1
|
Triticum aestivum: antioxidant gene profiling and morpho-physiological studies under salt stress. Mol Biol Rep 2023; 50:2569-2580. [PMID: 36626063 DOI: 10.1007/s11033-022-07990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Soil salinity drastically reduced wheat growth and production in Pakistan. It is a need of an hour to identify the best suitable salt tolerance or resistant wheat varieties which shows good growth under salinity affected areas. In presented study, two wheat varieties Johar (salt tolerant) and Sarsabaz (salt sensitive) were examined under NaCl stress conditions. METHODS Antioxidant enzyme activities were investigated in 10-days old wheat seedlings under 200 mM NaCl stress in hydroponic conditions. To investigate the various growth parameters, antioxidant enzyme activities such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6) and ascorbate peroxidase (APX: EC 1.11.1.11) were monitored and studied. Besides this various growth parameters such as length of the roots, shoots, as well as Physiological parameters likes lipid peroxidation by malondialdehyde (MDA), hydrogen peroxide (H2O2), and proline contents and antioxidant enzyme activities were estimated. The effect of salinity was also observed on gene transcription level and eventually expression level. RESULTS Shoot and root length were decreased in Sarsabaz variety while it showed opposite trend in johar at 200 mM salt concentration. The concentration of proline showed a noticeable rise in salt dependency. Higher concentrations of Proline in Johar were observed as compared to Sarsabaz. SOD showed the increase in activity for antioxidant enzymes. Significant increase of SOD levels were observed in shoot tissues as compared to root tissues. The results indicated that the shoots were more susceptible to salt stress. Activity of APX showed similar affects in both varieties. The production of CAT enzyme in the shoot and root tissues of both varieties showed substantial growth under increased salt stress. Furthermore, NaCl stress has increased the expression of certain genes coding for antioxidant enzymes such as catalase, superoxide dismutase, and peroxidase. Maximum expression of all the antioxidant enzyme coding genes were observed in Johar (tolerant) at 48 h exposure to salt. In contrast the expression of the all mentioned genes in Sarsabaz variety were found maximum at early hours (24 h) and gradually decreased at 48 h. CONCLUSION The study showed that the selected salt tolerant wheat variety Johar is significantly resistant to 200 mM NaCl salt level as compared to Sarsabaz.
Collapse
|
2
|
Raza Gurmani A, Wang X, Rafique M, Jawad M, Raza Khan A, Ullah Khan Q, Ahmed R, Fiaz S. Exogenous Application of Gibberellic Acid and Silicon to Promote Salinity Tolerance in Pea (Pisum sativum L.) through Na+ Exclusion. Saudi J Biol Sci 2022; 29:103305. [PMID: 35602866 PMCID: PMC9119841 DOI: 10.1016/j.sjbs.2022.103305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 04/21/2022] [Indexed: 01/24/2023] Open
Abstract
Salinity is a worldwide problem limiting the plant growth and risking food security. This study was conducted to examine exogenous application of silicon (Si), gibberellic acid (GA3) upon the ion transport, growth, yield, and antioxidant enzymes activities of pea plant in saline conditions. Two pea varieties Meteor-FSD and Samrina Zard were pre-treated with GA3 (10-4 M) for 12 h. Plants were allowed to grow with or without silicon in washed silica sand. Ten days old seedlings were shifted in pots with 10 kg soil. Twenty-five days old plants were exposed to 0 and 5 dS m−1 sodium stress. Results showed that exogenous application of GA3 + Si was the best treatment for increasing plant biomass and yield in the presence and absence of NaCl. Furthermore, application of Si or GA3 enhanced chlorophyll content in the leaves, thereby increasing the net assimilation rate of pea varieties under NaCl stress by increasing the antioxidant enzyme activity. Treatment of Si alone or in combination with GA3 significantly reduced Na+ movement in both pea varieties. Results showed that Si has more prominent role than GA3 alone to build-up high plant biomass, yield, soluble protein content and reduction of Na+ transport. Samrina Zard variety showed higher yield, shoot and root dry weight as compared to Meteor-FSD variety in presence and absence of salt. It was concluded that Si can be used as a nutrient for pea under saline or non-saline conditions. Moreover, application of GA3 has a potential role for increasing salinity tolerance, mostly in sensitive pea varieties.
Collapse
|
3
|
Glycinebetaine mitigates drought stress-induced oxidative damage in pears. PLoS One 2021; 16:e0251389. [PMID: 34793480 PMCID: PMC8601463 DOI: 10.1371/journal.pone.0251389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/24/2021] [Indexed: 01/24/2023] Open
Abstract
Glycinebetaine (GB) is an osmoprotectant found in plants under environmental stresses that incorporates drought and is associated with drought tolerance in several plants, such as the woody pear. However, how GB improves drought tolerance in pears remains unclear. In the current study, we explored the mechanism by which GB enhances drought tolerance of whole pear plants (Pyrus bretschneideri Redh. cv. Suli) supplied with exogenous GB. The results showed that on the sixth day after withholding water, levels of O2·−, H2O2, malonaldehyde (MDA) and electrolyte leakage in the leaves were substantially increased by 143%, 38%, 134% and 155%, respectively. Exogenous GB treatment was substantially reduced O2·−, H2O2, MDA and electrolyte leakage (38%, 24%, 38% and 36%, respectively) in drought-stressed leaves. Furthermore, exogenous GB induced considerably higher antioxidant enzyme activity in dry-stressed leaves than drought-stressed treatment alone on the sixth day after withholding water, such as superoxide dismutase (SOD) (201%) and peroxidase (POD) (127%). In addition, these GB-induced phenomena led to increased endogenous GB levels in the leaves of the GB 100 + drought and GB 500 + drought treatment groups by 30% and 78%, respectively, compared to drought treatment alone. The findings obtained were confirmed by the results of the disconnected leaf tests, in which GB contributed to a substantial increase in SOD activity and parallel dose- and time-based decreases in MDA levels. These results demonstrate that GB-conferred drought resistance in pears may be due in part to minimizing symptoms of oxidative harm incurred in response to drought by the activities of antioxidants and by reducing the build-up of ROS and lipid peroxidation.
Collapse
|
4
|
Thermal Analysis of Stomatal Response under Salinity and High Light. Int J Mol Sci 2021; 22:ijms22094663. [PMID: 33925054 PMCID: PMC8124565 DOI: 10.3390/ijms22094663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.
Collapse
|
5
|
Hernández JA, Díaz-Vivancos P, Acosta-Motos JR, Alburquerque N, Martínez D, Carrera E, García-Bruntón J, Barba-Espín G. Interplay among Antioxidant System, Hormone Profile and Carbohydrate Metabolism during Bud Dormancy Breaking in a High-Chill Peach Variety. Antioxidants (Basel) 2021; 10:560. [PMID: 33916531 PMCID: PMC8066612 DOI: 10.3390/antiox10040560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Prunus species have the ability to suspend (induce dormancy) and restart growth, in an intricate process in which environmental and physiological factors interact. (2) Methods: In this work, we studied the evolution of sugars, antioxidant metabolism, and abscisic acid (ABA) and gibberellins (GAs) levels during bud dormancy evolution in a high-chill peach variety, grown for two seasons in two different geographical areas with different annual media temperature, a cold (CA) and a temperate area (TA). (3) Results: In both areas, starch content reached a peak at ecodormancy, and then decreased at dormancy release (DR). Sorbitol and sucrose declined at DR, mainly in the CA. In contrast, glucose and fructose levels progressively rose until DR. A decline in ascorbate peroxidase, dehydroascorbate reductase, superoxide dismutase and catalase activities occurred in both seasons at DR. Moreover, the H2O2-sensitive SOD isoenzymes, Fe-SOD and Cu,Zn-SOD, and two novel peroxidase isoenzymes, were detected. Overall, these results suggest the occurrence of a controlled oxidative stress during DR. GA7 was the major bioactive GA in both areas, the evolution of its levels being different between seasons and areas. In contrast, ABA content decreased during the dormancy period in both areas, resulting in a reduction in the ABA/total GAs ratio, being more evident in the CA. (4) Conclusion: A possible interaction sugars-hormones-ROS could take place in high-chill peach buds, favoring the DR process, suggesting that, in addition to sugar metabolism, redox interactions can govern bud DR, regardless of chilling requirements.
Collapse
Affiliation(s)
- José A. Hernández
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Pedro Díaz-Vivancos
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - José Ramón Acosta-Motos
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Nuria Alburquerque
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| | - Domingo Martínez
- Department of Food Technology, University Miguel Hernandez, 03202 Orihuela, Spain;
| | - Esther Carrera
- Group of Hormonal Metabolism and Plant Development Regulation, IBMCP-CSIC, 46011 Valencia, Spain;
| | | | - Gregorio Barba-Espín
- Group of Fruit Tree Biotecnology, CEBAS-CSIC, 30100 Murcia, Spain; (P.D.-V.); (J.R.A.-M.); (N.A.); (G.B.-E.)
| |
Collapse
|
6
|
Wang R, Wang X, Liu K, Zhang XJ, Zhang LY, Fan SJ. Comparative Transcriptome Analysis of Halophyte Zoysia macrostachya in Response to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:E458. [PMID: 32260413 PMCID: PMC7238138 DOI: 10.3390/plants9040458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
As one of the most severe environmental stresses, salt stress can cause a series of changes in plants. In salt tolerant plant Zoysia macrostachya, germination, physiology, and genetic variation under salinity have been studied previously, and the morphology and distribution of salt glands have been clarified. However, no study has investigated the transcriptome of such species under salt stress. In the present study, we compared transcriptome of Z. macrostachya under normal conditions and salt stress (300 mmol/L NaCl, 24 h) aimed to identify transcriptome responses and molecular mechanisms under salt stress in Z. macrostachya. A total of 8703 differently expressed genes (DEGs) were identified, including 4903 up-regulated and 3800 down-regulated ones. Moreover, a series of molecular processes were identified by Gene Ontology (GO) analysis, and these processes were suggested to be closely related to salt tolerance in Z. macrostachya. The identified DEGs concentrated on regulating plant growth via plant hormone signal transduction, maintaining ion homeostasis via salt secretion and osmoregulatory substance accumulation and preventing oxidative damage via increasing the activity of ROS (reactive oxygen species) scavenging system. These changes may be the most important responses of Z. macrostachya under salt stress. Some key genes related to salt stress were identified meanwhile. Collectively, our findings provided valuable insights into the molecular mechanisms and genetic underpinnings of salt tolerance in Z. macrostachya.
Collapse
Affiliation(s)
| | | | | | | | - Luo-Yan Zhang
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (X.W.); (K.L.); (X.-J.Z.)
| | - Shou-Jin Fan
- Key Lab of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China; (R.W.); (X.W.); (K.L.); (X.-J.Z.)
| |
Collapse
|
7
|
Nadeem M, Li J, Yahya M, Wang M, Ali A, Cheng A, Wang X, Ma C. Grain Legumes and Fear of Salt Stress: Focus on Mechanisms and Management Strategies. Int J Mol Sci 2019; 20:E799. [PMID: 30781763 PMCID: PMC6412900 DOI: 10.3390/ijms20040799] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Salinity is an ever-present major constraint and a major threat to legume crops, particularly in areas with irrigated agriculture. Legumes demonstrate high sensitivity, especially during vegetative and reproductive phases. This review gives an overview of legumes sensitivity to salt stress (SS) and mechanisms to cope with salinity stress under unfavorable conditions. It also focuses on the promising management approaches, i.e., agronomic practices, breeding approaches, and genome editing techniques to improve performance of legumes under SS. Now, the onus is on researchers to comprehend the plants physiological and molecular mechanisms, in addition to various responses as part of their stress tolerance strategy. Due to their ability to fix biological nitrogen, high protein contents, dietary fiber, and essential mineral contents, legumes have become a fascinating group of plants. There is an immense need to develop SS tolerant legume varieties to meet growing demand of protein worldwide. This review covering crucial areas ranging from effects, mechanisms, and management strategies, may elucidate further the ways to develop SS-tolerant varieties and to produce legume crops in unfavorable environments.
Collapse
Affiliation(s)
- Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Muhammad Yahya
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Minghua Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Asif Ali
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Andong Cheng
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| | - Chuanxi Ma
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
8
|
Calderón A, Sánchez-Guerrero A, Ortiz-Espín A, Martínez-Alcalá I, Camejo D, Jiménez A, Sevilla F. Lack of mitochondrial thioredoxin o1 is compensated by antioxidant components under salinity in Arabidopsis thaliana plants. PHYSIOLOGIA PLANTARUM 2018; 164:251-267. [PMID: 29446456 DOI: 10.1111/ppl.12708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/09/2018] [Accepted: 02/09/2018] [Indexed: 05/26/2023]
Abstract
In a changing environment, plants are able to acclimate to new conditions by regulating their metabolism through the antioxidant and redox systems involved in the stress response. Here, we studied a mitochondrial thioredoxin in wild-type (WT) Arabidopis thaliana and two Attrxo1 mutant lines grown in the absence or presence of 100 mM NaCl. Compared to WT plants, no evident phenotype was observed in the mutant plants under control condition, although they had higher number of stomata, loss of water, nitric oxide and carbonyl protein contents as well as higher activity of superoxide dismutase (SOD) and catalase enzymes than WT plants. Under salinity, the mutants presented lower water loss and higher stomatal closure, H2 O2 and lipid peroxidation levels accompanied by higher enzymatic activity of catalase and the different SOD isoenzymes compared to WT plants. These inductions may collaborate in the maintenance of plant integrity and growth observed under saline conditions, possibly as a way to compensate the lack of TRXo1. We discuss the potential of TRXo1 to influence the development of the whole plant under saline conditions, which have great value for the agronomy of plants growing under unfavorable environment.
Collapse
Affiliation(s)
- Aingeru Calderón
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Antonio Sánchez-Guerrero
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Ana Ortiz-Espín
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Isabel Martínez-Alcalá
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, E-30100, Spain
| |
Collapse
|
9
|
Li J, Ma J, Guo H, Zong J, Chen J, Wang Y, Li D, Li L, Wang J, Liu J. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:1-10. [PMID: 29482069 DOI: 10.1016/j.plaphy.2018.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/11/2018] [Accepted: 02/15/2018] [Indexed: 05/17/2023]
Abstract
Salinity is one of the major abiotic environmental stress factors affecting plant growth and development. Centipedegrass (Eremochloa ophiuroides [Munro)] Hack.) is an important warm-season turfgrass species with low turf maintenance requirements, but is sensitive to salinity stress. To explore salt tolerant germplasms in centipedegrass and better understand the growth and physiological responses of centipedegrass to salinity, we conducted anatomic observation and phytochemical quantification, examined growth parameters, and investigated photosynthetic machinery and antioxidant system in two phenotypically distinct centipedegrass accessions under NaCl salt stress. The morphophenotypical difference of the stems in the two accessions mainly depends on whether or not a thickened epidermal horny layer with purple colour was formed, which was caused by anthocyanin accumulation in the tissue. Successive salinity treatment was found to result in an inhibition of leaf growth, a marked decrease in photosynthesis, chlorophyll contents, and the maximal photochemical efficiency of PSII (Fv/Fm). Under the same treatment, purple-stem accession (E092) showed a lower degree of inhibition or decrease than green-stem one (E092-1). With the exception of malondialdehyde level, both proline content and antioxidant enzymes were upregulated to a greater extent in E092 following exposure to salinity condition. Meanwhile, significant enhancements of anthocyanin accumulation and total protein synthesis were detected in E092 after salt treatment, but not in E092-1. These results demonstrated that E092 favor better accumulation of anthocyanins under salinity condition, which contribute to salt tolerance by adjusting physiological functions and osmotic balance, and better maintenance of high turf quality. Hence, genetic phenotype can be utilized as a key indicator in E. ophiuroides breeding for salt-tolerance.
Collapse
Affiliation(s)
- JianJian Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jingjing Ma
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Hailin Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Junqin Zong
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jingbo Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Yi Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Dandan Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Ling Li
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jingjing Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China
| | - Jianxiu Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing 210014, Jiangsu, PR China.
| |
Collapse
|
10
|
Wyrwicka A, Urbaniak M. The biochemical response of willow plants (Salix viminalis L.) to the use of sewage sludge from various sizes of wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:882-894. [PMID: 29017130 DOI: 10.1016/j.scitotenv.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
Sewage sludge production is increasing, as is the importance of its safe and sustainable disposal. The study examine the impact of fertilizing poor quality soil with sewage sludge from three sizes of wastewater treatment plants (WTP) (small, medium and large) located in Central Poland, applied in two doses (3 and 9tons per hectare), on biomass yield and selected biochemical parameters in willow plants. The WTPs were selected based on the size criterion given in Polish regulations. Three variables were analyzed in the leaves and roots of willow cuttings after twenty weeks of cultivation: the degree of oxidative reaction, assessed as thiobarbituric-acid-reactive substances (TBARS) content; catalase activity (CAT, EC 1.11.1.6), reflecting the efficiency of the antioxidative response; and changes in the concentration of proline, one of the major cellular osmoprotectants. For plants growing in poor-quality soil, sewage sludge administration results in a large increase of willow biomass by creating good conditions for plant growth associated with protection against oxidative damage, efficient functioning of the antioxidant system and maintenance of the osmotic balance between the soil environment and plant roots. The greatest increase was 204% of control in the case of 9tha-1 sludge from the medium WTP. Biomass production correlated with the applied sludge dose. After sewage sludge application lipid peroxides were reduced in leaves (81%) and roots (69%), CAT activity was enhanced (to 855% in leaves) and proline level was increased in root tissues. The application of sewage sludge originating from small WTPs offers the best conditions than larger WTPs: sludge from large WTPs may cause oxidative damage and exceed the possibilities of plants to counteract stress factors, especially when used in high doses.
Collapse
Affiliation(s)
- Anna Wyrwicka
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Magdalena Urbaniak
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364 Lodz, Poland.
| |
Collapse
|
11
|
Elmaghrabi AM, Rogers HJ, Francis D, Ochatt S. Toward Unravelling the Genetic Determinism of the Acquisition of Salt and Osmotic Stress Tolerance Through In Vitro Selection in Medicago truncatula. Methods Mol Biol 2018; 1822:291-314. [PMID: 30043311 DOI: 10.1007/978-1-4939-8633-0_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Changes in global climate and the nonstop increase in demographic pressure have provoked a stronger demand for agronomic resources at a time where land suitable for agriculture is becoming a rare commodity. They have also generated a number of abiotic stresses which exacerbate effects of diseases and pests and result in physiological and metabolic disorders that ultimately impact on yield when and where it is most needed. Therefore, a major scientific and agronomic challenge today is that of understanding and countering the impact of stress on yield. In this respect, in vitro biotechnology would be an efficient and feasible breeding alternative, particularly now that the genetic and genomic tools needed to unravel the mechanisms underlying the acquisition of tolerance to stress have become available. Legumes in general play a central role in a sustainable agriculture due to their capacity to symbiotically fix the atmospheric nitrogen, thereby reducing the need for fertilizers. They also produce grains that are rich in protein and thus are important as food and feed. However, they also suffer from abiotic stresses in general and osmotic stress and salinity in particular. This chapter provides a detailed overview of the methods employed for in vitro selection in the model legume Medicago truncatula for the generation of novel germplasm capable of resisting NaCl- and PEG-induced osmotic stress. We also address the understanding of the genetic determinism in the acquisition of stress resistance, which differs between NaCl and PEG. Thus, the expression of genes linked to growth (WEE1), in vitro embryogenesis (SERK), salt tolerance (SOS1) proline synthesis (P5CS), and ploidy level and cell cycle (CCS52 and WEE1) was upregulated under NaCl stress, while under PEG treatment the expression of MtWEE1 and MtCCS52 was significantly increased, but no significant differences were observed in the expression of genes MtSERK1 and MtP5CS, and MtSOS1 was downregulated. A number of morphological and physiological traits relevant to the acquisition of stress resistance were also assessed, and methods used to do so are also detailed.
Collapse
Affiliation(s)
- Adel M Elmaghrabi
- Biotechnology Research Center (BTRC), Tripoli, Libya
- School of Biosciences, Cardiff University, Cardiff, UK
| | | | | | - Sergio Ochatt
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
12
|
Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N, Migdadi HM, Alghamdi SS, Siddique KHM. Effects, tolerance mechanisms and management of salt stress in grain legumes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:199-217. [PMID: 28648997 DOI: 10.1016/j.plaphy.2017.06.020] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 05/23/2023]
Abstract
Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of transgenics and crop management strategies may enhance salt tolerance and yield in grain legumes on salt-affected soils.
Collapse
Affiliation(s)
- Muhammad Farooq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001, Australia; College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Nirmali Gogoi
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University Multan, Pakistan
| | - Sharmistha Barthakur
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Sreyashi Paul
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Nandita Bharadwaj
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Hussein M Migdadi
- College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salem S Alghamdi
- College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
13
|
Liu XP, Yu LX. Genome-Wide Association Mapping of Loci Associated with Plant Growth and Forage Production under Salt Stress in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:853. [PMID: 28596776 PMCID: PMC5442208 DOI: 10.3389/fpls.2017.00853] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/08/2017] [Indexed: 05/04/2023]
Abstract
Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of 198 alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association studies (GWAS). The plants were genotyped using genotyping-by-sequencing (GBS). A greenhouse procedure was used for phenotyping four agronomic and physiological traits affected by salt stress, including dry weight (DW), plant height (PH), leaf chlorophyll content (LCC), and stomatal conductance (SC). For each trait, a stress susceptibility index (SSI) was used to evaluate plant performance under stressed and non-stressed conditions. Marker-trait association identified a total of 42 markers significantly associated with salt tolerance. They were located on all chromosomes except chromosome 2 based on the alignment of their flanking sequences to the reference genome (Medicago truncatula). Of those identified, 13 were associated with multiple traits. Several loci identified in the present study were also identified in previous reports. BLAST search revealed that 19 putative candidate genes linked to 24 significant markers. Among them, B3 DNA-binding protein, Thiaminepyrophosphokinase and IQ calmodulin-binding motif protein were identified among multiple traits in the present and previous studies. With further investigation, these markers and candidates would be useful for developing markers for marker-assisted selection in breeding programs to improve alfalfa cultivars with enhanced tolerance to salt stress.
Collapse
Affiliation(s)
- Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing ResearchProsser, WA, United States
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing ResearchProsser, WA, United States
| |
Collapse
|
14
|
Behr JH, Bouchereau A, Berardocco S, Seal CE, Flowers TJ, Zörb C. Metabolic and physiological adjustment of Suaeda maritima to combined salinity and hypoxia. ANNALS OF BOTANY 2017; 119:965-976. [PMID: 28110268 PMCID: PMC5604547 DOI: 10.1093/aob/mcw282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/08/2016] [Indexed: 05/11/2023]
Abstract
Background and Aims Suaeda maritima is a halophyte commonly found on coastal wetlands in the intertidal zone. Due to its habitat S. maritima has evolved tolerance to high salt concentrations and hypoxic conditions in the soil caused by periodic flooding. In the present work, the adaptive mechanisms of S. maritima to salinity combined with hypoxia were investigated on a physiological and metabolic level. Methods To compare the adaptive mechanisms to deficient, optimal and stressful salt concentrations, S. maritima plants were grown in a hydroponic culture under low, medium and high salt concentrations. Additionally, hypoxic conditions were applied to investigate the impact of hypoxia combined with different salt concentrations. A non-targeted metabolic approach was used to clarify the biochemical pathways underlying the metabolic and physiological adaptation mechanisms of S. maritima . Key Results Roots exposed to hypoxic conditions showed an increased level of tricarboxylic acid (TCA)-cycle intermediates such as succinate, malate and citrate. During hypoxia, the concentration of free amino acids increased in shoots and roots. Osmoprotectants such as proline and glycine betaine increased in concentrations as the external salinity was increased under hypoxic conditions. Conclusions The combination of high salinity and hypoxia caused an ionic imbalance and an increase of metabolites associated with osmotic stress and photorespiration, indicating a severe physiological and metabolic response under these conditions. Disturbed proline degradation in the roots induced an enhanced proline accumulation under hypoxia. The enhanced alanine fermentation combined with a partial flux of the TCA cycle might contribute to the tolerance of S. maritima to hypoxic conditions.
Collapse
Affiliation(s)
| | - Alain Bouchereau
- UMR1349 INRA, Agrocampus Ouest, Université de Rennes 1, 35653, Le Rheu, France
| | - Solenne Berardocco
- UMR1349 INRA, Agrocampus Ouest, Université de Rennes 1, 35653, Le Rheu, France
| | - Charlotte E. Seal
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK
| | - Timothy J. Flowers
- School of Life Sciences, University of Sussex, Falmer, Brighton BN7 1BD, UK
- School of Plant Biology (M084), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Christian Zörb
- University of Hohenheim, Institute of Crop Science, Quality of Plant Products, Emil-Wolff-Str. 25, 70599 Stuttgart, Germany
| |
Collapse
|
15
|
Abstract
This review deals with the adaptive mechanisms that plants can implement to cope with the challenge of salt stress. Plants tolerant to NaCl implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. These changes include increases in the root/canopy ratio and in the chlorophyll content in addition to changes in the leaf anatomy that ultimately lead to preventing leaf ion toxicity, thus maintaining the water status in order to limit water loss and protect the photosynthesis process. Furthermore, we deal with the effect of salt stress on photosynthesis and chlorophyll fluorescence and some of the mechanisms thought to protect the photosynthetic machinery, including the xanthophyll cycle, photorespiration pathway, and water-water cycle. Finally, we also provide an updated discussion on salt-induced oxidative stress at the subcellular level and its effect on the antioxidant machinery in both salt-tolerant and salt-sensitive plants. The aim is to extend our understanding of how salinity may affect the physiological characteristics of plants.
Collapse
|
16
|
Aymen S, Morena G, Vincenzo L, Laura P, Lorenza B, Abderrazak S, Chedly A, Karim BH. Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:607-619. [PMID: 32480490 DOI: 10.1071/fp15284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/06/2016] [Indexed: 05/25/2023]
Abstract
In this work we studied the effect of salinity (ranging from 50 to 500mM NaCl) on the physiological and the antioxidant responses of the local halophyte Limonium delicatulum Kuntze. We based our analysis on 12 biochemical assays that are commonly used to measure the antioxidant responses under stress such as oxidative stress markers, enzymes activities and polyphenolic compounds. Our aim was to study parameters that are strongly correlated with the growth response to salinity. Results showed two different growth responses depending on the concentration of NaCl in the medium. Under 50 to 200mM, the growth was stimulated before it decreased significantly at 300-500mM. L. delicatulum revealed a good aptitude to maintain photosynthetic machinery by increasing the concentrations of photosynthetic pigments, which is essential for the stabilisation of photosystems and the photosynthesis process under optimal NaCl concentration. Their breakdown at higher salinity decreased the photosynthetic performance of plants resulting in growth inhibition. Moreover, to reduce the damaging effect of oxidative stress and to tolerate the accumulation of salt ions, L. delicatulum induced the activities of their antioxidant enzymes more than their contents in polyphenolic compounds.
Collapse
Affiliation(s)
- Souid Aymen
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Gabriele Morena
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Longo Vincenzo
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Pucci Laura
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Bellani Lorenza
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Smaoui Abderrazak
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Abdelly Chedly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Ben Hamed Karim
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| |
Collapse
|
17
|
Wyrwicka A, Urbaniak M. The Different Physiological and Antioxidative Responses of Zucchini and Cucumber to Sewage Sludge Application. PLoS One 2016; 11:e0157782. [PMID: 27327659 PMCID: PMC4915677 DOI: 10.1371/journal.pone.0157782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/03/2016] [Indexed: 11/19/2022] Open
Abstract
The present study investigates the effect of soil amended with sewage sludge on oxidative changes in zucchini and cucumber plants (Cucurbitaceae) and the consequent activation of their antioxidative systems and detoxification mechanisms. The plants were grown in pots containing soil amended with three concentrations of sewage sludge (1.8 g, 5.4 g and 10.8 g per pot), while controls were potted with vegetable soil. The activities of three antioxidative enzymes, ascorbate peroxidase (APx), catalase (CAT) and guaiacol peroxidase (POx), were assessed, as well as of the detoxifying enzyme S-glutathione transferase (GST). Lipid peroxidation was evaluated by measuring the extent of oxidative damage; α-tocopherol content, the main lipophilic antioxidant, was also measured. Visible symptoms of leaf blade damage after sewage sludge application occurred only on the zucchini plants. The zucchini and cucumber plants showed a range of enzymatic antioxidant responses to sewage sludge application. While APx and POx activities increased significantly with increasing sludge concentration in the zucchini plants, they decreased in the cucumber plants. Moreover, although the activity of these enzymes increased gradually with increasing doses of sewage sludge, these levels fell at the highest dose. An inverse relationship between peroxidases activity and CAT activity was observed in both investigated plant species. In contrast, although GST activity increased progressively with sludge concentration in both the zucchini and cucumber leaves, the increase in GST activity was greater in the zucchini plants, being visible at the lowest dose used. The results indicate that signs of sewage sludge toxicity were greater in zucchini than cucumber, and its defense reactions were mainly associated with increases in APx, POx and GST activity.
Collapse
Affiliation(s)
- Anna Wyrwicka
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Plant Physiology and Biochemistry, Lodz, Poland
| | - Magdalena Urbaniak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Applied Ecology, Lodz, Poland
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
18
|
Mohamed E, Matsuda R, El-Khatib AA, Takechi K, Takano H, Takio S. Characterization of the superoxide dismutase genes of the halophyte Suaeda maritima in Japan and Egypt. PLANT CELL REPORTS 2015; 34:2099-110. [PMID: 26267391 DOI: 10.1007/s00299-015-1854-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 07/29/2015] [Indexed: 05/26/2023]
Abstract
Suaeda maritima varieties native to Japan and Egypt were cultured under aseptic conditions. The varieties differed in genetic distance but exhibited similar expression profiles of superoxide dismutase isozyme genes. The expression characteristics of superoxide dismutase (SOD; EC 1.15.1.1) isozyme genes from halophytic Suaeda marit ima plants native to Japan and Egypt were analyzed using young plants grown under aseptic conditions. A phylogenetic tree based on internal transcribed spacer sequences suggested that Egyptian S. maritima is related to European and India S. maritima, while Japanese S. maritima belongs to a separate clade. An in-gel SOD activity staining assay revealed that leaves from both the Egyptian and Japanese varieties showed high levels of CuZn-SOD and Fe-SOD activity, but no Mn-SOD activity; conversely, stems from both varieties showed Mn-SOD activity as well as other SOD isozyme activities. In Japanese S. maritima leaves, SOD activity was increased by incubation in growth medium containing 400 mM NaCl, while Egyptian S. maritima leaves showed elevated SOD activity in the absence of high salt. Genes encoding Mn-SOD and Fe-SOD were isolated from both plant types. RT-PCR analysis revealed that all SOD isozyme-encoding genes were expressed at the same levels in leaves from both plant types grown in normal or high-salt medium. In contrast, the expression of genes encoding choline monooxygenase and betaine aldehyde dehydrogenase, which are involved in betacyanin biosynthesis, was increased in high-salt medium. In leaves of Japanese S. maritima plants, Fe deficiency without high salt exposure preferentially decreased Fe-SOD activity. On the other hand, Fe deficiency with high salt exposure decreased not only Fe-SOD activity but also CuZn-SOD activity, suggesting that Fe availability is involved in the up-regulation of SOD isozymes mediating salt tolerance.
Collapse
Affiliation(s)
- Elsayed Mohamed
- Center for Marine Environment Studies, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
- Faculty of Science, Al-Azhar University, Assuit, Egypt
| | - Ryuya Matsuda
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | | | - Katsuaki Takechi
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Hiroyoshi Takano
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan
| | - Susumu Takio
- Center for Marine Environment Studies, Kumamoto University, Kurokami, Kumamoto, 860-8555, Japan.
| |
Collapse
|
19
|
Acosta-Motos JR, Diaz-Vivancos P, Álvarez S, Fernández-García N, Sanchez-Blanco MJ, Hernández JA. Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. PLANTA 2015; 242:829-46. [PMID: 25976265 DOI: 10.1007/s00425-015-2315-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/30/2015] [Indexed: 05/07/2023]
Abstract
We studied the response of Eugenia myrtifolia L. plants, an ornamental shrub native to tropical and subtropical areas, to salt stress in order to facilitate the use of these plants in Mediterranean areas for landscaping. E. myrtifolia plants implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. Furthermore, the post-recovery period seems to be detected by Eugenia plants as a new stress situation. Different physiological and biochemical changes in Eugenia myrtifolia L. plants after being subjected to NaCl stress for up to 30 days (Phase I) and after recovery from salinity (Phase II) were studied. Eugenia plants proved to be tolerant to NaCl concentrations between 44 and 88 mM, displaying a series of adaptative mechanisms to cope with salt-stress, including the accumulation of toxic ions in roots. Plants increased their root/shoot ratio and decreased their leaf area, leaf water potential and stomatal conductance in order to limit water loss. In addition, they displayed different strategies to protect the photosynthetic machinery, including the limited accumulation of toxic ions in leaves, increase in chlorophyll content, changes in chlorophyll fluorescence parameters, leaf anatomy and antioxidant defence mechanisms. Anatomical modifications in leaves, including an increase in palisade parenchyma and intercellular spaces and decrease in spongy parenchyma, served to facilitate CO2 diffusion in a situation of reduced stomatal aperture. Salinity produced oxidative stress in Eugenia plants as evidenced by oxidative stress parameters values and a reduction in APX and ASC levels. Nevertheless, SOD and GSH contents increased. The post-recovery period is detected as a new stress situation, as observed through effects on plant growth and alterations in chlorophyll fluorescence and oxidative stress parameters.
Collapse
Affiliation(s)
- José-Ramón Acosta-Motos
- Irrigation Department, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, 30100, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Higashi Y, Takechi K, Takano H, Takio S. Maintenance of Normal Stress Tolerance in the Moss Physcomitrella patens Lacking Chloroplastic CuZn-Superoxide Dismutase. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.65064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Talei D, Valdiani A, Rafii MY, Maziah M. Proteomic analysis of the salt-responsive leaf and root proteins in the anticancer plant Andrographis paniculata Nees. PLoS One 2014; 9:e112907. [PMID: 25423252 PMCID: PMC4244106 DOI: 10.1371/journal.pone.0112907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/16/2014] [Indexed: 11/18/2022] Open
Abstract
Separation of proteins based on the physicochemical properties with different molecular weight and isoelectric points would be more accurate. In the current research, the 45-day-old seedlings were treated with 0 (control) and 12 dS m(-1) of sodium chloride in the hydroponic system. After 15 days of salt exposure, the total protein of the fresh leaves and roots was extracted and analyzed using two-dimensional electrophoresis system (2-DE). The analysis led to the detection of 32 induced proteins (19 proteins in leaf and 13 proteins in the root) as well as 12 upregulated proteins (four proteins in leaf and eight proteins in the root) in the salt-treated plants. Of the 44 detected proteins, 12 were sequenced, and three of them matched with superoxide dismutase, ascorbate peroxidase and ribulose-1, 5-bisphosphate oxygenase whereas the rest remained unknown. The three known proteins associate with plants response to environmental stresses and could represent the general stress proteins in the present study too. In addition, the proteomic feedback of different accessions of A. paniculata to salt stress can potentially be used to breed salt-tolerant varieties of the herb.
Collapse
Affiliation(s)
- Daryush Talei
- Medicinal Plants Research Center, Shahed University, Tehran, Iran
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
| | - Alireza Valdiani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
| | - Mohd Yusop Rafii
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
| | - Mahmood Maziah
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
- Institute of Tropical Agriculture, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor DE, Malaysia
| |
Collapse
|
22
|
Ikbal FE, Hernández JA, Barba-Espín G, Koussa T, Aziz A, Faize M, Diaz-Vivancos P. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:779-88. [PMID: 24877669 DOI: 10.1016/j.jplph.2014.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/20/2014] [Accepted: 02/21/2014] [Indexed: 05/02/2023]
Abstract
The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages.
Collapse
Affiliation(s)
- Fatima Ezzohra Ikbal
- Laboratoire Biotechnologies Végétales, Ecologie et Valorisation des Ecosystèmes, Faculté des Sciences, Université Chouaib Doukkali, 24000 El Jadida, Morocco
| | - José Antonio Hernández
- Group of Fruit Trees Biotechnology, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia E-30100, Spain
| | - Gregorio Barba-Espín
- Group of Fruit Trees Biotechnology, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia E-30100, Spain
| | - Tayeb Koussa
- Laboratoire Biotechnologies Végétales, Ecologie et Valorisation des Ecosystèmes, Faculté des Sciences, Université Chouaib Doukkali, 24000 El Jadida, Morocco
| | - Aziz Aziz
- URVVC EA 4707, UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne, 51687 Reims Cedex 02, France
| | - Mohamed Faize
- Laboratoire Biotechnologies Végétales, Ecologie et Valorisation des Ecosystèmes, Faculté des Sciences, Université Chouaib Doukkali, 24000 El Jadida, Morocco
| | - Pedro Diaz-Vivancos
- Group of Fruit Trees Biotechnology, Dept. Plant Breeding, CEBAS-CSIC, Campus Universitario de Espinardo, P.O. Box 164, Murcia E-30100, Spain.
| |
Collapse
|
23
|
Sánchez-Fresneda R, Martínez-Esparza M, Maicas S, Argüelles JC, Valentín E. In Candida parapsilosis the ATC1 gene encodes for an acid trehalase involved in trehalose hydrolysis, stress resistance and virulence. PLoS One 2014; 9:e99113. [PMID: 24922533 PMCID: PMC4055668 DOI: 10.1371/journal.pone.0099113] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/09/2014] [Indexed: 11/19/2022] Open
Abstract
An ORF named CPAR2-208980 on contig 005809 was identified by screening a Candida parapsilosis genome data base. Its 67% identity with the acid trehalase sequence from C. albicans (ATC1) led us to designate it CpATC1. Homozygous mutants that lack acid trehalase activity were constructed by gene disruption at the two CpATC1 chromosomal alleles. Phenotypic characterization showed that atc1Δ null cells were unable to grow on exogenous trehalose as carbon source, and also displayed higher resistance to environmental challenges, such as saline exposure (1.2 M NaCl), heat shock (42°C) and both mild and severe oxidative stress (5 and 50 mM H2O2). Significant amounts of intracellular trehalose were specifically stored in response to the thermal upshift in both wild type and mutant strains. Analysis of their antioxidant activities revealed that catalase was only triggered in response to heat shock in atc1Δ cells, whereas glutathione reductase was activated upon mild oxidative stress in wild type and reintegrant strains, and in response to the whole set of stress treatments in the homozygous mutant. Furthermore, yeast cells with double CpATC1 deletion were significantly attenuated in non-mammalian infection models, suggesting that CpATC1 is required for the pathobiology of the fungus. Our results demonstrate the involvement of CpAtc1 protein in the physiological hydrolysis of external trehalose in C. parapsilosis, where it also plays a major role in stress resistance and virulence.
Collapse
Affiliation(s)
- Ruth Sánchez-Fresneda
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, and Regional Campus of International Excellence “Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo, Murcia, Spain
- Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, and Regional Campus of International Excellence “Campus Mare Nostrum", Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Sergi Maicas
- Departamento de Microbiología y Ecología, Facultad de Biología, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Juan-Carlos Argüelles
- Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Eulogio Valentín
- Departamento de Microbiología y Ecología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
24
|
Rehman RU, Zia M, Abbasi BH, Lu G, Chaudhary MF. Ascorbic acid and salicylic acid mitigate nacl stress in Caralluma tuberculata Calli. Appl Biochem Biotechnol 2014; 173:968-79. [PMID: 24744157 DOI: 10.1007/s12010-014-0890-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 03/24/2014] [Indexed: 01/03/2023]
Abstract
Plants exposed to salt stress undergo biochemical and morphological changes even at cellular level. Such changes also include activation of antioxidant enzymes to scavenge reactive oxygen species, while morphological changes are determined as deformation of membranes and organelles. Present investigation substantiates this phenomenon for Caralluma tuberculata calli when exposed to NaCl stress at different concentrations. Elevated levels of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) in NaCl-stressed calli dwindled upon application of non-enzymatic antioxidants; ascorbic acid (AA) and salicylic acid (SA). Many fold increased enzymes concentrations trimmed down even below as present in the control calli. Electron microscopic images accentuated several cellular changes upon NaCl stress such as plasmolysed plasma membrane, disruption of nuclear membrane, increased numbers of nucleoli, alteration in shape and lamellar membrane system in plastid, and increased number of plastoglobuli. The cells retrieved their normal structure upon exposure to non-enzymatic antioxidants. The results of the present experiments conclude that NaCl aggravate oxidative molecules that eventually alleviate antioxidant enzymatic system. Furthermore, the salt stress knocked down by applying ascorbic acid and salicylic acid manifested by normal enzyme level and restoration of cellular structure.
Collapse
Affiliation(s)
- Riaz Ur Rehman
- Horticulture and Floriculture Institute, Government of Punjab, Rawalpindi, Pakistan
| | | | | | | | | |
Collapse
|
25
|
Parvin S, Lee OR, Sathiyaraj G, Khorolragchaa A, Kim YJ, Yang DC. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene 2014; 537:70-8. [PMID: 24365592 DOI: 10.1016/j.gene.2013.12.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 01/28/2023]
Abstract
Protective effects of exogenous spermidine (Spd), activity of antioxygenic enzymes, and levels of free radicals in a well-known medicinal plant, Panax ginseng was examined. Seedlings grown in salinized nutrient solution (150 mM NaCl) for 7d exhibited reduced relative water content, plant growth, increased free radicals, and showing elevated lipid peroxidation. Application of Spd (0.01, 0.1, and 1mM) to the salinized nutrient solution showed increased plant growth by preventing chlorophyll degradation and increasing PA levels, as well as antioxidant enzymes such as CAT, APX, and GPX activity in the seedlings of ginseng. During salinity stress, Spd was effective for lowering the accumulation of putrescine (Put), with a significant increase in the spermidine (Spd) and spermine (Spm) levels in the ginseng seedlings. A decline in the Put level ran parallel to the higher accumulation of proline (Pro), and exogenous Spd also resulted in the alleviation of Pro content under salinity. Hydrogen peroxide (H2O2) and superoxide (O2(-)) production rates were also reduced in stressed plants after Spd treatment. Furthermore, the combined effect of Spd and salt led to a significant increase in diamine oxidase (DAO), and subsequent decline in polyamine oxidase (PAO). These positive effects were observed in 0.1 and 1mM Spd concentrations, but a lower concentration (0.01 mM) had a very limited effect. In summary, application of exogenous Spd could enhance salt tolerance of P. ginseng by enhancing the activities of enzyme scavenging system, which influence the intensity of oxidative stress.
Collapse
Affiliation(s)
- Shohana Parvin
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Suwon 446-701, South Korea
| | - Ok Ran Lee
- Applied Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju 500-757 South Korea.
| | - Gayathri Sathiyaraj
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Suwon 446-701, South Korea
| | - Altanzul Khorolragchaa
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Suwon 446-701, South Korea
| | - Yu-Jin Kim
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Suwon 446-701, South Korea
| | - Deok-Chun Yang
- Department of Oriental Medicinal Materials and Processing, College of Life Science, Kyung Hee University, Suwon 446-701, South Korea.
| |
Collapse
|
26
|
Singh PK, Kumar P, Tandon PK. Soil Sodicity Alters Antioxidative Enzymes, Photosynthetic Pigments, Water Content and Essential Oil Quality of Fennel (Foeniculum vulgare Mill.). ACTA ACUST UNITED AC 2014. [DOI: 10.3923/rjsb.2014.1.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Diaz-Vivancos P, Faize M, Barba-Espin G, Faize L, Petri C, Hernández JA, Burgos L. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:976-85. [PMID: 23750614 DOI: 10.1111/pbi.12090] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 05/23/2023]
Abstract
To fortify the antioxidant capacity of plum plants, genes encoding cytosolic antioxidants ascorbate peroxidase (cytapx) and Cu/Zn-superoxide dismutase (cytsod) were genetically engineered in these plants. Transgenic plum plants expressing the cytsod and/or cytapx genes in cytosol have been generated under the control of the CaMV35S promoter. High levels of cytsod and cytapx gene transcripts suggested that the transgenes were constitutively and functionally expressed. We examined the potential functions of cytSOD and cytAPX in in vitro plum plants against salt stress (100 mm NaCl). Several transgenic plantlets expressing cytsod and/or cytapx showed an enhanced tolerance to salt stress, mainly lines C5-5 and J8-1 (expressing several copies of sod and apx, respectively). Transformation as well as NaCl treatments influenced the antioxidative metabolism of plum plantlets, including enzymatic and nonenzymatic antioxidants. Transgenic plantlets exhibited higher contents of nonenzymatic antioxidants glutathione and ascorbate than nontransformed control, which correlated with lower accumulation of hydrogen peroxide. Overall, our results suggest that transformation of plum plants with genes encoding antioxidant enzymes enhances the tolerance to salinity.
Collapse
Affiliation(s)
- Pedro Diaz-Vivancos
- Department of Plant Breeding, Group of Fruit Tree Biotechnology, CEBAS-CSIC, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Lee MH, Cho EJ, Wi SG, Bae H, Kim JE, Cho JY, Lee S, Kim JH, Chung BY. Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:325-35. [PMID: 23811121 DOI: 10.1016/j.plaphy.2013.05.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 05/28/2013] [Indexed: 05/23/2023]
Abstract
Salinization plays a primary role in soil degradation and reduced agricultural productivity. We observed that salt stress reversed photosynthesis and reactive oxygen scavenging responses in leaves or roots of two rice cultivars, a salt-tolerant cultivar Pokkali and a salt-sensitive cultivar IR-29. Salt treatment (100 mM NaCl) on IR-29 decreased the maximum photochemical efficiency (Fv/Fm) and the photochemical quenching coefficient (qP), thereby inhibiting photosynthetic activity. By contrast, the salt treatment on Pokkali had the converse effect on Fv/Fm and qP, while increasing the nonphotochemical quenching coefficient (NPQ), thereby favoring photosynthetic activity. Notably, chloroplast or root cells in Pokkali maintained their ultrastructures largely intact under the salt stress, but, IR-29 showed severe disintegration of existing grana stacks, increase of plastoglobuli, and swelling of thylakoidal membranes in addition to collapsed vascular region in adventitious roots. Pokkali is known to have higher hydrogen peroxide (H2O2)-scavenging enzyme activities in non-treated seedlings, including ascorbate peroxidase, catalase, and peroxidase activities. However, these enzymatic activities were induced to a greater extent in IR-29 by the salt stress. While the level of endogenous H2O2 was lower in Pokkali than in IR-29, it was reversed upon the salt treatment. Nevertheless, the decreased amount of H2O2 in IR-29 upon the salt stress didn't result in a high scavenging activity of total cell extracts for H2O2, as well as O2(·-) and (·)OH species. The present study suggests that the tolerance to the moderate salinity in Pokkali derives largely from the constitutively maintained antioxidant enzymatic activities as well as the induced antioxidant enzyme system.
Collapse
Affiliation(s)
- Min Hee Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Gunmgu-gil, Jeongeup-si, Jeollabuk-do 580-185, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Higashi Y, Takechi K, Takano H, Takio S. Involvement of MicroRNA in Copper Deficiency-Induced Repression of Chloroplastic CuZn-Superoxide Dismutase Genes in the Moss Physcomitrella patens. ACTA ACUST UNITED AC 2013; 54:1345-55. [DOI: 10.1093/pcp/pct084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Duarte B, Santos D, Marques JC, Caçador I. Ecophysiological adaptations of two halophytes to salt stress: photosynthesis, PS II photochemistry and anti-oxidant feedback--implications for resilience in climate change. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:178-88. [PMID: 23579080 DOI: 10.1016/j.plaphy.2013.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/07/2013] [Indexed: 05/21/2023]
Abstract
Halimione portulacoides and Sarcocornia fruticosa commonly exhibit a reddish coloration especially in high evaporation periods, due to betacyanin production in response to stress. Although sharing the same area in salt marshes, they present different strategies to overcome salinity stress. While S. fruticosa present a dilution strategy, increasing succulence, H. portulacoides appears to have developed an ionic compartmentalization strategy. Nevertheless, there's still a decrease in the photosynthetic activity in different extents. While in S. fruticosa, the impairment of photosynthetic activity is due to a decrease in the flow from the electron transport chain to the quinone pool; in H. portulacoides the process is affected far more early, with high amounts of energy dissipated at the PSII light harvesting centers. This photosynthetic impairment leads to energy accumulation and consequently to the production of reactive oxygen species (ROS). SOD was particularly active in stressed individuals, although this increment is rather more significant in S. fruticosa than in H. portulacoides suggesting that H. portulacoides may have a maximum salt concentration at which can sustain cellular balance between ROS production and scavenging. These different ecophysiological responses have great importance while evaluating the impacts climate change driven increase of sediment salinity on halophyte physiology and on the marsh community and ecosystem services.
Collapse
Affiliation(s)
- B Duarte
- Centre of Oceanography of the Faculty of Sciences of the University of Lisbon (CO), Campo Grande, 1749-016 Lisbon, Portugal.
| | - D Santos
- Centre of Oceanography of the Faculty of Sciences of the University of Lisbon (CO), Campo Grande, 1749-016 Lisbon, Portugal
| | - J C Marques
- Institute of Marine Research - Marine and Environment Research Centre (IMAR-CMA), c/o Department of Zoology, Faculty of Sciences and Technology, University of Coimbra, 3000 Coimbra, Portugal
| | - I Caçador
- Centre of Oceanography of the Faculty of Sciences of the University of Lisbon (CO), Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
31
|
Faize M, Faize L, Petri C, Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Koussa T, Rifai LA, Burgos L, Hernandez JA. Cu/Zn superoxide dismutase and ascorbate peroxidase enhance in vitro shoot multiplication in transgenic plum. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:625-32. [PMID: 23485261 DOI: 10.1016/j.jplph.2012.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
In this study we examined the role of antioxidant metabolism in in vitro shoot multiplication. We generated transgenic plum plantlets overexpressing the cytsod and cytapx genes in cytosol under the control of the constitutive promoter CaMV35S. Three transgenic lines with up-regulated sod at transcriptional levels that showed silenced cytapx expression displayed an elevated in vitro multiplication rate. By contrast, a transgenic line harboring several copies of cytapx and with elevated APX enzymatic activity did not show any improvement in plant vigor, measured as the number of axillary shoots and shoot length. All of the lines with elevated micropropagation ability exhibited intensive H2O2 accumulation, monitored by 3,3'-diaminobenzidine (DAB) staining as well as by colorimetric analysis, providing direct in vitro evidence of the role of H2O2 and antioxidant genes in in vitro shoot multiplication.
Collapse
Affiliation(s)
- Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, 24000 El Jadida, Morocco
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Accelerated Reactive Oxygen Scavenging System and Membrane Integrity of Two Panicum Species Varying in Salt Tolerance. Cell Biochem Biophys 2013; 67:885-92. [DOI: 10.1007/s12013-013-9576-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Li L, Zhang Y, Luo J, Korpelainen H, Li C. Sex-specific responses of Populus yunnanensis exposed to elevated CO2 and salinity. PHYSIOLOGIA PLANTARUM 2013; 147:477-88. [PMID: 22897484 DOI: 10.1111/j.1399-3054.2012.01676.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 05/07/2023]
Abstract
Populus yunnanensis Dode., a native dioecious woody plant in southwestern China, was employed as a model species to study sex-specific morphological, physiological and biochemical responses to elevated CO2 and salinity. To investigate the effects of elevated CO2 , salinity and their combination, the cuttings were exposed to two CO2 regimes (ambient CO2 and double ambient CO2 ) and two salt treatments in growth chambers. Males exhibited greater downregulation of net photosynthesis rate (Anet ) and carboxylation efficiency (CE) than females at elevated CO2 , whereas these sexual differences were lessened under salt stress. On the other hand, salinity induced a higher decrease in Anet and CE, more growth inhibition and leaf Cl(-) accumulation and more damage to cell organelles in females than in males, whereas the sexual differences in photosynthesis and growth were lessened at elevated CO2 . Moreover, elevated CO2 exacerbated membrane lipid peroxidation and organelle damage in females but not in males under salt stress. Our results indicated that: (1) females are more sensitive and suffer from greater negative effects than do males under salt stress, and elevated CO2 lessens the sexual differences in photosynthesis and growth under salt stress; (2) elevated CO2 tends to aggravate the negative effects of salinity in females; and (3) sex-specific reactions under the combination of elevated CO2 and salinity are distinct from single-stress responses. Therefore, these results provide evidence for different adaptive responses between plants of different sexes exposed to elevated CO2 and salinity.
Collapse
Affiliation(s)
- Ling Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | | | | | | |
Collapse
|
34
|
SAIDANA DHOUHA, BOUSSAADA OLFA, AYED FATEN, MAHJOUB MOHAMEDALI, MIGHRI ZINE, HELAL AHMEDNOUREDDINE. THEIN VITROFREE RADICAL-SCAVENGING AND ANTIFUNGAL ACTIVITIES OF THE MEDICINAL HERBLIMONIUM ECHIOIDESL. GROWING WILD IN TUNISIA. J FOOD PROCESS PRES 2012. [DOI: 10.1111/j.1745-4549.2012.00673.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Hu L, Li H, Pang H, Fu J. Responses of antioxidant gene, protein and enzymes to salinity stress in two genotypes of perennial ryegrass (Lolium perenne) differing in salt tolerance. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:146-56. [PMID: 22088275 DOI: 10.1016/j.jplph.2011.08.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/23/2011] [Accepted: 08/31/2011] [Indexed: 05/19/2023]
Abstract
Salinity could damage cellular membranes through overproduction of reactive oxygen species (ROS), while antioxidant capacities play a vital role in protecting plants from salinity caused oxidative damages. The objective of this study was to investigate the toxic effect of salt on the antioxidant enzyme activities, isoforms and gene expressions in perennial ryegrass (Lolium perenne L.). Salt-tolerant 'Quickstart II' and salt-sensitive 'DP1' were subjected to 0 and 250 mM NaCl for 12 d. Salt stress increased the content of lipid peroxidation (MDA), electrolyte leakage (EL) and hydrogen peroxide (H₂O₂), to a greater extent in salt-sensitive genotype. Salt-stressed plant leaves exhibited a greater activity of superoxide dismutase (SOD, EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11) at 4d after treatment (DAT), but a lower level of enzyme activity at 8 and 12d, when compared to the control. Catalase (CAT, EC 1.11.1.6) activity was greater at 4 DAT and thereafter decreased in salt tolerant genotype relative to the control, whereas lower than the control during whole experiment period for salt-sensitive genotype. There were different patterns of five isoforms of SOD, POD and two isoforms of APX between two genotypes. Antioxidant gene expression was positively related to isoenzymatic and total enzymatic activities during 12-d salt-treated leaves of two genotypes, with a relatively higher level in salt-tolerant genotype. Thus, salt tolerance could be related to the constitutive/induced antioxidant gene, leading to more efficient enzyme stimulation and protection in perennial ryegrass.
Collapse
Affiliation(s)
- Longxing Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Science, Wuhan City, Hubei 430074, PR China
| | | | | | | |
Collapse
|
36
|
Barba-Espín G, Clemente-Moreno MJ, Alvarez S, García-Legaz MF, Hernández JA, Díaz-Vivancos P. Salicylic acid negatively affects the response to salt stress in pea plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:909-17. [PMID: 21973182 DOI: 10.1111/j.1438-8677.2011.00461.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We studied the effect of salicylic acid (SA) treatment on the response of pea plants to salinity. Sodium chloride (NaCl)-induced damage to leaves was increased by SA, which was correlated with a reduction in plant growth. The content of reduced ascorbate and glutathione in leaves of salt-treated plants increased in response to SA, although accumulation of the respective oxidised forms occurred. An increase in hydrogen peroxide also occurred in leaves of salt-exposed plants treated with SA. In the absence of NaCl, SA increased ascorbate peroxidase (APX; 100 μm) and glutathione-S transferase (GST; 50 μm) activities and increased catalase (CAT) activity in a concentration-dependent manner. Salinity decreased glutathione reductase (GR) activity, but increased GST and CAT activity. In salt-stressed plants, SA also produced changes in antioxidative enzymes: 100 μm SA decreased APX but increased GST. Finally, a concentration-dependent increase in superoxide dismutase (SOD) activity was induced by SA treatment in salt-stressed plants. Induction of PR-1b was observed in NaCl-stressed plants treated with SA. The treatment with SA, as well as the interaction between salinity and SA treatment, had a significant effect on PsMAPK3 expression. The expression of PsMAPK3 was not altered by 70 mm NaCl, but was statistically higher in the absence than in the presence of SA. Overall, the results show that SA treatment negatively affected the response of pea plants to NaCl, and this response correlated with an imbalance in antioxidant metabolism. The data also show that SA treatment could enhance the resistance of salt-stressed plants to possible opportunistic pathogen attack, as suggested by increased PR-1b gene expression.
Collapse
Affiliation(s)
- G Barba-Espín
- Grupo de Biotecnología de Frutales, Department of Mejora Vegetal, Campus Espinardo, Murcia, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Martí MC, Florez-Sarasa I, Camejo D, Ribas-Carbó M, Lázaro JJ, Sevilla F, Jiménez A. Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3863-74. [PMID: 21460385 PMCID: PMC3134343 DOI: 10.1093/jxb/err076] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/18/2011] [Accepted: 02/21/2011] [Indexed: 05/03/2023]
Abstract
Mitochondria play an essential role in reactive oxygen species (ROS) signal transduction in plants. Redox regulation is an essential feature of mitochondrial function, with thioredoxin (Trx), involved in disulphide/dithiol interchange, playing a prominent role. To explore the participation of mitochondrial PsTrxo1, Mn-superoxide dismutase (Mn-SOD), peroxiredoxin (PsPrxII F), and alternative oxidase (AOX) under salt stress, their transcriptional and protein levels were analysed in pea plants growing under 150 mM NaCl for a short and a long period. The activities of mitochondrial Mn-SOD and Trx together with the in vivo activities of the alternative pathway (AP) and the cytochrome pathway (CP) were also determined, combined with the characterization of the plant physiological status as well as the mitochondrial oxidative indicators. The analysis of protein and mRNA levels and activities revealed the importance of the post-transcriptional and post-translational regulation of these proteins in the response to salt stress. Increases in AOX protein amount correlated with increases in AP capacity, whereas in vivo AP activity was maintained under salt stress. Similarly, Mn-SOD activity was also maintained. Under all the stress treatments, photosynthesis, stomatal conductance, and CP activity were decreased although the oxidative stress in leaves was only moderate. However, an increase in lipid peroxidation and protein oxidation was found in mitochondria isolated from leaves under the short-term salinity conditions. In addition, an increase in mitochondrial Trx activity was produced in response to the long-term NaCl treatment. The results support a role for PsTrxo1 as a component of the defence system induced by NaCl in pea mitochondria, providing the cell with a mechanism by which it can respond to changing environment protecting mitochondria from oxidative stress together with Mn-SOD, AOX, and PrxII F.
Collapse
Affiliation(s)
- María C. Martí
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, PO Box 164, E-30100 Murcia, Spain
| | - Igor Florez-Sarasa
- Department of Biology, Universitat de les Illes Balears, Carretera Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain
| | - Daymi Camejo
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, PO Box 164, E-30100 Murcia, Spain
| | - Miquel Ribas-Carbó
- Department of Biology, Universitat de les Illes Balears, Carretera Valldemossa Km 7.5, E-07122 Palma de Mallorca, Spain
| | - Juan J. Lázaro
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ-CSIC, PO Box 419, E-18080 Granada, Spain
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, PO Box 164, E-30100 Murcia, Spain
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, PO Box 164, E-30100 Murcia, Spain
| |
Collapse
|
38
|
Kim YS, Kim YH, Noh JR, Cho ES, Park JH, Son HY. Protective Effect of Korean Red Ginseng against Aflatoxin B1-Induced Hepatotoxicity in Rat. J Ginseng Res 2011; 35:243-9. [PMID: 23717067 PMCID: PMC3659521 DOI: 10.5142/jgr.2011.35.2.243] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 01/31/2011] [Accepted: 02/22/2011] [Indexed: 11/25/2022] Open
Abstract
Korean red ginseng (KRG), the steamed root of Panax ginseng Meyer, has a variety of biological properties, including anti-inflammatory, antioxidant and anticancer effects. Aflatoxin B1 (AFB1) produced by the Aspergillus spp. causes acute hepatotoxicity by lipid peroxidation and oxidative DNA damage, and induces liver carcinoma in humans and laboratory animals. This study was performed to examine the protective effects of KRG against hepatotoxicity induced by AFB1 using liver-specific serum marker analysis, histopathology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. In addition, to elucidate the possible mechanism of hepatoprotective effects, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde were analyzed. Rats were treated with 250 mg/kg of KRG (KRG group) or saline (AFB1 group) for 4 weeks and then received 150 μg/kg of AFB1 intraperitoneally for 3 days. Rats were sacrificed at 12 h, 24 h, 48 h, 72 h, or 1 wk after AFB1 treatment. In the KRG pre-treatment group, serum alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels were low, but superoxide dismutase, catalase, and glutathione peroxidase activities were high as compared to the AFB1 alone group. Histopathologically, AFB1 treatment induced necrosis and apoptosis in hepatocytes, and led to inflammatory cells infiltration in the liver. KRG pre-treatment ameliorated these changes. These results indicate that KRG may have protective effects against hepatotoxicity induced by AFB1 that involve the antioxidant properties of KRG.
Collapse
Affiliation(s)
- Yong-Seong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Korea
| | - Yong-Hoon Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Jung-Ran Noh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Eun-Sang Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Korea
| | - Jong-Ho Park
- College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Korea
| | - Hwa-Young Son
- College of Veterinary Medicine and Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|
39
|
Joseph B, Jini D. Development of Salt Stress-tolerant Plants by Gene Manipulation of Antioxidant Enzymes. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajar.2011.17.27] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Poiroux-Gonord F, Bidel LPR, Fanciullino AL, Gautier H, Lauri-Lopez F, Urban L. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12065-82. [PMID: 21067179 DOI: 10.1021/jf1037745] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fruits and vegetables (FAVs) are an important part of the human diet and a major source of biologically active substances such as vitamins and secondary metabolites. The consumption of FAVs remains globally insufficient, so it should be encouraged, and it may be useful to propose to consumers FAVs with enhanced concentrations in vitamins and secondary metabolites. There are basically two ways to reach this target: the genetic approach or the environmental approach. This paper provides a comprehensive review of the results that have been obtained so far through purely agronomic approaches and brings them into perspective by comparing them with the achievements of genetic approaches. Although agronomic approaches offer very good perspectives, the existence of variability of responses suggests that the current understanding of the way regulatory and metabolic pathways are controlled needs to be increased. For this purpose, more in-depth study of the interactions existing between factors (light and temperature, for instance, genetic factors × environmental factors), between processes (primary metabolism and ontogeny, for example), and between organs (as there is some evidence that photooxidative stress in leaves affects antioxidant metabolism in fruits) is proposed.
Collapse
Affiliation(s)
- Florine Poiroux-Gonord
- INRA - Centre de Corse, Unité "Génétique et Ecophysiologie de la Qualité des Agrumes", F-20230 San Giuliano, France
| | | | | | | | | | | |
Collapse
|
41
|
Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 2010; 30:161-75. [PMID: 20214435 DOI: 10.3109/07388550903524243] [Citation(s) in RCA: 501] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reactive oxygen species (ROS) are produced in plants as byproducts during many metabolic reactions, such as photosynthesis and respiration. Oxidative stress occurs when there is a serious imbalance between the production of ROS and antioxidant defense. Generation of ROS causes rapid cell damage by triggering a chain reaction. Cells have evolved an elaborate system of enzymatic and nonenzymatic antioxidants which help to scavenge these indigenously generated ROS. Various enzymes involved in ROS-scavenging have been manipulated, over expressed or downregulated to add to the present knowledge and understanding the role of the antioxidant systems. The present article reviews the manipulation of enzymatic and nonenzymatic antioxidants in plants to enhance the environmental stress tolerance and also throws light on ROS and redox signaling, calcium signaling, and ABA signaling.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Biochemistry laboratory, CRDT, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| | | | | | | | | |
Collapse
|
42
|
Chen F, Chen L, Zhao H, Korpelainen H, Li C. Sex-specific responses and tolerances of Populus cathayana to salinity. PHYSIOLOGIA PLANTARUM 2010; 140:163-73. [PMID: 20561244 DOI: 10.1111/j.1399-3054.2010.01393.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Responses of males and females to salinity were studied in order to reveal sex-specific adaptation and evolution in Populus cathayana Rehd cuttings. This dioecious tree species plays an important role in maintaining ecological stability and providing commercial raw material in southwest China. Female and male cuttings of P. cathayana were treated for about 1 month with 0, 75 and 150 mM NaCl. Plant growth traits, gas exchange parameters, chlorophyll pigments, intrinsic water use efficiency (WUEi), membrane system injuries, ion transport and ultrastructural morphology were assessed and compared between sexes. Salt stress caused less negative effects on the dry matter accumulation, growth rate of height, growth rate of stem base diameter, total number of leaves and photosynthetic abilities in males than in females. Relative electrolyte leakage increased more in females than in males under salinity stress. Soil salinity reduced the amounts of leaf chlorophyll a, chlorophyll b and total chlorophyll, and the chlorophyll a/b ratio more in females than in males. WUEi decreased in both sexes under salinity. Regarding the ultrastructural morphology, thylakoid swelling in chloroplasts and degrading structures in mitochondria were more frequent in females than in males. Moreover, females exhibited significantly higher Na(+) and Cl(-) concentrations in leaves and stems, but lower concentrations in roots than did males under salinity. In all, female cuttings of P. cathayana are more sensitive to salinity stress than males, which could be partially due to males having a better ability to restrain Na(+) transport from roots to shoots than do females.
Collapse
Affiliation(s)
- Fugui Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | | | | | | |
Collapse
|
43
|
Joseph B, Jini D. Insight into the Role of Antioxidant Enzymes for Salt Tolerance in Plants. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijb.2010.456.464] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Abraham G, Dhar DW. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport. PROTOPLASMA 2010; 245:105-111. [PMID: 20422236 DOI: 10.1007/s00709-010-0147-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/07/2010] [Indexed: 05/29/2023]
Abstract
Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.
Collapse
Affiliation(s)
- Gerard Abraham
- Centre for Conservation and Utilization of Blue Green Algae, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | | |
Collapse
|
45
|
Ortigosa SM, Díaz-Vivancos P, Clemente-Moreno MJ, Pintó-Marijuan M, Fleck I, Veramendi J, Santos M, Hernandez JA, Torné JM. Oxidative stress induced in tobacco leaves by chloroplast over-expression of maize plastidial transglutaminase. PLANTA 2010; 232:593-605. [PMID: 20480177 DOI: 10.1007/s00425-010-1185-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/22/2010] [Indexed: 05/24/2023]
Abstract
As part of a project aiming to characterize the role of maize plastidial transglutaminase (chlTGZ) in the plant chloroplast, this paper presents results on stress induced by continuous chlTGZ over-expression in transplastomic tobacco leaves. Thylakoid remodelling induced by chlTGZ over-expression in young leaves of tobacco chloroplasts has already been reported (Ioannidis et al. in Biochem Biophys Acta 1787:1215-1222, 2009). In the present work, we determined the induced alterations in the photosynthetic apparatus, in the chloroplast ultrastructure, and, particularly, the activation of oxidative and antioxidative metabolism pathways, regarding ageing and functionality of the tobacco transformed plants. The results revealed that photochemistry impairment and oxidative stress increased with transplastomic leaf age. The decrease in pigment levels in the transformed leaves was accompanied by an increase in H(2)O(2) and lipid peroxidation. The rise in H(2)O(2) correlated with a decrease in catalase activity, whereas there was an increase in peroxidase activity. In addition, chlTGZ over-expression lead to a drop in reduced glutathione, while Fe-superoxide dismutase activity was higher in transformed than in wild-type leaves. Together with the induced oxidative stress, the over-expressed chlTGZ protein accumulated progressively in chloroplast inclusion bodies. These traits were accompanied by thylakoid scattering, membrane degradation and reduction of thylakoid interconnections. Consequently, the electron transport between photosystems decrease in the old leaves. In spite of these alterations, transplastomic plants can be maintained and reproduced in vitro. These results are discussed in line with chlTGZ involvement in chloroplast functionality.
Collapse
Affiliation(s)
- Susana M Ortigosa
- Instituto de Agrobiotecnología, Universidad Pública de Navarra-CSIC-Gobierno de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Soleimanzadeh. Effect of Potassium Levels on Antioxidant Enzymes and Malondialdehyde Content under Drought Stress in Sunflower (Helianthus annuus L.). ACTA ACUST UNITED AC 2010. [DOI: 10.3844/ajabssp.2010.56.61] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Van Aken O, Zhang B, Carrie C, Uggalla V, Paynter E, Giraud E, Whelan J. Defining the mitochondrial stress response in Arabidopsis thaliana. MOLECULAR PLANT 2009; 2:1310-24. [PMID: 19995732 DOI: 10.1093/mp/ssp053] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To obtain a global overview of how mitochondria respond to stress, we aimed to define the plant mitochondrial stress response (MSR). By combining a set of 1196 Arabidopsis thaliana genes that putatively encode mitochondrial proteins with 16 microarray experiments on stress-related conditions, 45 nuclear encoded genes were defined as widely stress-responsive. Using green fluorescent protein (GFP) fusion assays, the mitochondrial targeting of a large number of these proteins was tested, confirming in total 26 proteins as mitochondrially targeted. Several of these proteins were observed to be dual targeted to mitochondria and plastids, including the small heat shock proteins sHSP23.5 and sHSP23.6. In addition to the well defined stress components of mitochondria, such as alternative oxidases, nicotinamide adenine dinucleotide (NAD(P)H) dehydrogenases, and heat shock proteins, a variety of other proteins, many with unknown function, were identified. The mitochondrial carrier protein family was over-represented in the stress-responsive genes, suggesting that stress induces altered needs for metabolite transport across the mitochondrial inner membrane. Although the genes encoding many of these proteins contain common cis-acting regulatory elements, it was apparent that a number of distinct regulatory processes or signals likely triggered the MSR. Therefore, these genes provide new model systems to study mitochondrial retrograde regulation, in addition to the widely used alternative oxidase model. Additionally, as changes in proteins responsive to stress did not correlate well with changes at a transcript level, it suggests that post-transcriptional mechanisms also play an important role in defining the MSR.
Collapse
Affiliation(s)
- Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316, University of Western Australia, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Melgar JC, Guidi L, Remorini D, Agati G, Degl'innocenti E, Castelli S, Camilla Baratto M, Faraloni C, Tattini M. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance. TREE PHYSIOLOGY 2009; 29:1187-1198. [PMID: 19608597 DOI: 10.1093/treephys/tpp047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interactive effects of root-zone salinity and sunlight on leaf biochemistry, with special emphasis on antioxidant defences, were analysed in Olea europaea L. cv. Allora, during the summer period. Plants were grown outside under 15% (shade plants) or 100% sunlight (sun plants) and supplied with 0 or 125 mM NaCl. The following measurements were performed: (1) the contribution of ions and soluble carbohydrates to osmotic potentials; (2) the photosystem II (PSII) photochemistry and the photosynthetic pigment concentration; (3) the concentration and the tissue-specific distribution of leaf flavonoids; (4) the activity of antioxidant enzymes; and (5) the leaf oxidative damage. The concentrations of Na(+) and Cl(-) were significantly greater in sun than in shade leaves, as also observed for the concentration of the 'antioxidant' sugar-alcohol mannitol. The de-epoxidation state of violaxanthin-cycle pigments increased in response to salinity stress in sun leaves. This finding agrees with a greater maximal PSII photochemistry (F(v)/F(m)) at midday, detected in salt-treated than in control plants, growing in full sunshine. By contrast, salt-treated plants in the shade suffered from midday depression in F(v)/F(m) to a greater degree than that observed in control plants. The high concentration of violaxanthin-cycle pigments in sun leaves suggests that zeaxanthin may protect the chloroplast from photo-oxidative damage, rather than dissipating excess excitation energy via non-photochemical quenching mechanisms. Dihydroxy B-ring-substituted flavonoid glycosides accumulate greatly in the mesophyll, not only in the epidermal cells, in response to high sunlight. The activity of antioxidant enzymes varied little because of sunlight irradiance, but declined sharply in response to high salinity in shade leaves. Interestingly, control and particularly salt-treated plants in the shade underwent greater oxidative damage than their sunny counterparts. These findings, which conform to the evolution of O. europaea in sunny environments, suggest that under partial shading, the antioxidant defence system may be ineffective to counter salt-induced oxidative damage.
Collapse
Affiliation(s)
- Juan Carlos Melgar
- Departamento de Agronomia, Universidad de Córdoba, Edificio Celestino Mutis, Campus Universitario de Rabanales, 14071 Córdoba, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wen XP, Ban Y, Inoue H, Matsuda N, Moriguchi T. Spermidine levels are implicated in heavy metal tolerance in a spermidine synthase overexpressing transgenic European pear by exerting antioxidant activities. Transgenic Res 2009; 19:91-103. [DOI: 10.1007/s11248-009-9296-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 06/08/2009] [Indexed: 01/28/2023]
|
50
|
Rubio MC, Bustos-Sanmamed P, Clemente MR, Becana M. Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. THE NEW PHYTOLOGIST 2009; 181:851-859. [PMID: 19140933 DOI: 10.1111/j.1469-8137.2008.02718.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salt stress negatively affects many physiological processes in plants. Some of these effects may involve the oxidative damage of cellular components, which can be promoted by reactive oxygen species and prevented by antioxidants. The protective role of antioxidants was investigated in Lotus japonicus exposed to two salinization protocols: S1 (150 mM NaCl for 7 d) and S2 (50, 100 and 150 mM NaCl, each concentration for 6 d). Several markers of salt stress were measured and the expression of antioxidant genes was analyzed using quantitative reverse transcription–polymerase chain reaction and, in some cases, immunoblots and enzyme activity assays. Leaves of S1 plants suffered from mild osmotic stress, accumulated proline but noNa+, and showed induction of many superoxide dismutase and glutathione peroxidase genes. Leaves of S2 plants showed increases in Na+ and Ca2+, decreases in K+, and accumulation of proline and malondialdehyde. In leaves and roots of S1 and S2 plants, the mRNA, protein and activity levels of the ascorbate-glutathione enzymes remained constant, with a few exceptions. Notably, there was consistent up-regulation of the gene encoding cytosolic dehydroascorbate reductase, and this was possibly related to its role in ascorbate recycling in the apoplast. The overall results indicate that L. japonicus is more tolerant to salt stress than other legumes, which can be attributed to the capacity of the plant to prevent Na+reaching the shoot and to activate antioxidant defenses.
Collapse
Affiliation(s)
- Maria C Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Pilar Bustos-Sanmamed
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Maria R Clemente
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|