1
|
Botterill JJ, Khlaifia A, Appings R, Wilkin J, Violi F, Premachandran H, Cruz-Sanchez A, Canella AE, Patel A, Zaidi SD, Arruda-Carvalho M. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacology 2024; 49:993-1006. [PMID: 38233571 PMCID: PMC11039686 DOI: 10.1038/s41386-024-01795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ryan Appings
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Francesca Violi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Arely Cruz-Sanchez
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Anna Elisabete Canella
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - S Danyal Zaidi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
2
|
Zhao DQ, Gong SN, Ma YJ, Zhu JP. Medial prefrontal cortex exacerbates gastric dysfunction of rats upon restraint water‑immersion stress. Mol Med Rep 2019; 20:2303-2315. [PMID: 31322177 PMCID: PMC6691265 DOI: 10.3892/mmr.2019.10462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Restraint water-immersion stress (RWIS) can induce a gastric mucosal lesions within a few hours. The medial prefrontal cortex (mPFC) is involved in the RWIS process. The present study investigated the modulatory effects and molecular mechanisms of the mPFC on gastric function under an RWIS state. Male Wistar rats were divided into four groups; namely, the control, RWIS 4 h (RWIS for 4 h only), sham-operated and bilateral-lesioned (bilateral-lesioned mPFC) groups. The gastric erosion index (EI) and gastric motility (GM) were determined, and the proteomic profiles of the mPFC were assessed by isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography and tandem mass spectrometry. Additionally, iTRAQ results were verified by western blot analysis. Compared with the RWIS 4 h group and the sham-control group, the bilateral-lesioned group exhibited a significantly lower EI (P<0.01). In the bilateral-lesioned group, RWIS led to a significant decrease in EI and GM. When comparing the control and RWIS 4 h groups, 129 dysregulated proteins were identified, of which 88 were upregulated and 41 were downregulated. Gene Ontology functional analysis demonstrated that 29 dysregulated proteins, including postsynaptic density protein 95, were directly associated with axon morphology, axon growth and synaptic plasticity. Ingenuity pathway analysis revealed that the dysregulated proteins were mainly involved in neurological disease signaling pathways, including the NF-κB and ERK signaling pathways. These data indicated that the presence of the mPFC exacerbates gastric mucosal injury in awake rats during RWIS. Although the quantitative proteomic analysis elucidated the nervous system molecular targets associated with the production of gastric mucosal lesions, such as the role of PSD95. The underlying molecular mechanisms of synaptic plasticity need to be further elucidated.
Collapse
Affiliation(s)
- Dong-Qin Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Sheng-Nan Gong
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Ying-Jie Ma
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Jian-Ping Zhu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
3
|
Alexander L, Clarke HF, Roberts AC. A Focus on the Functions of Area 25. Brain Sci 2019; 9:E129. [PMID: 31163643 PMCID: PMC6627335 DOI: 10.3390/brainsci9060129] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/27/2022] Open
Abstract
Subcallosal area 25 is one of the least understood regions of the anterior cingulate cortex, but activity in this area is emerging as a crucial correlate of mood and affective disorder symptomatology. The cortical and subcortical connectivity of area 25 suggests it may act as an interface between the bioregulatory and emotional states that are aberrant in disorders such as depression. However, evidence for such a role is limited because of uncertainty over the functional homologue of area 25 in rodents, which hinders cross-species translation. This emphasizes the need for causal manipulations in monkeys in which area 25, and the prefrontal and cingulate regions in which it is embedded, resemble those of humans more than rodents. In this review, we consider physiological and behavioral evidence from non-pathological and pathological studies in humans and from manipulations of area 25 in monkeys and its putative homologue, the infralimbic cortex (IL), in rodents. We highlight the similarities between area 25 function in monkeys and IL function in rodents with respect to the regulation of reward-driven responses, but also the apparent inconsistencies in the regulation of threat responses, not only between the rodent and monkey literatures, but also within the rodent literature. Overall, we provide evidence for a causal role of area 25 in both the enhanced negative affect and decreased positive affect that is characteristic of affective disorders, and the cardiovascular and endocrine perturbations that accompany these mood changes. We end with a brief consideration of how future studies should be tailored to best translate these findings into the clinic.
Collapse
Affiliation(s)
- Laith Alexander
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Hannah F Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK.
| |
Collapse
|
4
|
Anteroventral bed nuclei of the stria terminalis neurocircuitry: Towards an integration of HPA axis modulation with coping behaviors - Curt Richter Award Paper 2017. Psychoneuroendocrinology 2018; 89:239-249. [PMID: 29395488 PMCID: PMC5878723 DOI: 10.1016/j.psyneuen.2017.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/19/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
A network of interconnected cell groups in the limbic forebrain regulates hypothalamic-pituitary-adrenal (HPA) axis activation and behavioral responses to emotionally stressful experiences, and chronic disruption of these systems chronically is implicated in the pathogenesis of psychiatric illnesses. A significant challenge has been to unravel the circuitry and mechanisms providing for regulation of HPA activity, as these limbic forebrain regions do not provide any direct innervation of HPA effector cell groups in the paraventricular hypothalamus (PVH). Moreover, information regarding how endocrine and behavioral responses are integrated has remained obscure. Here we summarize work from our laboratory showing that anteroventral (av) bed nuclei of the stria terminalis (BST) acts as a point of convergence between the limbic forebrain and PVH, receiving and coordinating upstream influences, and restraining HPA axis output in response to inescapable stressors. Recent studies highlight a more expansive modulatory role for avBST as one that coordinates HPA-inhibitory influences while concurrently suppressing passive behavioral responses via divergent pathways. avBST is uniquely positioned to convey endocrine and behavioral alterations resulting from chronic stress exposure, such as HPA axis hyperactivity and increased passive coping strategies, that may result from synaptic reorganization in upstream limbic cortical regions. We discuss how these studies give new insights into understanding the systems-level organization of stress response circuitry, the neurobiology of coping styles, and BST circuit dysfunction in stress-related psychiatric disorders.
Collapse
|
5
|
Robertson CV, Immink MA, Marino FE. Exogenous Cortisol Administration; Effects on Risk Taking Behavior, Exercise Performance, and Physiological and Neurophysiological Responses. Front Physiol 2017; 7:640. [PMID: 28082908 PMCID: PMC5186798 DOI: 10.3389/fphys.2016.00640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/06/2016] [Indexed: 11/13/2022] Open
Abstract
Rationale: Exogenous cortisol is a modulator of behavior related to increased motivated decision making (Putman et al., 2010), where risky choices yield potentially big reward. Making risk based judgments has been shown to be important to athletes in optimizing pacing during endurance events (Renfree et al., 2014; Micklewright et al., 2015). Objectives: Therefore, the aims of this study were to examine the effect of 50 mg exogenous cortisol on neurophysiological responses and risk taking behavior in nine healthy men. Further to this, to examine the effect of exogenous cortisol on exercise performance. Methods: Using a double blind counterbalanced design, cyclists completed a placebo (PLA), and a cortisol (COR) trial (50 mg cortisol), with drug ingestion at 0 min. Each trial consisted of a rest period from 0 to 60 min, followed by a risk taking behavior task, a 30 min time trial (TT) with 5 × 30 s sprints at the following time intervals; 5, 11, 17, 23, and 29 min. Salivary cortisol (SaCOR), Electroencephalography (EEG) and Near Infrared Spectroscopy (NIRs) were measured at 15, 30, 45, and 60 min post-ingestion. Glucose and lactate samples were taken at 0 and 60 min post-ingestion. During exercise, power output (PO), heart rate (HR), EEG, and NIRS were measured. SaCOR was measured 10 min post-exercise. Results: Cortisol increased risk taking behavior from baseline testing. This was in line with significant neurophysiological changes at rest and during exercise. At rest, SaCOR levels were higher (P < 0.01) in COR compared to PLA (29.7 ± 22.7 and 3.27 ± 0.7 nmol/l, respectively). At 60 min alpha slow EEG response was higher in COR than PLA in the PFC (5.5 ± 6.4 vs. −0.02 ± 8.7% change; P < 0.01). During the TT there was no difference in total km, average power or average sprint power, although Peak power (PP) achieved was lower in COR than PLA (465.3 ± 83.4 and 499.8 ± 104.3; P < 0.05) and cerebral oxygenation was lower in COR (P < 0.05). Conclusion: This is the first study to examine the effect of exogenous cortisol on exercise performance. These results are in line with previous research showing altered risk taking behavior following exogenous cortisol, however the altered behavior did not translate into changes in exercise performance.
Collapse
Affiliation(s)
- Caroline V Robertson
- School of Exercise Science, Sport and Health, Faculty of Science, Charles Sturt University Bathurst, NSW, Australia
| | - Maarten A Immink
- School of Health Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA) and Cognitive Neuroscience Laboratory, University of South Australia Adelaide, SA, Australia
| | - Frank E Marino
- School of Exercise Science, Sport and Health, Faculty of Science, Charles Sturt University Bathurst, NSW, Australia
| |
Collapse
|
6
|
Radley J, Morilak D, Viau V, Campeau S. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders. Neurosci Biobehav Rev 2015; 58:79-91. [PMID: 26116544 PMCID: PMC4684432 DOI: 10.1016/j.neubiorev.2015.06.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 02/06/2023]
Abstract
Stress responses entail neuroendocrine, autonomic, and behavioral changes to promote effective coping with real or perceived threats to one's safety. While these responses are critical for the survival of the individual, adverse effects of repeated exposure to stress are widely known to have deleterious effects on health. Thus, a considerable effort in the search for treatments to stress-related CNS disorders necessitates unraveling the brain mechanisms responsible for adaptation under acute conditions and their perturbations following chronic stress exposure. This paper is based upon a symposium from the 2014 International Behavioral Neuroscience Meeting, summarizing some recent advances in understanding the effects of stress on adaptive and maladaptive responses subserved by limbic forebrain networks. An important theme highlighted in this review is that the same networks mediating neuroendocrine, autonomic, and behavioral processes during adaptive coping also comprise targets of the effects of repeated stress exposure in the development of maladaptive states. Where possible, reference is made to the similarity of neurobiological substrates and effects observed following repeated exposure to stress in laboratory animals and the clinical features of stress-related disorders in humans.
Collapse
Affiliation(s)
- Jason Radley
- Department of Psychological and Brain Sciences and Interdisciplinary Neuroscience Program, University of Iowa, IA, United States
| | - David Morilak
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center, San Antonio, TX, United States
| | - Victor Viau
- Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, United States.
| |
Collapse
|
7
|
Banihashemi L, Sheu LK, Midei AJ, Gianaros PJ. Childhood physical abuse predicts stressor-evoked activity within central visceral control regions. Soc Cogn Affect Neurosci 2014; 10:474-85. [PMID: 24847113 DOI: 10.1093/scan/nsu073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 05/14/2014] [Indexed: 01/17/2023] Open
Abstract
Early life experience differentially shapes later stress reactivity, as evidenced by both animal and human studies. However, early experience-related changes in the function of central visceral neural circuits that control stress responses have not been well characterized, particularly in humans. The paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), amygdala (Amyg) and subgenual anterior cingulate cortex (sgACC) form a core visceral stress-responsive circuit. The goal of this study is to examine how childhood emotional and physical abuse relates to adulthood stressor-evoked activity within these visceral brain regions. To evoke acute states of mental stress, participants (n = 155) performed functional magnetic resonance imaging (fMRI)-adapted versions of the multi-source interference task (MSIT) and the Stroop task with simultaneous monitoring of mean arterial pressure (MAP) and heart rate. Regression analyses revealed that childhood physical abuse correlated positively with stressor-evoked changes in MAP, and negatively with unbiased, a priori extractions of fMRI blood-oxygen level-dependent signal change values within the sgACC, BNST, PVN and Amyg (n = 138). Abuse-related changes in the function of visceral neural circuits may reflect neurobiological vulnerability to adverse health outcomes conferred by early adversity.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lei K Sheu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Aimee J Midei
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter J Gianaros
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
8
|
Van't Veer A, Carlezon WA. Role of kappa-opioid receptors in stress and anxiety-related behavior. Psychopharmacology (Berl) 2013; 229:435-52. [PMID: 23836029 PMCID: PMC3770816 DOI: 10.1007/s00213-013-3195-5] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
Abstract
RATIONALE Accumulating evidence indicates that brain kappa-opioid receptors (KORs) and dynorphin, the endogenous ligand that binds at these receptors, are involved in regulating states of motivation and emotion. These findings have stimulated interest in the development of KOR-targeted ligands as therapeutic agents. As one example, it has been suggested that KOR antagonists might have a wide range of indications, including the treatment of depressive, anxiety, and addictive disorders, as well as conditions characterized by co-morbidity of these disorders (e.g., post-traumatic stress disorder) A general effect of reducing the impact of stress may explain how KOR antagonists can have efficacy in such a variety of animal models that would appear to represent different disease states. OBJECTIVE Here, we review evidence that disruption of KOR function attenuates prominent effects of stress. We will describe behavioral and molecular endpoints including those from studies that characterize the effects of KOR antagonists and KOR ablation on the effects of stress itself, as well as on the effects of exogenously delivered corticotropin-releasing factor, a brain peptide that mediates key effects of stress. CONCLUSION Collectively, available data suggest that KOR disruption produces anti-stress effects and under some conditions can prevent the development of stress-induced adaptations. As such, KOR antagonists may have unique potential as therapeutic agents for the treatment and even prevention of stress-related psychiatric illness, a therapeutic niche that is currently unfilled.
Collapse
MESH Headings
- Animals
- Anti-Anxiety Agents/pharmacology
- Anti-Anxiety Agents/therapeutic use
- Anxiety Disorders/drug therapy
- Anxiety Disorders/metabolism
- Anxiety Disorders/psychology
- Behavior, Animal/drug effects
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Corticotropin-Releasing Hormone/metabolism
- Dynorphins/genetics
- Dynorphins/metabolism
- Humans
- Ligands
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, kappa/metabolism
- Stress, Psychological/drug therapy
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
Collapse
Affiliation(s)
- Ashlee Van't Veer
- Department of Psychiatry, Harvard Medical School, McLean Hospital, MRC 217, 115 Mill Street, Belmont, MA, 02478, USA
| | | |
Collapse
|
9
|
Almela M, van der Meij L, Hidalgo V, Villada C, Salvador A. The cortisol awakening response and memory performance in older men and women. Psychoneuroendocrinology 2012; 37:1929-40. [PMID: 22579682 DOI: 10.1016/j.psyneuen.2012.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 04/07/2012] [Accepted: 04/11/2012] [Indexed: 01/17/2023]
Abstract
The activity and regulation of the hypothalamus-pituitary-adrenal axis has been related to cognitive decline during aging. This study investigated whether the cortisol awakening response (CAR) is related to memory performance among older adults. The sample was composed of 88 participants (44 men and 44 women) from 55 to 77 years old. The memory assessment consisted of two tests measuring declarative memory (a paragraph recall test and a word list learning test) and two tests measuring working memory (a spatial span test and a spatial working memory test). Among those participants who showed the CAR on two consecutive days, we found that a greater CAR was related to poorer declarative memory performance in both men and women, and to better working memory performance only in men. The results of our study suggest that the relationship between CAR and memory performance is negative in men and women when memory performance is largely dependent on hippocampal functioning (i.e. declarative memory), and positive, but only in men, when memory performance is largely dependent on prefrontal cortex functioning (i.e. working memory).
Collapse
Affiliation(s)
- Mercedes Almela
- Laboratory of Social Neuroscience, University of Valencia, 46010 Valencia, Spain.
| | | | | | | | | |
Collapse
|
10
|
Slattery DA, Neumann ID, Cryan JF. Transient inactivation of the infralimbic cortex induces antidepressant-like effects in the rat. J Psychopharmacol 2011; 25:1295-303. [PMID: 20530589 DOI: 10.1177/0269881110368873] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Affective disorders are among the main causes of disability worldwide, yet the underlying pathophysiology remains poorly understood. Recently, landmark neuroimaging studies have shown increased metabolic activity in Brodmann Area 25 (BA25) in depressed patients. Moreover, functional inactivation of this region using deep brain stimulation alleviated depressive symptoms in severely depressed patients. Thus, we examined the effect of a similar manipulation, pharmacological inactivation of the infralimbic cortex, the rodent correlate of BA25, in an animal model of antidepressant activity: the modified rat forced swim test. Transient inactivation of the infralimbic cortex using muscimol reduced immobility, an antidepressant-like effect in the test. Importantly, this activity was not the result of a general increase in locomotor activity. Activation of the infralimbic cortex using bicuculline did not alter behaviour. Finally, we examined the effect of muscimol in animals bred for high anxiety-related behaviour, which also display elevated depression-related behaviour. Transient inactivation of the infralimbic cortex decreased the high inborn depression-like behaviour of these rats. These results show that it is possible to replicate findings from a clinical trial in a rodent model. Further, they support the use of the forced swim test to gain greater understanding of the neurocircuitry involved in depression and antidepressant-action.
Collapse
Affiliation(s)
- David A Slattery
- Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | | | | |
Collapse
|
11
|
Abstract
This review summarizes the major discussion points of a symposium on stress modulation of cognitive and affective processes, which was held during the 2010 workshop on the neurobiology of stress (Boulder, CO, USA). The four discussants addressed a number of specific cognitive and affective factors that are modulated by exposure to acute or repeated stress. Dr David Morilak discussed the effects of various repeated stress situations on cognitive flexibility, as assessed with a rodent model of attentional set-shifting task, and how performance on slightly different aspects of this test is modulated by different prefrontal regions through monoaminergic neurotransmission. Dr Serge Campeau summarized the findings of several studies exploring a number of factors and brain regions that regulate habituation of various autonomic and neuroendocrine responses to repeated audiogenic stress exposures. Dr Kerry Ressler discussed a body of work exploring the modulation and extinction of fear memories in rodents and humans, especially focusing on the role of key neurotransmitter systems including excitatory amino acids and brain-derived neurotrophic factor. Dr Israel Liberzon presented recent results on human decision-making processes in response to exogenous glucocorticoid hormone administration. Overall, these discussions are casting a wider framework on the cognitive/affective processes that are distinctly regulated by the experience of stress and some of the brain regions and neurotransmitter systems associated with these effects.
Collapse
Affiliation(s)
- Serge Campeau
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| | | | | | | |
Collapse
|
12
|
Le Maître TW, Xia S, Le Maitre E, Dun XP, Lu J, Theodorsson E, Ogren SO, Hökfelt T, Xu ZQD. Galanin receptor 2 overexpressing mice display an antidepressive-like phenotype: possible involvement of the subiculum. Neuroscience 2011; 190:270-88. [PMID: 21672612 DOI: 10.1016/j.neuroscience.2011.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 04/21/2011] [Accepted: 05/04/2011] [Indexed: 01/13/2023]
Abstract
The behavioral phenotype of a transgenic mouse overexpressing a galanin receptor 2 (GalR2)-enhanced, green fluorescent protein (EGFP)-construct under the platelet-derived growth factor-B promoter, and of controls, was assessed in various behavioral tests, such as the Porsolt forced swim test, as well as the open field, elevated plus maze and passive avoidance tests. In addition, the distribution of GalR2-EGFP expressing cell bodies and processes was studied in the brain of these mice using histochemical methods. Three age groups of the transgenic mice demonstrated decreased levels of immobility in the forced swim test, indicative of antidepressive-like behavior and/or increased stress resistance. Anxiety-like behaviors, measured in two different tests, did not differ between the GalR2-overexpressing and the wild-type mice, nor did motor activity levels, emotional learning or memory behaviors. High levels of GalR2 mRNA and protein expression were observed in the presubiculum, subiculum, cingulate cortex, retrosplenial granular and agranular cortices, subregions of prefrontal cortex, and the olfactory bulb, regions which are directly or indirectly implicated in depression-like behavior. These results may contribute to the understanding of the pathophysiology of major depressive disorder and the role of GalR2 in the regulation of mood, and suggest a potential therapeutic effect by targeting the GalR2 for treatment of depressive disorders.
Collapse
Affiliation(s)
- T Wardi Le Maître
- Department of Neuroscience, Karolinska Institutet, Retzius Väg 8, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bienkowski MS, Rinaman L. Immune challenge activates neural inputs to the ventrolateral bed nucleus of the stria terminalis. Physiol Behav 2011; 104:257-65. [PMID: 21402087 DOI: 10.1016/j.physbeh.2011.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/15/2011] [Accepted: 03/08/2011] [Indexed: 01/16/2023]
Abstract
Hypothalamo-pituitary-adrenal (HPA) axis activation in response to infection is an important mechanism by which the nervous system can suppress inflammation. HPA output is controlled by the hypothalamic paraventricular nucleus (PVN). Previously, we determined that noradrenergic inputs to the PVN contribute to, but do not entirely account for, the ability of bacterial endotoxin (i.e., lipopolysacharide, LPS) to activate the HPA axis. The present study investigated LPS-induced recruitment of neural inputs to the ventrolateral bed nucleus of the stria terminalis (vlBNST). GABAergic projections from the vlBNST inhibit PVN neurons at the apex of the HPA axis; thus, we hypothesize that LPS treatment activates inhibitory inputs to the vlBNST to thereby "disinhibit" the PVN and increase HPA output. To test this hypothesis, retrograde neural tracer was iontophoretically delivered into the vlBNST of adult male rats to retrogradely label central sources of axonal input. After one week, rats were injected i.p. with either LPS (200 μg/kg BW) or saline vehicle, and then perfused with fixative 2.5h later. Brains were processed for immunohistochemical localization of retrograde tracer and the immediate-early gene product, Fos (a marker of neural activation). Brain regions that provide inhibitory input to the vlBNST (e.g., caudal nucleus of the solitary tract, central amygdala, dorsolateral BNST) were preferentially activated by LPS, whereas sources of excitatory input (e.g., paraventricular thalamus, medial prefrontal cortex) were not activated or were activated less robustly. These results suggest that LPS treatment recruits central neural systems that actively suppress vlBNST neural activity, thereby removing a potent source of inhibitory control over the HPA axis.
Collapse
|
14
|
Weinberg MS, Johnson DC, Bhatt AP, Spencer RL. Medial prefrontal cortex activity can disrupt the expression of stress response habituation. Neuroscience 2010; 168:744-56. [PMID: 20394807 PMCID: PMC2881953 DOI: 10.1016/j.neuroscience.2010.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/25/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
Recent findings suggest that the expression of hypothalamic-pituitary-adrenal (HPA) axis stress response adaptation in rats depends on top-down neural control. We therefore examined whether the medial prefrontal cortex (mPFC) modulates expression of stress response habituation. We transiently suppressed (muscimol microinfusion) or stimulated (picrotoxin microinfusion) mPFC neural activity in rats and studied the consequence on the first time response to psychological stress (restraint) or separately on the development and expression of habituation to repeated restraint. We monitored both the hormonal (corticosterone) and neural (forebrain c-fos mRNA) response to stress. Inactivation of the mPFC had no effect on the HPA-axis response to first time restraint, however increased mPFC activity attenuated stress-induced HPA-axis activity. In a three day repeated restraint stress regimen, inactivation of the mPFC on days 1 and 2, but not day 3, prevented the expression of HPA-axis hormone response habituation. In these same rats, the mPFC activity on day 3 interfered with the expression of c-fos mRNA habituation selectively within the mPFC, lateral septum and hypothalamic paraventricular nucleus. In contrast, inactivation of the mPFC only on day 3, or on all 3 days did not interfere with the expression of habituation. We conclude that the mPFC can permit or disrupt expression of HPA-axis stress response habituation, and this control depends on alteration of neural activity within select brain regions. A possible implication of these findings is that the dysregulation of PFC activity associated with depression and post-traumatic stress disorder may contribute to impaired expression of stress-response adaptation and consequently exacerbation of those disorders.
Collapse
Affiliation(s)
- Marc S. Weinberg
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Drew C. Johnson
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Aadra P. Bhatt
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309
| | - Robert L. Spencer
- Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, Colorado 80309
| |
Collapse
|
15
|
Hypothalamo-pituitary-adrenocortical axis, glucocorticoids, and neurologic disease. Immunol Allergy Clin North Am 2009; 29:265-84. [PMID: 19389581 DOI: 10.1016/j.iac.2009.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurologic diseases are often accompanied by significant life stress and consequent increases in stress hormone levels. Glucocorticoid stress hormones are known to have deleterious interactions with neurodegenerative processes, and are hypersecreted in neurologic disorders as well as in comorbid psychiatric conditions, such as depression. This article highlights the state of our knowledge on mechanisms controlling activation and inhibition of glucocorticoid secretion, outlines signaling mechanisms used by these hormones in neural tissue, and describes how endogenous glucocorticoids can mediate neuronal damage in various models of neurologic disease. The article highlights the importance of controlling stress and consequent stress hormone secretion in the context of neurologic disease states.
Collapse
|
16
|
Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability. Pharmacol Biochem Behav 2009; 92:377-82. [PMID: 19463254 PMCID: PMC2687322 DOI: 10.1016/j.pbb.2009.01.016] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/11/2009] [Accepted: 01/25/2009] [Indexed: 11/28/2022]
Abstract
Environmental enrichment during development produces a host of neurobehavioral effects in preclinical models. Early work demonstrated that enrichment enhances learning of a variety of behavioral tasks in rats and these changes are associated with neural changes in various cortical regions. In addition to promoting superior learning, more recent evidence suggests that environmental enrichment also has a protective effect in reducing drug abuse vulnerability. The current review describes some of the most important environment-dependent neural changes in reward-relevant brain structures and summarizes some of the key findings from the extensive literature showing how enrichment decreases the impact of drugs of abuse. Some critical neural mechanisms that may mediate the behavioral changes are postulated, along with some notes of caution about the limitations of the work cited.
Collapse
|
17
|
Jankord R, Herman JP. Limbic regulation of hypothalamo-pituitary-adrenocortical function during acute and chronic stress. Ann N Y Acad Sci 2009; 1148:64-73. [PMID: 19120092 DOI: 10.1196/annals.1410.012] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The hypothalamo-pituitary-adrenocortical (HPA) axis is responsible for initiation of glucocorticoid stress responses in all vertebrate animals. Activation of the axis is regulated by diverse afferent input to the hypothalamic paraventricular nucleus (PVN). This review discusses brain mechanisms subserving generation and inhibition of stress responses focusing on the contribution of the limbic system and highlighting recent conceptual advances regarding organization of stress response pathways in the brain. First, control of HPA axis responses to psychogenic stimuli is exerted by a complex neurocircuitry that involves oligosynaptic networks between limbic forebrain structures and the PVN. Second, individual stress-modulatory structures can have a heterogeneous impact on HPA axis responses, based on anatomical micro-organization and/or stimulus properties. Finally, HPA axis hyperactivity pursuant to chronic stress involves a substantial functional and perhaps anatomical reorganization of central stress-integrative circuits. Overall, the data suggest that individual brain regions do not merely function as monolithic activators or inhibitors of the HPA axis and that network approaches need be taken to fully understand the nature of the neuroendocrine stress response.
Collapse
Affiliation(s)
- Ryan Jankord
- Department of Psychiatry, University of Cincinnati, Cincinnati, Ohio 45237-0506, USA.
| | | |
Collapse
|
18
|
Stress-induced prefrontal reorganization and executive dysfunction in rodents. Neurosci Biobehav Rev 2008; 33:773-83. [PMID: 19111570 DOI: 10.1016/j.neubiorev.2008.11.005] [Citation(s) in RCA: 353] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 11/26/2008] [Accepted: 11/30/2008] [Indexed: 11/22/2022]
Abstract
The prefrontal cortex (PFC) mediates a range of higher order 'executive functions' that subserve the selection and processing of information in such a way that behavior can be planned, controlled and directed according to shifting environmental demands. Impairment of executive functions typifies many forms of psychopathology, including schizophrenia, mood and anxiety disorders and addiction, that are often associated with a history of trauma and stress. Recent research in animal models demonstrates that exposure to even brief periods of intense stress is sufficient to cause significant structural remodeling of the principle projection neurons within the rodent PFC. In parallel, there is growing evidence that stress-induced alterations in PFC neuronal morphology are associated with deficits in rodent executive functions such as working memory, attentional set-shifting and cognitive flexibility, as well as emotional dysregulation in the form of impaired fear extinction. Although the molecular basis of stress-induced changes in PFC morphology and function are only now being elucidated, an understanding of these mechanisms could provide important insight into the pathophysiology of executive dysfunction in neuropsychiatric disease and foster improved strategies for treatment.
Collapse
|
19
|
Jaferi A, Bhatnagar S. Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic-pituitary-adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Res 2007; 1186:212-23. [PMID: 18001698 DOI: 10.1016/j.brainres.2007.07.100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 07/09/2007] [Accepted: 07/14/2007] [Indexed: 11/24/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis habituates, or gradually decreases its activity, with repeated exposure to the same stressor. During habituation, the HPA axis likely requires input from cortical and limbic regions involved in the processing of cognitive information that is important in coping to stress. Brain regions such as the medial prefrontal cortex (mPFC) are recognized as important in mediating these processes. The mPFC modulates stress-related behavior and some evidence suggests that the mPFC regulates acute and repeated stress-induced HPA responses. Interestingly, corticotropin-releasing hormone (CRH)-1 receptors, which integrate neuroendocrine, behavioral and autonomic responses to stress, are localized in the mPFC but have not been specifically examined with respect to HPA regulation. We hypothesized that CRH receptor activity in the mPFC contributes to stress-induced regulation of HPA activity and anxiety-related behavior and that CRH release in the mPFC may differentially regulate HPA responses in acutely compared to repeatedly stressed animals. In the present experiments, we found that blockade of CRH receptors in the mPFC with the non-selective receptor antagonist d-Phe-CRH (50 ng or 100 ng) significantly inhibited HPA responses compared to vehicle regardless of whether animals were exposed to a single, acute 30 min restraint or to the eighth 30 min restraint. We also found that intra-mPFC injections of CRH (20 ng) significantly increased anxiety-related behavior in the elevated plus maze in both acutely and repeatedly restrained groups compared to vehicle. Together, these results suggest an excitatory influence of CRH in the mPFC on stress-induced HPA activity and anxiety-related behavior regardless of prior stress experience.
Collapse
Affiliation(s)
- Azra Jaferi
- Department of Psychology, University of Michigan, MI, USA
| | | |
Collapse
|
20
|
Muigg P, Hoelzl U, Palfrader K, Neumann I, Wigger A, Landgraf R, Singewald N. Altered brain activation pattern associated with drug-induced attenuation of enhanced depression-like behavior in rats bred for high anxiety. Biol Psychiatry 2007; 61:782-96. [PMID: 17224133 DOI: 10.1016/j.biopsych.2006.08.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 06/29/2006] [Accepted: 08/08/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND The enhanced depression-like behavior in the forced swim test displayed by rats selectively bred for high anxiety-related behavior (HAB) as compared with their low anxiety counterparts (LAB) is abolished by chronic paroxetine treatment. The aim of the present study was to identify neuronal substrates underlying this treatment response in HABs. METHODS The HAB rats received paroxetine (10 mg/kg/day) for 24 days via drinking water, and drug-induced modulation of neuronal activation patterns in response to forced swimming was mapped with the expression of the immediate early gene c-Fos as marker. RESULTS Chronic paroxetine treatment reduced the immobility scores during forced swimming, confirming the previously observed antidepressant-like effect in these animals, and attenuated the forced swim-induced c-Fos response in a restricted set (11 of 70) of brain areas. These included limbic areas such as the prelimbic cortex, parts of the amygdala, the bed nucleus of the stria terminalis, dorsal hippocampus, dorsal lateral septum as well as hypothalamic and hindbrain areas (dorsolateral periaqueductal gray [PAG], locus coeruleus). Untreated LAB rats, which displayed low depression-like behavior comparable to that of treated HABs, also showed low swim stress-induced c-Fos response in most of these same areas, further supporting an association of attenuated neuronal excitability in the identified areas with attenuated depression-like behavior. CONCLUSIONS These findings indicate that modulation of neuronal activation in a restricted set of defined, mainly limbic as well as selected hypothalamic and hindbrain areas by paroxetine treatment is associated with the reduction of enhanced depression-like behavior in a psychopathological animal model.
Collapse
Affiliation(s)
- Patrik Muigg
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
21
|
Dent G, Choi DC, Herman JP, Levine S. GABAergic circuits and the stress hyporesponsive period in the rat: ontogeny of glutamic acid decarboxylase (GAD) 67 mRNA expression in limbic-hypothalamic stress pathways. Brain Res 2007; 1138:1-9. [PMID: 17276416 DOI: 10.1016/j.brainres.2006.04.082] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 04/20/2006] [Accepted: 04/23/2006] [Indexed: 11/30/2022]
Abstract
Development of the hypothalamo-pituitary-adrenocortical (HPA) axis is marked by a diminution in stress responsiveness early in the postnatal period (days 4-14 in the rat). This 'stress hyporesponsive period' (SHRP) is thought to be at least in part centrally mediated. To investigate central mechanisms underlying the SHRP, this study assessed expression of glutamic acid decarboxylase (GAD) 67 in key stress-regulatory regions in the forebrain following acute stress with or without prior maternal deprivation. This isoform of GAD is known to be induced by stress in the adult and is believed to be a major contributor to production of the inhibitory neurotransmitter GABA under stimulated conditions. Expression of GAD67 mRNA was increased in the hippocampus, central amygdala and dorsomedial hypothalamus in pups tested early in the SHRP (day 6) or after its conclusion (day 18). In contrast, restraint caused a down-regulation of GAD67 mRNA in these structures when tested later in the SHRP (day 12). GAD67 mRNA expression was not affected by prior maternal deprivation in these regions. Reduced GABA production in the hippocampus (interneurons) is consistent with enhanced HPA axis inhibition, whereas reduced amygdalar expression predicts impaired stress excitation. Expression of GAD67 mRNA in the bed nucleus of the stria terminalis (BST) was minimally affected by acute restraint or maternal deprivation during the SHRP. However, older animals showed down-regulation of basal expression following maternal deprivation and substantial GAD67 mRNA up-regulation in both deprived and non-deprived groups following acute restraint. In contrast, non-responsiveness of the BST during the SHRP suggests either that BST GABA circuits are not actively engaged by stressors during this period or that circuits regulating BST GAD67 production are not yet in place. Overall, the data implicate forebrain GABA circuits in inhibition of HPA axis activity during the SHRP.
Collapse
Affiliation(s)
- Gersham Dent
- Department of Biology, University of Delaware, Newark, DE 19716-2577, USA
| | | | | | | |
Collapse
|
22
|
Radley JJ, Arias CM, Sawchenko PE. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J Neurosci 2006; 26:12967-76. [PMID: 17167086 PMCID: PMC6674963 DOI: 10.1523/jneurosci.4297-06.2006] [Citation(s) in RCA: 303] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/03/2006] [Indexed: 01/02/2023] Open
Abstract
The medial prefrontal cortex (mPFC) is an important neural substrate for integrating cognitive-affective information and regulating the hypothalamo-pituitary-adrenal (HPA) axis response to emotional stress. mPFC modulation of stress responses is effected in part via the paraventricular hypothalamic nucleus (PVH), which houses both autonomic (sympathoadrenal) and neuroendocrine (HPA) effector mechanisms. Although the weight of evidence suggests that mPFC influences on stress-related PVH outputs are inhibitory, discordant findings have been reported, and such work has tended to treat this cortical region as a unitary structure. Here we compared the effects of lesions of the dorsal versus ventral aspects of mPFC, centered in the prelimbic and infralimbic fields, respectively, on acute restraint stress-induced activation of PVH cell groups mediating autonomic and neuroendocrine responses. Lesions to the dorsal mPFC enhanced restraint-induced Fos and corticotropin-releasing factor (CRF) mRNA expression in the neurosecretory region of PVH. Ablation of the ventral mPFC decreased stress-induced Fos protein and CRF mRNA expression in this compartment but increased Fos induction in PVH regions involved in central autonomic control. Repetition of the experiments in rats bearing retrograde tracer deposits to label PVH-autonomic projections confirmed that ventral mPFC lesions selectively increased stress-induced Fos expression in identified preautonomic neurons. Finally, hormonal indices of HPA activation in response to acute stress were augmented after dorsal mPFC lesions and attenuated after ventral mPFC lesions. These results suggest that dorsal and ventral aspects of the mPFC differentially regulate neuroendocrine and autonomic PVH outputs in response to emotional stress.
Collapse
Affiliation(s)
- Jason J. Radley
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, and Foundation for Medical Research, La Jolla, California 92037
| | - Carlos M. Arias
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, and Foundation for Medical Research, La Jolla, California 92037
| | - Paul E. Sawchenko
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies, and Foundation for Medical Research, La Jolla, California 92037
| |
Collapse
|
23
|
Lanius RA, Bluhm R, Lanius U, Pain C. A review of neuroimaging studies in PTSD: heterogeneity of response to symptom provocation. J Psychiatr Res 2006; 40:709-29. [PMID: 16214172 DOI: 10.1016/j.jpsychires.2005.07.007] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 07/01/2005] [Accepted: 07/12/2005] [Indexed: 11/16/2022]
Abstract
Different experiential, psychophysiological, and neurobiological responses to traumatic symptom provocation in posttraumatic stress disorder (PTSD) have been reported in the literature. Two subtypes of trauma response have been hypothesized, one characterized predominantly by hyperarousal and the other primarily dissociative, each one representing unique pathways to chronic stress-related psychopathology. Recent PTSD neuroimaging findings in our own laboratory support this notion and are consistent with the view that grouping all PTSD subjects, regardless of their different symptom patterns, in the same diagnostic category may interfere with our understanding of posttrauma psychopathology. This review will integrate findings of different experiential, psychophysiological, and neurobiological responses to traumatic symptom provocation with the clinical symptomatology and the neurobiology of PTSD.
Collapse
Affiliation(s)
- R A Lanius
- Department of Psychiatry, London Health Sciences Centre, University of Western Ontario, 339 Windermere Road, P.O. Box 5339, London, Ont., Canada N6A 5A5.
| | | | | | | |
Collapse
|
24
|
Jackson ME, Moghaddam B. Distinct patterns of plasticity in prefrontal cortex neurons that encode slow and fast responses to stress. Eur J Neurosci 2006; 24:1702-10. [PMID: 17004934 PMCID: PMC2881693 DOI: 10.1111/j.1460-9568.2006.05054.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The prefrontal cortex (PFC) has been implicated in cognitive and affective responses to acute and chronic stress; however, direct evidence for the reactivity or adaptability of PFC neurons to stress is lacking. We followed the unit activity of medial PFC (mPFC) neurons in awake rats during two consecutive exposures to restraint stress or to a non-aversive novel object. The majority (75%) of mPFC neurons had significant responses to the initial restraint that was differentiated into one of three temporal patterns: (i) phasic increase in firing rate during the restraint period, (ii) slow onset increase in firing rate that was sustained for > 2 h after restraint, and (iii) brief bi-phasic responses to initiation and termination of restraint. Exposure to a novel object elicited an exposure-locked phasic response in 40% of the neurons. None of the neurons displayed the sustained activation that was prominent after restraint. A second exposure to the object no longer elicited this phasic response while neurons in the three restraint-responsive groups modified their firing rate during the second restraint in a manner that was specific to their pattern of response to the first restraint. These findings demonstrate that whereas some mPFC neurons respond phasically to novel stimuli irrespective of their aversive nature, a separate population of PFC neurons responds to a stressful stimulus with a sustained increase in firing rate that persists in the absence of that stimulus. These neurons may be a substrate for adaptive responses that are necessary for behavioral modification.
Collapse
Affiliation(s)
- Mark E Jackson
- University of Pittsburgh, Department of Neuroscience, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
25
|
Vertes RP. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience 2006; 142:1-20. [PMID: 16887277 DOI: 10.1016/j.neuroscience.2006.06.027] [Citation(s) in RCA: 589] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 06/16/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
The medial prefrontal cortex (mPFC) participates in several higher order functions including selective attention, visceromotor control, decision making and goal-directed behaviors. We discuss the role of the infralimbic cortex (IL) in visceromotor control and the prelimbic cortex (PL) in cognition and their interactions in goal-directed behaviors in the rat. The PL strongly interconnects with a relatively small group of structures that, like PL, subserve cognition, and together have been designated the 'PL circuit.' These structures primarily include the hippocampus, insular cortex, nucleus accumbens, basolateral nucleus of the amygdala, the mediodorsal and reuniens nuclei of the thalamus and the ventral tegmental area of the midbrain. Lesions of each of these structures, like those of PL, produce deficits in delayed response tasks and memory. The PL (and ventral anterior cingulate cortex) (AC) of rats is ideally positioned to integrate current and past information, including its affective qualities, and act on it through its projections to the ventral striatum/ventral pallidum. We further discuss the role of nucleus reuniens of thalamus as a major interface between the mPFC and the hippocampus, and as a prominent source of afferent limbic information to the mPFC and hippocampus. We suggest that the IL of rats is functionally homologous to the orbitomedial cortex of primates and the prelimbic (and ventral AC) cortex to the lateral/dorsolateral cortex of primates, and that the IL/PL complex of rats exerts significant control over emotional and cognitive aspects of goal-directed behavior.
Collapse
Affiliation(s)
- Robert P Vertes
- Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
26
|
Herman JP, Seroogy K. Hypothalamic-Pituitary-Adrenal Axis, Glucocorticoids, and Neurologic Disease. Neurol Clin 2006; 24:461-81, vi. [PMID: 16877118 DOI: 10.1016/j.ncl.2006.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Neurologic diseases often are accompanied by significant life stress and consequent increases in stress hormone levels. Glucocorticoid stress hormones are known to have deleterious interactions with neurodegenerative processes and are hypersecreted in neurologic disorders and comorbid psychiatric conditions. This review highlights the current state of knowledge of mechanisms controlling activation and inhibition of glucocorticoid secretion, outlines signalling mechanisms used by these hormones in neural tissue, and describes how endogenous glucocorticoids can mitigate neuronal damage in models of neurologic disease. This review highlights the importance of controlling stress and consequent stress hormone secretion in the context of neurologic disease states.
Collapse
Affiliation(s)
- James P Herman
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45237-0506, USA.
| | | |
Collapse
|
27
|
Serrats J, Sawchenko PE. CNS activational responses to staphylococcal enterotoxin B: T-lymphocyte-dependent immune challenge effects on stress-related circuitry. J Comp Neurol 2006; 495:236-54. [PMID: 16435288 DOI: 10.1002/cne.20872] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that engages the immune system in a T-lymphocyte-dependent manner and induces a cytokine profile distinct from that elicited by the better-studied bacterial pathogen analog, lipopolysaccharide (LPS). Because of reports of SEB recruiting central nervous system (CNS) host defense mechanisms via pathways in common with LPS, we sought to further characterize central systems impacted by this agent. Rats were treated with SEB at doses of 50-5,000 mug/kg, and killed 0.5-6 hours thereafter. SEB injection produced a discrete pattern of Fos induction in brain that peaked at 2-3 hours postinjection and whose strength was dose-related. Induced Fos expression was predominantly subcortical and focused in a set of interconnected central autonomic structures, including aspects of the bed n. of the stria terminalis, central amygdala and lateral parabrachial nuclei; functionally related (and LPS-responsive) cell groups in the n. solitary tract, ventrolateral medulla, and paraventricular hypothalamic n. (PVH) were, by contrast, weakly responsive. SEB also activated cell groups in the limbic forebrain (lateral septal n, medial prefrontal cortex) and hypothalamic GABAergic neurons, which could account for its failure to elicit reliable increases in Fos-ir or corticotropin-releasing factor (CRF) mRNA in the PVH. SEB nevertheless did provoke reliable pituitary-adrenal secretory responses. The identification of subsets of central autonomic and limbic forebrain structures that are sensitive to SEB provides a basis for a systems-level understanding of the physiological and behavioral effects attributed to the superantigen. Core SEB-responsive cell groups exclude a medullary-PVH circuit implicated in pituitary-adrenal responses to LPS.
Collapse
Affiliation(s)
- Jordi Serrats
- Laboratory of Neuronal Structure and Function, The Salk Institute for Biological Studies and The Foundation for Medical Research, La Jolla, California 92037, USA
| | | |
Collapse
|
28
|
Sullivan RM, Dufresne MM. Mesocortical dopamine and HPA axis regulation: Role of laterality and early environment. Brain Res 2006; 1076:49-59. [PMID: 16483551 DOI: 10.1016/j.brainres.2005.12.100] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 12/21/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
The infralimbic (IL) cortex is importantly involved in regulating behavioral and physiological responses to stress, including those of the hypothalamic-pituitary-adrenal (HPA) axis. The mesocortical dopamine (DA) system is an important afferent modulator of this region, is highly stress sensitive and frequently shows functional hemispheric asymmetry. Postnatal handling stimulation facilitates development of cortical asymmetry and is also associated with optimal HPA axis regulation. The present study examines the poorly understood role of the mesocortical DA system in regulating HPA axis function in adult rats which were handled (H) or nonhandled (NH) postnatally. In the first experiment, unilateral intra-IL cortex injection of the DA (D1/D2) antagonist alpha-flupenthixol into either hemisphere significantly exaggerated the restraint stress-induced increases in plasma adrenocorticotrophic hormone and corticosterone in NH rats. In H rats, the same effect was lateralized to the right IL cortex. In a second experiment, post mortem neurochemical analysis of DAergic measures in the IL cortex was conducted in H and NH animals following either acute or repeated (5 times) restraint stress. DAergic measures in the right IL cortex were significantly correlated with reduced stress hormone activation in both H and NH rats, especially in repeatedly restrained rats. However, while H rats showed a significant rightward shift in DA metabolism with repeated stress experience, NH rats shifted DA metabolism to the left. It is suggested that, during stress, mesocortical DA release normally acts in an adaptive, negative feedback capacity preventing excessive HPA activation and, with repeated stress, the right IL cortex is particularly important in this capacity. As well, the selective enhancement of DA metabolism in the right IL cortex of H rats may underlie, in part, their typically superior ability to adapt to stress and constrain HPA activity.
Collapse
Affiliation(s)
- Ron M Sullivan
- Centre de Recherche Fernand-Seguin, 7331 rue Hochelaga, Montréal, Québec, Canada H1N 3V2.
| | | |
Collapse
|
29
|
Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry 2005; 29:1201-13. [PMID: 16271821 DOI: 10.1016/j.pnpbp.2005.08.006] [Citation(s) in RCA: 929] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2005] [Indexed: 11/17/2022]
Abstract
Limbic dysfunction and hypothalamo-pituitary-adrenocortical (HPA) axis dysregulation are key features of affective disorders. The following review summarizes our current understanding of the relationship between limbic structures and control of ACTH and glucocorticoid release, focusing on the hippocampus, medial prefrontal cortex and amygdala. In general, the hippocampus and anterior cingulate/prelimbic cortex inhibit stress-induced HPA activation, whereas the amygdala and perhaps the infralimbic cortex may enhance glucocorticoid secretion. Several characteristics of limbic-HPA interaction are notable: first, in all cases, the role of given limbic structures is both region- and stimulus-specific. Second, limbic sites have minimal direct projections to HPA effector neurons of the paraventricular nucleus (PVN); hippocampal, cortical and amygdalar efferents apparently relay with neurons in the bed nucleus of the stria terminalis, hypothalamus and brainstem to access corticotropin releasing hormone neurons. Third, hippocampal, cortical and amygdalar projection pathways show extensive overlap in regions such as the bed nucleus of the stria terminalis, hypothalamus and perhaps brainstem, implying that limbic information may be integrated at subcortical relay sites prior to accessing the PVN. Fourth, these limbic sites also show divergent projections, with the various structures having distinct subcortical targets. Finally, all regions express both glucocorticoid and mineralocorticoid receptors, allowing for glucocorticoid modulation of limbic signaling patterns. Overall, the influence of the limbic system on the HPA axis is likely the end result of the overall patterning of responses to given stimuli and glucocorticoids, with the magnitude of the secretory response determined with respect to the relative contributions of the various structures.
Collapse
Affiliation(s)
- James P Herman
- Department of Psychiatry, Psychiatry North, ML 0506 2170 East Galbraith Road, University of Cincinnati College of Medicine, OH 45237-0506, USA.
| | | | | | | |
Collapse
|
30
|
Li G, Cherrier MM, Tsuang DW, Petrie EC, Colasurdo EA, Craft S, Schellenberg GD, Peskind ER, Raskind MA, Wilkinson CW. Salivary cortisol and memory function in human aging. Neurobiol Aging 2005; 27:1705-14. [PMID: 16274857 DOI: 10.1016/j.neurobiolaging.2005.09.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 08/03/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To examine the association of salivary cortisol with cognitive changes in a 3 year longitudinal study. Previous studies have suggested that elevated glucocorticoid concentrations alter hippocampal neuronal morphology, inhibit neurogenesis, and impair cognition. METHODS Salivary cortisol samples were collected at home by 79 cognitively intact older persons (mean age 78+/-7 years) at 08:00, 15:00 and 23:00h, and collections were repeated annually for 3 years. Cognitive function was also assessed annually. RESULTS The mean cortisol level of samples taken at three times of day and the cortisol concentration at 23:00h were significantly associated with poorer performance on tasks of declarative memory and executive function. Of 46 subjects who completed the entire 3 year study, higher initial cortisol concentration at 23:00h predicted a decline in performance of delayed paragraph recall. CONCLUSION These results partially confirm previous findings that high cortisol is associated with impaired declarative memory function in non-demented older persons. In addition, our data show that high salivary cortisol concentrations predict a decline in memory function over the next 3 years.
Collapse
Affiliation(s)
- Ge Li
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Iidaka T, Ozaki N, Matsumoto A, Nogawa J, Kinoshita Y, Suzuki T, Iwata N, Yamamoto Y, Okada T, Sadato N. A variant C178T in the regulatory region of the serotonin receptor gene HTR3A modulates neural activation in the human amygdala. J Neurosci 2005; 25:6460-6. [PMID: 16000636 PMCID: PMC6725269 DOI: 10.1523/jneurosci.5261-04.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2004] [Revised: 05/16/2005] [Accepted: 05/31/2005] [Indexed: 12/14/2022] Open
Abstract
Converging evidence in neurophysiological and neuroimaging studies has suggested that the limbic and prefrontal systems play important roles in emotion and cognition. These structures are activated when we see a human face, assuming that we automatically evaluate the biological significance of the stimuli. The serotonin (5-HT) system within the brain has been tied to various behaviors such as mood and anxiety and to the biology of neuropsychiatric disorders. To investigate the link between the 5-HT system and limbic/prefrontal activity, normal subjects (n = 26) who underwent functional magnetic resonance imaging and faced recognition tasks were genotyped for the single nucleotide polymorphism C178T in the regulatory region of the serotonin receptor type 3 gene (HTR3A). We found that the subjects with C/C alleles had greater activity in the amygdala and dorsal and medial prefrontal cortices than those with C/T alleles. The C/C group also showed a faster reaction time during the task than the C/T group. The temperamental predisposition of the subjects had a significant correlation with brain activity in the C/C group. The genotype effect in the right amygdala and prefrontal cortex was largest during the first run of the experiment. These results indicate that the C178T variation in the HTR3A has a critical influence on the amygdaloid activity and on human face processing, probably through regulation of the receptor expression. The present study may contribute to elucidating a possible link among genes, the brain, and behavior in normal populations and may help reveal the biological basis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tetsuya Iidaka
- Department of Psychology, Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Spencer SJ, Buller KM, Day TA. Medial prefrontal cortex control of the paraventricular hypothalamic nucleus response to psychological stress: possible role of the bed nucleus of the stria terminalis. J Comp Neurol 2005; 481:363-76. [PMID: 15593338 DOI: 10.1002/cne.20376] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Biomedical Sciences, Department of Physiology and Pharmacology, University of Queensland, Brisbane QLD 4072, Australia.
| | | | | |
Collapse
|
33
|
McDougall SJ, Widdop RE, Lawrence AJ. Medial prefrontal cortical integration of psychological stress in rats. Eur J Neurosci 2004; 20:2430-40. [PMID: 15525283 DOI: 10.1111/j.1460-9568.2004.03707.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study aimed to determine whether the medial prefrontal cortex (mPFC) (prelimbic and infralimbic regions) is implicated in the integration of a stress response. Sprague-Dawely rats were implanted with telemetry probes and guide cannulae so that either muscimol or vehicle could be administered locally within the mPFC or dorsomedial hypothalamus (DMH). The heart rate and blood pressure of rats was continuously recorded as either muscimol or vehicle was administered centrally and rats were either exposed to restraint stress or left alone in their home cages. After the stress challenge, or equivalent period, rats that had received intra-mPFC injections were processed for immunohistochemical detection of Fos throughout the neuraxis. Bilateral microinjection of muscimol into the mPFC had no effect upon either baseline cardiovascular parameters or restraint stress-induced tachycardia or pressor responses whereas, in the DMH, pretreatment with muscimol attenuated the cardiovascular stress response. Analysis of Fos expression throughout the CNS of nonstressed rats showed no effect of muscimol injections into the mPFC on baseline expression in the nuclei examined. In contrast, rats that had received muscimol injections into their mPFC and were subsequently restrained exhibited an increase in the number of Fos-positive cells in the DMH, medial amygdala, and medial nucleus tractus solitarius as compared to vehicle-injected rats that experienced restraint stress. These results indicate that, during acute psychological stress, the mPFC does not modulate the cardiovascular system in rats but does inhibit specific subcortical nuclei to exert control over aspects of an integrated response to a stressor.
Collapse
Affiliation(s)
- S J McDougall
- Department of Pharmacology, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
34
|
Spencer SJ, Ebner K, Day TA. Differential involvement of rat medial prefrontal cortex dopamine receptors in modulation of hypothalamic- pituitary-adrenal axis responses to different stressors. Eur J Neurosci 2004; 20:1008-16. [PMID: 15305869 DOI: 10.1111/j.1460-9568.2004.03569.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1 beta, or air puff. The D1 antagonist, SCH23390, and the D2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1 beta. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.
Collapse
Affiliation(s)
- S J Spencer
- School of Biomedical Sciences, Department of Physiology and Pharmacology, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | |
Collapse
|
35
|
Abstract
The prefrontal cortex (PFC) is known to play an important role not only in the regulation of emotion, but in the integration of affective states with appropriate modulation of autonomic and neuroendocrine stress regulatory systems. The present review highlights findings in the rat which helps to elucidate the complex nature of prefrontal involvement in emotion and stress regulation. The medial PFC is particularly important in this regard and while dorsomedial regions appear to play a suppressive role in such regulation, the ventromedial (particularly infralimbic) region appears to activate behavioral, neuroendocrine and sympathetic autonomic systems in response to stressful situations. This may be especially true of spontaneous stress-related behavior or physiological responses to relatively acute stressors. The role of the medial PFC is somewhat more complex in conditions involving learned adjustments to stressful situations, such as the extinction of conditioned fear responses, but it is clear that the medial PFC is important in incorporating stressful experience for future adaptive behavior. It is also suggested that mesocortical dopamine plays an important adaptive role in this region by preventing excessive behavioral and physiological stress reactivity. The rat brain shows substantial hemispheric specialization in many respects, and while the right PFC is normally dominant in the activation of stress-related systems, the left may play a role in countering this activation through processes of interhemispheric inhibition. This proposed basic template for the lateralization of stress regulatory systems is suggested to be associated with efficient stress and emotional self-regulation, and also to be shaped by both early postnatal experience and gender differences.
Collapse
Affiliation(s)
- R M Sullivan
- Department of Psychiatry, University of Montreal, Canada.
| |
Collapse
|
36
|
Figueiredo HF, Bruestle A, Bodie B, Dolgas CM, Herman JP. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. Eur J Neurosci 2003; 18:2357-64. [PMID: 14622198 DOI: 10.1046/j.1460-9568.2003.02932.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The medial prefrontal cortex (mPFC) plays an important inhibitory role in the hypothalamic-pituitary-adrenal (HPA) axis response. The involvement of the mPFC appears to depend on the type of stressor, preferentially affecting 'psychogenic' stimuli. In this study, we mapped expression of c-fos mRNA to assess the neural circuitry underlying stressor-specific actions of the mPFC on HPA reactivity. Thus, groups of mPFC-lesioned and sham-operated rats were restrained for 20 min or exposed to ether fumes for 2 min. In both cases, the animals were killed at 40 min from the onset of stress. Interestingly, bilateral lesions of the mPFC significantly enhanced c-fos mRNA expression in the hypothalamic paraventricular nucleus of restrained animals, an effect that was paralleled by potentiation of circulating ACTH concentrations in these animals. On the other hand, lesions of the mPFC did not affect neither PVN c-fos mRNA expression nor plasma ACTH concentrations in animals exposed to ether. Lesions of the mPFC also enhanced c-fos activation in the medial amygdala following restraint, but not following ether exposure. Additional regions whose activity was affected by mPFC lesions or stressor differences included the ventrolateral division of the bed nucleus of the stria terminalis, CA3 hippocampus, piriform cortex, and dorsal endopiriform nucleus. Expression of c-fos mRNA was nearly absent in the central amygdala of all stressed animals, regardless of lesion. Furthermore, prefrontal cortex lesions did not change stress-induction levels of c-fos in the CA1 hippocampus, dentate gyrus, anteromedial division of the bed nucleus of the stria terminalis, lateral septum, and claustrum. Taken together, this study indicates that the medial prefrontal cortex differentially regulates cellular activation of specific stress-related brain regions, thus exerting stressor-dependent inhibition of the HPA axis.
Collapse
Affiliation(s)
- Helmer F Figueiredo
- Department of Psychiatry, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, Ohio 45267-0559, USA.
| | | | | | | | | |
Collapse
|