1
|
Montiel I, Bello-Medina PC, Prado-Alcalá RA, Quirarte GL, Verdín-Ruvalcaba LA, Marín-Juárez TA, Medina AC. Involvement of kinases in memory consolidation of inhibitory avoidance training. Rev Neurosci 2024:revneuro-2024-0093. [PMID: 39323086 DOI: 10.1515/revneuro-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024]
Abstract
The inhibitory avoidance (IA) task is a paradigm widely used to investigate the molecular and cellular mechanisms involved in the formation of long-term memory of aversive experiences. In this review, we discuss studies on different brain structures in rats associated with memory consolidation, such as the hippocampus, striatum, and amygdala, as well as some cortical areas, including the insular, cingulate, entorhinal, parietal and prefrontal cortex. These studies have shown that IA training triggers the release of neurotransmitters, hormones, growth factors, etc., that activate intracellular signaling pathways related to protein kinases, which induce intracellular non-genomic changes or transcriptional mechanisms in the nucleus, leading to the synthesis of proteins. We have summarized the temporal dynamics and crosstalk among protein kinase A, protein kinase C, mitogen activated protein kinase, extracellular-signal-regulated kinase, and Ca2+/calmodulin-dependent protein kinase II described in the hippocampus. Protein kinase activity has been associated with structural changes and synaptic strengthening, resulting in memory storage. However, little is known about the molecular mechanisms involved in intense IA training, which protects memory from typical amnestic treatments, such as protein synthesis inhibitors, and induces increased spinogenesis, suggesting an unexplored mechanism independent of the genomic pathway. This highly emotional experience causes an extinction-resistant memory, as has been observed in some pathological states such as post-traumatic stress disorder. We propose that the changes in spinogenesis observed after intense IA training could be generated by protein kinases via non-genomic pathways.
Collapse
Affiliation(s)
- Ivan Montiel
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015, Paris, France
- Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Paola C Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Roberto A Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Gina L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Luis A Verdín-Ruvalcaba
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Tzitzi A Marín-Juárez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Andrea C Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
2
|
Abdulmalek S, Connole LM, O'Sullivan NC, Beyna M, Pangalos MN, von Schack D, Ring RH, Murphy KJ. Midkine is upregulated in the hippocampus following both spatial and olfactory reward association learning and enhances memory. J Neurochem 2024; 168:2832-2847. [PMID: 39361112 DOI: 10.1111/jnc.16151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 10/06/2024]
Abstract
Hippocampal neuronal plasticity is a fundamental process underpinning learning and memory formation and requiring elaborate molecular mechanisms that result in the dynamic remodelling of synaptic connectivity. The neurotrophic properties of midkine (Mdk) have been implicated in the development and repair of the nervous system, while Mdk knockout resulted in deficits in the formation of certain types of memory. The role of Mdk in the process of memory-associated neuronal plasticity, however, remains poorly understood. We investigated the learning-induced regulation of Mdk in spatial navigation and association learning using the water maze and the odour reward association learning paradigms, characterising a temporal profile of Mdk protein expression post-learning. Both learning events revealed similar patterns of upregulation of expression of the protein in the rat hippocampal dentate gyrus, which were rapid and transient. Moreover, administration of recombinant Mdk during the endogenous Mdk upregulation following learning enhanced memory in the water maze task revealing a pro-cognitive action of Mdk. We further show that, within the adult hippocampus, Mdk mRNA is predominantly expressed in granular and pyramidal neurons and that hippocampal neuronal Mdk expression is regulated by the canonical plasticity-associated neurotransmitter glutamate. Finally, we confirm that the positive action of Mdk on neurite outgrowth previously noted in cortical and cerebellar neurons extends to hippocampal neurons. Together, our findings suggest a role for Mdk in glutamate-mediated hippocampal neuronal plasticity important for long-term memory consolidation.
Collapse
Affiliation(s)
- Sarah Abdulmalek
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Laura M Connole
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Niamh C O'Sullivan
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Mercedes Beyna
- Inflammation Research Unit, Pfizer Worldwide Research & Development, Cambridge, Massachusetts, USA
| | | | - David von Schack
- Inflammation Research Unit, Pfizer Worldwide Research & Development, Cambridge, Massachusetts, USA
| | | | - Keith J Murphy
- Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Li LR, Sethi G, Zhang X, Liu CL, Huang Y, Liu Q, Ren BX, Tang FR. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY) 2022; 14:1562-1588. [PMID: 35165207 PMCID: PMC8876913 DOI: 10.18632/aging.203893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Epimedium brevicornum Maxim, a Traditional Chinese Medicine, has been used for the treatment of impotence, sinew and bone disorders, “painful impediment caused by wind-dampness,” numbness, spasms, hypertension, coronary heart disease, menopausal syndrome, bronchitis, and neurasthenia for many years in China. Recent animal experimental studies indicate that icariin, a major bioactive component of epimedium may effectively treat Alzheimer’s disease, cerebral ischemia, depression, Parkinson’s disease, multiple sclerosis, as well as delay ageing. Our recent study also suggested that epimedium extract could exhibit radio-neuro-protective effects and prevent ionizing radiation-induced impairment of neurogenesis. This paper reviewed the pharmacodynamics of icariin in treating different neurodegenerative and neuropsychiatric diseases, ageing, and radiation-induced brain damage. The relevant molecular mechanisms and its anti-neuroinflammatory, anti-apoptotic, anti-oxidant, as well as pro-neurogenesis roles were also discussed.
Collapse
Affiliation(s)
- Ling Rui Li
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xing Zhang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Cui Liu Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Bo Xu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
4
|
Al-Amin MM, Sullivan RKP, Alexander S, Carter DA, Bradford D, Burne THJ, Burne THJ. Impaired spatial memory in adult vitamin D deficient BALB/c mice is associated with reductions in spine density, nitric oxide, and neural nitric oxide synthase in the hippocampus. AIMS Neurosci 2022; 9:31-56. [PMID: 35434279 PMCID: PMC8941191 DOI: 10.3934/neuroscience.2022004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS), and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naïve mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO and reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.
Collapse
Affiliation(s)
- Md. Mamun Al-Amin
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | | | - Suzy Alexander
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia
| | - David A. Carter
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia
| | - DanaKai Bradford
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Australian E-Health Research Centre, CSIRO, Pullenvale 4069, Australia
| | - Thomas H. J. Burne
- Queensland Brain Institute, The University of Queensland, Brisbane 4072, Australia,Queensland Centre for Mental Health Research, Wacol 4076, Australia,* Correspondence: ; Tel: +61 733466371; Fax: +61 733466301
| | | | | | | |
Collapse
|
5
|
Rusakov DA. Obituary for Professor Michael G. Stewart: Life in Neurosciences. Brain Res Bull 2022; 180:147-149. [DOI: 10.1016/j.brainresbull.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Dynamics of Dendritic Spines in Dorsal Striatum after Retrieval of Moderate and Strong Inhibitory Avoidance Learning. Neuroscience 2021; 497:134-145. [PMID: 34648867 DOI: 10.1016/j.neuroscience.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 11/22/2022]
Abstract
In marked contrast to the ample literature showing that the dorsal striatum is engaged in memory consolidation, little is known about its involvement in memory retrieval. Recent findings demonstrated significant increments in dendritic spine density and mushroom spine counts in dorsal striatum after memory consolidation of moderate inhibitory avoidance (IA) training; further increments were found after strong training. Here, we provide evidence that in this region spine counts were also increased as a consequence of retrieval of moderate IA training, and even higher mushroom spine counts after retrieval of strong training; by contrast, there were fewer thin spines after retrieval. Similar changes in mushroom and thin spine populations were found in the ventral striatum (nucleus accumbens), but they were related to the aversive stimulation and not to memory retrieval. These results suggest that memory retrieval is a dynamic process which produces neuronal structural plasticity that might be necessary for maintaining or strengthening assemblies that encode stored information.
Collapse
|
7
|
Rusakov DA, Stewart MG. Synaptic environment and extrasynaptic glutamate signals: The quest continues. Neuropharmacology 2021; 195:108688. [PMID: 34174263 DOI: 10.1016/j.neuropharm.2021.108688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Behaviour of a mammal relies on the brain's excitatory circuits equipped with glutamatergic synapses. In most cases, glutamate escaping from the synaptic cleft is rapidly buffered and taken up by high-affinity transporters expressed by nearby perisynaptic astroglial processes (PAPs). The spatial relationship between glutamatergic synapses and PAPs thus plays a crucial role in understanding glutamate signalling actions, yet its intricate features can only be fully appreciated using methods that operate beyond the diffraction limit of light. Here, we examine principal aspects pertaining to the receptor actions of glutamate, inside and outside the synaptic cleft in the brain, where the organisation of synaptic micro-physiology and micro-environment play a critical part. In what conditions and how far glutamate can escape the synaptic cleft activating its target receptors outside the immediate synapse has long been the subject of debate. Evidence is also emerging that neuronal activity- and astroglia-dependent glutamate spillover actions could be important across the spectrum of cognitive functions This article is part of the special issue on 'Glutamate Receptors - The Glutamatergic Synapse'.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Michael G Stewart
- Dept of Life Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| |
Collapse
|
8
|
The importance of ultrastructural analysis of memory. Brain Res Bull 2021; 173:28-36. [PMID: 33984429 DOI: 10.1016/j.brainresbull.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022]
Abstract
Plasticity of glutamatergic synapses in the hippocampus is believed to underlie learning and memory processes. Surprisingly, very few studies report long-lasting structural changes of synapses induced by behavioral training. It remains, therefore, unclear which synaptic changes in the hippocampus contribute to memory storage. Here, we systematically compare how long-term potentiation of synaptic transmission (LTP) (a primary form of synaptic plasticity and cellular model of memory) and behavioral training affect hippocampal glutamatergic synapses at the ultrastructural level enabled by electron microscopy. The review of the literature indicates that while LTP induces growth of dendritic spines and post-synaptic densities (PSD), that represent postsynaptic part of a glutamatergic synapse, after behavioral training there is transient (< 6 h) synaptogenesis and long-lasting (> 24 h) increase in PSD volume (without a significant change of dendritic spine volume), indicating that training-induced PSD growth may reflect long-term enhancement of synaptic functions. Additionally, formation of multi-innervated spines (MIS), is associated with long-term memory in aged mice and LTP-deficient mutant mice. Since volume of PSD, as well as atypical synapses, can be reliably observed only with electron microscopy, we argue that the ultrastructural level of analysis is required to reveal synaptic changes that are associated with long-term storage of information in the brain.
Collapse
|
9
|
A Review of Exercise-Induced Neuroplasticity in Ischemic Stroke: Pathology and Mechanisms. Mol Neurobiol 2020; 57:4218-4231. [PMID: 32691303 DOI: 10.1007/s12035-020-02021-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
After ischemic stroke, survivors experience motor dysfunction and deterioration of memory and cognition. These symptoms are associated with the disruption of normal neuronal function, i.e., the secretion of neurotrophic factors, interhemispheric connections, and synaptic activity, and hence the disruption of the normal neural circuit. Exercise is considered an effective and feasible rehabilitation strategy for improving cognitive and motor recovery following ischemic stroke through the facilitation of neuroplasticity. In this review, our aim was to discuss the mechanisms by which exercise-induced neuroplasticity improves motor function and cognitive ability after ischemic stroke. The associated mechanisms include increases in neurotrophins, improvements in synaptic structure and function, the enhancement of interhemispheric connections, the promotion of neural regeneration, the acceleration of neural function reorganization, and the facilitation of compensation beyond the infarcted tissue. We also discuss some common exercise strategies and a novel exercise therapy, robot-assisted movement, which might be widely applied in the clinic to help stroke patients in the future.
Collapse
|
10
|
Maurya R, Singh N, Jindal T, Pathak VK, Dutta MK. Machine learning-based identification of radiofrequency electromagnetic radiation (RF-EMR) effect on brain morphology: a preliminary study. Med Biol Eng Comput 2020; 58:1751-1765. [PMID: 32483764 DOI: 10.1007/s11517-020-02198-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/22/2020] [Indexed: 11/28/2022]
Abstract
The brain of a human and other organisms is affected by the electromagnetic field (EMF) radiations, emanating from the cell phones and mobile towers. Prolonged exposure to EMF radiations may cause neurological changes in the brain, which in turn may bring chemical as well as morphological changes in the brain. Conventionally, the identification of EMF radiation effect on the brain is performed using cellular-level analysis. In the present work, an automatic image processing-based approach is used where geometric features extracted from the segmented brain region has been analyzed for identifying the effect of EMF radiation on the morphology of a brain, using drosophila as a specimen. Genetic algorithm-based evolutionary feature selection algorithm has been used to select an optimal set of geometrical features, which, when fed to the machine learning classifiers, result in their optimal performance. The best classification accuracy has been obtained with the neural network with an optimally selected subset of geometrical features. A statistical test has also been performed to prove that the increase in the performance of classifier post-feature selection is statistically significant. This machine learning-based study indicates that there exists discrimination between the microscopic brain images of the EMF-exposed drosophila and non-exposed drosophila. Graphical abstract Proposed Methodology for identification of radiofrequency electromagnetic radiation (RF-EMR) effect on the morphology of brain of Drosophila.
Collapse
Affiliation(s)
- Ritesh Maurya
- Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, New Campus, Lucknow, 226031, India
| | - Neha Singh
- Amity Institute for Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | - Tanu Jindal
- Amity Institute for Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | | | - Malay Kishore Dutta
- Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, New Campus, Lucknow, 226031, India.
| |
Collapse
|
11
|
Singh KV, Gautam R, Meena R, Nirala JP, Jha SK, Rajamani P. Effect of mobile phone radiation on oxidative stress, inflammatory response, and contextual fear memory in Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19340-19351. [PMID: 32212071 DOI: 10.1007/s11356-020-07916-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
In the present lifestyle, we are continuously exposed to radiofrequency electromagnetic field (RF-EMF) radiation generated mainly by mobile phones (MP). Among other organs, our brain and hippocampus in specific, is the region where effect of any environmental perturbation is most pronounced. So, this study was aimed to examine changes in major parameters (oxidative stress, level of pro-inflammatory cytokines (PICs), hypothalamic-pituitary-adrenal (HPA) axis hormones, and contextual fear conditioning) which are linked to hippocampus directly or indirectly, upon exposure to mobile phone radiofrequency electromagnetic field (MP-RF-EMF) radiation. Exposure was performed on young adult male Wistar rats for 16 weeks continuously (2 h/day) with MP-RF-EMF radiation having frequency, power density, and specific absorption rate (SAR) of 1966.1 MHz, 4.0 mW/cm2, and 0.36 W/kg, respectively. Another set of animals kept in similar conditions without any radiation exposure serves as control. Towards the end of exposure period, animals were tested for fear memory and then euthanized to measure hippocampal oxidative stress, level of circulatory PICs, and stress hormones. We observed significant increase in hippocampal oxidative stress (p < 0.05) and elevated level of circulatory PICs viz. IL-1beta (p < 0.01), IL-6 (p < 0.05), and TNF-alpha (p < 0.001) in experimental animals upon exposure to MP-RF-EMF radiation. Adrenal gland weight (p < 0.001) and level of stress hormones viz. adrenocorticotropic hormone (ACTH) (p < 0.01) and corticosterone (CORT) (p < 0.05) were also found to increase significantly in MP-RF-EMF radiation-exposed animals as compared with control. However, alteration in contextual fear memory was not significant enough. In conclusion, current study shows that chronic exposure to MP-RF-EMF radiation emitted from mobile phones may induce oxidative stress, inflammatory response, and HPA axis deregulation. However, changes in hippocampal functionality depend on the complex interplay of several opposing factors that got affected upon MP-RF-EMF exposure.
Collapse
Affiliation(s)
- Kumari Vandana Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramovtar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sushil Kumar Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
12
|
Singh A, Singh N, Jindal T, Rosado-Muñoz A, Dutta MK. A novel pilot study of automatic identification of EMF radiation effect on brain using computer vision and machine learning. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Arafat EA, Shabaan DA. Fluoxetine ameliorates adult hippocampal injury in rats after early maternal separation. A biochemical, histological and immunohistochemical study. Biotech Histochem 2019; 95:55-68. [DOI: 10.1080/10520295.2019.1637021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Eetmad A. Arafat
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dalia A. Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Effects of anisomycin infusions into the dorsal striatum on memory consolidation of intense training and neurotransmitter activity. Brain Res Bull 2019; 150:250-260. [DOI: 10.1016/j.brainresbull.2019.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
|
15
|
Torres MD, Garcia O, Tang C, Busciglio J. Dendritic spine pathology and thrombospondin-1 deficits in Down syndrome. Free Radic Biol Med 2018; 114:10-14. [PMID: 28965914 PMCID: PMC7185223 DOI: 10.1016/j.freeradbiomed.2017.09.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 11/27/2022]
Abstract
Abnormal dendritic spine structure and function is one of the most prominent features associated with neurodevelopmental disorders including Down syndrome (DS). Defects in both spine morphology and spine density may underlie alterations in neuronal and synaptic plasticity, ultimately affecting cognitive ability. Here we briefly examine the role of astrocytes in spine alterations and more specifically the involvement of astrocyte-secreted thrombospondin 1 (TSP-1) deficits in spine and synaptic pathology in DS.
Collapse
Affiliation(s)
- Maria D Torres
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States
| | - Octavio Garcia
- Facultad de Psicología, Universidad Nacional Autónoma de México, 04510 Coyoacán, Ciudad de México, México
| | - Cindy Tang
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States
| | - Jorge Busciglio
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders (iMIND), and Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, CA 92697, United States.
| |
Collapse
|
16
|
Alkadhi KA. Exercise as a Positive Modulator of Brain Function. Mol Neurobiol 2017; 55:3112-3130. [PMID: 28466271 DOI: 10.1007/s12035-017-0516-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 04/04/2017] [Indexed: 12/24/2022]
Abstract
Various forms of exercise have been shown to prevent, restore, or ameliorate a variety of brain disorders including dementias, Parkinson's disease, chronic stress, thyroid disorders, and sleep deprivation, some of which are discussed here. In this review, the effects on brain function of various forms of exercise and exercise mimetics in humans and animal experiments are compared and discussed. Possible mechanisms of the beneficial effects of exercise including the role of neurotrophic factors and others are also discussed.
Collapse
Affiliation(s)
- Karim A Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
17
|
Mushroom spine dynamics in medium spiny neurons of dorsal striatum associated with memory of moderate and intense training. Proc Natl Acad Sci U S A 2016; 113:E6516-E6525. [PMID: 27698138 DOI: 10.1073/pnas.1613680113] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A growing body of evidence indicates that treatments that typically impair memory consolidation become ineffective when animals are given intense training. This effect has been obtained by treatments interfering with the neural activity of several brain structures, including the dorsal striatum. The mechanisms that mediate this phenomenon are unknown. One possibility is that intense training promotes the transfer of information derived from the enhanced training to a wider neuronal network. We now report that inhibitory avoidance (IA) induces mushroom spinogenesis in the medium spiny neurons (MSNs) of the dorsal striatum in rats, which is dependent upon the intensity of the foot-shock used for training; that is, the effect is seen only when high-intensity foot-shock is used in training. We also found that the relative density of thin spines was reduced. These changes were evident at 6 h after training and persisted for at least 24 h afterward. Importantly, foot-shock alone did not increase spinogenesis. Spine density in MSNs in the accumbens was also increased, but the increase did not correlate with the associative process involved in IA; rather, it resulted from the administration of the aversive stimulation alone. These findings suggest that mushroom spines of MSNs of the dorsal striatum receive afferent information that is involved in the integrative activity necessary for memory consolidation, and that intense training facilitates transfer of information from the dorsal striatum to other brain regions through augmented spinogenesis.
Collapse
|
18
|
Zong N, Li F, Deng Y, Shi J, Jin F, Gong Q. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus. Behav Brain Res 2016; 313:111-119. [DOI: 10.1016/j.bbr.2016.06.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
|
19
|
Erdem Koç G, Kaplan S, Altun G, Gümüş H, Gülsüm Deniz Ö, Aydin I, Emin Onger M, Altunkaynak Z. Neuroprotective effects of melatonin and omega-3 on hippocampal cells prenatally exposed to 900 MHz electromagnetic fields. Int J Radiat Biol 2016; 92:590-5. [PMID: 27442260 DOI: 10.1080/09553002.2016.1206223] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Adverse effects on human health caused by electromagnetic fields (EMF) associated with the use of mobile phones, particularly among young people, are increasing all the time. The potential deleterious effects of EMF exposure resulting from mobile phones being used in close proximity to the brain require particular evaluation. However, only a limited number of studies have investigated the effects of prenatal exposure to EMF in the development of the pyramidal cells using melatonin (MEL) and omega-3 (ω-3). MATERIALS AND METHODS We established seven groups of pregnant rats consisting of three animals each; control (CONT), SHAM, EMF, EMF + MEL, MEL, EMF + ω-3 and ω-3 alone. The rats in the EMF, EMF + MEL, EMF + ω-3 groups were exposed to 900 MHz EMF for 60 min/day in an exposure tube during the gestation period. The CONT, MEL and ω-3 group rats were not placed inside the exposure tube or exposed to EMF during the study period. After delivery, only spontaneously delivered male rat pups were selected for the establishment of further groups. Each group of offspring consisted of six animals. The optical fractionator technique was used to determine total pyramidal neuron numbers in the rat hippocampal region. RESULTS The total number of pyramidal cells in the cornu ammonis (CA) in the EMF group was significantly lower than in the CONT, SHAM, EMF + MEL, and EMF + ω-3 groups. No significant difference was observed between the EMF, MEL and ω-3 groups. No difference was also observed between any groups in terms of rats' body or brain weights. CONCLUSION MEL and ω-3 can protect the cell against neuronal damage in the hippocampus induced by 900 MHz EMF. However, further studies are now needed to evaluate the chronic effects of 900 MHz EMF on the brain in the prenatal period.
Collapse
Affiliation(s)
- Gülüna Erdem Koç
- a Department of Histology and Embryology, Faculty of Medicine , Adnan Menderes University , Aydın , Turkey
| | - Suleyman Kaplan
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Gamze Altun
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Hasan Gümüş
- c Department of Physics, Faculty of Arts and Sciences , Ondokuz Mayıs University , Samsun , Turkey
| | - Ömür Gülsüm Deniz
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Isinsu Aydin
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Mehmet Emin Onger
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| | - Zuhal Altunkaynak
- b Department of Histology and Embryology, Faculty of Medicine , Ondokuz Mayıs University , Samsun , Turkey
| |
Collapse
|
20
|
Abstract
Memory is fundamentally important to everyday life, and memory loss has devastating consequences to individuals and society. Understanding the neurophysiological and cellular basis of memory paves the way for gaining insights into the molecular steps involved in memory formation, thereby revealing potential therapeutic targets for neurological diseases. For three decades, long-term potentiation (LTP) has been the gold standard synaptic model for mammalian memory mechanisms, in large part because of its long-lasting nature. Here, the authors summarize the characteristics of LTP persistence in the dentate gyrus of the hippocampus, comparing this with other hippocampal subregions and neocortex. They consider how long LTP can last and how its persistence is affected by subsequent behavioral experiences. Next, they review the molecular mechanisms known to contribute to LTP induction and persistence, in particular the role of new gene expression and protein synthesis and how they may be associated with potential structural reorganization of the synapse. A temporal schema for the processes important for consolidating LTP into a persistent form is presented. The parallels between the molecular aspects of LTP and memory strongly support the continuation with LTP as a model system for studying the mechanisms underlying long-term memory consolidation and retention.
Collapse
Affiliation(s)
- Wickliffe C Abraham
- Department of Psychology, Box 56, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
21
|
LIN RUHUI, WU YUNAN, TAO JING, CHEN BIN, CHEN JIXIANG, ZHAO CONGKUAI, YU KUNQIANG, LI XIAOJIE, CHEN LIDIAN. Electroacupuncture improves cognitive function through Rho GTPases and enhances dendritic spine plasticity in rats with cerebral ischemia-reperfusion. Mol Med Rep 2016; 13:2655-60. [DOI: 10.3892/mmr.2016.4870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 12/23/2015] [Indexed: 11/05/2022] Open
|
22
|
Mukherjee A, Swarnakar S. Implication of matrix metalloproteinases in regulating neuronal disorder. Mol Biol Rep 2014; 42:1-11. [DOI: 10.1007/s11033-014-3752-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Caroni P, Chowdhury A, Lahr M. Synapse rearrangements upon learning: from divergent-sparse connectivity to dedicated sub-circuits. Trends Neurosci 2014; 37:604-14. [PMID: 25257207 DOI: 10.1016/j.tins.2014.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 01/24/2023]
Abstract
Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.
Collapse
Affiliation(s)
- Pico Caroni
- Friedrich Miescher Institut, Basel, Switzerland.
| | | | - Maria Lahr
- Friedrich Miescher Institut, Basel, Switzerland
| |
Collapse
|
24
|
Phosphorylation of S845 GluA1 AMPA receptors modulates spatial memory and structural plasticity in the ventral striatum. Brain Struct Funct 2014; 220:2653-61. [PMID: 24942137 DOI: 10.1007/s00429-014-0816-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/04/2014] [Indexed: 01/04/2023]
Abstract
The function of AMPA receptors phosphorylation in synaptic plasticity has been dissected in many in vitro models but its role and dynamics on experience-dependent plasticity are still unclear. Here we studied the effects of AMPA receptor manipulations in the ventral striatum, where glutamatergic transmission is known to mediate spatial memory. We first demonstrate that intra-ventral striatal administrations of the AMPA receptors blocker, NBQX, dose dependently impair performance in the Morris water maze. We also report that spatial learning induced a time-limited increase in GluA1 phosphorylation in this same brain region. Finally, through focal, time-controlled ventral striatal administrations of an RNA aptamer interfering with GluA1-S845 phosphorylation, we demonstrate that phosphorylation at this site is a necessary requirement for spatial memory formation and for the synaptic remodeling underlying it. These results suggest that modulation of AMPA receptors by S845 phosphorylation could act as an essential starting signal leading to long-term stabilization of spatial memories.
Collapse
|
25
|
Ransom J, Morgan PJ, McCaffery PJ, Stoney PN. The rhythm of retinoids in the brain. J Neurochem 2014; 129:366-76. [PMID: 24266881 PMCID: PMC4283048 DOI: 10.1111/jnc.12620] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 12/24/2022]
Abstract
The retinoids are a family of compounds that in nature are derived from vitamin A or pro-vitamin A carotenoids. An essential part of the diet for mammals, vitamin A has long been known to be essential for many organ systems in the adult. More recently, however, they have been shown to be necessary for function of the brain and new discoveries point to a central role in processes ranging from neuroplasticity to neurogenesis. Acting in several regions of the central nervous system including the eye, hippocampus and hypothalamus, one common factor in its action is control of biological rhythms. This review summarizes the role of vitamin A in the brain; its action through the metabolite retinoic acid via specific nuclear receptors, and the regulation of its concentration through controlled synthesis and catabolism. The action of retinoic acid to regulate several rhythms in the brain and body, from circadian to seasonal, is then discussed to finish with the importance of retinoic acid in the regular pattern of sleep. We review the role of vitamin A and retinoic acid (RA) as mediators of rhythm in the brain. In the suprachiasmatic nucleus and hippocampus they control expression of circadian clock genes while in the cortex retinoic acid is required for delta oscillations of sleep. Retinoic acid is also central to a second rhythm that keeps pace with the seasons, regulating function in the hypothalamus and pineal gland.
Collapse
Affiliation(s)
- Jemma Ransom
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Peter J Morgan
- Rowett Institute of Nutrition and Health, University of AberdeenAberdeen, UK
| | - Peter J McCaffery
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| | - Patrick N Stoney
- Institute of Medical Sciences, School of Medical Sciences, University of AberdeenAberdeen, UK
| |
Collapse
|
26
|
Wang F, Wang C, Jiang Y, Deng X, Lu J, Ou S. Protective role of sodium para-amino salicylic acid against manganese-induced hippocampal neurons damage. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1071-1078. [PMID: 24769799 DOI: 10.1016/j.etap.2014.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 02/25/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Manganese (Mn) is an essential trace element of human. However, excessive Mn can cause manganism. Mn selectively accumulated in Mn-exposed workers' hippocampus which is crucial for higher brain functions such as learning, memory, and motivation during our postnatal life. Studies suggested sodium para-aminosalicylic acid (PAS) appeared to be therapeutic for manganism. We aimed to explore whether PAS could block Mn-induced neuronal injury in hippocampus in vitro. Hippocampal neurons were exposed to 50 μM manganese chloride (MnCl(2)) for 24 h, following by 50, 500, or 5000 μM PAS treatment for 24 h. Cell viability, apoptosis rate, mean fluorescence intensity of mitochondrial and DNA damage were respectively performed. MnCl(2) significantly decreased neurons' viability and fluorescence intensity of comet head of DNA, while increasing the apoptosis rate, mean fluorescence intensity of mitochondrial, percentage of tail DNA, and Olive tail moment of DNA. PAS reduced the percentage of tail DNA and Olive tail moment of Mn-exposed neurons. These data suggested that Mn caused hippocampal neurons' injury, and 50-5000 μM PAS could inhibit Mn-induced DNA damage.
Collapse
Affiliation(s)
- Fang Wang
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Chan Wang
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Yueming Jiang
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Xiangfa Deng
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China; Department of Human Anatomy, Guangxi Medical University, Nanning 530021, Guangxi, China.
| | - Jipei Lu
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China
| | - Shiyan Ou
- Department of Health Toxicology, Guangxi Medical University, Nanning 530021, Guangxi, China.
| |
Collapse
|
27
|
Manrique C, Migliorati M, Gilbert V, Brezun JM, Chaillan FA, Truchet B, Khrestchatisky M, Guiraudie-Capraz G, Roman FS. Dynamic expression of the polysialyltransferase in adult rat hippocampus performing an olfactory associative task. Hippocampus 2014; 24:979-89. [DOI: 10.1002/hipo.22284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 01/16/2023]
Affiliation(s)
| | | | - Valérie Gilbert
- Aix Marseille Université, CNRS; FR 3512 13331 Marseille France
| | | | | | - Bruno Truchet
- Aix Marseille Université, CNRS; UMR 7291 13331 Marseille France
| | | | | | - François S. Roman
- Aix Marseille Université, CNRS, NICN; UMR 7259 13344 Marseille France
| |
Collapse
|
28
|
Chau LS, Prakapenka AV, Zendeli L, Davis AS, Galvez R. Training-dependent associative learning induced neocortical structural plasticity: a trace eyeblink conditioning analysis. PLoS One 2014; 9:e95317. [PMID: 24760074 PMCID: PMC3997347 DOI: 10.1371/journal.pone.0095317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/26/2014] [Indexed: 11/18/2022] Open
Abstract
Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers.
Collapse
Affiliation(s)
- Lily S. Chau
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- * E-mail:
| | - Alesia V. Prakapenka
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Liridon Zendeli
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Ashley S. Davis
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Roberto Galvez
- Psychology Department, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
29
|
Endesfelder S, Zaak I, Weichelt U, Bührer C, Schmitz T. Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain. Free Radic Biol Med 2014; 67:221-34. [PMID: 24129198 DOI: 10.1016/j.freeradbiomed.2013.09.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/03/2013] [Accepted: 09/27/2013] [Indexed: 01/01/2023]
Abstract
Caffeine administered to preterm infants has been shown to reduce rates of cerebral palsy and cognitive delay, compared to placebo. We investigated the neuroprotective potential of caffeine for the developing brain in a neonatal rat model featuring transient systemic hyperoxia. Using 6-day-old rat pups, we found that after 24 and 48h of 80% oxygen exposure, apoptotic (TUNEL(+)) cell numbers increased in the cortex, hippocampus, and central gray matter, but not in the hippocampus or dentate gyrus. In the dentate gyrus, high oxygen exposure led to a decrease in the number of proliferating (Ki67(+)) cells and the number of Ki67(+) cells double staining for nestin (immature neurons), doublecortin (progenitors), and NeuN (mature neurons). Absolute numbers of nestin(+), doublecortin(+), and NeuN(+) cells also decreased after hyperoxia. This was mirrored in a decline of transcription factors expressed in immature neurons (Pax6, Sox2), progenitors (Tbr2), and mature neurons (Prox1, Tbr1). Administration of a single dose of caffeine (10mg/kg) before high oxygen exposure almost completely prevented these effects. Our findings suggest that caffeine exerts protection for neonatal neurons exposed to high oxygen, possibly via its antioxidant capacity.
Collapse
Affiliation(s)
- Stefanie Endesfelder
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany.
| | - Irina Zaak
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Ulrike Weichelt
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| | - Thomas Schmitz
- Department of Neonatology, Charité University Medical Center, D-13353 Berlin, Germany
| |
Collapse
|
30
|
Aryal B, Maskey D, Kim MJ, Yang JW, Kim HG. Effect of Ginseng on Calretinin Expression in Mouse Hippocampus Following Exposure to 835 MHz Radiofrequency. J Ginseng Res 2013; 35:138-48. [PMID: 23717055 PMCID: PMC3659519 DOI: 10.5142/jgr.2011.35.2.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 12/23/2010] [Accepted: 02/14/2011] [Indexed: 11/18/2022] Open
Abstract
Exponential rise in the use of mobile communication devices has generated health concerns due to radiofrequency (RF) exposure due to its close proximity to the head. Calcium binding proteins like calretinin regulate the levels of calcium (Ca2+) which plays an important role in biological systems. Ginseng is known for maintaining equilibrium in the human body and may play a beneficial radioprotectant role against electromagnetic field (EMF) exposure. In the present study, we evaluated the radioprotective effects of red ginseng (RG) extract in a mouse model. Calretinin (CR) expression was measured using a free-floating immunohistochemical method in the hippocampus of mice after 835 MHz EMF exposure for 5 h/d for 5 d at specific absorption rate=1.6 W/kg for the different experimental groups. The control animals were treated with NaCl while the experimental animals received 10 mg/kg ginseng, or 30 mg/kg; EMF exposed mice were also treated with NaCl, 10 mg/kg ginseng (E10), or 30 mg/kg (E30). Decreases in CR immunoreactivity (IR) along with loss of CA1 and CA3 interneurons and infragranular cells were observed in the ENaCl group while such losses were not observed in the E10 and E30 groups. CR IR significantly increased in the RG-treated group compared to control and EMF-exposed groups treated with NaCl. The study demonstrates that RG extract can serve as a radioprotective agent that maintains Ca2+ homeostasis and prevents neuronal loss in the brain hippocampal region caused by RF exposure.
Collapse
Affiliation(s)
- Bijay Aryal
- Department of Pharmacology, Dankook University College of Medicine, Cheonan 330-714, Korea
| | | | | | | | | |
Collapse
|
31
|
Borlikova GG, Trejo M, Mably AJ, Mc Donald JM, Sala Frigerio C, Regan CM, Murphy KJ, Masliah E, Walsh DM. Alzheimer brain-derived amyloid β-protein impairs synaptic remodeling and memory consolidation. Neurobiol Aging 2012. [PMID: 23182244 DOI: 10.1016/j.neurobiolaging.2012.10.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aggregation of the amyloid β-protein (Aβ) is believed to play a central role in initiating the molecular cascade that culminates in Alzheimer-type dementia (AD), a disease which in its early stage is characterized by synaptic loss and impairment of episodic memory. Here we show that intracerebroventricular injection of Aβ-containing water-soluble extracts of AD brain inhibits consolidation of the memory of avoidance learning in the rat and that this effect is highly dependent on the interval between learning and administration. When injected at 1 hour post training extracts from 2 different AD brains significantly impaired recall tested at 48 hours. Ultrastructural examination of hippocampi from animals perfused after 48 hours revealed that Aβ-mediated impairment of avoidance memory was associated with lower density of synapses and altered synaptic structure in the dentate gyrus and CA1 fields. These behavioral and ultrastructural data suggest that human brain-derived Aβ impairs formation of long-term memory by compromising the structural plasticity essential for consolidation and that Aβ targets processes initiated very early in the consolidation pathway.
Collapse
Affiliation(s)
- Gilyana G Borlikova
- Laboratory for Neurodegenerative Research, School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Republic of Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gruss M, Appenroth D, Flubacher A, Enzensperger C, Bock J, Fleck C, Gille G, Braun K. 9-Methyl-β-carboline-induced cognitive enhancement is associated with elevated hippocampal dopamine levels and dendritic and synaptic proliferation. J Neurochem 2012; 121:924-31. [PMID: 22380576 DOI: 10.1111/j.1471-4159.2012.07713.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
β-Carbolines (BCs) belong to the heterogenous family of carbolines, which have been found exogenously, that is, in various fruits, meats, tobacco smoke, alcohol and coffee, but also endogenously, that is, blood, brain and CSF. These exogenous and endogenous BCs and some of their metabolites can exert neurotoxic effects, however, an unexpected stimulatory effect of 9-methyl-β-carboline (9-me-BC) on dopaminergic neurons in primary mesencephalic cultures was recently discovered. The aim of the present study was to extend our knowledge on the stimulatory effects of 9-me-BC and to test the hypothesis that 9-me-BC may act as a cognitive enhancer. We found that 10 days (but not 5 days) of pharmacological treatment with 9-me-BC (i) improves spatial learning in the radial maze, (ii) elevates dopamine levels in the hippocampal formation, and (iii) results after 10 days of treatment in elongated, more complex dendritic trees and higher spine numbers on granule neurons in the dentate gyrus of 9-me-BC-treated rats. Our results demonstrate that beyond its neuroprotective/neurorestorative and anti-inflammatory effects, 9-me-BC acts as a cognitive enhancer in a hippocampus-dependent task, and that the behavioral effects may be associated with a stimulatory impact on hippocampal dopamine levels and dendritic and synaptic proliferation.
Collapse
Affiliation(s)
- Michael Gruss
- Otto von Guericke University Magdeburg, Institute of Biology, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Regional dissociation of paradigm-specific synapse remodeling during memory consolidation in the adult rat dentate gyrus. Neuroscience 2012; 209:74-83. [DOI: 10.1016/j.neuroscience.2012.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 11/17/2022]
|
34
|
Freir DB, Fedriani R, Scully D, Smith IM, Selkoe DJ, Walsh DM, Regan CM. Aβ oligomers inhibit synapse remodelling necessary for memory consolidation. Neurobiol Aging 2011; 32:2211-8. [PMID: 20097446 PMCID: PMC2891223 DOI: 10.1016/j.neurobiolaging.2010.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 12/22/2009] [Accepted: 01/04/2010] [Indexed: 11/15/2022]
Abstract
Extensive research has implicated the amyloid-β protein (Aβ) in the aetiology of Alzheimer's disease (AD). This protein has been shown to produce memory deficits when injected into rodent brain and in mouse models of AD Aβ production is associated with impaired learning and/or recall. Here we examined the effects of cell-derived SDS-stable 7PA2-derived soluble Aβ oligomers on consolidation of avoidance learning. At 0, 3, 6, 9 or 12h after training, animals received an intracerebroventricular injection of Aβ-containing or control media and recall was tested at 24 and 48 h. Immediately after 48 h recall animals were transcardially perfused and the brain removed for sectioning and EM analysis. Rats receiving injections of Aβ at 6 or 9h post-training showed a significant impairment in memory consolidation at 48 h. Importantly, impaired animals injected at 9h had significantly fewer synapses in the dentate gyrus. These data suggest that Aβ low-n oligomers target specific temporal facets of consolidation-associated synaptic remodelling whereby loss of functional synapses results in impaired consolidation.
Collapse
Affiliation(s)
- Darragh B. Freir
- Laboratory for Neurodegenerative Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Rocio Fedriani
- Applied Neurotherapeutics Research Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Darren Scully
- Applied Neurotherapeutics Research Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Imelda M. Smith
- Laboratory for Neurodegenerative Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Dennis J. Selkoe
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Ciaran M. Regan
- Applied Neurotherapeutics Research Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
35
|
Bourne JN, Harris KM. Nanoscale analysis of structural synaptic plasticity. Curr Opin Neurobiol 2011; 22:372-82. [PMID: 22088391 DOI: 10.1016/j.conb.2011.10.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 10/20/2011] [Indexed: 01/07/2023]
Abstract
Structural plasticity of dendritic spines and synapses is an essential mechanism to sustain long lasting changes in the brain with learning and experience. The use of electron microscopy over the last several decades has advanced our understanding of the magnitude and extent of structural plasticity at a nanoscale resolution. In particular, serial section electron microscopy (ssEM) provides accurate measurements of plasticity-related changes in synaptic size and density and distribution of key cellular resources such as polyribosomes, smooth endoplasmic reticulum, and synaptic vesicles. Careful attention to experimental and analytical approaches ensures correct interpretation of ultrastructural data and has begun to reveal the degree to which synapses undergo structural remodeling in response to physiological plasticity.
Collapse
Affiliation(s)
- Jennifer N Bourne
- Center for Learning and Memory, Department of Neurobiology, University of Texas, Austin, TX 78712-0805, USA
| | | |
Collapse
|
36
|
Kesari KK, Kumar S, Behari J. 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med 2011; 30:219-34. [DOI: 10.3109/15368378.2011.587930] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Taşkın E, Artis AS, Bitiktas S, Dolu N, Liman N, Süer C. Experimentally induced hyperthyroidism disrupts hippocampal long-term potentiation in adult rats. Neuroendocrinology 2011; 94:218-27. [PMID: 21778690 DOI: 10.1159/000328513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 04/16/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Manipulating thyroid hormones has been shown to influence learning and memory. Although a large body of literature is available on the effects of thyroid hormone deficiency on learning and memory functions during developmental or adult-onset hypothyroidism, electrophysiological findings are limited. This limitation is especially notable with respect to thyroxine administration in adult, normothyroid animals. METHODS Experiments were carried out on 12 adult male Wistar rats, each 9-10 months of age. Rats were randomly divided into hyperthyroid (0.2 mg/kg/day intraperitoneal thyroxine injection, for 21 days) and control groups (n = 6 animals in each group). Following spatial learning performance tests on hyperthyroid and control groups, rats were anesthetized with urethane and placed in a stereotaxic frame. A bipolar, tungsten electrode was used to stimulate the medial perforant path. A glass micropipette was inserted within the granule cell layer of the ipsilateral dentate gyrus to record field excitatory postsynaptic potentials (fEPSP). Following a 15-min baseline recording of fEPSPs, long-term potentiation (LTP) was induced by four sets of tetanic pulse trains. RESULTS Thyroxine-treated rats showed significantly worse performance in the spatial memory task and attenuated input-output relationships in the electrophysiological analyses. Treated rats also showed a lower efficacy of LTP induction when compared with controls. CONCLUSION The present study provides clear in vivo evidence for the action of L-thyroxine in the impairment of synaptic plasticity and in inducing spatial memory task deficits in adult rats. These findings may explain the complaints of cognitive function reductions in hyperthyroid patients.
Collapse
Affiliation(s)
- Eylem Taşkın
- Department of Physiology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| | | | | | | | | | | |
Collapse
|
38
|
Number estimates of neuronal phenotypes in layer II of the medial entorhinal cortex of rat and mouse. Neuroscience 2010; 170:156-65. [PMID: 20600643 DOI: 10.1016/j.neuroscience.2010.06.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/08/2010] [Accepted: 06/20/2010] [Indexed: 11/30/2022]
Abstract
Modelling entorhinal function or evaluating the consequences of neuronal losses which accompany neurodegenerative disorders requires detailed information on the quantitative cellular composition of the normal entorhinal cortex. Using design-based stereological methods, we estimated the numbers, proportions, densities and sectional areas of layer II cells in the medial entorhinal area (MEA), and its constituent caudal entorhinal (CE) and medial entorhinal (ME) fields, in the rat and mouse. We estimated layer II of the MEA to contain approximately 58,000 neurons in the rat and approximately 24,000 neurons in the mouse. Field CE accounted for more than three-quarters of the total neuron population in both species. In the rat, layer II of the MEA is comprised of 38% ovoid stellate cells, 29% polygonal stellate cells and 17% pyramidal cells. The remainder is comprised of much smaller populations of horizontal bipolar, tripolar, oblique pyramidal and small round cells. In the mouse, MEA layer II is comprised of 52% ovoid stellate cells, 22% polygonal stellate cells and 14% pyramidal cells. Significant species differences in the proportions of ovoid and polygonal stellate cells suggest differences in physiological and functional properties. The majority of MEA layer II cells contribute to the entorhinal-hippocampal pathways. The degree of divergence from MEA layer II cells to the dentate granule cells was similar in the rat and mouse. In both rat and mouse, the only dorsoventral difference we observed is a gradient in polygonal stellate cell sectional area, which may relate to the dorsoventral increase in the size and spacing of individual neuronal firing fields. In summary, we found species-specific cellular compositions of MEA layer II, while, within a species, quantitative parameters other than cell size are stable along the dorsoventral and mediolateral axis of the MEA.
Collapse
|
39
|
McLaughlin KJ, Wilson JO, Harman J, Wright RL, Wieczorek LA, Gomez J, Korol DL, Conrad CD. Chronic 17beta-estradiol or cholesterol prevents stress-induced hippocampal CA3 dendritic retraction in ovariectomized female rats: possible correspondence between CA1 spine properties and spatial acquisition. Hippocampus 2010; 20:768-86. [PMID: 19650122 PMCID: PMC2878912 DOI: 10.1002/hipo.20678] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chronic stress may have different effects on hippocampal CA3 and CA1 neuronal morphology and function depending upon hormonal status, but rarely are manipulations of stress and gonadal steroids combined. Experiment 1 investigated the effects of chronic restraint and 17beta-estradiol replacement on CA3 and CA1 dendritic morphology and spatial learning in ovariectomized (OVX) female Sprague-Dawley rats. OVX rats were implanted with 25% 17beta-estradiol, 100% cholesterol, or blank silastic capsules and then chronically restrained (6h/d/21d) or kept in home cages. 17beta-Estradiol or cholesterol prevented stress-induced CA3 dendritic retraction, increased CA1 apical spine density, and altered CA1 spine shape. The combination of chronic stress and 17beta-estradiol facilitated water maze acquisition compared to chronic stress + blank implants and nonstressed controls + 17beta-estradiol. To further investigate the interaction between 17beta-estradiol and stress on hippocampal morphology, experiment 2 was conducted on gonadally intact, cycling female rats that were chronically restrained (6h/d/21d), and then euthanized at proestrus (high ovarian hormones) or estrus (low ovarian hormones). Cycling female rats failed to show chronic stress-induced CA3 dendritic retraction at either estrous phase. Chronic stress enhanced the ratio of CA1 basal spine heads to headless spines as found in experiment 1. In addition, proestrous rats displayed increased CA1 spine density regardless of stress history. These results show that 17beta-estradiol or cholesterol protect against chronic stress-induced CA3 dendritic retraction in females. These stress- and 17beta-estradiol-induced morphological changes may provide insight into how dendritic complexity and spine properties contribute to spatial ability.
Collapse
Affiliation(s)
| | - Jessica O. Wilson
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| | - James Harman
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| | - Ryan L. Wright
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| | - Lindsay A. Wieczorek
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
- Department of Psychology, University of Illinois, Urbana-Champaign, IL 61801
| | - Juan Gomez
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| | - Donna L. Korol
- Department of Psychology, University of Illinois, Urbana-Champaign, IL 61801
| | - Cheryl D. Conrad
- Department of Psychology, Arizona State University, Tempe, AZ, 85287-1104
| |
Collapse
|
40
|
Middei S, Roberto A, Berretta N, Panico MB, Lista S, Bernardi G, Mercuri NB, Ammassari-Teule M, Nistico R. Learning discloses abnormal structural and functional plasticity at hippocampal synapses in the APP23 mouse model of Alzheimer's disease. Learn Mem 2010; 17:236-40. [DOI: 10.1101/lm.1748310] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Osthole improves chronic cerebral hypoperfusion induced cognitive deficits and neuronal damage in hippocampus. Eur J Pharmacol 2010; 636:96-101. [PMID: 20362569 DOI: 10.1016/j.ejphar.2010.03.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/22/2010] [Accepted: 03/14/2010] [Indexed: 12/20/2022]
Abstract
This study is to investigate the effects of osthole on cognitive impairment and neuronal degeneration in hippocampus induced by chronic cerebral hypoperfusion in rats, as well as the potential mechanism. Permanent occlusion of bilateral common carotid arteries (2VO) induced severe cognitive deficits tested by the water maze task, along with oxidative stress and neuronal loss in hippocampus. Oral administration of osthole for 3 weeks markedly attenuated cognitive deficits and neuronal damage. Biochemical experiments revealed that osthole decreased the production of malondialdehyde (MDA) and significantly increased the activities of Glutathione Peroxidase (GPx) and Catalase. Western blot analyses indicated that osthole prevented the downregulation of bcl-2 expression and upregulation of bax expression, which resulted in decreasing bax/bcl-2 ratio in hippocampus of 2VO rats. Additionally, osthole effectively alleviated the activation of caspase-3 induced by permanent occlusion of bilateral common carotid arteries. The observed results in present study suggest that osthole exhibits therapeutic potential for vascular dementia, which is most likely related, at least in part, to its antioxidation and anti-apoptotic actions.
Collapse
|
42
|
Abstract
The hippocampus is a region of the mammalian brain that shows an impressive capacity for structural reorganization. Preexisting neural circuits undergo modifications in dendritic complexity and synapse number, and entirely novel neural connections are formed through the process of neurogenesis. These types of structural change were once thought to be restricted to development. However, it is now generally accepted that the hippocampus remains structurally plastic throughout life. This article reviews structural plasticity in the hippocampus over the lifespan, including how it is investigated experimentally. The modulation of structural plasticity by various experiential factors as well as the possible role it may have in hippocampal functions such as learning and memory, anxiety, and stress regulation are also considered. Although significant progress has been made in many of these areas, we highlight some of the outstanding issues that remain.
Collapse
Affiliation(s)
- Benedetta Leuner
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
43
|
Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res 2010; 1313:232-41. [DOI: 10.1016/j.brainres.2009.11.079] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 11/25/2009] [Accepted: 11/29/2009] [Indexed: 11/23/2022]
|
44
|
Conboy L, Bisaz R, Markram K, Sandi C. Role of NCAM in Emotion and Learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:271-96. [DOI: 10.1007/978-1-4419-1170-4_18] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
O'Sullivan NC, Pickering M, Di Giacomo D, Loscher JS, Murphy KJ. Mkl Transcription Cofactors Regulate Structural Plasticity in Hippocampal Neurons. Cereb Cortex 2009; 20:1915-25. [DOI: 10.1093/cercor/bhp262] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
46
|
McKee AG, Loscher JS, O'Sullivan NC, Chadderton N, Palfi A, Batti L, Sheridan GK, O'Shea S, Moran M, McCabe O, Fernández AB, Pangalos MN, O'Connor JJ, Regan CM, O'Connor WT, Humphries P, Farrar GJ, Murphy KJ. AAV-mediated chronic over-expression of SNAP-25 in adult rat dorsal hippocampus impairs memory-associated synaptic plasticity. J Neurochem 2009; 112:991-1004. [PMID: 20002519 DOI: 10.1111/j.1471-4159.2009.06516.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Long-term memory is formed by alterations in glutamate-dependent excitatory synaptic transmission, which is in turn regulated by synaptosomal protein of 25 kDa (SNAP-25), a key component of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex essential for exocytosis of neurotransmitter-filled synaptic vesicles. Both reduced and excessive SNAP-25 activity has been implicated in various disease states that involve cognitive dysfunctions such as attention deficit hyperactivity disorder, schizophrenia and Alzheimer's disease. Here, we over-express SNAP-25 in the adult rat dorsal hippocampus by infusion of a recombinant adeno-associated virus vector, to evaluate the consequence of late adolescent-adult dysfunction of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein in the absence of developmental disruption. We report a specific and significant increase in the levels of extracellular glutamate detectable by microdialysis and a reduction in paired-pulse facilitation in the hippocampus. In addition, SNAP-25 over-expression produced cognitive deficits, delaying acquisition of a spatial map in the water maze and impairing contextual fear conditioning, both tasks known to be dorsal hippocampal dependent. The high background transmission state and pre-synaptic dysfunction likely result in interference with requisite synapse selection during spatial and fear memory consolidation. Together these studies provide the first evidence that excess SNAP-25 activity, restricted to the adult period, is sufficient to mediate significant deficits in the memory formation process.
Collapse
Affiliation(s)
- Alex G McKee
- Applied Neurotherapeutics Research Group, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
O'Sullivan NC, Croydon L, McGettigan PA, Pickering M, Murphy KJ. Hippocampal region-specific regulation of NF-kappaB may contribute to learning-associated synaptic reorganisation. Brain Res Bull 2009; 81:385-90. [PMID: 19909798 DOI: 10.1016/j.brainresbull.2009.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 02/08/2023]
Abstract
Activity of the transcription factor NF-kappaB is required for memory formation, but the identity and function of the genes it may regulate in this context remain obscure. Here, we comprehensively characterise NF-kappaB throughout the rat hippocampus following passive avoidance training and report significant subregion-specific increased activity across the dorsoventral axis 3h post-learning. Moreover, putative NF-kappaB binding motifs predominated in structural genes previously shown to regulate 3h following avoidance conditioning, the protein products of which may be involved in the subsequent synaptic remodelling required for consolidation. Finally, we assessed the influence of NF-kappaB-mediated transcription on neuritic structure and report that inhibition of NF-kappaB significantly decreases growth and branching of primary hippocampal neurons. These results suggest that NF-kappaB activity following hippocampal learning may contribute to consolidation-associated synaptic reorganisation.
Collapse
Affiliation(s)
- Niamh C O'Sullivan
- Applied Neurotherapeutics Research Group, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | |
Collapse
|
48
|
Foley AG, Prendergast A, Barry C, Scully D, Upton N, Medhurst AD, Regan CM. H3 receptor antagonism enhances NCAM PSA-mediated plasticity and improves memory consolidation in odor discrimination and delayed match-to-position paradigms. Neuropsychopharmacology 2009; 34:2585-600. [PMID: 19657331 DOI: 10.1038/npp.2009.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
To further understand the procognitive actions of GSK189254, a histamine H(3) receptor antagonist, we determined its influence on the modulation of hippocampal neural cell adhesion molecule (NCAM) polysialylation (PSA) state, a necessary neuroplastic mechanism for learning and memory consolidation. A 4-day treatment with GSK189254 significantly increased basal expression of dentate polysialylated cells in rats with the maximal effect being observed at 0.03-0.3 mg/kg. At the optimal dose (0.3 mg/kg), GSK189254 enhanced water maze learning and the associated transient increase in NCAM-polysialylated cells. The increase in dentate polysialylated cell frequency induced by GSK189254 was not attributable to enhanced neurogenesis, although it did induce a small, but significant, increase in the survival of these newborn cells. GSK189254 (0.3 mg/kg) was without effect on polysialylated cell frequency in the entorhinal and perirhinal cortex, but significantly increased the diffuse PSA staining observed in the anterior, ventromedial, and dorsomedial aspects of the hypothalamus. Consistent with its ability to enhance the learning-associated, post-training increases in NCAM PSA state, GSK189254 (0.3 mg/kg) reversed the amnesia induced by scopolamine given in the 6-h post-training period after training in an odor discrimination paradigm. Moreover, GSK189254 significantly improved the performance accuracy of a delayed match-to-position paradigm, a task dependent on the prefrontal cortex and degree of cortical arousal, the latter may be related to enhanced NCAM PSA-associated plasticity in the hypothalamus. The procognitive actions of H3 antagonism combined with increased NCAM PSA expression may exert a disease-modifying action in conditions harboring fundamental deficits in NCAM-mediated neuroplasticity, such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Andrew G Foley
- Berand Neuropharmacology, NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | | | | | | | | | | | | |
Collapse
|
49
|
N-methyl-D-aspartate receptor independent changes in expression of polysialic acid-neural cell adhesion molecule despite blockade of homosynaptic long-term potentiation and heterosynaptic long-term depression in the awake freely behaving rat dentate gyrus. ACTA ACUST UNITED AC 2009; 4:169-78. [PMID: 19674508 DOI: 10.1017/s1740925x09990159] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Investigations examining the role of polysialic acid (PSA) on the neural cell adhesion molecule (NCAM) in synaptic plasticity have yielded inconsistent data. Here, we addressed this issue by determining whether homosynaptic long-term potentiation (LTP) and heterosynaptic long-term depression (LTD) induce changes in the distribution of PSA-NCAM in the dentate gyrus (DG) of rats in vivo. In addition, we also examined whether the observed modifications were initiated via the activation of N-methyl-D-aspartate (NMDA) receptors. Immunocytochemical analysis showed an increase in PSA-NCAM positive cells both at 2 and 24 h following high-frequency stimulation of either medial or lateral perforant paths, leading to homosynaptic LTP and heterosynaptic LTD, respectively, in the medial molecular layer of the DG. Analysis of sub-cellular distribution of PSA-NCAM by electron microscopy showed decreased PSA dendritic labelling in LTD rats and a sub-cellular relocation towards the spines in LTP rats. Importantly, these modifications were found to be independent of the activation of NMDA receptors. Our findings suggest that strong activation of the granule cells up-regulates PSA-NCAM synthesis which then incorporates into activated synapses, representing NMDA-independent plastic processes that act synergistically on LTP/LTD mechanisms without participating in their expression.
Collapse
|
50
|
Bas O, Odaci E, Mollaoglu H, Ucok K, Kaplan S. Chronic prenatal exposure to the 900 megahertz electromagnetic field induces pyramidal cell loss in the hippocampus of newborn rats. Toxicol Ind Health 2009; 25:377-84. [DOI: 10.1177/0748233709106442] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Widespread use of mobile phones which are a major source of electromagnetic fields might affect living organisms. However, there has been no investigation concerning prenatal exposure to electromagnetic fields or their roles in the development of the pyramidal cells of the cornu ammonis in postnatal life. Two groups of pregnant rats, a control group and an experimental group, that were exposed to an electromagnetic field were used. For obtaining electromagnetic field offspring, the pregnant rats were exposed to 900 megahertz electromagnetic fields during the 1–19th gestation days. There were no actions performed on the control group during the same period. The offspring rats were spontaneously delivered—control group ( n = 6) and electromagnetic field group ( n = 6). Offspring were sacrificed for stereological analyses at the end of the 4th week. Pyramidal cell number in rat cornu ammonis was estimated using the optical fractionator technique. It was found that 900 megahertz of electromagnetic field significantly reduced the total pyramidal cell number in the cornu ammonis of the electromagnetic field group ( P < 0.001). Therefore, although its exact mechanism is not clear, it is suggested that pyramidal cell loss in the cornu ammonis could be due to the 900 megahertz electromagnetic field exposure in the prenatal period.
Collapse
Affiliation(s)
- O Bas
- Department of Anatomy, Rize University School of Medicine, Rize, Turkey
| | - E Odaci
- Department of Histology and Embryology, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - H Mollaoglu
- Department of Physiology, Afyon Kocatepe University School of Medicine, Afyonkarahisar, Turkey
| | - K Ucok
- Department of Physiology, Afyon Kocatepe University School of Medicine, Afyonkarahisar, Turkey
| | - S Kaplan
- Department of Histology and Embryology, Ondokuz Mayis University School of Medicine, Samsun, Turkey
| |
Collapse
|