1
|
Ovcjak A, Xiao A, Kim JS, Xu B, Szeto V, Turlova E, Abussaud A, Chen NH, Miller SP, Sun HS, Feng ZP. Ryanodine receptor inhibitor dantrolene reduces hypoxic-ischemic brain injury in neonatal mice. Exp Neurol 2022; 351:113985. [DOI: 10.1016/j.expneurol.2022.113985] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/07/2022] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
|
2
|
Zhang X, Peng K, Zhang X. The Function of the NMDA Receptor in Hypoxic-Ischemic Encephalopathy. Front Neurosci 2020; 14:567665. [PMID: 33117117 PMCID: PMC7573650 DOI: 10.3389/fnins.2020.567665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the main forms of neonatal brain injury which could lead to neonatal disability or even cause neonatal death. Therefore, HIE strongly affects the health of newborns and brings heavy burden to the family and society. It has been well studied that N-methyl-D-aspartate (NMDA) receptors are involved in the excitotoxicity induced by hypoxia ischemia in adult brain. Recently, it has been shown that the NMDA receptor also plays important roles in HIE. In the present review, we made a summary of the molecular mechanism of NMDA receptor in the pathological process of HIE, focusing on the distinct role of GluN2A- and GluN2B-containing NMDA receptor subtypes and aiming to provide some insights into the clinical treatment and drug development of HIE.
Collapse
|
3
|
Rzemieniec J, Bratek E, Wnuk A, Przepiórska K, Salińska E, Kajta M. Neuroprotective effect of 3,3'-Diindolylmethane against perinatal asphyxia involves inhibition of the AhR and NMDA signaling and hypermethylation of specific genes. Apoptosis 2020; 25:747-762. [PMID: 32816128 PMCID: PMC7527327 DOI: 10.1007/s10495-020-01631-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
Each year, 1 million children die due to perinatal asphyxia; however, there are no effective drugs to protect the neonatal brain against hypoxic/ischemic damage. In this study, we demonstrated for the first time the neuroprotective capacity of 3,3’-diindolylmethane (DIM) in an in vivo model of rat perinatal asphyxia, which has translational value and corresponds to hypoxic/ischemic episodes in human newborns. Posttreatment with DIM restored the weight of the ipsilateral hemisphere and normalized cell number in the brain structures of rats exposed to perinatal asphyxia. DIM also downregulated the mRNA expression of HIF1A-regulated Bnip3 and Hif1a which is a hypoxic marker, and the expression of miR-181b which is an indicator of perinatal asphyxia. In addition, DIM inhibited apoptosis and oxidative stress accompanying perinatal asphyxia through: downregulation of FAS, CASP-3, CAPN1, GPx3 and SOD-1, attenuation of caspase-9 activity, and upregulation of anti-apoptotic Bcl2 mRNA. The protective effects of DIM were accompanied by the inhibition of the AhR and NMDA signaling pathways, as indicated by the reduced expression levels of AhR, ARNT, CYP1A1, GluN1 and GluN2B, which was correlated with enhanced global DNA methylation and the methylation of the Ahr and Grin2b genes. Because our study provided evidence that in rat brain undergoing perinatal asphyxia, DIM predominantly targets AhR and NMDA, we postulate that compounds that possess the ability to inhibit their signaling are promising therapeutic tools to prevent stroke.
Collapse
Affiliation(s)
- J Rzemieniec
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Bratek
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - A Wnuk
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - K Przepiórska
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland
| | - E Salińska
- Department of Neurochemistry, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - M Kajta
- Laboratory of Molecular Neuroendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Krakow, Poland.
| |
Collapse
|
4
|
Descloux C, Ginet V, Rummel C, Truttmann AC, Puyal J. Enhanced autophagy contributes to excitotoxic lesions in a rat model of preterm brain injury. Cell Death Dis 2018; 9:853. [PMID: 30154458 PMCID: PMC6113308 DOI: 10.1038/s41419-018-0916-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/16/2018] [Accepted: 07/19/2018] [Indexed: 01/01/2023]
Abstract
Cystic periventricular leukomalacia is commonly diagnosed in premature infants, resulting from severe hypoxic-ischemic white matter injury, and also involving some grey matter damage. Very few is known concerning the cell death pathways involved in these types of premature cerebral lesions. Excitotoxicity is a predominant mechanism of hypoxic-ischemic injury in the developing brain. Concomitantly, it has been recently shown that autophagy could be enhanced in excitotoxic conditions switching this physiological intracellular degradation system to a deleterious process. We here investigated the role of autophagy in a validated rodent model of preterm excitotoxic brain damage mimicking in some aspects cystic periventricular leukomalacia. An excitotoxic lesion affecting periventricular white and grey matter was induced by injecting ibotenate, a glutamate analogue, in the subcortical white matter (subcingulum area) of five-day old rat pups. Ibotenate enhanced autophagy in rat brain dying neurons at 24 h as shown by increased presence of autophagosomes (increased LC3-II and LC3-positive dots) and enhanced autophagic degradation (SQSTM1 reduction and increased number and size of lysosomes (LAMP1- and CATHEPSIN B-positive vesicles)). Co-injection of the pharmacological autophagy inhibitor 3-methyladenine prevented not only autophagy induction but also CASPASE-3 activation and calpain-dependent cleavage of SPECTRIN 24 h after the insult, thus providing a strong reduction of the long term brain injury (16 days after ibotenate injection) including lateral ventricle dilatation, decreases in cerebral tissue volume and in subcortical white matter thickness. The autophagy-dependent neuroprotective effect of 3-methyladenine was confirmed in primary cortical neuronal cultures using not only pharmacological but also genetic autophagy inhibition of the ibotenate-induced autophagy. Strategies inhibiting autophagy could then represent a promising neuroprotective approach in the context of severe preterm brain injuries.
Collapse
Affiliation(s)
- Céline Descloux
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Coralie Rummel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
5
|
The Functional and Molecular Properties, Physiological Functions, and Pathophysiological Roles of GluN2A in the Central Nervous System. Mol Neurobiol 2016; 54:1008-1021. [DOI: 10.1007/s12035-016-9715-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022]
|
6
|
Lai Q, Hu P, Li Q, Li X, Yuan R, Tang X, Wang W, Li X, Fan H, Yin X. NMDA receptors promote neurogenesis in the neonatal rat subventricular zone following hypoxic‑ischemic injury. Mol Med Rep 2015; 13:206-12. [PMID: 26548659 PMCID: PMC4686072 DOI: 10.3892/mmr.2015.4501] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
Evidence suggests the involvement of N-methyl-D-aspartate receptors (NMDAR) in the regulation of neurogenesis. Functional properties of NMDAR are strongly influenced by the type of NR2 subunits in the receptor complex. NR2A- and NR2B-containing receptors are expressed in neonatal fore-brain regions, such as the subventricular zone (SVZ). The aim of the present study was to examine the effect of the protein expression of hypoxic-ischemic injury NMDAR subunits 2A and 2B in the SVZ of neonatal rats. Expression of these and other proteins of interest was performed using immunohistochemistry. The results showed that NR2A expression was decreased at 6 h after hypoxic-ischemic injury. By contrast, a significant increase in NR2B expression was observed at 24 h after hypoxic-ischemic injury, induced by the clamping of the right common carotid artery. The functional effect of NMDAR subunits on neurogenesis was also examined by quantifying Nestin and doublecortin (DCX), the microtubule-associated protein expressed only in immature neurons. In addition, the effects of selective non-competitive NMDAR antagonist MK-801 (0.5 mg/kg), NR2B antagonist Ro25-6981 (5 mg/kg), and NR2A antagonist NVP-AAM077 (5 mg/kg) administered 30 min prior to the hypoxic-ischemic injury were examined. The number of Nestin- and DCX-positive cells increased significantly 48 h after hypoxic-ischemic injury, which was reverted by the MK-801 and Ro25-6981 antagonists. Notably, NVP-AAM077 had no significant effect on the expression of Nestin and DCX. In conclusion, the results of the present study demonstrate that hypoxia-ischemia inhibited the expression of NR2A, but promoted the expression of NR2B. Furthermore, NMDAR promoted neurogenesis in the SVZ of neonatal brains.
Collapse
Affiliation(s)
- Qingwei Lai
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Peng Hu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Qingyun Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xinyu Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Rui Yuan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaohong Tang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaoquan Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Hongbin Fan
- Department of Neurology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaoxing Yin
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical College, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
7
|
Descloux C, Ginet V, Clarke PGH, Puyal J, Truttmann AC. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int J Dev Neurosci 2015. [PMID: 26225751 DOI: 10.1016/j.ijdevneu.2015.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy is a critical cerebral event occurring around birth with high mortality and neurological morbidity associated with long-term invalidating sequelae. In view of the great clinical importance of this condition and the lack of very efficacious neuroprotective strategies, it is urgent to better understand the different cell death mechanisms involved with the ultimate aim of developing new therapeutic approaches. The morphological features of three different cell death types can be observed in models of perinatal cerebral hypoxia-ischemia: necrotic, apoptotic and autophagic cell death. They may be combined in the same dying neuron. In the present review, we discuss the different cell death mechanisms involved in neonatal cerebral hypoxia-ischemia with a special focus on how autophagy may be involved in neuronal death, based: (1) on experimental models of perinatal hypoxia-ischemia and stroke, and (2) on the brains of human neonates who suffered from neonatal hypoxia-ischemia.
Collapse
Affiliation(s)
- C Descloux
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland
| | - V Ginet
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - P G H Clarke
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland
| | - J Puyal
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland
| | - A C Truttmann
- Department of Fundamental Neurosciences (DNF), University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland; Clinic of Neonatology, Department of Pediatrics and Pediatric Surgery, University Hospital Center and University of Lausanne, 1011 Lausanne, Vaud, Switzerland.
| |
Collapse
|
8
|
Knox R, Jiang X. Fyn in Neurodevelopment and Ischemic Brain Injury. Dev Neurosci 2015; 37:311-20. [PMID: 25720756 DOI: 10.1159/000369995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022] Open
Abstract
The Src family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn, and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents and, with our work, in neonatal animals. An understanding of Fyn's role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones.
Collapse
Affiliation(s)
- Renatta Knox
- Department of Pediatrics, Weill Cornell Medical College, New York, N.Y., USA
| | | |
Collapse
|
9
|
Knox R, Brennan-Minnella AM, Lu F, Yang D, Nakazawa T, Yamamoto T, Swanson RA, Ferriero DM, Jiang X. NR2B phosphorylation at tyrosine 1472 contributes to brain injury in a rodent model of neonatal hypoxia-ischemia. Stroke 2014; 45:3040-7. [PMID: 25158771 DOI: 10.1161/strokeaha.114.006170] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE The NR2B subunit of the N-methyl-d-aspartate (NMDA) receptor is phosphorylated by the Src family kinase Fyn in brain, with tyrosine (Y) 1472 as the major phosphorylation site. Although Y1472 phosphorylation is important for synaptic plasticity, it is unknown whether it is involved in NMDA receptor-mediated excitotoxicity in neonatal brain hypoxia-ischemia (HI). This study was designed to elucidate the specific role of Y1472 phosphorylation of NR2B in neonatal HI in vivo and in NMDA-mediated neuronal death in vitro. METHODS Neonatal mice with a knockin mutation of Y1472 to phenylalanine (YF-KI) and their wild-type littermates were subjected to HI using the Vannucci model. Brains were scored 5 days later for damage using cresyl violet and iron staining. Western blotting and immunoprecipitation were performed to determine NR2B tyrosine phosphorylation. Expression of NADPH oxidase subunits and superoxide production were measured in vivo. NMDA-induced calcium response, superoxide formation, and cell death were evaluated in primary cortical neurons. RESULTS After neonatal HI, YF-KI mice have reduced expression of NADPH oxidase subunit gp91phox and p47phox and superoxide production, lower activity of proteases implicated in necrotic and apoptotic cell death, and less brain damage when compared with the wild-type mice. In vitro, YF-KI mutation diminishes superoxide generation in response to NMDA without effect on calcium accumulation and inhibits NMDA and glutamate-induced cell death. CONCLUSIONS Upregulation of NR2B phosphorylation at Y1472 after neonatal HI is involved in superoxide-mediated oxidative stress and contributes to brain injury.
Collapse
Affiliation(s)
- Renatta Knox
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Angela M Brennan-Minnella
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Fuxin Lu
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Diana Yang
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Takanobu Nakazawa
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Tadashi Yamamoto
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Raymond A Swanson
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Donna M Ferriero
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.)
| | - Xiangning Jiang
- From the Department of Pediatrics (R.K., F.L., D.Y., D.M.F., X.J.), Biomedical Sciences Graduate Program (R.K., D.M.F.), Medical Scientist Training Program (R.K.), Department of Neurology (A.M.B.-M., R.A.S., D.M.F.), and San Francisco Veterans Affairs Medical Center (A.M.B.-M., R.A.S.), University of California, San Francisco; and Division of Oncology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan (T.N., T.Y.).
| |
Collapse
|
10
|
Puyal J, Ginet V, Clarke PGH. Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 2013; 105:24-48. [PMID: 23567504 DOI: 10.1016/j.pneurobio.2013.03.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 03/05/2013] [Accepted: 03/13/2013] [Indexed: 02/09/2023]
Abstract
There is currently no approved neuroprotective pharmacotherapy for acute conditions such as stroke and cerebral asphyxia. One of the reasons for this may be the multiplicity of cell death mechanisms, because inhibition of a particular mechanism leaves the brain vulnerable to alternative ones. It is therefore essential to understand the different cell death mechanisms and their interactions. We here review the multiple signaling pathways underlying each of the three main morphological types of cell death--apoptosis, autophagic cell death and necrosis--emphasizing their importance in the neuronal death that occurs during cerebral ischemia and hypoxia-ischemia, and we analyze the interactions between the different mechanisms. Finally, we discuss the implications of the multiplicity of cell death mechanisms for the design of neuroprotective strategies.
Collapse
Affiliation(s)
- Julien Puyal
- Département des Neurosciences Fondamentales, Université de Lausanne, Rue du Bugnon 9, 1005 Lausanne, Switzerland.
| | | | | |
Collapse
|
11
|
Hei MY, Tao HK, Tang Q, Yu B, Zhao LL. Decreased levels of pNR1 S897 protein in the cortex of neonatal Sprague Dawley rats with hypoxic-ischemic or NMDA-induced brain damage. Braz J Med Biol Res 2012; 45:962-7. [PMID: 22714810 PMCID: PMC3854173 DOI: 10.1590/s0100-879x2012007500100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 03/28/2012] [Indexed: 11/22/2022] Open
Abstract
Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.
Collapse
Affiliation(s)
- Ming-Yan Hei
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|
12
|
Oxygen and glucose deprivation in an organotypic hippocampal slice model of the developing rat brain: the effects on N-methyl-D-aspartate subunit composition. Anesth Analg 2009; 109:205-10. [PMID: 19535712 DOI: 10.1213/ane.0b013e3181a27e37] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Organotypic hippocampal slices (OHS) are commonly used to screen for neuroprotective effects of pharmacological agents relevant to pediatric brain injury. The importance of donor rat pup age and N-methyl-D-aspartate (NMDA) receptor subunit composition have not been addressed. In this study, we evaluated the age-dependent effect of oxygen-glucose deprivation (OGD) in the developing rat brain and determined whether OGD modulates the NMDA receptor subunit composition. METHODS OHS were prepared from rat pups on postnatal days (PND) 4, 7, 14, and 21 and cultured 7 days in vitro. The slices were exposed to OGD for durations of 5-60 min. After 24 and 72 h, OHS survival and NMDA subunit composition were assessed. RESULTS Cell death was evident in OHS prepared from PND 14 and 21 rat pups (P < 0.001) with OGD durations of 5 and 10 min, respectively. In OHS prepared from PND7 rat pups, neurodegeneration was not evident until 20 min OGD (P < 0.001). Exposure to OGD in OHS prepared from PND4 and PND7 rat pups was associated with a transition in the NMDA receptor subunit composition from NR2B predominant to NR2A predominant subunit composition. CONCLUSIONS This in vitro neonatal rat pup investigation using OHS supports both an age and an NMDA receptor subunit composition-dependent relationship between OGD and neuronal cell death.
Collapse
|
13
|
Sutcu R, Altuntas I, Eroglu E, Delibas N. EFFECTS OF ISCHEMIA-REPERFUSION ON NMDA RECEPTOR SUBUNITS 2A AND 2B LEVEL IN RAT HIPPOCAMPUS. Int J Neurosci 2009; 115:305-14. [PMID: 15804717 DOI: 10.1080/00207450590519012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The authors investigated the effects of ischemia and reperfusion on the N-methyl-D-aspartate receptor (NMDAR) subunits 2A and 2B concentration in rat hippocampus. At the protein level, significant increase in the amounts of NMDAR 2A and NMIDAR 2B in the rat hippocampus was observed at 1 h after reperfusion compared with control group. These results suggested that the alteration in hippocampal NMDAR2 subunit concentrations after ischemia-reperfusion might be invovlved in cognitive dysfunction and excitotoxicity.
Collapse
Affiliation(s)
- Recep Sutcu
- Department of Biochemistry, Medical Faculty Suleyman Demirel University Ispacta Turkey
| | | | | | | |
Collapse
|
14
|
Jiang X, Mu D, Biran V, Faustino J, Chang S, Rincón CM, Sheldon RA, Ferriero DM. Activated Src kinases interact with theN-methyl-D-aspartate receptor after neonatal brain ischemia. Ann Neurol 2008; 63:632-41. [DOI: 10.1002/ana.21365] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Kuluz J, Huang T, Watson B, Vannucci S. Stroke in the immature brain: review of pathophysiology and animal models of pediatric stroke. FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.2.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pediatric stroke research presents many challenges. Relatively low incidence, need for age stratification, diverse etiologies, delays in diagnosis, lack of an established age-based stroke severity scale and outcome measures are only some of the issues that have prevented the implementation of clinical trials in infants and children with stroke. Experimental animal models of pediatric stroke, therefore, are critical to understanding the pathophysiology and management of ischemic brain damage in the immature brain, and provide the necessary platform for future clinical trials. In this review we discuss the pertinent clinical aspects of pediatric stroke, the pathophysiology of stroke in the developing brain and the animal models established to study basic mechanisms as well as translational issues in pediatric stroke.
Collapse
Affiliation(s)
- John Kuluz
- Associate Professor of Pediatrics, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960, Miami, FL 33101, USA
| | - Tingting Huang
- Post-Doctoral Research Associate, University of Miami, Department of Pediatrics (R-131), Miller School of Medicine, PO Box 016960 Miami, FL 33101, USA
| | - Brant Watson
- Professor of Neurology, University of Miami, Department of Neurology (D4–5), Miller School of Medicine, PO Box 016960, Miami, FL 33136, USA
| | - Susan Vannucci
- Research Professor of Neuroscience in Pediatrics/Newborn Medicine, Weill Cornell Medical College, 525 East 68th Street, N-506, NY 10065, USA
| |
Collapse
|
16
|
Besshoh S, Chen S, Brown IR, Gurd JW. Developmental changes in the association of NMDA receptors with lipid rafts. J Neurosci Res 2007; 85:1876-83. [PMID: 17492792 DOI: 10.1002/jnr.21336] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Lipid rafts (LR) are lipid microdomains present in the cell surface membrane that are organizational platforms involved in protein trafficking and formation of cell signaling complexes. In the adult brain, NMDA receptors (NMDAR) and receptor-associated proteins such as membrane-associated guanylate kinases (PSD-95 and SAP102), are distributed between the postsynaptic density (PSD) and lipid rafts. However, the time course of the association of NMDAR with LR during neural development is not known. We therefore investigated the effect of development on the association of NMDAR with LR prepared from rat brains ranging in postnatal age from 1-35 days and compared this with their expression in PSDs. LR and PSD fractions were prepared by extraction of P2 membranes with Tx-100 followed by sucrose density gradient centrifugation. The yield of LR, as reflected by levels of protein, Thy-1, and flotillin-1 increased during postnatal development. NR2A was associated predominantly with the lipid raft fraction at all ages examined whereas NR2B underwent a gradual shift from PSDs to lipid rafts during the first 3 weeks after birth. These changes in the distribution of NR2A and NR2B were paralleled by changes in the distribution of PSD-95 and SAP102 respectively. Tyrosine-phosphorylated proteins, including NR2A and NR2B, were preferentially associated with lipid rafts in older, as compared to younger, animals. These results show that the association of NMDAR with LR is regulated developmentally.
Collapse
Affiliation(s)
- Shintaro Besshoh
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto Scarborough, Toronto, Canada
| | | | | | | |
Collapse
|
17
|
Goebel SM, Alvestad RM, Coultrap SJ, Browning MD. Tyrosine phosphorylation of the N-methyl-d-aspartate receptor is enhanced in synaptic membrane fractions of the adult rat hippocampus. ACTA ACUST UNITED AC 2005; 142:65-79. [PMID: 16257472 DOI: 10.1016/j.molbrainres.2005.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 09/01/2005] [Accepted: 09/18/2005] [Indexed: 11/30/2022]
Abstract
Hippocampal N-methyl-D-aspartate receptors (NMDARs) contribute to the expression of certain types of synaptic plasticity, such as long-term potentiation (LTP). It is well documented that tyrosine kinases increase NMDAR phosphorylation and potentiate NMDAR function. However, it is unclear how these phosphorylation changes result in enhanced NMDAR activity. We previously reported that NMDAR surface expression can be increased by LTP-inducing stimulation via tyrosine kinase-dependent mechanisms in the adult hippocampus [D.R. Grosshans, D.A. Clayton, S.J. Coultrap, M.D. Browning, Nat. Neurosci., 5 (2002) 27-33]. We therefore hypothesized that tyrosine phosphorylation of the NMDAR may enhance the trafficking of the receptor to the synaptic membrane. Here, we show that the stoichiometry of NR2A and NR2B tyrosine phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Interestingly, NR2B tyrosine-1472, but not NR1 serine-896 or -897, phosphorylation is significantly higher in synaptosomal membranes than intracellular microsomal/light membranes. Furthermore, treatment of hippocampal slices with either a tyrosine phosphatase inhibitor or a tyrosine kinase inhibitor alters NMDAR tyrosine phosphorylation and produces a corresponding change in the concentration of NMDARs in the synaptosomal membrane fraction. Taken together, these data support the hypothesis that tyrosine phosphorylation may enhance NMDAR activity by increasing the number of NMDARs at the synaptic membrane.
Collapse
Affiliation(s)
- Susan M Goebel
- Neuroscience Program, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
18
|
Cicek E, Sutcu R, Gokalp O, Yilmaz HR, Ozer MK, Uz E, Ozcelik N, Delibas N. The effects of isoniazid on hippocampal NMDA receptors: Protective role of Erdosteine. Mol Cell Biochem 2005; 277:131-5. [PMID: 16132724 DOI: 10.1007/s11010-005-5778-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 04/19/2005] [Indexed: 11/26/2022]
Abstract
Isoniazid (INH) has neurotoxic effects such as seizure, poor concentration, subtle reduction in memory, anxiety, depression and psychosis. INH-induced toxic effects are thought to be through increased oxidative stress, and these effects have been shown to be prevented by antioxidant therapies in various organs. Increased oxidative stress may be playing a role in these neurotoxic effects. N-methyl D-aspartat receptors (NMDA) are a member of the ionotropic group of glutamate receptors. These receptors are involved in a wide variety of processes in the central nervous system including synaptogenesis, synaptic plasticity, memory and learning. Erdosteine is a potent antioxidant and mucolytic agent. We aimed to investigate adverse effects of INH on rat hippocampal NMDAR receptors, and to elucidate whether erdosteine prevents possible adverse effects of INH. In the present study, compared to control group, NMDAR2A (NR2A) receptors were significantly decreased and malondialdehyde (MDA), end product of lipid peroxidation, production was significantly increased in INH-treated group. On the other hand, administration of erdosteine to INH-treated group significantly increased NR2A receptors and decreased MDA production. In conclusion, decreasing NR2A receptors in hippocampus and increasing lipid peroxidation correlates with the degree of oxidative effects of INH and erdosteine protects above effect of INH on NR2A receptors and membrane damage due to lipid peroxidation by its antioxidant properties.
Collapse
Affiliation(s)
- Ekrem Cicek
- Suleyman Demirel University, Faculty of Medicine, Department of Pharmacology, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vij S, Vannucci SJ, Gurd JW. Differential effects of hypoxia-ischemia on phosphorylation of the N-methyl-D-aspartate receptor in one- and three-week-old rats. Dev Neurosci 2005; 27:211-9. [PMID: 16046856 DOI: 10.1159/000085994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 10/21/2004] [Indexed: 12/31/2022] Open
Abstract
The effects of transient cerebral hypoxia-ischemia (HI) on phosphorylation of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor were investigated in 7 (P7)- and 21 (P21)-day-old rats. Unilateral HI was induced by ligation of the right common carotid artery and exposure to 8% O(2)/92% N(2) for 120 (P7) or 90 (P21) min. Phosphorylation by protein kinase A (PKA; S897) and PKC (S896 and S890) was depressed in the ipsilateral hemisphere relative to both naïve controls and the contralateral hemisphere immediately following HI at both ages. At P7, but not P21, reperfusion resulted in an initial recovery to control phosphorylation levels at all 3 sites followed by a secondary decline. At both ages, pS896 was less than control values after 24 h of recovery, whereas pS890 had returned to control levels by this time. pS897 recovered to control levels by 24 h in P21 animals but not in P7 animals. Differential effects of HI on phosphorylation of the NMDA receptor at P7 and P21 may contribute to age-related changes in sensitivity to HI.
Collapse
Affiliation(s)
- Shilpa Vij
- Center for the Neurobiology of Stress, Division of Life Sciences, University of Toronto at Scarborough, Toronto, Canada
| | | | | |
Collapse
|
20
|
Abstract
The immature brain has long been considered to be resistant to the damaging effects of hypoxia and hypoxia-ischemia (H/I). However, it is now appreciated that there are specific periods of increased vulnerability, which relate to the developmental stage at the time of the insult. Although much of our knowledge of the pathophysiology of cerebral H/I is based on extensive experimental studies in adult animal models, it is important to appreciate the major differences in the immature brain that impact on its response to, and recovery from, H/I. Normal maturation of the mammalian brain is characterized by periods of limitations in glucose transport capacity and increased use of alternative cerebral metabolic fuels such as lactate and ketone bodies, all of which are important during H/I and influence the development of energy failure. Cell death following H/I is mediated by glutamate excitotoxicity and oxidative stress, as well as other events that lead to delayed apoptotic death. The immature brain differs from the adult in its sensitivity to all of these processes. Finally, the ultimate outcome of H/I in the immature brain is determined by the impact on the ensuing cerebral maturation. A hypoxic-ischemic insult of insufficient severity to result in rapid cell death and infarction can lead to prolonged evolution of tissue damage.
Collapse
Affiliation(s)
- Susan J Vannucci
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
21
|
McQuillen PS, Ferriero DM. Selective vulnerability in the developing central nervous system. Pediatr Neurol 2004; 30:227-35. [PMID: 15087099 DOI: 10.1016/j.pediatrneurol.2003.10.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 10/06/2003] [Indexed: 11/22/2022]
Abstract
Selective patterns of cerebral injury are observed after a variety of insults at different ages during development. Distinct populations of cells demonstrate selective vulnerability during these specific developmental stages, which may account for the observed patterns of injury. We review the evidence that injury to preoligodendrocytes and subplate neurons contributes to periventricular white matter injury in preterm infants, whereas thalamic neuronal cell vulnerability and neuronal nitric oxide synthase-expressing striatal interneurons resistance result in deep gray nuclei damage in the term infant. The unique roles of particular mechanisms including oxidative stress, glutamatergic neurotransmission, and programmed cell death are discussed in the context of this selective vulnerability.
Collapse
Affiliation(s)
- Patrick S McQuillen
- Department of Pediatrics, University of California San Francisco Medical Center, San Francisco, California 94143-0106, USA
| | | |
Collapse
|
22
|
Bickler PE, Fahlman CS, Ferriero DM. Hypoxia increases calcium flux through cortical neuron glutamate receptors via protein kinase C. J Neurochem 2004; 88:878-84. [PMID: 14756808 DOI: 10.1046/j.1471-4159.2003.02203.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of 30 s to 10 min hypoxia (PO2-10 mmHg) on glutamate receptor activity were studied in murine cortical neurons. Receptor activity was assessed as a rise in intracellular calcium concentration ([Ca2+]i) following a 10 s application of 1 mm glutamate or 100 micro mN-methy-d-aspartate (NMDA) in the presence of 0.1 mm Mg2+ and 10 micro m glycine. Change in [Ca2+]i elicited by glutamate increased 26% (n = 192, p < 0.001) and that to NMDA by 74% (n = 9, p < 0.01) during a 100-s period of hypoxia. After 10 min hypoxia, responses to glutamate were 62% smaller than those in normoxia, with increased basal intracellular [Ca2+]i predicting reduced receptor activity. When neurons were exposed to NMDA after 10 min of hypoxia, [Ca2+]i increases were 12% smaller than after 100 s hypoxia, but still 53% larger than in oxygenated neurons (n = 9, p = 0.01). Neurons expressed relatively similar amounts of NR2A, -B, -C, and -D subunits. The phosphorylation of NMDA NR1 subunits increased during hypoxia. Pre-treatment of neurons with a protein kinase C (PKC) inhibitor (chelerythrine, 10 micro m) prevented increases in N-methy-d-aspartate receptor (NMDAR) activity during hypoxia and reduced the phosphorylation of NR1 subunits. These results suggest that enhancement of glutamate receptor activity during the first minutes of hypoxia is mediated by phosphorylation of NMDARs by PKC and that other mechanisms, possibly involving intracellular calcium, limit glutamate receptor-mediated calcium influx during longer periods of hypoxia.
Collapse
Affiliation(s)
- P E Bickler
- Departments of Anesthesia Neurology, University of California at San Francisco, San Francisco, California 94143-0542, USA
| | | | | |
Collapse
|
23
|
Kumar GK, Klein JB. Analysis of expression and posttranslational modification of proteins during hypoxia. J Appl Physiol (1985) 2004; 96:1178-86; discussion 1170-2. [PMID: 14766768 DOI: 10.1152/japplphysiol.00818.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular responses to hypoxia are complex and characterized by alterations in the expression of a number of genes, including stress-related genes and corresponding proteins that are necessary to maintain homeostasis. The purpose of this article is to review previous and recent studies that have examined the changes in the expression and posttranslational modification of proteins in response to chronic sustained and intermittent forms of hypoxia. A large number of studies focused on the analysis of either the single protein or a subset of related proteins using one-dimensional gel electrophoresis to separate a complex set of proteins from solubilized tissues or cell extracts, followed by immunostaining of proteins using antibodies that are specific to either native or posttranslationally modified forms. On the other hand, only a limited number of studies have examined the global perturbations on protein expression by hypoxia using proteomics approach involving two-dimensional electrophoresis coupled with mass spectrometry. Results derived from specific protein analysis of a variety of tissues and cells showed that hypoxia, depending on the duration and severity of the stimulus, affects the level and the state of posttranslational modification of a subset of proteins that are associated with energy metabolism, stress response, cell injury, development, and apoptosis. Some of these earlier findings are further corroborated by recent studies that utilize a global proteomics approach, and, more importantly, results from these proteomics investigations on the effects of hypoxia provide new protein targets for further functional analysis. The anticipated new information stems from the analysis of expression, and posttranslational modification of these novel protein targets, along with gene expression profiles, offers exciting new opportunities to further define the mechanisms of cellular responses to hypoxia and to control more effectively the clinical consequences of prolonged or periodic lack of oxygen.
Collapse
Affiliation(s)
- Ganesh K Kumar
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4935, USA.
| | | |
Collapse
|
24
|
Gao L, Lyons AR, Greenfield LJ. Hypoxia alters GABAA receptor function and subunit expression in NT2-N neurons. Neuropharmacology 2004; 46:318-30. [PMID: 14975687 DOI: 10.1016/j.neuropharm.2003.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2003] [Revised: 09/04/2003] [Accepted: 09/08/2003] [Indexed: 11/30/2022]
Abstract
Hypoxia causes dysfunction of excitatory and inhibitory neurotransmission, often resulting in encephalopathy, seizures or myoclonus. We evaluated the effects of hypoxia on GABAA receptor (GABAAR) function and expression in an in vitro model of neuronal hypoxia. NT2-N cells, derived from the human NT2 teratocarcinoma cell line, were exposed to < or =1% O2 for 8 h and then used immediately for experiments or allowed to recover under normoxic conditions (95% air/5% CO2) for 24, 48 or 96 h. Hypoxic treatment did not cause obvious morphological changes or cell death. In whole-cell patch-clamp recordings, the GABA current EC50 was unchanged, however, maximal GABA-evoked currents changed in a biphasic manner. Maximal GABA currents were significantly increased immediately after hypoxia, but were significantly reduced after 48 h normoxic recovery, and then returned to baseline after 96 h recovery. Maximal potentiation of 10 microM GABA currents by diazepam was increased 48 h after hypoxia, but potentiation by zolpidem was decreased. Barbiturate enhancement and zinc inhibition of GABA currents were unchanged. Semiquantitative reverse transcriptase (RT)-PCR showed decreased alpha1, alpha5, beta2 and gamma2 subunit mRNA after hypoxia. Hypoxic exposure altered GABAAR physiology and subunit mRNA expression, which may correlate with symptoms observed after hypoxia in vivo.
Collapse
Affiliation(s)
- Lei Gao
- Cellular and Molecular Neurobiology Program, Medical College of Ohio, 3120 Glendale Avenue, Ruppert Health Center, Suite 1450, Toledo, OH 43614, USA
| | | | | |
Collapse
|
25
|
Jiang X, Mu D, Sheldon RA, Glidden DV, Ferriero DM. Neonatal Hypoxia-Ischemia Differentially Upregulates MAGUKs and Associated Proteins in PSD-93–Deficient Mouse Brain. Stroke 2003; 34:2958-63. [PMID: 14605317 DOI: 10.1161/01.str.0000102560.78524.9d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Postsynaptic density (PSD)-93 and PSD-95 are the major membrane-associated guanylate kinases (MAGUKs) at excitatory synapses of the brain linking the
N
-methyl-
d
-aspartate receptor (NMDAR) with neuronal nitric oxide synthase (nNOS), which contributes to cell death after neonatal hypoxia-ischemia (HI). We investigated whether deletion of PSD-93 would dissociate the NMDAR from nNOS and be neuroprotective.
Methods—
Postnatal day 7 wild-type (+/+), heterozygous (+/−), and homozygous (−/−) PSD-93 knockout mice were subjected to HI by permanent ligation of the right carotid artery, followed by exposure to 8% O
2
/92% N
2
for 1 hour. Brains were scored 5 days later for damage with cresyl violet and iron stains. Western blot and coimmunoprecipitation were used to determine the expression and association of the major PSD proteins.
Results—
There was no significant difference between PSD-93 (−/−) and (+/+) mice in mortality or degree of brain injury. In the absence of PSD-93, PSD-95 still interacted with NR2B and nNOS. Under physiological conditions, PSD-95, nNOS, NR2A, and NR2B were unaltered in the (−/−) pups. However, at 24 hours after HI, protein expression of PSD-95, nNOS, and NR2A but not NR2B was markedly higher in the (−/−) than in the (+/+) pups. In (+/+) pups, HI resulted in decreased expression of NR2A but not NR2B in cortex and decreased NR2A and NR2B expression in hippocampus, but this reduction was not observed in (−/−) pups.
Conclusions—
PSD-93 is not essential for baseline synaptic function but may participate in regulation of NMDAR-associated signaling pathways after HI injury. Deletion of PSD-93 alone does not provide neuroprotection after neonatal HI, possibly a result, in part, of upregulation of PSD-95. MAGUKs may substitute for one another, allowing normal NMDAR function in the postnatal period.
Collapse
Affiliation(s)
- Xiangning Jiang
- Department of Neurology, University of California, San Francisco 94143-0663, USA
| | | | | | | | | |
Collapse
|
26
|
Grojean S, Pourié G, Vert P, Daval JL. Differential neuronal fates in the CA1 hippocampus after hypoxia in newborn and 7-day-old rats: Effects of pre-treatment with MK-801. Hippocampus 2003; 13:970-7. [PMID: 14750659 DOI: 10.1002/hipo.10171] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The brain displays an age-dependent sensitivity to ischemic insults. However, the consequences of oxygen deprivation per se in the developing brain remain unclear, and the role of glutamate excitotoxicity via N-methyl-D-aspartate (NMDA) receptors is controversial. To gain a better understanding of the mechanisms involved in the cerebral response to severe hypoxia, cell damage was temporally monitored in the CA1 hippocampus of rat pups transiently exposed to in vivo hypoxia (100% N2) at either 24 h or 7 days of age. Also, the influence of a pre-treatment with the NMDA receptor antagonist MK-801 (5 mg/kg, i.p.) was examined. At both ages, morphometric analyses and cell counts showed hypoxia-induced significant neuronal loss (30-35%) in the pyramidal layer, with injury appearing more rapidly in rats exposed at 7 days. Morphological alterations of 4,6-diamidino-2-phenylindole (DAPI)-labeled nuclei, DNA fragmentation patterns on agarose gels, as well as expression profiles of the apoptosis-related regulatory proteins Bax and Bcl-2 showed that apoptosis was prevalent in younger animals, whereas only necrosis was detected in hippocampi of rats treated at 7 days. Moreover, pre-treatment with MK-801 was ineffective in protecting hippocampal neurons from hypoxic injury in newborn rats, but significantly reduced necrosis in older subjects. These data confirm that hypoxia alone may trigger neuronal death in vivo, and the type of cell death is strongly influenced by the degree of brain maturity. Finally, NMDA receptors are not involved in the apoptotic consequences of hypoxia in the newborn rat brain, but they were found to mediate necrosis at 7 days of age.
Collapse
Affiliation(s)
- Stéphanie Grojean
- INSERM EMI 0014, Faculté de Médecine, Université H. Poincaré, Nancy, France
| | | | | | | |
Collapse
|
27
|
|