the mu-opioid receptor (OPRM1) gene. We found significant differences in both genotype and allele frequencies of the single-nucleotide polymorphism (SNP) IVS2+G691C between control (n=232) and MAP-dependent/psychotic patients (n=128). There was also a significant association between IVS2+G691C and patients with transient psychosis. These results suggest that the OPRM1 gene variations may be a factor in development and prognosis of MAP psychosis.
Collapse
Affiliation(s)
- S Ide
- Division of Psychobiology, Tokyo Institute of Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jasmin L, Narasaiah M, Tien D. Noradrenaline is necessary for the hedonic properties of addictive drugs. Vascul Pharmacol 2006; 45:243-50. [PMID: 16899413 DOI: 10.1016/j.vph.2005.08.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/01/2005] [Indexed: 11/18/2022]
Abstract
To determine whether noradrenaline (NA) is an essential neurotransmitter for addictive and appetitive behaviors, we measured drug and food seeking in transgenic mice lacking dopamine beta-hydroxylase (Dbh), the enzyme responsible for synthesizing NA. Using the conditioned place preference test (CPP), we show that Dbh -/- mice do not exhibit rewarding behavior to morphine, cocaine, or the mixed reuptake inhibitor bupropion. In spite of their lack of preference for drugs, Dbh -/- mice had an unaltered preference for food. Drug seeking was induced when NA was restored to the central nervous system of Dbh -/- mice by administration of l-threo-3,4-dihydroxyphenylserine (DOPS) and carbidopa. When a NK1 receptor antagonist was co-administered with morphine or cocaine, it produced aversive behavior in Dbh -/- mice while it abolished place preference in the controls. NK1 antagonists alone did not have any rewarding or aversive effect in the CPP suggesting that substance P opposes some of the unpleasant effects of morphine and cocaine. Our results show that NAergic transmission is necessary for motivated behaviors, the dysregulation of which is a co-morbid factor of many depressive states. The reversibility of this phenomenon, by restoring NA, indicates that even when this behavioral deficit is genetically determined it can be reversed.
Collapse
Affiliation(s)
- Luc Jasmin
- Department of Neurological Surgery and W.M. Keck Foundation Center for Integrative Neuroscience, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
41
|
Kobayashi H, Hata H, Ujike H, Harano M, Inada T, Komiyama T, Yamada M, Sekine Y, Iwata N, Iyo M, Ozaki N, Itokawa M, Naka M, Ide S, Ikeda K, Numachi Y, Sora I. Association analysis of delta-opioid receptor gene polymorphisms in methamphetamine dependence/psychosis. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:482-6. [PMID: 16741914 DOI: 10.1002/ajmg.b.30337] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The role of the delta-opioid receptor (OPRD1) in methamphetamine (MAP) addiction was investigated using association analysis between OPRD1 gene polymorphisms and MAP dependence/psychosis. DNA samples from Japanese patients with MAP dependence/psychosis were analyzed to find polymorphisms in OPRD1 gene exons and exon-intron boundaries. One novel single nucleotide polymorphism (SNP) in intron 1 and two SNPs in exon 3 were identified. The two SNPs in exon 3 were in linkage disequilibrium. No significant difference was observed in either genotypic or allelic frequencies of these SNPs between controls (n = 260) and MAP dependent/psychotic patients (n = 170). Global analyses using the three SNPs and subcategory analyses on clinical parameters also showed no significant differences. These results suggest that the OPRD1 gene variants may not be a factor in vulnerability to MAP dependence/psychosis.
Collapse
Affiliation(s)
- Hideaki Kobayashi
- Department of Psychobiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Georges F, Le Moine C, Aston-Jones G. No effect of morphine on ventral tegmental dopamine neurons during withdrawal. J Neurosci 2006; 26:5720-6. [PMID: 16723528 PMCID: PMC6675277 DOI: 10.1523/jneurosci.5032-05.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Substantial evidence indicates that the ventral tegmental area (VTA) of the mesocorticolimbic dopaminergic (DA) system has a key role in mechanisms of opiate dependence. Although DA neurons have been studied extensively, little is known about their activity and their response to acute morphine during morphine dependence. We recorded the activity of VTA DA neurons in five groups of anesthetized rats: drug-naive (naive) rats, morphine-dependent [(MD) implanted with pellets] rats, and three groups of withdrawn rats. Withdrawals either were precipitated by naltrexone or occurred spontaneously 24 h or 15 d after pellet removal. We confirmed that acute morphine in naive rats produced a marked increase in the firing of VTA DA neurons. We also found that the basal firing rate of VTA DA neurons was markedly higher in MD than in naive rats; however, in MD rats, acute morphine failed to increase DA activity. We confirmed inhibition of VTA DA activity in MD rats in response to precipitated withdrawal; however, this inhibition resulted only in a normalization of the firing rate to that of naive animals. In rats that had spontaneous withdrawal after 24 h or 15 d, the activity of VTA DA neurons was similar to that of naive rats, and an acute injection of morphine failed to alter their activity. Our results indicate that VTA DA neurons show long-lasting tolerance to the acute effect of morphine after withdrawal. These findings show that VTA DA neural activity is unlikely to be a factor in the altered behavioral responses that occur with acute morphine or naltrexone administration after chronic opiate exposure.
Collapse
Affiliation(s)
- François Georges
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541 Interactions Neuronales et Comportements, Université Victor Segalen, 33076 Bordeaux Cedex, France.
| | | | | |
Collapse
|
43
|
Abstract
The behavioral and pathophysiological role of the dopamine D(3) receptor, which was deduced from anatomical, lesion and drug treatment studies in the ten years following cloning of the receptor, indicated that its functions differed from those of the D(2) receptor. There is increasingly strong evidence that D(3) receptor antagonists will be effective antipsychotic agents. In this regard, an amelioration of the negative and cognitive symptoms of schizophrenia holds the most promise for D(3) receptor antagonists, a concept currently under clinical evaluation. In addition, D(3) receptors could be involved in behavioral sensitization and the potential application of D(3) receptor antagonists in the treatment of drug abuse is undergoing intensive experimental investigation.
Collapse
Affiliation(s)
- Jeffrey N Joyce
- T.H. Christopher Center for Parkinson's Disease, Sun Health Research Institute, 10515 West Santa Fe Drive, Sun City, 85351, USA.
| | | |
Collapse
|
44
|
Sakoori K, Murphy NP. Maintenance of conditioned place preferences and aversion in C57BL6 mice: effects of repeated and drug state testing. Behav Brain Res 2005; 160:34-43. [PMID: 15836898 DOI: 10.1016/j.bbr.2004.11.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 11/12/2004] [Accepted: 11/12/2004] [Indexed: 11/20/2022]
Abstract
In order to determine the factors affecting the expression of place conditioning (i.e. conditioned place preference or aversion), groups of C57BL6 mice were conditioned to morphine, cocaine or naloxone (all drugs 4 mg/kg s.c.) and tested intermittently (up to 4 weeks) or repeatedly (daily). When tested once only in a drug-free state, the expression of place conditioning to all drugs generally strengthened with the passing of time and was only marginally different when tested once more later. The expression of place conditioning was remarkably resistant to extinction during repeated daily testing, though decreases were observed over 2 weeks of testing. Subsequently, a small and non-significant degree of spontaneous recovery of the expression of place conditioning was observed when animals were undisturbed for an extended period of time. Administering animals the same drug to which they were conditioned 20 min prior to testing (i.e. drug state testing), either prior to or following repeated testing, enhanced expression of morphine-induced conditioned place preference, whereas expression of cocaine-induced conditioned place preference was unaffected. When vehicle was administered prior to testing, there was no evidence of naloxone-induced conditioned place aversion, whereas naloxone administration maintained conditioned place aversion. These results show that the expression of place conditioning in C57BL6 mice does not readily diminish over time, but on the contrary, tends to strengthen if tested only once or intermittently. Thus, the hedonic properties of drugs may be more clearly revealed during long-term, rather than short-tem testing, and in some instances, when tested in the drugged state.
Collapse
Affiliation(s)
- Kazuto Sakoori
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, 2-1 Hirosawa, Wakoshi, Saitama 351-0198, Japan
| | | |
Collapse
|
45
|
Morice E, Denis C, Macario A, Giros B, Nosten-Bertrand M. Constitutive hyperdopaminergia is functionally associated with reduced behavioral lateralization. Neuropsychopharmacology 2005; 30:575-81. [PMID: 15354185 DOI: 10.1038/sj.npp.1300570] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
According to the dopamine (DA) hypothesis of schizophrenia and the strong evidence for decreased cerebral lateralization in schizophrenic patients, we postulated that hyperactivity of the dopaminergic system could be associated with a reduced behavioral lateralization in mice. Mice lacking the dopamine transporter (DAT) gene were used as a genetic model of persistent hyperdopaminergia. The DAT null mutation was transferred on C57BL/6JOrl (B6) and DBA/2JOrl (D2) inbred backgrounds for more than 10 generations of backcrossing to derive three DAT strains, B6, D2, and B6xD2(F1). Adult mutant mice of the three DAT strains and their littermates were tested for paw preference using Collins' protocol. Our results demonstrated that, whatever the genetic background, persistent hyperdopaminergia directly impairs the degree of lateralization without affecting the direction. Our results support the degree of lateralization as a good candidate phenotype to further improve genetic analysis of cerebral lateralization in normal and pathological conditions.
Collapse
Affiliation(s)
- Elise Morice
- INSERM-U513, Neurobiologie et Psychiatrie, Créteil Cedex, France
| | | | | | | | | |
Collapse
|
46
|
Zhuang X, Masson J, Gingrich JA, Rayport S, Hen R. Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J Neurosci Methods 2004; 143:27-32. [PMID: 15763133 DOI: 10.1016/j.jneumeth.2004.09.020] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We used a knock-in strategy to generate two lines of mice expressing Cre recombinase under the transcriptional control of the dopamine transporter promoter (DAT-cre mice) or the serotonin transporter promoter (SERT-cre mice). In DAT-cre mice, immunocytochemical staining of adult brains for the dopamine-synthetic enzyme tyrosine hydroxylase and for Cre recombinase revealed that virtually all dopaminergic neurons in the ventral midbrain expressed Cre. Crossing DAT-cre mice with ROSA26-stop-lacZ or ROSA26-stop-YFP reporter mice revealed a near perfect correlation between staining for tyrosine hydroxylase and beta-galactosidase or YFP. YFP-labeled fluorescent dopaminergic neurons could be readily identified in live slices. Crossing SERT-cre mice with the ROSA26-stop-lacZ or ROSA26-stop-YFP reporter mice similarly revealed a near perfect correlation between staining for serotonin-synthetic enzyme tryptophan hydroxylase and beta-galactosidase or YFP. Additional Cre expression in the thalamus and cortex was observed, reflecting the known pattern of transient SERT expression during early postnatal development. These findings suggest a general strategy of using neurotransmitter transporter promoters to drive selective Cre expression and thus control mutations in specific neurotransmitter systems. Crossed with fluorescent-gene reporters, this strategy tags neurons by neurotransmitter status, providing new tools for electrophysiology and imaging.
Collapse
Affiliation(s)
- Xiaoxi Zhuang
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, 924 East 57th Street, Knapp Center, R214, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Mu opioid receptors mediate positive reinforcement following direct (morphine) or indirect (alcohol, cannabinoids, nicotine) activation, and our understanding of mu receptor function is central to the development of addiction therapies. Recent data obtained in native neurons confirm that mu receptor signaling and regulation are strongly agonist-dependent. Current functional mapping reveals morphine-activated neurons in the extended amygdala and early genomic approaches have identified novel mu receptor-associated proteins. A classification of about 30 genes either promoting or counteracting the addictive properties of morphine is proposed from the analysis of knockout mice data. The targeting of effectors or regulatory proteins, beyond the mu receptor itself, might provide valuable strategies to treat addictive disorders.
Collapse
Affiliation(s)
- Candice Contet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, UMR7104, Parc d'Innovation, 1 rue Laurent Fries BP 10142, 67404 Illkirch Cedex, Strasbourg, France
| | | | | |
Collapse
|
48
|
Li JX, Zhao WL, Liang JH. Effects of carbamazepine on morphine-induced behavioral sensitization in mice. Brain Res 2004; 1019:77-83. [PMID: 15306241 DOI: 10.1016/j.brainres.2004.05.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2004] [Indexed: 01/22/2023]
Abstract
Effects of carbamazepine on behavioral sensitization to morphine in mice has been investigated. Mice treated daily for 7 days with morphine (10 mg/kg) induced behavioral sensitization. Carbamazepine (10, 20, 40 mg/kg, i.p.) itself dose-dependently inhibited the locomotor activity of mice, but did not affect the acute morphine induced hyperactivity. Chronic treatment with carbamazepine had no effect on the development of morphine behavioral sensitization. Co-administration of carbamazepine 30 min prior to morphine had no significant effect on the development of behavioral sensitization. After the behavioral sensitization has been established, carbamazepine (10, 20, 40mg/kg, i.p.) did not affect the expression of morphine sensitization. However, carbamazepine (10, 20, 40mg/kg, i.p.) dose-dependently potentiated the transfer of morphine sensitization. The data of the present study implies that carbamazepine may influence the maintenance process of behavioral sensitization, which results in the enhancement of the transfer of behavioral sensitization. In clinic, the present results suggest that chronic use of carbamazepine might have abuse potential in opioid abusers.
Collapse
Affiliation(s)
- Jun-Xu Li
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | | | | |
Collapse
|
49
|
Roubert C, Spielewoy C, Soubrié P, Hamon M, Giros B, Betancur C. Altered neurotensin mrna expression in mice lacking the dopamine transporter. Neuroscience 2004; 123:537-46. [PMID: 14698760 PMCID: PMC1865473 DOI: 10.1016/j.neuroscience.2003.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Psychostimulants and antipsychotic drugs increase mRNA expression of the neuropeptide neurotensin (NT) in the striatum and nucleus accumbens. In the present study, we used mice lacking the dopamine transporter (DAT) to investigate the consequences of a chronic hyperdopaminergic state on NT gene expression. NT mRNA expression was examined under basal conditions and after administration of haloperidol or amphetamine using in situ hybridization with a digoxigenin-labeled NT cRNA probe. DAT-/- mice exhibited a striking increase in the number of NT mRNA-expressing perikarya in the substantia nigra and ventral tegmental area, as well as a less pronounced increase in the lateral septum compared with wild-type littermates. No changes were detected in other regions expressing NT mRNA. Acute administration of haloperidol (1 mg/kg) induced a significant increase in the number of NT mRNA-expressing neurons in the dorsomedial and dorsolateral striatum of wild-type mice but failed to stimulate NT gene expression in DAT mutants. In contrast, a higher dose of haloperidol (5 mg/kg) stimulated striatal NT mRNA expression both in DAT+/+ and DAT-/- mice. Amphetamine (10 mg/kg) increased the number of hybridized neurons in the nucleus accumbens shell and fundus striati of wild-type and DAT-/- mice, indicating that the drug acted through a target other than DAT, such as the serotonin or the norepinephrine transporters. The up-regulation of NT mRNA observed in DAT-/- mice may represent an adaptive mechanism in response to constitutive hyperdopaminergia. These results illustrate the profound alterations in the NT system induced by chronic stimulation of DA receptors and underscore the potential clinical relevance of NT/DA interactions in schizophrenia and drug abuse.
Collapse
Affiliation(s)
- Christine Roubert
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
- Neuropsychopharmacologie moléculaire, cellulaire et fonctionnelle
INSERM : U288Université Pierre et Marie Curie - Paris VICHU Pitié Salpétrière
91 Boulevard de l'Hôpital
75013 Paris,FR
| | - Cécile Spielewoy
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
- Neuropsychopharmacologie moléculaire, cellulaire et fonctionnelle
INSERM : U288Université Pierre et Marie Curie - Paris VICHU Pitié Salpétrière
91 Boulevard de l'Hôpital
75013 Paris,FR
| | - Philippe Soubrié
- Neuropsychiatry Research Department
Sanofi-Synthélabo Recherche371 rue du Professeur J. Blayac
34000 Montpellier,FR
| | - Michel Hamon
- Neuropsychopharmacologie moléculaire, cellulaire et fonctionnelle
INSERM : U288Université Pierre et Marie Curie - Paris VICHU Pitié Salpétrière
91 Boulevard de l'Hôpital
75013 Paris,FR
| | - Bruno Giros
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
- Neuropsychopharmacologie moléculaire, cellulaire et fonctionnelle
INSERM : U288Université Pierre et Marie Curie - Paris VICHU Pitié Salpétrière
91 Boulevard de l'Hôpital
75013 Paris,FR
- * Correspondence should be adressed to: Bruno Giros
| | - Catalina Betancur
- Neurobiologie et Psychiatrie
INSERM : U513Université Paris XII Val de MarneFaculte de Medecine PARIS XII
8, Rue du General Sarrail
94010 CRETEIL CEDEX,FR
| |
Collapse
|
50
|
Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci 2003. [PMID: 14657156 DOI: 10.1523/jneurosci.23-35-10999.2003] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated, in mice, the influence of life experience on the vulnerability to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a major neurotoxin that induces a Parkinson's disease-like syndrome in humans, and to cocaine, a potent psychostimulant that promotes drug addiction. Our findings show that adult C57BL/6 mice raised in an enriched environment (EE) for only 2 months are significantly more resistant to both drugs compared with mice raised in a standard environment (SE). Indeed, EE mice showed decreased locomotor activity in response to cocaine (10 and 20 mg/kg) as well as a different pattern of c-fos expression in the striatum compared with SE mice. After MPTP treatment, SE mice showed a 75% loss of dopamine neurons, whereas EE mice showed only a 40% loss. The dopamine transporter plays a key role in mediating the effects of both drugs. We thus investigated the regulation of its expression. EE mice showed less dopamine transporter binding in the striatum and less dopamine transporter mRNA per dopamine neuron at the cellular level as demonstrated by in situ hybridization. In addition, enriched environment promoted an increase in the expression of brain-derived neurotrophic factor in the striatum. These data provide a direct demonstration of the beneficial consequences that a positive environment has in preventing neurodegeneration and in decreasing responsiveness to cocaine. Furthermore, they suggest that the probability of developing neurological disorders such as Parkinson's disease or vulnerability to psychostimulants may be related to life experience.
Collapse
|