1
|
Wright WJ, Dong Y. Psychostimulant-Induced Adaptations in Nucleus Accumbens Glutamatergic Transmission. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a039255. [PMID: 31964644 DOI: 10.1101/cshperspect.a039255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carrying different aspects of emotional and motivational signals, glutamatergic synaptic projections from multiple limbic and paralimbic brain regions converge to the nucleus accumbens (NAc), in which these arousing signals are processed and prioritized for behavioral output. In animal models of drug addiction, some key drug-induced alterations at NAc glutamatergic synapses underlie important cellular and circuit mechanisms that promote subsequent drug taking, seeking, and relapse. With the focus of cocaine, we review changes at NAc glutamatergic synapses that occur after different drug procedures and abstinence durations, and the behavioral impact of these changes.
Collapse
Affiliation(s)
- William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
2
|
Mao LM, Wang JQ. Upregulation of AMPA receptor GluA1 phosphorylation by blocking adenosine A 1 receptors in the male rat forebrain. Brain Behav 2020; 10:e01543. [PMID: 31994358 PMCID: PMC7066349 DOI: 10.1002/brb3.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 01/04/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The adenosine A1 receptor is a Gαi/o protein-coupled receptor and inhibits upon activation cAMP formation and protein kinase A (PKA) activity. As a widely expressed receptor in the mammalian brain, A1 receptors are implicated in the modulation of a variety of neuronal and synaptic activities. In this study, we investigated the role of A1 receptors in the regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult rat brain in vivo. METHODS Adult male Wistar rats were used in this study. After a systemic injection of the A1 antagonist DPCPX, rats were sacrificed and several forebrain regions were collected for assessing changes in phosphorylation of AMPA receptors using Western blots. RESULTS A systemic injection of the A1 antagonist DPCPX induced an increase in phosphorylation of AMPA receptor GluA1 subunits at a PKA-dependent site, serine 845 (S845), in the two subdivisions of the striatum, the caudate putamen, and nucleus accumbens. DPCPX also increased S845 phosphorylation in the medial prefrontal cortex (mPFC) and hippocampus. The DPCPX-stimulated S845 phosphorylation was a transient and reversible event. Blockade of Gαs/olf -coupled dopamine D1 receptors with a D1 antagonist SCH23390 abolished the responses of S845 phosphorylation to DPCPX in the striatum, mPFC, and hippocampus. DPCPX had no significant impact on phosphorylation of GluA1 at serine 831 and on expression of total GluA1 proteins in all forebrain regions surveyed. CONCLUSION These data demonstrate that adenosine A1 receptors maintain an inhibitory tone on GluA1 S845 phosphorylation under normal conditions. Blocking this inhibitory tone leads to the upregulation of GluA1 S845 phosphorylation in the striatum, mPFC, and hippocampus via a D1 -dependent manner.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
3
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
4
|
Wilar G, Shinoda Y, Sasaoka T, Fukunaga K. Crucial Role of Dopamine D2 Receptor Signaling in Nicotine-Induced Conditioned Place Preference. Mol Neurobiol 2019; 56:7911-7928. [PMID: 31129809 DOI: 10.1007/s12035-019-1635-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
Abstract
Nicotine in tobacco causes psychological dependence through its rewarding effect in the central nervous system (CNS). Although nicotine dependence is explained by dopamine receptor (DR) signaling together with nicotinic acetylcholine receptors (nAChRs), the synaptic molecular mechanism underlying the interaction between dopamine receptor and nAChRs remains unclear. Since reward signaling is mediated by dopamine receptors, we hypothesized that the dopamine D2 receptor (D2R), in part, mediates the synaptic modulation of nicotine-induced conditioned place preference (CPP) in addition to dopamine D1 receptor. To investigate the involvement of D2R, wild-type (WT) and dopamine D2 receptor knockout (D2RKO) mice were assessed using the CPP task after induction of nicotine-induced CPP. As expected, D2RKO mice failed to induce CPP behaviors after repeated nicotine administration (0.5 mg/kg). When kinase signaling was assessed in the nucleus accumbens and hippocampal CA1 region after repeated nicotine administration, both Ca2+/calmodulin-dependent protein kinase (CaMKII) and extracellular signal-regulated kinase (ERK) were upregulated in WT mice but not in D2RKO mice. Likewise, nicotine-induced CPP was associated with elevation of pro- brain-derived neurotropic factor (BDNF) and BDNF protein levels in WT mice, but not in D2RKO mice. Taken together, in addition to dopamine D1 receptor signaling, dopamine D2 receptor signaling is critical for induction of nicotine-induced CPP in mice.
Collapse
Affiliation(s)
- Gofarana Wilar
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi-ken, Sendai-shi, Aoba-Ku, Aramaki, Aoba 6-3, Sendai, 980-8578, Japan
- Department of Pharmacology and Clinical Pharmacy Faculty of Pharmacy, Universitas Padjadjaran, JL. Raya Bandung-Sumedang KM 20.5 Jatinangor, Sumedang, Jawa Barat, 45363, Indonesia
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi-ken, Sendai-shi, Aoba-Ku, Aramaki, Aoba 6-3, Sendai, 980-8578, Japan
| | - Toshikuni Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi-ken, Sendai-shi, Aoba-Ku, Aramaki, Aoba 6-3, Sendai, 980-8578, Japan.
| |
Collapse
|
5
|
Medin T, Jensen V, Skare Ø, Storm-Mathisen J, Hvalby Ø, Bergersen LH. Altered α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor function and expression in hippocampus in a rat model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Res 2018; 360:209-215. [PMID: 30552946 DOI: 10.1016/j.bbr.2018.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/28/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) carry the bulk of excitatory synaptic transmission. Their modulation plays key roles in synaptic plasticity, which underlies hippocampal learning and memory. A dysfunctional glutamatergic system may negatively affect learning abilities and underlie symptoms of attention-deficit/hyperactivity disorder (ADHD). The aim of this study was to investigate whether the expression and function of AMPARs were altered in ADHD. We recorded AMPAR mediated synaptic transmission at hippocampal excitatory synapses and quantified immunogold labelling density of AMPAR subunits GluA1 and GluA2/3 in a rat model for ADHD; the spontaneously hypertensive rat (SHR). Electrophysiological recordings showed significantly reduced AMPAR mediated synaptic transmission at the CA3-to-CA1 pyramidal cell synapses in stratum radiatum and stratum oriens in SHRs compared to control rats. Electronmicroscopic immunogold quantifications did not show any statistically significant changes in labelling densities of the GluA1 subunit of the AMPAR on dendritic spines in stratum radiatum or in stratum oriens. However, there was a significant increase of the GluA2/3 subunit intracellularly in stratum oriens in SHR compared to control, interpreted as a compensatory effect. The proportion of synapses lacking AMPAR subunit labelling was the same in the two genotypes. In addition, electronmicroscopic examination of tissue morphology showed the density of this type of synapse (i.e., asymmetric synapses on spines), and the average size of the synaptic membranes, to be the same. AMPAR dysfunction, possibly involving molecular changes, in hippocampus may in part reflect altered learning in individuals with ADHD.
Collapse
Affiliation(s)
- Tirill Medin
- OsloMet - Oslo Metropolitan University, Faculty of Health Sciences, P.O. Box 4, St. Olavs Plass, 0130, Oslo, Norway; The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316, Oslo, Norway; Synaptic Neurochemistry and Amino Acid Transporters Labs, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway.
| | - Vidar Jensen
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB), University of Oslo, NO-0317, Oslo, Norway
| | - Øyvind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Jon Storm-Mathisen
- Synaptic Neurochemistry and Amino Acid Transporters Labs, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway
| | - Øyvind Hvalby
- Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB), University of Oslo, NO-0317, Oslo, Norway
| | - Linda Hildegard Bergersen
- The Brain and Muscle Energy Group, Electron Microscopy Laboratory, Department of Oral Biology, University of Oslo, NO-0316, Oslo, Norway; Synaptic Neurochemistry and Amino Acid Transporters Labs, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences (IMB) and Healthy Brain Ageing Centre (SERTA), University of Oslo, NO-0317, Oslo, Norway; Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
6
|
Guercio LA, Hofmann ME, Swinford-Jackson SE, Sigman JS, Wimmer ME, Dell'Acqua ML, Schmidt HD, Pierce RC. A-Kinase Anchoring Protein 150 (AKAP150) Promotes Cocaine Reinstatement by Increasing AMPA Receptor Transmission in the Accumbens Shell. Neuropsychopharmacology 2018; 43:1395-1404. [PMID: 29317777 PMCID: PMC5916366 DOI: 10.1038/npp.2017.297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022]
Abstract
Previous work indicated that activation of D1-like dopamine receptors (D1DRs) in the nucleus accumbens shell promoted cocaine seeking through a process involving the activation of PKA and GluA1-containing AMPA receptors (AMPARs). A-kinase anchoring proteins (AKAPs) localize PKA to AMPARs leading to enhanced phosphorylation of GluA1. AKAP150, the most well-characterized isoform, plays an important role in several forms of neuronal plasticity. However, its involvement in drug addiction has been minimally explored. Here we examine the role of AKAP150 in cocaine reinstatement, an animal model of relapse. We show that blockade of PKA binding to AKAPs in the nucleus accumbens shell of Sprague-Dawley rats attenuates reinstatement induced by either cocaine or a D1DR agonist. Moreover, this effect is specific to AKAP150, as viral overexpression of a PKA-binding deficient mutant of AKAP150 also impairs cocaine reinstatement. This viral-mediated attenuation of cocaine reinstatement was accompanied by decreased phosphorylation of GluA1-containing AMPARs and attenuated AMPAR eEPSCs. Collectively, these results suggest that AKAP150 facilitates the reinstatement of cocaine-seeking behavior by amplifying D1DR/PKA-dependent AMPA transmission in the nucleus accumbens.
Collapse
Affiliation(s)
- Leonardo A Guercio
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mackenzie E Hofmann
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Swinford-Jackson
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia S Sigman
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Heath D Schmidt
- Department for Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | - R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Lindroos R, Dorst MC, Du K, Filipović M, Keller D, Ketzef M, Kozlov AK, Kumar A, Lindahl M, Nair AG, Pérez-Fernández J, Grillner S, Silberberg G, Hellgren Kotaleski J. Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Front Neural Circuits 2018; 12:3. [PMID: 29467627 PMCID: PMC5808142 DOI: 10.3389/fncir.2018.00003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022] Open
Abstract
The basal ganglia are involved in the motivational and habitual control of motor and cognitive behaviors. Striatum, the largest basal ganglia input stage, integrates cortical and thalamic inputs in functionally segregated cortico-basal ganglia-thalamic loops, and in addition the basal ganglia output nuclei control targets in the brainstem. Striatal function depends on the balance between the direct pathway medium spiny neurons (D1-MSNs) that express D1 dopamine receptors and the indirect pathway MSNs that express D2 dopamine receptors. The striatal microstructure is also divided into striosomes and matrix compartments, based on the differential expression of several proteins. Dopaminergic afferents from the midbrain and local cholinergic interneurons play crucial roles for basal ganglia function, and striatal signaling via the striosomes in turn regulates the midbrain dopaminergic system directly and via the lateral habenula. Consequently, abnormal functions of the basal ganglia neuromodulatory system underlie many neurological and psychiatric disorders. Neuromodulation acts on multiple structural levels, ranging from the subcellular level to behavior, both in health and disease. For example, neuromodulation affects membrane excitability and controls synaptic plasticity and thus learning in the basal ganglia. However, it is not clear on what time scales these different effects are implemented. Phosphorylation of ion channels and the resulting membrane effects are typically studied over minutes while it has been shown that neuromodulation can affect behavior within a few hundred milliseconds. So how do these seemingly contradictory effects fit together? Here we first briefly review neuromodulation of the basal ganglia, with a focus on dopamine. We furthermore use biophysically detailed multi-compartmental models to integrate experimental data regarding dopaminergic effects on individual membrane conductances with the aim to explain the resulting cellular level dopaminergic effects. In particular we predict dopaminergic effects on Kv4.2 in D1-MSNs. Finally, we also explore dynamical aspects of the onset of neuromodulation effects in multi-scale computational models combining biochemical signaling cascades and multi-compartmental neuron models.
Collapse
Affiliation(s)
- Robert Lindroos
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Matthijs C. Dorst
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Kai Du
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Marko Filipović
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Keller
- Blue Brain Project, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Maya Ketzef
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Alexander K. Kozlov
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Arvind Kumar
- Bernstein Center Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
- Department Computational Science and Technology, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael Lindahl
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Anu G. Nair
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Juan Pérez-Fernández
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Nobel Institute for Neurophysiology, Stockholm, Sweden
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Solna, Sweden
| |
Collapse
|
8
|
Pharmacological modulation of AMPA receptor phosphorylation by dopamine and muscarinic receptor agents in the rat medial prefrontal cortex. Eur J Pharmacol 2018; 820:45-52. [DOI: 10.1016/j.ejphar.2017.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/24/2022]
|
9
|
Werner CT, Murray CH, Reimers JM, Chauhan NM, Woo KKY, Molla HM, Loweth JA, Wolf ME. Trafficking of calcium-permeable and calcium-impermeable AMPA receptors in nucleus accumbens medium spiny neurons co-cultured with prefrontal cortex neurons. Neuropharmacology 2016; 116:224-232. [PMID: 27993521 DOI: 10.1016/j.neuropharm.2016.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/27/2022]
Abstract
AMPA receptor (AMPAR) transmission onto medium spiny neurons (MSNs) of the adult rat nucleus accumbens (NAc) is normally dominated by GluA2-containing, Ca2+-impermeable AMPAR (CI-AMPARs). However, GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) accumulate after prolonged withdrawal from extended-access cocaine self-administration and thereafter their activation is required for the intensified (incubated) cue-induced cocaine craving that characterizes prolonged withdrawal from such regimens. These findings suggest the existence of mechanisms in NAc MSNs that differentially regulate CI-AMPARs and CP-AMPARs. Here, we compared trafficking of GluA1A2 CI-AMPARs and homomeric GluA1 CP-AMPARs using immunocytochemical assays in cultured NAc MSNs plated with prefrontal cortical neurons to restore excitatory inputs. We began by evaluating constitutive internalization of surface receptors and found that this occurs more rapidly for CP-AMPARs. Next, we studied receptor insertion into the membrane; combined with past results, the present findings suggest that activation of protein kinase A accelerates insertion of both CP-AMPARs and CI-AMPARs. We also studied constitutive cycling (net loss of receptors from the membrane under conditions where internalization and recycling are both occurring). Interestingly, although CP-AMPARs exhibit faster constitutive internalization, they cycle at similar rates as CI-AMPARs, suggesting faster reinsertion of CP-AMPARs. In studies of synaptic scaling, long-term (24 h) activity blockade increased surface expression and cycling rates of CI-AMPARs but not CP-AMPARs, whereas long-term increases in activity produced more pronounced scaling down of CI-AMPARs than CP-AMPARs but did not alter receptor cycling. These findings can be used to evaluate and generate hypotheses regarding AMPAR plasticity in the rat NAc following cocaine exposure.
Collapse
Affiliation(s)
- Craig T Werner
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Jeremy M Reimers
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Niravkumar M Chauhan
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kenneth K Y Woo
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hanna M Molla
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
10
|
Perreault ML, Hasbi A, Shen MYF, Fan T, Navarro G, Fletcher PJ, Franco R, Lanciego JL, George SR. Disruption of a dopamine receptor complex amplifies the actions of cocaine. Eur Neuropsychopharmacol 2016; 26:1366-1377. [PMID: 27480020 DOI: 10.1016/j.euroneuro.2016.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 11/27/2022]
Abstract
Cocaine-induced increases in dopamine signaling in nucleus accumbens (NAc) play a significant role in cocaine seeking behavior. The majority of cocaine addiction research has focused on neuroanatomically segregated dopamine D1 and D2 receptor-expressing neurons, yet an involvement for those NAc neurons coexpressing D1 and D2 receptors in cocaine addiction has never been explored. In situ proximity ligation assay, confocal fluorescence resonance energy transfer and coimmunoprecipitation were used to show native D1 and D2 receptors formed a heteromeric complex in D1/D2 receptor-coexpressing neurons in rat and non-human primate NAc. D1-D2 heteromer expression was lower in NAc of adolescent rats compared to their adult counterparts. Functional disruption of the dopamine D1-D2 receptor heteromer, using a peptide targeting the site of interaction between the D1 and D2 receptor, induced conditioned place preference and increased NAc expression of ∆FosB. D1-D2 heteromer disruption also resulted in the promotion, exacerbation and acceleration of the locomotor activating and incentive motivational effects of cocaine in the self-administration paradigm. These findings support a model for tonic inhibition of basal and cocaine-induced reward processes by the D1-D2 heteromer thus highlighting its potential value as a novel target for drug discovery in cocaine addiction. Given that adolescents show increased drug abuse susceptibility, an involvement for reduced D1-D2 heteromer function in the heightened sensitivity to the rewarding effects of cocaine in adolescence is also implicated.
Collapse
Affiliation(s)
- Melissa L Perreault
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ahmed Hasbi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Maurice Y F Shen
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Gemma Navarro
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Rafael Franco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain; CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain
| | - José L Lanciego
- CIBERNED, Centro de Investigación en Red. Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid, Spain; Department of Neurosciences, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Susan R George
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Microglial TNF-α Suppresses Cocaine-Induced Plasticity and Behavioral Sensitization. Neuron 2016; 90:483-91. [PMID: 27112496 DOI: 10.1016/j.neuron.2016.03.030] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 02/02/2016] [Accepted: 03/14/2016] [Indexed: 01/23/2023]
Abstract
Repeated administration of cocaine results in the development of behavioral sensitization, accompanied by a decrease in excitatory synaptic strength in the nucleus accumbens (NAc) through an unknown mechanism. Furthermore, glial cells in the NAc are activated by drugs of abuse, but the contribution of glia to the development of addictive behaviors is unknown. Tumor necrosis factor alpha (TNF-α), an inflammatory cytokine released by activated glia, can drive the internalization of synaptic AMPA receptors on striatal medium spiny neurons. Here we show that repeated administration of cocaine activates striatal microglia and induces TNF-α production, which in turn depresses glutamatergic synaptic strength in the NAc core and limits the development of behavioral sensitization. Critically, following a period of abstinence, a weak TLR4 agonist can reactivate microglia, increase TNF-α production, depress striatal synaptic strength, and suppress cocaine-induced sensitization. Thus, cytokine signaling from microglia can regulate both the induction and expression of drug-induced behaviors.
Collapse
|
12
|
Xue B, Chen EC, He N, Jin DZ, Mao LM, Wang JQ. Integrated regulation of AMPA glutamate receptor phosphorylation in the striatum by dopamine and acetylcholine. Neuropharmacology 2016; 112:57-65. [PMID: 27060412 DOI: 10.1016/j.neuropharm.2016.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022]
Abstract
Dopamine (DA) and acetylcholine (ACh) signals converge onto protein kinase A (PKA) in medium spiny neurons of the striatum to control cellular and synaptic activities of these neurons, although underlying molecular mechanisms are less clear. Here we measured phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) at a PKA site (S845) as an indicator of AMPAR responses in adult rat brains in vivo to explore how DA and ACh interact to modulate AMPARs. We found that subtype-selective activation of DA D1 receptors (D1Rs), D2 receptors (D2Rs), or muscarinic M4 receptors (M4Rs) induced specific patterns of GluA1 S845 responses in the striatum. These defined patterns support a local multitransmitter interaction model in which D2Rs inhibited an intrinsic inhibitory element mediated by M4Rs to enhance the D1R efficacy in modulating AMPARs. Consistent with this, selective enhancement of M4R activity by a positive allosteric modulator resumed the cholinergic inhibition of D1Rs. In addition, D1R and D2R coactivation recruited GluA1 and PKA preferentially to extrasynaptic sites. In sum, our in vivo data support an existence of a dynamic DA-ACh balance in the striatum which actively modulates GluA1 AMPAR phosphorylation and trafficking. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Elton C Chen
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Nan He
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Dao-Zhong Jin
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
13
|
Shivarama Shetty M, Gopinadhan S, Sajikumar S. Dopamine D1/D5 receptor signaling regulates synaptic cooperation and competition in hippocampal CA1 pyramidal neurons via sustained ERK1/2 activation. Hippocampus 2015; 26:137-50. [PMID: 26194339 PMCID: PMC5054950 DOI: 10.1002/hipo.22497] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2015] [Indexed: 12/30/2022]
Abstract
Synaptic cooperation and competition are important components of synaptic plasticity that tune synapses for the formation of associative long‐term plasticity, a cellular correlate of associative long‐term memory. We have recently reported that coincidental activation of weak synapses within the vicinity of potentiated synapses will alter the cooperative state of synapses to a competitive state thus leading to the slow decay of long‐term plasticity, but the molecular mechanism underlying this is still unknown. Here, using acute hippocampal slices of rats, we have examined how increasing extracellular dopamine concentrations interact and/or affect electrically induced long‐term potentiation (LTP) in the neighboring synapses. We demonstrate that D1/D5‐receptor‐mediated potentiation at the CA1 Schaffer collateral synapses differentially regulates synaptic co‐operation and competition. Further investigating the molecular players involved, we reveal an important role for extracellular signal‐regulated kinases‐1 and 2 (ERK1/2) as signal integrators and dose‐sensors. Interestingly, a sustained activation of ERK1/2 pathway seems to be involved in the differential regulation of synaptic associativity. The concentration‐dependent effects of the modulatory transmitter, as demonstrated for dopaminergic signaling in the present study, might offer additional computational power by fine tuning synaptic associativity processes for establishing long‐term associative memory in neural networks. © 2015 The Authors Hippocampus Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| | - Suma Gopinadhan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, Singapore
| |
Collapse
|
14
|
The PDE10A inhibitor MP-10 and haloperidol produce distinct gene expression profiles in the striatum and influence cataleptic behavior in rodents. Neuropharmacology 2015; 99:256-63. [PMID: 26044638 DOI: 10.1016/j.neuropharm.2015.05.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/07/2015] [Accepted: 05/19/2015] [Indexed: 11/22/2022]
Abstract
Phosphodiesterase 10A (PDE10A) has garnered attention as a potential therapeutic target for schizophrenia due to its prominent striatal expression and ability to modulate striatal signaling. The present study used the selective PDE10A inhibitor MP-10 and the dopamine D2 antagonist haloperidol to compare effects of PDE10A inhibition and dopamine D2 blockade on striatopallidal (D2) and striatonigral (D1) pathway activation. Our studies confirmed that administration of MP-10 significantly elevates expression of the immediate early genes (IEG) c-fos, egr-1, and arc in rat striatum. Furthermore, we demonstrated that MP-10 induced egr-1 expression was distributed evenly between enkephalin-containing D2-neurons and substance P-containing D1-neurons. In contrast, haloperidol (3 mg/kg) selectively activated egr-1 expression in enkephalin neurons. Co-administration of MP-10 and haloperidol (0.5 mg/kg) increased IEG expression to a greater extent than either compound alone. Similarly, in a rat catalepsy assay, administration of haloperidol (0.5 mg/kg) or MP-10 (3-30 mg/kg) did not produce cataleptic behavior when dosed alone, but co-administration of haloperidol with MP-10 (3 and 10 mg/kg) induced cataleptic behaviors. Interestingly, co-administration of haloperidol with a high dose of MP-10 (30 mg/kg) failed to produce cataleptic behavior. These findings are important for understanding the neural circuits involved in catalepsy and suggest that the behavioral effects produced by PDE10A inhibitors may be influenced by concomitant medication and the level of PDE10A inhibition achieved by the dose of the inhibitor.
Collapse
|
15
|
Mao LM, Xue B, Jin DZ, Wang JQ. Dynamic increases in AMPA receptor phosphorylation in the rat hippocampus in response to amphetamine. J Neurochem 2015; 133:795-805. [PMID: 25689263 DOI: 10.1111/jnc.13067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
Abstract
Increasing evidence supports the critical role of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in psychostimulant action. These receptors are regulated via a phosphorylation-dependent mechanism in their trafficking, distribution, and function. The hippocampus is a brain structure important for learning and memory and is emerging as a critical site for processing psychostimulant effects. To determine whether the hippocampal pool of AMPA receptors is regulated by stimulants, we investigated and characterized the impact of amphetamine (AMPH) on phosphorylation of AMPA receptors in the adult rat hippocampus in vivo. We found that AMPH markedly increased phosphorylation of AMPA receptor GluA1 subunits at serine 845 (S845) in the hippocampus. The effect of AMPH was dose dependent. A single dose of AMPH induced a rapid and transient increase in S845 phosphorylation. Among different hippocampal subfields, AMPH primarily elevated S845 phosphorylation in the Cornu Ammonis area 1 and dentate gyrus. In contrast to S845, serine 831 phosphorylation of GluA1 and serine 880 phosphorylation of GluA2 were not altered by AMPH. In addition, surface expression of hippocampal GluA1 was up-regulated, while the amount of intracellular GluA1 fraction was concurrently reduced in response to AMPH. GluA2 protein levels in either the surface or intracellular pool were insensitive to AMPH. These data demonstrate that the AMPA receptor in the hippocampus is sensitive to dopamine stimulation. Acute AMPH administration induces dose-, time-, site-, and subunit-dependent phosphorylation of AMPA receptors and facilitates surface trafficking of GluA1 AMPA receptors in hippocampal neurons in vivo. Acute injection of amphetamine increased phosphorylation of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA1 subunits at a protein kinase A (PKA)-sensitive site (S845) in the rat hippocampus. This increase was dose- and time-dependent and correlated with an increase in surface GluA1 expression. Thus, amphetamine can upregulate GluA1 phosphorylation and surface trafficking of GluA1 in hippocampal neurons in vivo.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Dao-Zhong Jin
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 2014; 124:1-27. [PMID: 25447802 DOI: 10.1016/j.pneurobio.2014.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 01/11/2023]
Abstract
Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.
Collapse
Affiliation(s)
- Francesco Pistillo
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Francesco Clementi
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy.
| |
Collapse
|
17
|
Moriguchi S, Nishi M, Sasaki Y, Takeshima H, Fukunaga K. Aberrant behavioral sensitization by methamphetamine in junctophilin-deficient mice. Mol Neurobiol 2014; 51:533-42. [PMID: 24848513 DOI: 10.1007/s12035-014-8737-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
Abstract
Junctophilins (JPs) expressed in the endoplasmic/sarcoplasmic reticulum (ER/SR) interact with the plasma membrane, thereby constructing junctional membrane complexes (JMC). We here reported that double-knockout mice lacking both JP3 and JP4 (JP-DKO mice) exhibit aberrant synaptic plasticity in the corticostriatal circuits and irregular methamphetamine (METH)-induced behavioral sensitization when METH (1.0 mg/kg) was administrated six consecutive days and assessed the striatal glutamatergic population spike (PS) by stimulation of cortical white matter. When we assessed the striatal PS by stimulation of cortical white matter, the long-term depression (LTD) was observed in JP-DKO mouse striatum similar to that in control (JP-double hetero mice (JP-DHE mice)). Importantly, LTD converted to long-term potentiation (LTP) following chronic METH treatment concomitant with behavioral sensitization in JP-DHE mice. LTD in JP-DKO mice, however failed to convert to LTP with lacks of behavioral sensitization. LTP impairment in JP-DKO mice was restored by pretreatment with FK506, calcineurin (CaN) inhibitor, but not with apamin, SK channel inhibitor. In immunoblotting analyses, calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation was significantly increased following METH treatment in the striatum of JP-DHE mice. However, CaMKII autophosphorylation did not changed by METH treatment in the striatum of JP-DKO mouse. The increased CaMKII autophosphorylation was closely associated with elevated CaN activity in JP-DKO mice. The lack of increased CaMKII activity in JP-DKO mice was correlated with the impaired METH-induced behavioral sensitization. Thus, elevated CaN and aberrant CaMKII activities in the striatum of JP-DKO mice likely accounts for lack of METH-induced behavioral sensitization.
Collapse
Affiliation(s)
- Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan,
| | | | | | | | | |
Collapse
|
18
|
Xue B, Edwards MC, Mao LM, Guo ML, Jin DZ, Fibuch EE, Wang JQ. Rapid and sustained GluA1 S845 phosphorylation in synaptic and extrasynaptic locations in the rat forebrain following amphetamine administration. Neurochem Int 2013; 64:48-54. [PMID: 24231469 DOI: 10.1016/j.neuint.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/25/2013] [Accepted: 11/03/2013] [Indexed: 12/27/2022]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is a major ionotropic glutamate receptor subtype in the mammalian brain. Like other glutamate receptors, the AMPA receptor is regulated by phosphorylation. By phosphorylating specific serine resides in AMPA receptor subunits (GluA1 and GluA2), various protein kinases regulate subcellular/subsynaptic expression and function of the receptor. In this study, we conducted a time course study to evaluate the temporal property of responses of phosphorylation at those sites to dopamine stimulation with the psychostimulant amphetamine in the adult rat striatum and medial prefrontal cortex (mPFC) in vivo. We focused on biochemically-enriched AMPA receptors from synaptic and extrasynaptic compartments. We found that acute injection of amphetamine induced a rapid and relatively sustained increase in GluA1 S845 phosphorylation at both synaptic and extrasynaptic sites in the striatum. Similar results were observed in the mPFC. In contrast to S845, amphetamine did not induce a significant change in GluA1 S831 phosphorylation in synaptic and extrasynaptic pools in the striatum and mPFC. GluA2 S880 phosphorylation in synaptic and extrasynaptic fractions in the two brain regions also remained stable in response to amphetamine. These results support S845 to be a principal site on AMPA receptors sensitive to acute stimulant exposure. Its phosphorylation levels are rapidly upregulated by amphetamine in the two defined subsynaptic microdomains (synaptic versus extrasynaptic locations) in striatal and cortical neurons.
Collapse
Affiliation(s)
- Bing Xue
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Matthew C Edwards
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ming-Lei Guo
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Dao-Zhong Jin
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Eugene E Fibuch
- Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
19
|
Tukey DS, Ziff EB. Ca2+-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors and dopamine D1 receptors regulate GluA1 trafficking in striatal neurons. J Biol Chem 2013; 288:35297-306. [PMID: 24133208 DOI: 10.1074/jbc.m113.516690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of striatal medium spiny neuron synapses underlies forms of motivated behavior and pathological drug seeking. A primary mechanism for increasing synaptic strength is the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into the postsynapse, a process mediated by GluA1 AMPAR subunit phosphorylation. We have examined the role of converging glutamate and dopamine inputs in regulating biochemical cascades upstream of GluA1 phosphorylation. We focused on the role of Ca(2+)-permeable AMPARs (CPARs), which lack the GluA2 AMPAR subunit. Under conditions that prevented depolarization, stimulation of CPARs activated neuronal nitric oxide synthase and production of cGMP. CPAR-dependent cGMP production was sufficient to induce synaptic insertion of GluA1, detected by confocal microscopy, through a mechanism dependent on GluA1 Ser-845 phosphorylation. Dopamine D1 receptors, in contrast, stimulate GluA1 extra synaptic insertion. Simultaneous activation of dopamine D1 receptors and CPARs induced additive increases in GluA1 membrane insertion, but only CPAR stimulation augmented CPAR-dependent GluA1 synaptic insertion. This incorporation into the synapse proceeded through a sequential two-step mechanism; that is, cGMP-dependent protein kinase II facilitated membrane insertion and/or retention, and protein kinase C activity was necessary for synaptic insertion. These data suggest a feed-forward mechanism for synaptic priming whereby an initial stimulus acting independently of voltage-gated conductance increases striatal neuron excitability, facilitating greater neuronal excitation by a subsequent stimulus.
Collapse
Affiliation(s)
- David S Tukey
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | | |
Collapse
|
20
|
Hobson BD, O'Neill CE, Levis SC, Monteggia LM, Neve RL, Self DW, Bachtell RK. Adenosine A1 and dopamine d1 receptor regulation of AMPA receptor phosphorylation and cocaine-seeking behavior. Neuropsychopharmacology 2013; 38:1974-83. [PMID: 23598433 PMCID: PMC3746705 DOI: 10.1038/npp.2013.96] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/09/2022]
Abstract
AMPAR (α-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptor) stimulation in the nucleus accumbens (NAc) is critical in cocaine seeking. Here, we investigate the functional interaction between D1 dopamine receptors (D1DR) and AMPARs in the NAc, and explore how A1 adenosine receptor (A1AR) stimulation may reduce dopamine-induced facilitation of AMPARs and cocaine seeking. All animals were trained to self-administer cocaine and were tested for reinstatement of cocaine seeking following extinction procedures. The role of AMPARs in both AMPA- and D1DR-induced cocaine seeking was assessed using viral-mediated gene transfer to bi-directionally modulate AMPAR activity in the NAc core. The ability of pharmacological AMPAR blockade to modulate D1DR-induced cocaine seeking also was tested. Immunoblotting was used to determine whether stimulating D1DR altered synaptic AMPA GluA1 phosphorylation (pGluA1). Finally, the ability of an A1AR agonist to modulate D1DR-induced cocaine seeking and synaptic GluA1 receptor subunit phosphorylation was explored. Decreasing AMPAR function inhibited both AMPA- and D1DR-induced cocaine seeking. D1DR stimulation increased AMPA pGluA1(S845). Administration of the A1AR agonist alone decreased synaptic GluA1 expression, whereas coadministration of the A1AR agonist inhibited both cocaine- and D1DR-induced cocaine seeking and reversed D1DR-induced AMPA pGluA1(S845). These findings suggest that D1DR stimulation facilitates AMPAR function to initiate cocaine seeking in D1DR-containing direct pathway NAc neurons. A1AR stimulation inhibits both the facilitation of AMPAR function and subsequent cocaine seeking, suggesting that reducing AMPA glutamate neurotransmission in direct pathway neurons may restore inhibitory control and reduce cocaine relapse.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Lisa M Monteggia
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David W Self
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA,Institute of Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA,Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309-0345, USA, Tel: +1 303 735 1012, Fax: +1 303 492 2967, E-mail:
| |
Collapse
|
21
|
Mao LM, Diaz JA, Fibuch EE, Wang JQ. Regulation of phosphorylation of synaptic and extrasynaptic GluA1 AMPA receptors in the rat forebrain by amphetamine. Eur J Pharmacol 2013; 715:164-71. [PMID: 23747591 DOI: 10.1016/j.ejphar.2013.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 10/26/2022]
Abstract
The AMPA receptor is regulated by phosphorylation. Two major phosphorylation sites (S831 and S845) are located in the intracellular C-terminal tail of GluA1 subunits. The phosphorylation on these sites controls receptor expression and function and is subject to the regulation by psychostimulants. In this study, we further characterized the regulation of S831 and S845 phosphorylation by amphetamine (AMPH) in the adult rat striatum and medial prefrontal cortex (mPFC) in vivo. We focused on the specific fraction of GluA1/AMPA receptors enriched from synaptic and extrasynaptic membranes, using a pre-validated biochemical fractionation procedure. We found that acute AMPH administration elevated GluA1 S845 phosphorylation in the defined synaptic membrane from the striatum in a dose-dependent manner. AMPH also induced a comparable increase in S845 phosphorylation in the extrasynaptic fraction of striatal GluA1. Similar increases in S845 phosphorylation in both synaptic and extrasynaptic pools were observed in the mPFC. In contrast, S831 phosphorylation was not altered in synaptic and extrasynaptic GluA1 in striatal neurons and synaptic GluA1 in mPFC neurons in response to AMPH, although a moderate increase in S831 phosphorylation was seen in extrasynaptic GluA1 in the mPFC after an AMPH injection at a high dose. Total synaptic and extrasynaptic GluA1 expression remained stable in the two regions after AMPH administration. Our data demonstrate the differential sensitivity of S845 and S831 phosphorylation to dopamine stimulation. S845 is a primary site where phosphorylation of GluA1 is upregulated by AMPH in striatal and mPFC neurons at both synaptic and extrasynaptic compartments.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | |
Collapse
|
22
|
PKA and ERK1/2 are involved in dopamine D₁ receptor-induced heterologous desensitization of the δ opioid receptor. Life Sci 2013; 92:1101-9. [PMID: 23624231 DOI: 10.1016/j.lfs.2013.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 11/21/2022]
Abstract
AIMS Chronic administration of cocaine attenuates delta opioid receptor (DOPR) signaling in the striatum and the desensitization is mediated by the indirect actions of cocaine on dopamine D1 receptors (D1R). In addition, DOPR and D1R co-exist in some rat striatal neurons. In the present study, we examined the underlying mechanism of DOPR desensitization by D1R activation. MAIN METHODS NG 108-15 cells stably expressing HA-rat D1 receptor (HA-D1R) and Chinese hamster ovary (CHO) cells stably expressing both FLAG-mouse DOPR (FLAG-DOPR) and HA-D1R were used as the cell models. Receptor binding, [(35)S]GTPγS binding, receptor phosphorylation and western blot were conducted to examine DOPR affinity, expression, internalization, downregulation, desensitization, phosphorylation and phosphorylated ERK1/2. KEY FINDINGS Pretreatment with either the DOPR agonist DPDPE or the D1R agonist SKF-82958 for 30min attenuated DPDPE-stimulated [(35)S]GTPγS binding to G proteins, demonstrating homologous and heterologous desensitization of the DOPR, respectively. SKF-82958 pretreatment did not affect the level of DOPR or affinity of DOPR antagonist or agonists, nor did it induce phosphorylation, internalization or down-regulation of the DOPR in the CHO-FLAG-DOPR/HA-D1R cells. Pretreatment of cells with inhibitors of PKA, MEK1 and PI3K, but not PKC, attenuated SKF-82958-induced desensitization of the DOPR. The D1R agonist SKF-82958 enhanced phosphorylation of ERK1/2, and pretreatment with inhibitors of MEK1 and PI3K, but not PKA and PKC, reduced the effect. These results indicate that activation of ERK1/2 and/or PKA, but not PKC, is involved in D1 receptor-induced heterologous desensitization of the DOPR. SIGNIFICANCE This study provides possible mechanisms underlying D1R activation-induced DOPR desensitization.
Collapse
|
23
|
Whitt JL, Petrus E, Lee HK. Experience-dependent homeostatic synaptic plasticity in neocortex. Neuropharmacology 2013; 78:45-54. [PMID: 23466332 DOI: 10.1016/j.neuropharm.2013.02.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 01/24/2023]
Abstract
The organism's ability to adapt to the changing sensory environment is due in part to the ability of the nervous system to change with experience. Input and synapse specific Hebbian plasticity, such as long-term potentiation (LTP) and long-term depression (LTD), are critical for sculpting the nervous system to wire its circuit in tune with the environment and for storing memories. However, these synaptic plasticity mechanisms are innately unstable and require another mode of plasticity that maintains homeostasis to allow neurons to function within a desired dynamic range. Several modes of homeostatic adaptation are known, some of which work at the synaptic level. This review will focus on the known mechanisms of experience-induced homeostatic synaptic plasticity in the neocortex and their potential function in sensory cortex plasticity. This article is part of the Special Issue entitled 'Homeostatic Synaptic Plasticity'.
Collapse
Affiliation(s)
- Jessica L Whitt
- The Solomon H. Snyder Department of Neuroscience, The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Emily Petrus
- The Solomon H. Snyder Department of Neuroscience, The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hey-Kyoung Lee
- The Solomon H. Snyder Department of Neuroscience, The Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
24
|
Pierce RC, Wolf ME. Psychostimulant-induced neuroadaptations in nucleus accumbens AMPA receptor transmission. Cold Spring Harb Perspect Med 2013; 3:a012021. [PMID: 23232118 PMCID: PMC3552338 DOI: 10.1101/cshperspect.a012021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Medium spiny neurons of the nucleus accumbens serve as the interface between corticolimbic regions that elicit and modulate motivated behaviors, including those related to drugs of abuse, and motor regions responsible for their execution. Medium spiny neurons are excited primarily by AMPA-type glutamate receptors, making AMPA receptor transmission in the accumbens a key regulatory point for addictive behaviors. In animal models of cocaine addiction, changes in the strength of AMPA receptor transmission onto accumbens medium spiny neurons have been shown to underlie cocaine-induced behavioral adaptations related to cocaine seeking. Here we review changes in AMPA receptor levels and subunit composition that occur after discontinuing different types of cocaine exposure, as well as changes elicited by cocaine reexposure following abstinence or extinction. Signaling pathways that regulate these cocaine-induced adaptations will also be considered, as they represent potential targets for addiction pharmacotherapies.
Collapse
Affiliation(s)
- R Christopher Pierce
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
25
|
Olianas MC, Dedoni S, Onali P. Potentiation of dopamine D1-like receptor signaling by concomitant activation of δ- and μ-opioid receptors in mouse medial prefrontal cortex. Neurochem Int 2012; 61:1404-16. [PMID: 23073238 DOI: 10.1016/j.neuint.2012.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/17/2012] [Accepted: 10/07/2012] [Indexed: 01/25/2023]
Abstract
Opioid receptors located in the ventral tegmental area are known to regulate dopamine (DA) release from mesocortical afferents to medial prefrontal cortex (mPFC) but little is known on whether in this cortical region activation of opioid receptors affect DA receptor signaling. In the present study we show that in mouse mPFC concomitant activation of either δ- or μ-opioid receptors, but not κ-opioid receptors, potentiated DA D1-like receptor-induced stimulation of adenylyl cyclase activity through a G protein βγ subunit-dependent mechanism. In tissue slices of mPFC, the combined addition of the opioid agonist leu-enkephalin and the DA D1-like receptor agonist SKF 81297 produced more than additive increase in the phosphorylation state of AMPA and NMDA receptor subunits GluR1 and NR1, respectively. Moreover, in primary cultures of mouse frontal cortex neurons, DA D1-like receptor-induced Ser133 phosphorylation of the transcription factor cyclic AMP responsive element binding protein was potentiated by concurrent stimulation of opioid receptors. Double immunofluorescence analysis of cultured cortical cells indicated that a large percentage of DA D1 receptor positive cells expressed either δ- or μ-opioid receptor immunoreactivity. These data indicate that in mouse mPFC activation of μ- and δ-opioid receptors enhances DA D1-like receptor signaling likely through converging regulatory inputs on βγ-stimulated adenylyl cyclase isoforms. This previously unrecognized synergistic interaction may selectively affect DA D1 transmission at specific postsynaptic sites where the receptors are co-localized and may play a role in prefrontal DA D1 regulation of opioid addiction.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Benzazepines/pharmacology
- Carrier Proteins/metabolism
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dopamine/physiology
- Dopamine Agonists/pharmacology
- Enkephalin, Leucine/pharmacology
- Enzyme Activation/drug effects
- Frontal Lobe/cytology
- GTP-Binding Protein beta Subunits/physiology
- GTP-Binding Protein gamma Subunits/physiology
- Male
- Mice
- Nerve Tissue Proteins/metabolism
- Neurons/drug effects
- Neurons/metabolism
- Opioid Peptides/physiology
- Phosphorylation/drug effects
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- Protein Isoforms/metabolism
- Protein Processing, Post-Translational/drug effects
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/physiology
- Receptors, N-Methyl-D-Aspartate
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Maria C Olianas
- Section of Neurosciences, Department of Biomedical Sciences University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
26
|
Smith SM, Uslaner JM, Cox CD, Huszar SL, Cannon CE, Vardigan JD, Eddins D, Toolan DM, Kandebo M, Yao L, Raheem IT, Schreier JD, Breslin MJ, Coleman PJ, Renger JJ. The novel phosphodiesterase 10A inhibitor THPP-1 has antipsychotic-like effects in rat and improves cognition in rat and rhesus monkey. Neuropharmacology 2012; 64:215-23. [PMID: 22750078 DOI: 10.1016/j.neuropharm.2012.06.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/14/2012] [Accepted: 06/10/2012] [Indexed: 01/28/2023]
Abstract
Phosphodiesterase 10A (PDE10A) is a novel target for the treatment of schizophrenia that may address multiple symptomatic domains associated with this disorder. PDE10A is highly expressed in the brain and functions to metabolically inactivate the important second messengers cAMP and cGMP. Here we describe effects of a potent and orally bioavailable PDE10A inhibitor [2-(6-chloropyridin-3-yl)-4-(2-methoxyethoxy)-7,8-dihydropyrido[4,3-d]pyrimidin-6(5H)-yl](imidazo[1,5-a]pyridin-1-yl)methanone] (THPP-1) on striatal signaling pathways, in behavioral tests that predict antipsychotic potential, and assays that measure episodic-like memory in rat and executive function in rhesus monkey. THPP-1 exhibits nanomolar potency on the PDE10A enzyme, demonstrates excellent pharmacokinetic properties in multiple preclinical animal species, and is selective for PDE10A over other PDE families of enzymes. THPP-1 significantly increased phosphorylation of proteins in the striatum involved in synaptic plasticity, including the a-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptor (AMPA) GluR1 subunit, extracellular receptor kinase (ERK), and cAMP-response element binding protein (CREB). THPP-1 produced dose-dependent effects in preclinical assays predictive of antipsychotic activity including attenuation of MK-801-induced psychomotor activation and condition avoidance responding in rats. At similar plasma exposures, THPP-1 significantly increased object recognition memory in rat and attenuated a ketamine-induced deficit in the object retrieval detour task in rhesus monkey. These findings suggest that PDE10A inhibitors have the potential to impact multiple symptomatic domains of schizophrenia including positive symptoms and cognitive impairment. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Sean M Smith
- Neuroscience, Merck Research Laboratories, 770 Sumneytown Pike, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Xie X, Lasseter HC, Ramirez DR, Ponds KL, Wells AM, Fuchs RA. Subregion-specific role of glutamate receptors in the nucleus accumbens on drug context-induced reinstatement of cocaine-seeking behavior in rats. Addict Biol 2012; 17:287-99. [PMID: 21521425 PMCID: PMC4384648 DOI: 10.1111/j.1369-1600.2011.00325.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The functional integrity of the nucleus accumbens (NAC) core and shell is necessary for contextual cocaine-seeking behavior in the reinstatement animal model of drug relapse; however, the neuropharmacological mechanisms underlying this phenomenon are poorly understood. The present study evaluated the contribution of metabotropic glutamate receptor subtype 1 (mGluR1) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor populations to drug context-induced reinstatement of cocaine-seeking behavior. Rats were trained to lever press for un-signaled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behavior (non-reinforced active lever pressing) was then assessed in the previously cocaine-paired and extinction contexts after JNJ16259685 (mGluR1 antagonist: 0.0, 0.6, or 30 pg/0.3 µl/hemisphere) or CNQX (AMPA/kainate receptor antagonist: 0.0, 0.03, or 0.3 µg/0.3 µl /hemisphere) administration into the NAC core, medial or lateral NAC shell, or the ventral caudate-putamen (vCPu, anatomical control). JNJ16259685 or CNQX in the NAC core dose-dependently impaired contextual cocaine-seeking behavior relative to vehicle. Conversely, CNQX, but not JNJ16259685, in the lateral or medial NAC shell attenuated, whereas CNQX or JNJ16259685 in vCPu failed to inhibit, this behavior. The manipulations failed to alter instrumental behavior in the extinction context, general motor activity or food-reinforced instrumental behavior in control experiments. Thus, glutamate-mediated changes in drug context-induced motivation for cocaine involve distinct neuropharmacological mechanisms within the core and shell subregions of the NAC, with the stimulation of mGlu1 and AMPA/kainate receptors in the NAC core and the stimulation of AMPA/kainate, but not mGlu1, receptors in the NAC shell being necessary for this phenomenon.
Collapse
Affiliation(s)
- Xiaohu Xie
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Heather C. Lasseter
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Donna R. Ramirez
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - KaiCee L. Ponds
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Audrey M. Wells
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Rita A. Fuchs
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Lee HK. Ca-permeable AMPA receptors in homeostatic synaptic plasticity. Front Mol Neurosci 2012; 5:17. [PMID: 22347846 PMCID: PMC3278195 DOI: 10.3389/fnmol.2012.00017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 02/02/2012] [Indexed: 01/08/2023] Open
Abstract
Neurons possess diverse mechanisms of homeostatic adaptation to overall changes in neural and synaptic activity, which are critical for proper brain functions. Homeostatic regulation of excitatory synapses has been studied in the context of synaptic scaling, which allows neurons to adjust their excitatory synaptic gain to maintain their activity within a dynamic range. Recent evidence suggests that one of the main mechanisms underlying synaptic scaling is by altering the function of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), including synaptic expression of Ca2+-permeable (CP-) AMPARs. CP-AMPARs endow synapses with unique properties, which may benefit adaptation of neurons to periods of inactivity as would occur when a major input is lost. This review will summarize how synaptic expression of CP-AMPARs is regulated during homeostatic synaptic plasticity in the context of synaptic scaling, and will address the potential functional consequences of altering synaptic CP-AMPAR content.
Collapse
Affiliation(s)
- Hey-Kyoung Lee
- The Solomon H. Snyder Department of Neuroscience, The Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore MD, USA
| |
Collapse
|
29
|
Cav1.2 L-type Ca²⁺ channels mediate cocaine-induced GluA1 trafficking in the nucleus accumbens, a long-term adaptation dependent on ventral tegmental area Ca(v)1.3 channels. J Neurosci 2011; 31:13562-75. [PMID: 21940447 DOI: 10.1523/jneurosci.2315-11.2011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AMPA receptor (AMPAR) plasticity at glutamatergic synapses in the mesoaccumbal dopaminergic pathway has been implicated in persistent cocaine-induced behavioral responses; however, the precise mechanism underlying these changes remains unknown. Utilizing cocaine psychomotor sensitization, we have examined phosphorylation of GluA1 at key residues serine 845 (S845) and S831, as well as GluA1 cell surface levels in the nucleus accumbens (NAc) of cocaine-preexposed mice and the role of brain-specific Ca(v)1.2 and Ca(v)1.3 L-type Ca²⁺ channels (LTCCs), therein. We found higher basal levels of S845 phospho-GluA1 (P-GluA1) and cell surface GluA1 in the NAc following protracted withdrawal from cocaine exposure, changes that occur independently of LTCCs. In contrast, we found that a cocaine challenge that elicits expression of the cocaine-sensitized response increases S831 P-GluA1 that further increases surface GluA1 beyond the higher basal levels. Intra-NAc pharmacological manipulations indicate that the Ca(v)1.2-activated CaM kinase II (CaMKII) mediates cocaine-induced increase in S831 P-GluA1 and that both Ca(v)1.2-activated CaMKII and extracellular signal-regulated kinase 2 (ERK2) mediate the increase in GluA1 cell surface levels specific to the sensitized response. Experiments using adenoassociated viral vectors expressing Ca(v)1.3 and ERK2 siRNA further indicate that recruitment of the Ca(v)1.2 pathway in the NAc is dependent on ventral tegmental area Ca(v)1.3 LTCCs and ERK2. Together, these results identify candidate pathways that mediate cocaine-induced AMPAR plasticity in the NAc and provide a mechanism linking LTCCs and GluA1 plasticity to cocaine-induced persistent behavioral changes.
Collapse
|
30
|
Goel A, Xu LW, Snyder KP, Song L, Goenaga-Vazquez Y, Megill A, Takamiya K, Huganir RL, Lee HK. Phosphorylation of AMPA receptors is required for sensory deprivation-induced homeostatic synaptic plasticity. PLoS One 2011; 6:e18264. [PMID: 21483826 PMCID: PMC3069067 DOI: 10.1371/journal.pone.0018264] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 02/28/2011] [Indexed: 11/18/2022] Open
Abstract
Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca2+-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.
Collapse
Affiliation(s)
- Anubhuti Goel
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science (NACS) Program, University of Maryland, College Park, Maryland, United States of America
| | - Linda W. Xu
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Kevin P. Snyder
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Lihua Song
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Yamila Goenaga-Vazquez
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science (NACS) Program, University of Maryland, College Park, Maryland, United States of America
| | - Andrea Megill
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Cell Biology and Molecular Genetics (CBMG) Program, University of Maryland, College Park, Maryland, United States of America
| | - Kogo Takamiya
- Department of Integrative Physiology, University of Miyazaki Faculty of Medicine, Miyazaki, Japan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Hey-Kyoung Lee
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
- Neuroscience and Cognitive Science (NACS) Program, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ. Post-translational modification biology of glutamate receptors and drug addiction. Front Neuroanat 2011; 5:19. [PMID: 21441996 PMCID: PMC3062099 DOI: 10.3389/fnana.2011.00019] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/03/2011] [Indexed: 01/26/2023] Open
Abstract
Post-translational covalent modifications of glutamate receptors remain a hot topic. Early studies have established that this family of receptors, including almost all ionotropic and metabotropic glutamate receptor subtypes, undergoes active phosphorylation at serine, threonine, or tyrosine residues in their intracellular domains. Recent evidence identifies several glutamate receptor subtypes to be direct substrates for palmitoylation at cysteine residues. Other modifications such as ubiquitination and sumoylation at lysine residues also occur to certain glutamate receptors. These modifications are dynamic and reversible in nature and are regulatable by changing synaptic inputs. The regulated modifications significantly impact the receptor in many ways, including interrelated changes in biochemistry (synthesis, subunit assembling, and protein–protein interactions), subcellular redistribution (trafficking, endocytosis, synaptic delivery, and clustering), and physiology, usually associated with changes in synaptic plasticity. Glutamate receptors are enriched in the striatum and cooperate closely with dopamine to regulate striatal signaling. Emerging evidence shows that modification processes of striatal glutamate receptors are sensitive to addictive drugs, such as psychostimulants (cocaine and amphetamine). Altered modifications are believed to be directly linked to enduring receptor/synaptic plasticity and drug-seeking. This review summarizes several major types of modifications of glutamate receptors and analyzes the role of these modifications in striatal signaling and in the pathogenesis of psychostimulant addiction.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City Kansas City, MO, USA
| | | | | | | | | | | |
Collapse
|
32
|
Ferrario CR, Loweth JA, Milovanovic M, Ford KA, Galiñanes GL, Heng LJ, Tseng KY, Wolf ME. Alterations in AMPA receptor subunits and TARPs in the rat nucleus accumbens related to the formation of Ca²⁺-permeable AMPA receptors during the incubation of cocaine craving. Neuropharmacology 2011; 61:1141-51. [PMID: 21276808 DOI: 10.1016/j.neuropharm.2011.01.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/20/2010] [Accepted: 01/11/2011] [Indexed: 11/30/2022]
Abstract
Cue-induced cocaine seeking intensifies or incubates after withdrawal from extended access cocaine self-administration, a phenomenon termed incubation of cocaine craving. The expression of incubated craving is mediated by Ca²⁺-permeable AMPA receptors (CP-AMPARs) in the nucleus accumbens (NAc). Thus, CP-AMPARs are a potential target for therapeutic intervention, making it important to understand mechanisms that govern their accumulation. Here we used subcellular fractionation and biotinylation of NAc tissue to examine the abundance and distribution of AMPAR subunits, and GluA1 phosphorylation, in the incubation model. We also studied two transmembrane AMPA receptor regulatory proteins (TARPs), γ-2 and γ-4. Our results, together with earlier findings, suggest that some of the new CP-AMPARs are synaptic. These are probably associated with γ-2, but they are loosely tethered to the PSD. Levels of GluA1 phosphorylated at serine 845 (pS845 GluA1) were significantly increased in biotinylated tissue and in an extrasynaptic membrane-enriched fraction. These results suggest that increased synaptic levels of CP-AMPARs may result in part from an increase in pS845 GluA1 in extrasynaptic membranes, given that S845 phosphorylation primes GluA1-containing AMPARs for synaptic insertion and extrasynaptic AMPARs supply the synapse. Some of the new extrasynaptic CP-AMPARs are likely associated with γ-4, rather than γ-2. The maintenance of CP-AMPARs in NAc synapses during withdrawal is accompanied by activation of CaMKII and ERK2 but not CaMKI. Overall, AMPAR plasticity in the incubation model shares some features with better described forms of synaptic plasticity, although the timing of the phenomenon and the persistence of related neuroadaptations are significantly different.
Collapse
Affiliation(s)
- Carrie R Ferrario
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Distribution of AMPA receptor subunits and TARPs in synaptic and extrasynaptic membranes of the adult rat nucleus accumbens. Neurosci Lett 2010; 490:180-4. [PMID: 21182898 DOI: 10.1016/j.neulet.2010.12.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/07/2010] [Accepted: 12/13/2010] [Indexed: 01/31/2023]
Abstract
We characterized the distribution of AMPA receptor (AMPAR) subunits and the transmembrane AMPA receptor regulatory proteins (TARPs) γ-2 and γ-4 in adult rat nucleus accumbens (NAc) using a method that separates plasma membranes into synaptic membrane-enriched and extrasynaptic membrane-enriched fractions. We also measured GluA1 phosphorylated at serine 845 (pS845 GluA1) and serine 831 (pS831 GluA1). GluA1-3 protein levels and pS831 GluA1/total GluA1 were higher in synaptic membranes. However, pS845 GluA1/total GluA1 was higher in extrasynaptic membranes, consistent with a role for S845 phosphorylation in GluA1 insertion at extrasynaptic sites. Homeric GluA1 receptors were detected in extrasynaptic membranes, consistent with evidence for extrasynaptic Ca(2+)-permeable AMPARs in other systems. The TARP γ-2 was enriched in synaptic membranes, whereas γ-4 was mainly found in extrasynaptic membranes, suggesting distinct roles for these proteins in the NAc. These experiments provide fundamental information that will aid in the interpretation of studies on AMPAR-related plasticity in the NAc.
Collapse
|
34
|
Jürgensen S, Antonio LL, Mussi GEA, Brito-Moreira J, Bomfim TR, De Felice FG, Garrido-Sanabria ER, Cavalheiro ÉA, Ferreira ST. Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers. J Biol Chem 2010; 286:3270-6. [PMID: 21115476 DOI: 10.1074/jbc.m110.177790] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soluble oligomers of the amyloid-β peptide (AβOs) accumulate in the brains of Alzheimer disease (AD) patients and are implicated in synapse failure and early memory loss in AD. AβOs have been shown to impact synapse function by inhibiting long term potentiation, facilitating the induction of long term depression and inducing internalization of both AMPA and NMDA glutamate receptors, critical players in plasticity mechanisms. Because activation of dopamine D1/D5 receptors plays important roles in memory circuits by increasing the insertion of AMPA and NMDA receptors at synapses, we hypothesized that selective activation of D1/D5 receptors could protect synapses from the deleterious action of AβOs. We show that SKF81297, a selective D1/D5 receptor agonist, prevented the reduction in surface levels of AMPA and NMDA receptors induced by AβOs in hippocampal neurons in culture. Protection by SKF81297 was abrogated by the specific D1/D5 antagonist, SCH23390. Levels of AMPA receptor subunit GluR1 phosphorylated at Ser(845), which regulates AMPA receptor association with the plasma membrane, were reduced in a calcineurin-dependent manner in the presence of AβOs, and treatment with SKF81297 prevented this reduction. Establishing the functional relevance of these findings, SKF81297 blocked the impairment of long term potentiation induced by AβOs in hippocampal slices. Results suggest that D1/D5 receptors may be relevant targets for development of novel pharmacological approaches to prevent synapse failure in AD.
Collapse
Affiliation(s)
- Sofia Jürgensen
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro RJ 1944-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wolf ME. Regulation of AMPA receptor trafficking in the nucleus accumbens by dopamine and cocaine. Neurotox Res 2010; 18:393-409. [PMID: 20361291 DOI: 10.1007/s12640-010-9176-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 12/27/2022]
Abstract
Nucleus accumbens (NAc) neurons are excited primarily by AMPA-type glutamate receptors (AMPAR). This is required for cocaine seeking in animal models of cocaine addiction, suggesting AMPAR transmission in the NAc as a key control point for cocaine-related behaviors. This review will briefly describe AMPAR properties and trafficking, with a focus on studies in NAc neurons, and then consider mechanisms by which cocaine may alter AMPAR transmission. Two examples will be discussed that may be important in two different stages of addiction: learning about drugs and drug-related cues during the period of drug exposure, and persistent vulnerability to craving and relapse after abstinence is achieved. The first example is drawn from studies of cultured NAc neurons. Elevation of dopamine levels (as would occur following cocaine exposure) facilitates activity-dependent strengthening of excitatory synapses onto medium spiny neurons, the main cell type and projection neuron of the NAc. This occurs because activation of D1-class dopamine receptors primes AMPAR for synaptic insertion. This may create a temporal window in which stimuli related to cocaine-taking are more efficacious at eliciting synaptic plasticity and thus being encoded into memory. The second example involves rat models of cocaine addiction. Cell surface and synaptic expression of AMPAR on NAc neurons is persistently increased after withdrawal from repeated cocaine exposure. We hypothesize that this increases the reactivity of NAc neurons to glutamate inputs from cortex and limbic structures, facilitating the ability of these inputs to trigger cocaine seeking and thus contributing to the persistent vulnerability to relapse that characterizes addiction.
Collapse
Affiliation(s)
- Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, USA.
| |
Collapse
|
36
|
Singer BF, Loweth JA, Neve RL, Vezina P. Transient viral-mediated overexpression of alpha-calcium/calmodulin-dependent protein kinase II in the nucleus accumbens shell leads to long-lasting functional upregulation of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptors: dopamine type-1 receptor and protein kinase A dependence. Eur J Neurosci 2010; 31:1243-51. [PMID: 20345911 DOI: 10.1111/j.1460-9568.2010.07155.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) activity is necessary for the long-lasting expression of locomotor sensitization and enhanced drug-taking observed in rats previously exposed to psychostimulants. Exposure to these drugs also transiently increases alphaCaMKII levels in the nucleus accumbens (NAcc), an effect that, when mimicked by transient viral-mediated overexpression of alphaCaMKII in NAcc shell neurons, leads to long-lasting enhancement in locomotor responding to amphetamine and NAcc alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA). The present experiments characterized the dopamine (DA) dependence of the functional AMPA receptor upregulation observed long after transient overexpression of alphaCaMKII. Rats infected with herpes simplex virus-alphaCaMKII in the NAcc shell showed a transient increase in alphaCaMKII levels that peaked at 4 days post-infection and returned to baseline 8 days later. When challenged with AMPA (0.8 nmol/side) in the NAcc shell at 20 days post-infection, these rats showed enhanced locomotion compared with controls. This sensitized locomotor response was blocked when AMPA was coinfused with either the DA type-1 receptor antagonist SCH23390 (0.8 nmol/side) or the protein kinase A inhibitor Rp-cAMPS (80 nmol/side). Neither SCH23390 nor Rp-cAMPS produced locomotor effects when infused by itself into the NAcc shell. Furthermore, these antagonists did not block the acute non-sensitized locomotor response to AMPA observed in control rats. These findings show that transient viral-mediated overexpression of alphaCaMKII in neurons of the NAcc shell leads to long-lasting functional upregulation of AMPA receptors that is DA type-1 receptor and protein kinase A dependent. Thus, transient increases in levels of alphaCaMKII in the NAcc shell produce long-lasting changes in the way that DA and glutamate interact in this site to generate locomotor behavior.
Collapse
Affiliation(s)
- B F Singer
- Committee on Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
37
|
Wolf ME, Ferrario CR. AMPA receptor plasticity in the nucleus accumbens after repeated exposure to cocaine. Neurosci Biobehav Rev 2010; 35:185-211. [PMID: 20109488 DOI: 10.1016/j.neubiorev.2010.01.013] [Citation(s) in RCA: 210] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/17/2010] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
This review focuses on cocaine-induced postsynaptic plasticity in the nucleus accumbens (NAc) involving changes in AMPA receptor (AMPAR) transmission. First, fundamental properties of AMPAR in the NAc are reviewed. Then, we provide a detailed and critical analysis of literature demonstrating alterations in AMPAR transmission in association with behavioral sensitization to cocaine and cocaine self-administration. We conclude that cocaine exposure leads to changes in AMPAR transmission that depend on many factors including whether exposure is contingent or non-contingent, the duration of withdrawal, and whether extinction training has occurred. The relationship between changes in AMPAR transmission and responding to cocaine or cocaine-paired cues can also be affected by these variables. However, after prolonged withdrawal in the absence of extinction training, our findings and others lead us to propose that AMPAR transmission is enhanced, resulting in stronger responding to drug-paired cues. Finally, many results indicate that the state of synaptic transmission in the NAc after cocaine exposure is associated with impairment of AMPAR-dependent plasticity. This may contribute to a broad range of addiction-related behavioral changes.
Collapse
Affiliation(s)
- Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064-3095, United States.
| | | |
Collapse
|
38
|
Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ. Ten simple rules for dynamic causal modeling. Neuroimage 2009; 49:3099-109. [PMID: 19914382 PMCID: PMC2825373 DOI: 10.1016/j.neuroimage.2009.11.015] [Citation(s) in RCA: 598] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/01/2009] [Accepted: 11/09/2009] [Indexed: 11/09/2022] Open
Abstract
Dynamic causal modeling (DCM) is a generic Bayesian framework for inferring hidden neuronal states from measurements of brain activity. It provides posterior estimates of neurobiologically interpretable quantities such as the effective strength of synaptic connections among neuronal populations and their context-dependent modulation. DCM is increasingly used in the analysis of a wide range of neuroimaging and electrophysiological data. Given the relative complexity of DCM, compared to conventional analysis techniques, a good knowledge of its theoretical foundations is needed to avoid pitfalls in its application and interpretation of results. By providing good practice recommendations for DCM, in the form of ten simple rules, we hope that this article serves as a helpful tutorial for the growing community of DCM users.
Collapse
Affiliation(s)
- K E Stephan
- Laboratory for Social and Neural Systems Research, Institute for Empirical Research in Economics, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
39
|
Marin MT, Berkow A, Golden SA, Koya E, Planeta CS, Hope BT. Context-specific modulation of cocaine-induced locomotor sensitization and ERK and CREB phosphorylation in the rat nucleus accumbens. Eur J Neurosci 2009; 30:1931-40. [PMID: 19912338 PMCID: PMC2810354 DOI: 10.1111/j.1460-9568.2009.06982.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Learned associations are hypothesized to develop between drug effects and contextual stimuli during repeated drug administration to produce context-specific sensitization that is expressed only in the drug-associated environment and not in a non-drug-paired environment. The neuroadaptations that mediate such context-specific behavior are largely unknown. We investigated context-specific modulation of cAMP-response element-binding protein (CREB) phosphorylation and that of four upstream kinases in the nucleus accumbens that phosphorylate CREB, including extracellular signal-regulated kinase (ERK), cAMP-dependent protein kinase, calcium/calmodulin-dependent kinase (CaMK) II and CaMKIV. Rats received seven once-daily injections of cocaine or saline in one of two distinct environments outside their home cages. Seven days later, test injections of cocaine or saline were administered in either the paired or the non-paired environment. CREB and ERK phosphorylation were assessed with immunohistochemistry, and phosphorylation of the remaining kinases, as well as of CREB and ERK, was assessed by western blotting. Repeated cocaine administration produced context-specific sensitized locomotor responses accompanied by context-specific enhancement of the number of cocaine-induced phosphoCREB-immunoreactive and phosphoERK-immunoreactive nuclei in a minority of neurons. In contrast, CREB and CaMKIV phosphorylation in nucleus accumbens homogenates were decreased by cocaine test injections. We have recently shown that a small number of cocaine-activated accumbens neurons mediate the learned association between cocaine effects and the drug administration environment to produce context-specific sensitization. Context-specific phosphorylation of ERK and CREB in the present study suggests that this signal transduction pathway is selectively activated in the same set of cocaine-activated accumbens neurons that mediate this learned association.
Collapse
Affiliation(s)
- Marcelo T. Marin
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, 14801-902, Araraquara-SP, Brazil
| | - Alexander Berkow
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Sam A. Golden
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Eisuke Koya
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Cleopatra S. Planeta
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rod. Araraquara-Jaú km 1, 14801-902, Araraquara-SP, Brazil
| | - Bruce T. Hope
- Behavioral Neuroscience Branch, IRP/NIDA/NIH/DHHS, 251 Bayview Blvd, Baltimore, MD 21224, USA
| |
Collapse
|
40
|
Boudreau AC, Ferrario CR, Glucksman MJ, Wolf ME. Signaling pathway adaptations and novel protein kinase A substrates related to behavioral sensitization to cocaine. J Neurochem 2009; 110:363-77. [PMID: 19457111 DOI: 10.1111/j.1471-4159.2009.06140.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Behavioral sensitization is an animal model for aspects of cocaine addiction. Cocaine-sensitized rats exhibit increased AMPA receptor (AMPAR) surface expression in the nucleus accumbens (NAc) which may in turn enhance drug seeking. To identify signaling pathways contributing to AMPAR up-regulation, we measured AMPAR surface expression and signaling pathway activation in the NAc of cocaine-sensitized rats, cocaine-exposed rats that failed to sensitize and saline controls on withdrawal days (WD) 1, 7, and 21. We focused on calcium/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated protein kinase (ERK), and protein kinase A (PKA). In sensitized rats, AMPAR surface expression was elevated on WD7 and WD21 but not WD1. ERK2 activation followed a parallel time-course, suggesting a role in AMPAR up-regulation. Both sensitized and non-sensitized rats exhibited CaMKII activation on WD7, suggesting that CaMKII activation is not sufficient for AMPAR up-regulation. PKA phosphorylation, measured using an antibody recognizing phosphorylated PKA substrates, increased gradually over withdrawal in sensitized rats, from below control levels on WD1 to significantly greater than controls on WD21. Using proteomics, novel sensitization-related PKA substrates were identified, including two structural proteins (CRMP-2 and alpha-tubulin) that we speculate may link PKA signaling to previously reported dendritic remodeling in NAc neurons of cocaine-sensitized rats.
Collapse
Affiliation(s)
- Amy C Boudreau
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095, USA
| | | | | | | |
Collapse
|
41
|
Han P, Whelan P. Modulation of AMPA currents by D1-like but not D2-like receptors in spinal motoneurons. Neuroscience 2009; 158:1699-707. [DOI: 10.1016/j.neuroscience.2008.11.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/04/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
|
42
|
Nelson CL, Milovanovic M, Wetter JB, Ford KA, Wolf ME. Behavioral sensitization to amphetamine is not accompanied by changes in glutamate receptor surface expression in the rat nucleus accumbens. J Neurochem 2009; 109:35-51. [PMID: 19183251 DOI: 10.1111/j.1471-4159.2009.05911.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We examined whether behavioral sensitization to amphetamine is associated with redistribution of glutamate receptors (GluR) in the rat nucleus accumbens (NAc) or dorsolateral striatum (DLSTR). Following repeated amphetamine treatment and 21 days of withdrawal, surface and intracellular levels of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or NMDA receptor subunits were determined using a protein cross-linking assay. In contrast to our previous results in cocaine-sensitized rats, we did not observe redistribution of GluR1 or GluR2 to the cell surface in the NAc after amphetamine withdrawal, although a small increase in total GluR1 was found in the shell subregion. Nor did we observe activation of signaling pathways associated with cocaine-induced AMPA receptor trafficking or changes in NMDA receptor subunits. No significant changes were observed in the DLSTR. We also investigated the effect of administering a challenge injection of amphetamine to amphetamine-sensitized rats 24 h prior to biochemical analysis based on prior studies showing that cocaine challenge decreases AMPA receptor surface expression in the NAc of cocaine-sensitized rats. GluR1 and GluR2 were not significantly altered in either NAc or DLSTR, although a modest effect on GluR3 cannot be ruled out. Our results suggest that glutamate transmission in the NAc is dramatically different in rats sensitized to amphetamine versus cocaine.
Collapse
Affiliation(s)
- Christopher L Nelson
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064-3095, USA
| | | | | | | | | |
Collapse
|
43
|
Olianas MC, Dedoni S, Boi M, Onali P. Activation of nociceptin/orphanin FQ-NOP receptor system inhibits tyrosine hydroxylase phosphorylation, dopamine synthesis, and dopamine D(1) receptor signaling in rat nucleus accumbens and dorsal striatum. J Neurochem 2008; 107:544-56. [PMID: 18717817 DOI: 10.1111/j.1471-4159.2008.05629.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Nociceptin/orphanin FQ (N/OFQ) has been reported to inhibit dopamine (DA) release in basal ganglia mainly by acting on NOP receptors in substantia nigra and ventral tegmental area. We investigated whether N/OFQ could affect DA transmission by acting at either DA nerve endings or DA-targeted post-synaptic neurons. In synaptosomes of rat nucleus accumbens and striatum N/OFQ inhibited DA synthesis and tyrosine hydroxylase (TH) phosphorylation at Ser40 via NOP receptors coupled to inhibition of the cAMP/protein kinase A pathway. Immunofluorescence studies showed that N/OFQ preferentially inhibited phospho-Ser40-TH in nucleus accumbens shell and that in this subregion NOP receptors partly colocalized with either TH or DA D(1) receptor positive structures. In accumbens and striatum N/OFQ inhibited DA D(1) receptor-stimulated cAMP formation, but failed to affect either adenosine A(2A) or DA D(2) receptor regulation of cAMP. In accumbens slices, N/OFQ inhibited DA D(1)-induced phosphorylation of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptors, whereas in primary cultures of accumbal cells, which were found to coexpress NOP and DA D(1) receptors, N/OFQ curtailed DA D(1) receptor-induced cAMP-response element-binding protein phosphorylation. Thus, in accumbens and striatum N/OFQ exerts an inhibitory constraint on DA transmission by acting on either pre-synaptic NOP receptors inhibiting TH phosphorylation and DA synthesis or post-synaptic NOP receptors selectively down-regulating DA D(1) receptor signaling.
Collapse
Affiliation(s)
- Maria C Olianas
- Department of Neuroscience, University of Cagliari, Cagliari, Italy
| | | | | | | |
Collapse
|
44
|
Acute and chronic dopamine receptor stimulation modulates AMPA receptor trafficking in nucleus accumbens neurons cocultured with prefrontal cortex neurons. J Neurosci 2008; 28:4216-30. [PMID: 18417701 DOI: 10.1523/jneurosci.0258-08.2008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Postsynaptic interactions between dopamine (DA) and glutamate receptors in the nucleus accumbens (NAc) are critical for addiction. To determine the effect of acute and repeated DA receptor stimulation on AMPA receptor (AMPAR) synaptic targeting in medium spiny NAc neurons, we developed a model system consisting of rat NAc neurons cocultured with prefrontal cortex neurons from enhanced green fluorescent protein-expressing mice. Cortical neurons restore excitatory input onto NAc neurons but are distinguishable based on fluorescence. First, we showed that brief D1-like agonist exposure increased AMPAR insertion onto extrasynaptic regions of NAc neuronal processes through a mechanism requiring protein kinase A. This facilitated the Ca2+/calmodulin dependent protein kinase II (CaMKII)-dependent synaptic incorporation of AMPARs in response to subsequent NMDA receptor (NMDAR) stimulation. Through this mechanism, DA may promote reward- and drug-related plasticity in the NAc. Then, to model effects of repeated in vivo cocaine exposure, we treated cocultures with DA (1 microm, 30 min) on days 7, 9, and 11 in culture. On day 15, NAc neurons exhibited increased synaptic AMPAR levels. This was associated with CaMKII activation and was blocked by the CaMKII inhibitor KN-93 (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide phosphate salt). Furthermore, D1-like agonist exposure on day 15 no longer increased AMPAR surface expression. This refractoriness was associated with decreased D1 receptor surface expression. NMDAR surface expression was not altered by acute or repeated DA receptor stimulation. These results suggest that (1) after repeated DA treatment, NAc neurons are more responsive to glutamate inputs but D(1)-like receptor regulation of plasticity is impaired, and (2) NAc/prefrontal cortex cocultures are useful for studying dopamine-induced neuroadaptations.
Collapse
|
45
|
Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell 2008; 131:160-73. [PMID: 17923095 DOI: 10.1016/j.cell.2007.09.017] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 07/10/2007] [Accepted: 09/14/2007] [Indexed: 01/12/2023]
Abstract
Emotion enhances our ability to form vivid memories of even trivial events. Norepinephrine (NE), a neuromodulator released during emotional arousal, plays a central role in the emotional regulation of memory. However, the underlying molecular mechanism remains elusive. Toward this aim, we have examined the role of NE in contextual memory formation and in the synaptic delivery of GluR1-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors during long-term potentiation (LTP), a candidate synaptic mechanism for learning. We found that NE, as well as emotional stress, induces phosphorylation of GluR1 at sites critical for its synaptic delivery. Phosphorylation at these sites is necessary and sufficient to lower the threshold for GluR1 synaptic incorporation during LTP. In behavioral experiments, NE can lower the threshold for memory formation in wild-type mice but not in mice carrying mutations in the GluR1 phosphorylation sites. Our results indicate that NE-driven phosphorylation of GluR1 facilitates the synaptic delivery of GluR1-containing AMPARs, lowering the threshold for LTP, thereby providing a molecular mechanism for how emotion enhances learning and memory.
Collapse
|
46
|
Anderson SM, Famous KR, Sadri-Vakili G, Kumaresan V, Schmidt HD, Bass CE, Terwilliger EF, Cha JHJ, Pierce RC. CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 2008; 11:344-53. [PMID: 18278040 DOI: 10.1038/nn2054] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/24/2008] [Indexed: 12/25/2022]
Abstract
Increases in dopamine and glutamate transmission in the nucleus accumbens independently promote the reinstatement of cocaine seeking, an animal model of relapse. Here we have tested whether cocaine reinstatement in rats depends on interactions between accumbal dopamine and glutamate systems that are mediated by Ca(2+)/calmodulin-mediated kinase II (CaMKII). We show that stimulation of D1-like dopamine receptors in the nucleus accumbens shell reinstates cocaine seeking by activating L-type Ca(2+) channels and CaMKII. Cocaine reinstatement is associated with D1-like dopamine receptor-dependent increases in accumbens shell CaMKII phosphorylated on Thr286 and glutamate receptor 1 (GluR1) phosphorylated on Ser831 (a known CaMKII phosphorylation site), in addition to increases in cell-surface expression of GluR1-containing AMPA receptors in the shell. Consistent with these findings, cocaine reinstatement is attenuated by intra-shell administration of AAV10-GluR1-C99, a vector that impairs the transport of GluR1-containing AMPA receptors. Thus, CaMKII may be an essential link between accumbens shell dopamine and glutamate systems involved in the neuronal plasticity underlying cocaine craving and relapse.
Collapse
Affiliation(s)
- Sharon M Anderson
- Department of Pharmacology, Boston University School of Medicine, 715 Albany Street, L603, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dopamine alters AMPA receptor synaptic expression and subunit composition in dopamine neurons of the ventral tegmental area cultured with prefrontal cortex neurons. J Neurosci 2008; 27:14275-85. [PMID: 18160635 DOI: 10.1523/jneurosci.2925-07.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excitatory synapses onto dopamine (DA) neurons of the ventral tegmental area (VTA) represent a critical site of psychostimulant-induced synaptic plasticity. This plasticity involves alterations in synaptic strength through AMPA receptor (AMPAR) redistribution. Here, we report an in vitro model for studying regulation of AMPAR trafficking in DA neurons under control conditions and after elevation of DA levels, mimicking cocaine exposure. We used cocultures containing rat VTA neurons and prefrontal cortex (PFC) neurons from enhanced cyan fluorescent protein-expressing mice. In VTA-PFC cocultures, D1 receptor activation (10 min) increased synaptic and nonsynaptic glutamate receptor subunit 1 (GluR1) and GluR2 surface expression on DA neurons. NMDA or AMPA receptor antagonists blocked this effect, and it was not observed in pure VTA cultures, suggesting that DA agonists acted on D1 receptors on PFC neurons, altering their excitatory transmission onto VTA DA neurons and, thus, influencing AMPARs. To mimic the longer elevation in extracellular DA levels produced by systemic cocaine, cocultures were incubated with DA for 1 h. Synaptic GluR1 was increased 24 h later, reminiscent of the increased AMPA/NMDA ratio at excitatory synapses onto VTA DA neurons 24 h after cocaine injection (Ungless et al., 2001). In contrast, GluR2 was unchanged. Analysis of colocalization of surface GluR1-3 labeling suggested that control DA neurons express a substantial number of GluR1/2, GluR2/3, and homomeric GluR1 receptors and that the increase in surface AMPARs 24 h after DA exposure may in part reflect increased GluR1/3-containing receptors. These results help define the cellular basis for plasticity underlying the development of behavioral sensitization.
Collapse
|
48
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
49
|
Alcaro A, Huber R, Panksepp J. Behavioral functions of the mesolimbic dopaminergic system: an affective neuroethological perspective. BRAIN RESEARCH REVIEWS 2007; 56:283-321. [PMID: 17905440 PMCID: PMC2238694 DOI: 10.1016/j.brainresrev.2007.07.014] [Citation(s) in RCA: 309] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 07/03/2007] [Accepted: 07/03/2007] [Indexed: 12/11/2022]
Abstract
The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spreads into BG, DA transmission promotes the "release" of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors.
Collapse
Affiliation(s)
- Antonio Alcaro
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind & Behavior, Bowling Green State University, Life Science Building, Bowling Green, OH, 43403, USA
- Santa Lucia Foundation, European Centre for Brain Research (CERC), Via del Fosso di Fiorano 65, 00143 Rome, Italy
| | - Robert Huber
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind & Behavior, Bowling Green State University, Life Science Building, Bowling Green, OH, 43403, USA
| | - Jaak Panksepp
- Department of Biological Sciences and J.P. Scott Center for Neuroscience, Mind & Behavior, Bowling Green State University, Life Science Building, Bowling Green, OH, 43403, USA
- Department of VCAPP, Center for the Study of Animal Well-Being, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
50
|
Moro H, Sato H, Ida I, Oshima A, Sakurai N, Shihara N, Horikawa Y, Mikuni M. Effects of SKF-38393, a dopamine D1 receptor agonist on expression of amphetamine-induced behavioral sensitization and expression of immediate early gene arc in prefrontal cortex of rats. Pharmacol Biochem Behav 2007; 87:56-64. [PMID: 17499349 DOI: 10.1016/j.pbb.2007.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 03/14/2007] [Accepted: 03/30/2007] [Indexed: 11/23/2022]
Abstract
Repeated administrations of psychostimulants into rodents produce behavioral sensitization. We examined whether a dopamine D1 agonist can reverse behavioral sensitization once established by repeated amphetamine (AMP) administrations and determined the mRNA expression levels of the D1 and D2 receptors, metabotropic glutamate receptor 1 (mGluR1), and activity-regulated cytoskeleton-associated protein (arc) in rats. Rats were pretreated with six intermittent AMP injections. Following a 14-day withdrawal period, the rats were divided into six groups and treated with either SKF-38393 (SKF; dopamine D1 agonist), SCH-23390 (SCH; selective D1 antagonist), YM-09151-2 (YM; selective D2 antagonist), SKF+SCH, SKF+YM or physiological saline once daily for 5 days. Three days or 4 weeks after the reversal treatments, all the rats were rechallenged with AMP. D1 and D2 antagonist treatments produced no significant decreases in locomotor activity or stereotyped behavior rate, respectively. In the SKF treatment group, stereotyped behavior rate decreased markedly after the three-day and four-week withdrawal periods. SKF+SCH treatment inhibited the effect of SKF treatment. The rats in the other groups that received AMP with or without SKF were decapitated 1 h after treatment, and the mRNA levels of the D1 and D2 receptors, mGluR1, and arc were measured by TaqMan real-time reverse transcriptase-polymerase chain reaction (RT-PCR). AMP administration significantly increased arc level. SKF also increased arc level significantly after the first single injection and after repeated injections of AMP during the pretreatment. There was no significant difference in arc expression level between the saline and SKF treatment groups after the AMP challenge, suggesting that arc expression level is not involved in the reversal effects of SKF in AMP sensitization.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Amphetamine/pharmacology
- Animals
- Behavior, Animal/drug effects
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Dopamine Agonists/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Genes, Immediate-Early/genetics
- Male
- Motor Activity/drug effects
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/agonists
- Receptors, Dopamine D1/biosynthesis
- Receptors, Dopamine D2/biosynthesis
- Receptors, Metabotropic Glutamate/biosynthesis
- Receptors, Metabotropic Glutamate/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Stereotyped Behavior/drug effects
Collapse
Affiliation(s)
- Hiroomi Moro
- Department of Psychiatry and Human Behavior, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.
| | | | | | | | | | | | | | | |
Collapse
|