1
|
Augusto-Oliveira M, Tremblay MÈ, Verkhratsky A. Receptors on Microglia. ADVANCES IN NEUROBIOLOGY 2024; 37:83-121. [PMID: 39207688 DOI: 10.1007/978-3-031-55529-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglial cells are the most receptive cells in the central nervous system (CNS), expressing several classes of receptors reflecting their immune heritage and newly acquired neural specialisation. Microglia possess, depending on the particular context, receptors to neurotransmitters and neuromodulators as well as immunocompetent receptors. This rich complement allows microglial cells to monitor the functional status of the nervous system, contribute actively to the regulation of neural activity and plasticity and homeostasis, and guard against pathogens as well as other challenges to the CNS's integrity and function.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Programa de Pós-Graduação em Farmacologia e Bioquímica, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marie-Ève Tremblay
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Molecular Medicine, Université Laval, Pavillon Ferdinand-Vandry, Québec City, QC, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Life Sciences Center, Vancouver, BC, Canada
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
- Department of Neurosciences, University of the Basque Country, Leioa, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
2
|
Dobrucki IT, Miskalis A, Nelappana M, Applegate C, Wozniak M, Czerwinski A, Kalinowski L, Dobrucki LW. Receptor for advanced glycation end-products: Biological significance and imaging applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1935. [PMID: 37926944 DOI: 10.1002/wnan.1935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation. The involvement of RAGE and its ligands in numerous pathologies and diseases makes RAGE an interesting target for therapy focused on the modulation of both RAGE expression or activation and the production or exogenous administration of AGEs. Despite the known role that the RAGE/AGE axis plays in multiple disease states, there remains an urgent need to develop noninvasive, molecular imaging approaches that can accurately quantify RAGE levels in vivo that will aid in the validation of RAGE and its ligands as biomarkers and therapeutic targets. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Iwona T Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Academy of Medical and Social Applied Sciences, Elblag, Poland
| | - Angelo Miskalis
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael Nelappana
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Catherine Applegate
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Czerwinski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
| | - Leszek Kalinowski
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Lawrence W Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Beckman Institute for Advanced Science and Technology, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Cancer Center at Illinois, Urbana, Illinois, USA
- Division of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
3
|
Jiang S, Xia N, Buonfiglio F, Böhm EW, Tang Q, Pfeiffer N, Olinger D, Li H, Gericke A. High-fat diet causes endothelial dysfunction in the mouse ophthalmic artery. Exp Eye Res 2024; 238:109727. [PMID: 37972749 DOI: 10.1016/j.exer.2023.109727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.
Collapse
Affiliation(s)
- Subao Jiang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Francesco Buonfiglio
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Elsa W Böhm
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Qi Tang
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Dominik Olinger
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
4
|
Hiramoto K, Imai M, Tanaka S, Ooi K. Dementia Is Induced via the AGEs/Iba1/iNOS Pathway in Aged KK-Ay/Tajcl Mice. Life (Basel) 2023; 13:1540. [PMID: 37511915 PMCID: PMC10381697 DOI: 10.3390/life13071540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The onset and exacerbation of dementia have been observed in elderly patients with type 2 diabetes. However, the underlying mechanism remains unclear. In this study, we investigated the effects of aging on the cognitive function in a mouse model of type 2 diabetes. Pathogen-free KK-Ay/TaJcl mice were used in this study. The cognitive abilities and memory declined in the mice and worsened in the 50-week-olds. The levels of advanced glycation end products (AGEs), receptor for AGE (RAGE), and Iba1 in the hippocampus were increased in the mice compared to those in the control mice. Hippocampal levels of CC-chemokine receptor 7 and inducible nitric oxide synthase, which are from M1-type macrophages that shift from microglia, were higher in KK-Ay/TaJcl mice than in control mice. Tumor necrosis factor (TNF)-α and nitric oxide (NO) levels secreted by M1-type macrophages were similarly elevated in the mice and were even higher at the age of 50 weeks. NO levels were markedly elevated in the 50-week-old mice. In contrast, differentiation of CD163 and arginase-1 did not change in both mouse types. Memory and learning declined with age in diabetic mice, and the AGEs/RAGE/M1-type macrophage/NO and TNF-α pathways played an important role in exacerbating memory and learning in those mice.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Masashi Imai
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Shota Tanaka
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| | - Kazuya Ooi
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan
| |
Collapse
|
5
|
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, Narayanaswamy A, Senthil Kumar N, Vellingiri B. Type 2 Diabetes (T2DM) and Parkinson's Disease (PD): a Mechanistic Approach. Mol Neurobiol 2023:10.1007/s12035-023-03359-y. [PMID: 37118323 PMCID: PMC10144908 DOI: 10.1007/s12035-023-03359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Growing evidence suggest that there is a connection between Parkinson's disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson's disease (PD) with a potential therapy option.
Collapse
Affiliation(s)
- S Sri Sabari
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, Tamil Nadu, India
| | - Harysh Winster Sureshbabu
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Arul Narayanaswamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796004, Mizoram, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India.
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
6
|
Naz S, Mahmood T, Gupta R, Siddiqui MH, Ahsan F, Ansari VA, Shamim A, Rizvi AA. Clinical Manifestation of AGE-RAGE Axis in Neurodegenerative and Cognitive Impairment Disorders. Drug Res (Stuttg) 2023. [PMID: 37040870 DOI: 10.1055/a-2004-3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The receptor of Advanced Glycation Endproducts (RAGE) and Advanced Glycation Endproducts (AGE) have multiple functions in our body and their restraint are being observed in neurodegenerative and memory impairment disorders. The review of different pathways allows an understanding of the probable mechanism of neurodegeneration and memory impairment involving RAGE and AGE. Commonly we observe AGE accumulation in neural cells and tissues but the extent of accumulation increases with the presence of memory impairment disorder. The presence of AGEs can also be seen in morbid accumulation, pathological structures in the form of amyloid clots, and nervous fibrillary tangles in Alzheimer's Disease (AD) and memory impairment disease.Many neuropathological and biochemical aspects of AD are explained by AGEs, including widespread protein crosslinking, glial activation of oxidative stress, and neuronal cell death. Oxidative stress is due to different reasons and glycation end products set in motion and form or define various actions which are normally due to AGE changes in a pathogenic cascade. By regulating the transit of ß-amyloid in and out of the brain or altering inflammatory pathways, AGE and it's ensnare receptor such as soluble RAGE may function as blockage or shield AD development. RAGE activates the transcription-controlling factor Necrosis Factor (NF-κB) and increases the protraction of cytokines, like a higher number of Tumor Necrosis Factor (TNF-α) and Interleukin (IL-I) by inducing several signal transduction cascades. Furthermore, binding to RAGE can pro-activate reactive oxygen species (ROS), which is popularly known to cause neuronal death.
Collapse
Affiliation(s)
- Sabreena Naz
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Tarique Mahmood
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ramesh Gupta
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | | | - Farogh Ahsan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Vaseem Ahamad Ansari
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Arshiya Shamim
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Ali Abbas Rizvi
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| |
Collapse
|
7
|
MiR-146a-5p Contributes to Microglial Polarization Transitions Associated With AGEs. Mol Neurobiol 2023; 60:3020-3033. [PMID: 36780120 DOI: 10.1007/s12035-023-03252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/30/2023] [Indexed: 02/14/2023]
Abstract
M1/M2 polarization transitions of microglial phenotypes determine the states of neuroinflammation, which is critical in the pathophysiology of diabetic encephalopathy. This study aims to investigate the effects of advanced glycation end products (AGEs) on the microglial polarization state, the role of miR-146a-5p in the regulation of microglial polarization, and the underlying signaling pathways. BV-2 cells were incubated with N-ε-carboxymethyl lysine (CML), one kind of Advanced Glycation End Products (AGEs), to induce polarization. CD11b and iNOS and CD206 and Arg-1 were used to evaluate M1 and M2 microglia, respectively. The mRNA and protein expression levels of miR-146a-5p, transcription factor NF-κB, and inflammasome NLRP3 were measured. High and low expression of miR-146a-5p in the BV-2 cell line was generated by lentivirus transfection technology. RAGE, TLR-4, and NF-κB antagonists were applied to evaluate the underlying signaling pathways. Compared with the control group, CML upregulated the M1 phenotype and downregulated the M2 phenotype. These effects were reversed by overexpression of miR-146a. Furthermore, the expression of inflammasome NLRP3 and NF-κB was upregulated in the CML group and was reduced after miR-146a overexpression. And then overexpression of miR-146a effects was reversed by inhibition miR-146a expression. An NF-κB antagonist (PDTC), a RAGE antagonist (FPS-ZMI), and a TLR-4 antagonist (TLI-095) all reversed the polarization state induced by CML. In summary, CML induced polarization transitions to M1 phenotype and promoted inflammasome NLRP3 expression in BV-2 cells. The RAGE or TLR-4/miR-146a/NLRP3/NF-кB pathway might participate in the regulation of CML-induced BV-2 polarization.
Collapse
|
8
|
González A, Calfio C, Lüttges V, González-Madrid A, Guzmán C. The Multifactorial Etiopathogenesis of Alzheimer's Disease: Neuroinflammation as the Major Contributor. J Alzheimers Dis 2023; 94:95-100. [PMID: 37248904 DOI: 10.3233/jad-230150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly. AD is a multifactorial disease, affected by several factors including amyloid-β42 oligomers, self-assembled tau, microbiota molecules, etc. However, inflammatory components are critical to trigger AD. Neuroinflammatory pathology links glial activation by "damage signals" with tau hyperphosphorylation, as explained by the Neuroimmunomodulation Theory, discovered by the ICC laboratory. This theory elucidates the onset and progression of several degenerative diseases and concept of "multitarget" therapy. These studies led to the rationale to identify inflammatory targets for the action of bioactive molecules or drugs against AD.
Collapse
Affiliation(s)
- Andrea González
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Neurosciences and Functional Medicine, Faculty of Science, University of Chile, Santiago, Chile
| | - Camila Calfio
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Neurosciences and Functional Medicine, Faculty of Science, University of Chile, Santiago, Chile
| | - Valentina Lüttges
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Neurosciences and Functional Medicine, Faculty of Science, University of Chile, Santiago, Chile
| | - Antonia González-Madrid
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Neurosciences and Functional Medicine, Faculty of Science, University of Chile, Santiago, Chile
| | - Cristian Guzmán
- International Center for Biomedicine (ICC), Santiago, Chile
- Laboratory of Neurosciences and Functional Medicine, Faculty of Science, University of Chile, Santiago, Chile
| |
Collapse
|
9
|
Koerich S, Parreira GM, de Almeida DL, Vieira RP, de Oliveira ACP. Receptors for Advanced Glycation End Products (RAGE): Promising Targets Aiming at the Treatment of Neurodegenerative Conditions. Curr Neuropharmacol 2023; 21:219-234. [PMID: 36154605 PMCID: PMC10190138 DOI: 10.2174/1570159x20666220922153903] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022] Open
Abstract
Advanced glycation end products (AGEs) are compounds formed after the non-enzymatic addition of reducing sugars to lipids, proteins, and nucleic acids. They are associated with the development of various clinical complications observed in diabetes and cardiovascular diseases, such as retinopathy, nephropathy, diabetic neuropathy, and others. In addition, compelling evidence indicates that these molecules participate in the progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Multiple cellular and molecular alterations triggered by AGEs that could alter homeostasis have been identified. One of the main targets for AGE signaling is the receptor for advanced glycation end-products (RAGE). Importantly, this receptor is the target of not only AGEs, but also amyloid β peptides, HMGB1 (high-mobility group box-1), members of the S100 protein family, and glycosaminoglycans. The activation of this receptor induces intracellular signaling cascades that are involved in pathological processes and cell death. Therefore, RAGE represents a key target for pharmacological interventions in neurodegenerative diseases. This review will discuss the various effects of AGEs and RAGE activation in the pathophysiology of neurodegenerative diseases, as well as the currently available pharmacological tools and promising drug candidates.
Collapse
Affiliation(s)
- Suélyn Koerich
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Gabriela Machado Parreira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rafael Pinto Vieira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|
10
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
11
|
Hypoxia and the Receptor for Advanced Glycation End Products (RAGE) Signaling in Cancer. Int J Mol Sci 2021; 22:ijms22158153. [PMID: 34360919 PMCID: PMC8348933 DOI: 10.3390/ijms22158153] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Hypoxia is characterized by an inadequate supply of oxygen to tissues, and hypoxic regions are commonly found in solid tumors. The cellular response to hypoxic conditions is mediated through the activation of hypoxia-inducible factors (HIFs) that control the expression of a large number of target genes. Recent studies have shown that the receptor for advanced glycation end products (RAGE) participates in hypoxia-dependent cellular adaptation. We review recent evidence on the role of RAGE signaling in tumor biology under hypoxic conditions.
Collapse
|
12
|
Lee CH, Kim KW, Lee DH, Lee SM, Kim SY. Overexpression of the receptor for advanced glycation end-products in the auditory cortex of rats with noise-induced hearing loss. BMC Neurosci 2021; 22:38. [PMID: 34020590 PMCID: PMC8139161 DOI: 10.1186/s12868-021-00642-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The receptor for advanced glycation end-products (RAGE) is involved in neuroinflammation. This study investigated the changes in RAGE expression following noise-induced hearing loss. METHODS Three-week-old female Sprague-Dawley rats were exposed to 115 dB SPL white noise for 4 h daily for 3 d (noise group, n = 16). In parallel, age and sex-matched control rats were raised under standard conditions without noise exposure (control group, n = 16). After 2 h (noise immediate, n = 8) and 4 wk (noise 4-week, n = 8) of noise exposure, the auditory cortex was harvested and cytoplasmic and nuclear fractions were isolated. The gene expression levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL6), interleukin 1 beta (IL1β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and RAGE were evaluated using real-time reverse transcription polymerase chain reaction. The protein expression levels of nuclear RAGE and cytosolic RAGE were evaluated using western blotting. Additionally, matrix metalloproteinase 9 (MMP9) was pharmacologically inhibited in the noise immediate group, and then nuclear and cytosolic RAGE expression levels were evaluated. RESULTS The noise immediate and noise 4-week groups exhibited increased auditory thresholds at 4, 8, 16, and 32 kHz frequencies. The genes encoding the pro-inflammatory cytokines TNF-α, IL6, IL1β, and NF- κB were increased 3.74, 1.63, 6.42, and 6.23-fold in the noise immediate group, respectively (P = 0.047, 0.043, 0.044, and 0.041). RAGE mRNA expression was elevated 1.42-fold in the noise 4-week group (P = 0.032). Cytosolic RAGE expression was increased 1.76 and 6.99-fold in the noise immediate and noise 4-week groups, respectively (P = 0.04 and 0.03). Nuclear RAGE expression was comparable between the noise and control groups. matrix metalloproteinase 9 (MMP9) inhibition reduced cytosolic RAGE expression in the noise immediate group (P = 0.004). CONCLUSIONS Noise exposure increased the expression of cytosolic RAGE in the auditory cortex and upregulated pro-inflammatory genes, but this response could be alleviated by MMP9 inhibition.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - Kyung Woon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - Da-Hye Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - So Min Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea
| | - So Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University College of Medicine, 59, Yatap-ro, Bundang-gu, Seongnam, 13496, Gyeonggi-do, Korea.
| |
Collapse
|
13
|
Giridharan VV, Generoso JS, Collodel A, Dominguini D, Faller CJ, Tardin F, Bhatti GS, Petronilho F, Dal-Pizzol F, Barichello T. Receptor for Advanced Glycation End Products (RAGE) Mediates Cognitive Impairment Triggered by Pneumococcal Meningitis. Neurotherapeutics 2021; 18:640-653. [PMID: 32886341 PMCID: PMC8116405 DOI: 10.1007/s13311-020-00917-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pneumococcal meningitis is a life-threatening infection of the central nervous system (CNS), and half of the survivors of meningitis suffer from neurological sequelae. We hypothesized that pneumococcal meningitis causes CNS inflammation via the disruption of the blood-brain barrier (BBB) and by increasing the receptor for advanced glycation end product (RAGE) expression in the brain, which causes glial cell activation, leading to cognitive impairment. To test our hypothesis, 60-day-old Wistar rats were subjected to meningitis by receiving an intracisternal injection of Streptococcus pneumoniae or artificial cerebrospinal fluid as a control group and were treated with a RAGE-specific inhibitor (FPS-ZM1) in saline. The rats also received ceftriaxone 100 mg/kg intraperitoneally, bid, and fluid replacements. Experimental pneumococcal meningitis triggered BBB disruption after meningitis induction, and FPS-ZM1 treatment significantly suppressed BBB disruption. Ten days after meningitis induction, surviving animals were free from infection, but they presented increased levels of TNF-α and IL-1β in the prefrontal cortex (PFC); high expression levels of RAGE, amyloid-β (Aβ1-42), and microglial cell activation in the PFC and hippocampus; and memory impairment, as evaluated by the open-field, novel object recognition task and Morris water maze behavioral tasks. Targeted RAGE inhibition was able to reduce cytokine levels, decrease the expression of RAGE and Aβ1-42, inhibit microglial cell activation, and improve cognitive deficits in meningitis survivor rats. The sequence of events generated by pneumococcal meningitis can persist long after recovery, triggering neurocognitive decline; however, RAGE blocker attenuated the development of brain inflammation and cognitive impairment in experimental meningitis.
Collapse
Affiliation(s)
- Vijayasree V Giridharan
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Jaqueline S Generoso
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Allan Collodel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Flavio Tardin
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Gursimrat S Bhatti
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA
| | - Fabricia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, 88704-900, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil
| | - Tatiana Barichello
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, 1941 East Road, Houston, TX, 77054, USA.
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, 88806-000, SC, Brazil.
| |
Collapse
|
14
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
15
|
Zheng YF, Zhou X, Chang D, Bhuyan DJ, Zhang JP, Yu WZ, Jiang XS, Seto SW, Yeon SY, Li J, Li CG. A novel tri-culture model for neuroinflammation. J Neurochem 2020; 156:249-261. [PMID: 32891068 DOI: 10.1111/jnc.15171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/29/2023]
Abstract
Neuroinflammation is believed to play a primary role in the pathogenesis of most neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and schizophrenia. Currently, suitable in vitro neuroinflammation models for studying cellular interactions and inflammatory mechanisms at the neurovascular unit are still scarce. In this study, we established an experimentally flexible tri-culture neuroinflammation model combining murine microglial cells (N11), mouse neuroblastoma Nuro2A cell lines and brain microvascular endothelial MVEC(B3) cells in a transwell co-culture system stimulated with lipopolysaccharides. Neuroinflammation was induced in this tri-culture model as manifested by activated N11 cells via toll-like receptor 4, resulting in increased release of proinflammatory mediators (nitric oxide, interleukin-6 and tumour necrosis factor-α) through the activation of nuclear factor-κB signalling pathway. The released inflammatory cytokines from N11 in turn, damaged the tight junction in microvascular endothelial MVEC(B3) cells, increased permeability of endothelial barrier, and induced tau phosphorylation and up-regulated caspase-3 expression in mouse neuroblastoma Nuro2A cell lines, leading to neuroinflammation injury. In summary, this tri-culture inflammation model mimics the microenvironment, the cellular crosstalk and the molecular events that take place during neuroinflammation. It provides a robust in vitro model for studying neuroinflammation mechanisms and screening for potential therapeutics to treat various neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan-Fang Zheng
- College of Pharmacy, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China.,NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jie Ping Zhang
- College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Wen-Zhen Yu
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia.,College of Integrated Traditional Chinese and Western Medicine, Fu Jian University of Traditional Chinese Medicine, Fu Zhou, China
| | - Xia-Sen Jiang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Sai Wang Seto
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Seung Yeon Yeon
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jia Li
- Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Department of Biomedical Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
16
|
Kong Y, Liu C, Zhou Y, Qi J, Zhang C, Sun B, Wang J, Guan Y. Progress of RAGE Molecular Imaging in Alzheimer's Disease. Front Aging Neurosci 2020; 12:227. [PMID: 32848706 PMCID: PMC7417350 DOI: 10.3389/fnagi.2020.00227] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by senile plaques (SPs), which are caused by amyloid beta (Aβ) deposition and neurofibrillary tangles (NFTs) of abnormal hyperphosphorylated tau protein. The receptor for advanced glycation end products (RAGE) binds to advanced glycation end products deposited during vascular dysfunction. Alzheimer’s disease may occur when RAGE binds to Aβ and releases reactive oxygen species, further exacerbating Aβ deposition and eventually leading to SPs and NFTs. As it is involved in early AD, RAGE may be considered as a more potent biomarker than Aβ. Positron emission tomography provides valuable information regarding the underlying pathological processes of AD many years before the appearance of clinical symptoms. Thus, to further reveal the role of RAGE in AD pathology and for early diagnosis of AD, a tracer that targets RAGE is needed. In this review, we first describe the early diagnosis of AD and then summarize the interaction between RAGE and Aβ and Tau that is required to induce AD pathology, and finally focus on RAGE-targeting probes, highlighting the potential of RAGE to be used as an effective target. The development of RAGE probes is expected to aid in AD diagnosis and treatment.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yinping Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Kong Y, Wang F, Wang J, Liu C, Zhou Y, Xu Z, Zhang C, Sun B, Guan Y. Pathological Mechanisms Linking Diabetes Mellitus and Alzheimer's Disease: the Receptor for Advanced Glycation End Products (RAGE). Front Aging Neurosci 2020; 12:217. [PMID: 32774301 PMCID: PMC7388912 DOI: 10.3389/fnagi.2020.00217] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetes and Alzheimer’s disease (AD) place a significant burden on health care systems in the world and its aging populations. These diseases have long been regarded as separate entities; however, advanced glycation end products (AGEs) and the receptors for AGEs (RAGE) may be a link between diabetes and AD. In our study, mice injected with AGEs through stereotaxic surgery showed significant AD-like features: behavior showed decreased memory; immunofluorescence showed increased phosphorylated tau and APP. These results suggest links between diabetes and AD. Patients with diabetes are at a higher risk of developing AD, and the possible underlying molecular components of this association are now beginning to emerge.
Collapse
Affiliation(s)
- Yanyan Kong
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Cuiping Liu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yinping Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengqin Xu
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Therapeutic Potential of Direct Clearance of the Amyloid-β in Alzheimer's Disease. Brain Sci 2020; 10:brainsci10020093. [PMID: 32050618 PMCID: PMC7071829 DOI: 10.3390/brainsci10020093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by deposition and accumulation of amyloid-β (Aβ) and its corresponding plaques within the brain. Although much debate exists whether these plaques are the cause or the effect of AD, the accumulation of Aβ is linked with the imbalance between the production and clearance of Aβ. The receptor for advanced glycation endproducts (RAGE) facilitates entry of free Aβ from the peripheral stream. Conversely, lipoprotein receptor-related protein 1 (LRP1), located in the abluminal side at the blood–brain barrier mediates the efflux of Aβ. Research on altering the rates of clearance of Aβ by targeting these two pathways has been extensively study. Additionally, a cerebrospinal fluid (CSF) circulation assistant device has also been evaluated as an approach to increase solute concentration in the CSF via mechanical drainage, to allow for removal of Aβ from the brain. Herein, we provide a brief review of these approaches that are designed to re-establish a homeostatic Aβ balance in the brain.
Collapse
|
19
|
Kravchenko IV, Furalyov VA, Popov VO. Glycated albumin stimulates expression of inflammatory cytokines in muscle cells. Cytokine 2020; 128:154991. [PMID: 32000013 DOI: 10.1016/j.cyto.2020.154991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
The effects of glycated albumin on the expression of inflammatory cytokines in differentiated myotubes were investigated. Glycated albumin stimulates the expression of TNF α, IL-1β, IL-6 and CCL-2 both at the mRNA and protein levels via the receptor of AGEs. Various cytokines demonstrated different kinetics of stimulation by glycated albumin. At a high glucose concentration, the stimulation effect was more pronounced than at a low one. At physiological concentrations of albumin and fructosamine, the stimulation effect of glycated albumin on inflammatory cytokine expression in myotubes was also observed. The induction of expression of all studied cytokines was sensitive to the inhibitors of JNK, p38 MAPK, MEK1/2, Src family protein kinases and NF-κB. At the same time, the induction of TNFα and IL-1β was diminished by the Ca2+/calmodulin-dependent protein kinase inhibitor, whereas the induction of IL-6 and CCL-2 was reduced by the inhibitor of phosphoinositide 3-kinase. Possible implications of observed stimulation of cytokine expression by glycated albumin in the development of diabetes mellitus symptoms are discussed.
Collapse
Affiliation(s)
- Irina V Kravchenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia.
| | - Vladimir A Furalyov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, bld. 2, Moscow 119071, Russia
| |
Collapse
|
20
|
Sharman MJ, Verdile G, Kirubakaran S, Parenti C, Singh A, Watt G, Karl T, Chang D, Li CG, Münch G. Targeting Inflammatory Pathways in Alzheimer's Disease: A Focus on Natural Products and Phytomedicines. CNS Drugs 2019; 33:457-480. [PMID: 30900203 DOI: 10.1007/s40263-019-00619-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studies of the brains of Alzheimer's disease (AD) patients have revealed key neuropathological features, such as the deposition of aggregates of insoluble amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs). These pathological protein deposits, including Aβ peptides (which form senile plaques) and hyperphosphorylated tau (which aggregates into NFTs), have been assumed to be 'the cause of AD'. Aβ has been extensively targeted to develop an effective disease-modifying therapy, but with limited clinical success. Emerging therapies are also now targeting further pathological processes in AD, including neuroinflammation. This review focuses on the inflammatory and oxidative stress-related changes that occur in AD, and discusses some emerging anti-inflammatory natural products and phytomedicines. Many of the promising compounds are cytokine-suppressive anti-inflammatory drugs (CSAIDs), which target the proinflammatory AP1 and nuclear factor-κB signalling pathways and inhibit the expression of many proinflammatory cytokines, such as interleukin (IL)-1, IL-6, tumour necrosis factor-α, or nitric oxide produced by inducible nitric oxide synthase. However, many of these phytomedicines have not been tested in rigorous clinical trials in AD patients. It is not yet clear if the active compounds reach an effective concentration in the brain (due to limited bioavailability) or if they can slow down AD progression in long-term trials. The authors suggest that it is crucial for both the pharmacological and complementary medicine industries to conduct and fund those studies to significantly advance the field.
Collapse
Affiliation(s)
- Matthew J Sharman
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Locked Bag 1322, Launceston, TAS, 7250, Australia
| | - Giuseppe Verdile
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, 6102, Australia
| | - Shanmugam Kirubakaran
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Cristina Parenti
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Ahilya Singh
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Georgina Watt
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Tim Karl
- Department of Behavioural Neuroscience, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia.,School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,NICM Health Research Institute, Western Sydney University, Campbelltown, NSW, 2560, Australia. .,Pharmacology Unit, School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
21
|
Larsen NK, Reilly MJ, Thankam FG, Fitzgibbons RJ, Agrawal DK. Novel understanding of high mobility group box-1 in the immunopathogenesis of incisional hernias. Expert Rev Clin Immunol 2019; 15:791-800. [PMID: 30987468 DOI: 10.1080/1744666x.2019.1608822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Incisional hernias (IH) arise as a complication of patients undergoing laparotomy. Current literature has assessed the role of extracellular matrix (ECM) disorganization, alterations in type I and type III collagen, matrix metalloproteinases, and tissue inhibitors of metalloproteases on IH. However, there is limited information on the underlying molecular mechanisms that lead to ECM disorganization. Areas covered: We critically reviewed the literature surrounding IH and ECM disorganization and offer a novel pathway that may be the underlying mechanism resulting in ECM disorganization and the immunopathogenesis of IH. Expert opinion: High mobility group box-1 (HMGB-1), a damage-associated molecular pattern, plays an important role in the sterile inflammatory pathway and has been linked to ECM disorganization and the triggering of the NLRP3 inflammasome. Further research to investigate the role of HMGB-1 in the molecular pathogenesis of IH would be critical in identifying novel therapeutic targets in the management of IH formation.
Collapse
Affiliation(s)
- Nicholas K Larsen
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| | - Matthew J Reilly
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| | - Finosh G Thankam
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA.,b Surgery , Creighton University School of Medicine , Omaha , USA
| | - Robert J Fitzgibbons
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA.,b Surgery , Creighton University School of Medicine , Omaha , USA
| | - Devendra K Agrawal
- a Departments of Clinical and Translational Science , Creighton University School of Medicine , Omaha , USA
| |
Collapse
|
22
|
Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 2019; 9:840. [PMID: 30696869 PMCID: PMC6351546 DOI: 10.1038/s41598-018-37215-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus is associated with an increased risk of Alzheimer’s dementia and cognitive decline. The cause of neurodegeneration in chronic diabetic patients remains unclear. Changes in brain microglial activity due to glycemic fluctuations may be an etiological factor. Here, we examined the impact of acute ambient glucose fluctuations on BV-2 microglial activity. Biochemical parameters were assayed and showed that the shift from normal glucose (NG; 5.5 mM) to high glucose (HG; 25 mM) promoted cell growth and induced oxidative/inflammatory stress and microglial activation, as evidenced by increased MTT reduction, elevated pro-inflammatory factor secretion (i.e., TNF-α and oxygen free radicals), and upregulated expression of stress/inflammatory proteins (i.e., HSP70, HO-1, iNOS, and COX-2). Also, LPS-induced inflammation was enlarged by an NG-to-HG shift. In contrast, the HG-to-NG shift trapped microglia in a state of metabolic stress, which led to apoptosis and autophagy, as evidenced by decreased Bcl-2 and increased cleaved caspase-3, TUNEL staining, and LC3B-II expression. These stress episodes were primarily mediated through MAPKs, PI3K/Akt, and NF-κB cascades. Our study demonstrates that acute glucose fluctuation forms the stress that alters microglial activity (e.g., inflammatory activation or self-degradation), representing a novel pathogenic mechanism for the continued deterioration of neurological function in diabetic patients.
Collapse
Affiliation(s)
- Cheng-Fang Hsieh
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Geriatrics and Gerontology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Kuan Liu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Tien Lee
- Department of Nursing, Hsin-Sheng College of Medical Care and Management, Taoyuan, Taiwan
| | - Liang-En Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiz-Yuh Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
23
|
Gunawardena D, Raju R, Münch G. Hydrogen peroxide mediates pro-inflammatory cell-to-cell signaling: a new therapeutic target for inflammation? Neural Regen Res 2019; 14:1430-1437. [PMID: 30964069 PMCID: PMC6524506 DOI: 10.4103/1673-5374.253529] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nitric oxide is now universally recognized as an extracellular signaling molecule. Nitric oxide, produced in one cell, diffuses across the extracellular space and acts with targets in an adjoining cell. In this study, we present proof that hydrogen peroxide – like nitric oxide – acts as a true first (intercellular) messenger for a multitude of pro-inflammatory ligands. RAW 264.7 macrophages were activated with three different ligands, lipopolysaccharide, interferon-gamma or advanced glycation end products in the presence of increasing concentrations of (hydrogen peroxide scavenging) catalase. As inflammatory readouts, nitric oxide and tumor necrosis factor were determined. We hypothesize that hydrogen peroxide travels between cells propagating the signal, then a certain percentage of the readout should be inhibited by catalase in a concentration-dependent manner. The experiment showed concentration-dependent inhibition of nitric oxide and tumor necrosis factor-α production in response to all three ligands/ligand combinations (interferon-gamma, lipopolysaccharide, and chicken egg albumin-derived advanced glycation end product) in the presence of increasing concentration of catalase. For example, catalase inhibited 100% of nitric oxide and 40% of tumor necrosis factor-α production at its highest concentration. Our results suggest that hydrogen peroxide travels through cell membranes into the extracellular space and enters and activates adjacent cells. Like nitric oxide, we suggest that it is a ubiquitous first messenger, able to transmit cell-to-cell pro-inflammatory signals such as nitric oxide and tumor necrosis factor-α. In a therapeutic setting, our data suggest that compounds acting as hydrogen peroxide scavengers might not even need to enter the cell to act as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Dhanushka Gunawardena
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Ritesh Raju
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Gerald Münch
- Department of Pharmacology, School of Medicine, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
24
|
Jiang X, Wang X, Tuo M, Ma J, Xie A. RAGE and its emerging role in the pathogenesis of Parkinson’s disease. Neurosci Lett 2018; 672:65-69. [DOI: 10.1016/j.neulet.2018.02.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 01/10/2023]
|
25
|
Role of microglia-neuron interactions in diabetic encephalopathy. Ageing Res Rev 2018; 42:28-39. [PMID: 29247713 DOI: 10.1016/j.arr.2017.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/07/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
In the central nervous system, the primary immune cells, the microglia, prevent pathogenic invasion as the first line of defense. Microglial energy consumption is dependent on their degree of activity. Microglia express transporters for the three primary energy substrates (glucose, fatty acids, glutamine) and regulate diabetic encephalopathy via microglia-neuron interactions. Microglia may play a sentry role for rapid protection or even ablation of impaired neurons. Neurons exhibit hyperactivity in response to hyperglycemia, hyperlipidemia, and neurotoxic factors and release potential microglial activators. Microglial activation is also regulated by proinflammatory factors, caspase-3 activity, P2X7 receptor, interferon regulatory factor-8, and glucocorticoids. Modulation of microglia in diabetic encephalopathy may involve CX3CL1, p38 MAPK, purinergic, and CD200/CD200R signaling pathways, and pattern recognition receptors. The microglia-neuron interactions play an important role in diabetic encephalopathy, and modulation of microglial activation may be a therapeutic target for diabetic encephalopathy.
Collapse
|
26
|
Zhu J, Yu H, Chen S, Yang P, Dong Z, Ling Y, Tang H, Bai S, Yang W, Tang L, Shen F, Wang H, Wen W. Prognostic significance of combining high mobility group Box-1 and OV-6 expression in hepatocellular carcinoma. SCIENCE CHINA-LIFE SCIENCES 2018; 61:912-923. [PMID: 29441453 DOI: 10.1007/s11427-017-9188-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
The inflammatory environment and existence of cancer stem cells are critical for progression and intrahepatic recurrence of hepatocellular carcinoma (HCC) after curative resections. Here, we investigated the prognostic significance of combining high mobility group box 1 (HMGB1) expression and hepatic progenitor marker OV6 in hepatocellular carcinoma. Expression of HMGB1 and OV6 was evaluated using immunohistochemistry profiling in tissue microarrays containing samples from 208 HCC patients. Invasive clinical or pathological factors were found in patients with high expression of HMGB1 or OV6. Higher HMGB1 was associated with poorer clinical outcomes, and independently related to elevated 5-year recurrence incidence (85.5% vs. 62.4%, P<0.001). We also found that more OV6 positive staining was correlated with poor prognosis of HCC patients (P<0.001). Notably, expression of HMGB1 was positively correlated with OV6 in density (R2=0.032, P<0.001) and reversely related to HCC outcomes. Abnormal expression of HMGB1 in combination with positive staining of OV6 displayed poorer prognostic performance than single biomarker alone (area under curve (AUC) survival=0.696). Therefore, HMGB1 and OV6 positive staining are promising prognostic parameters for HCC, and we propose that HMGB1 and OV6 may cooperate with each other and predict poor prognosis of HCC.
Collapse
Affiliation(s)
- Jihui Zhu
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Han Yu
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shuzhen Chen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Pinghua Yang
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Zihui Dong
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yan Ling
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hao Tang
- Department of Respiratory Medicine, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Shilei Bai
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wen Yang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Liang Tang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China.,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Feng Shen
- Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Hongyang Wang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China. .,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China. .,Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| | - Wen Wen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China. .,International Cooperation Laboratory on Signal Transduction of Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200433, China. .,Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| |
Collapse
|
27
|
Sharma I, Tupe RS, Wallner AK, Kanwar YS. Contribution of myo-inositol oxygenase in AGE:RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy. Am J Physiol Renal Physiol 2017; 314:F107-F121. [PMID: 28931523 DOI: 10.1152/ajprenal.00434.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Advanced glycation end products (AGEs) play a role in pathogenesis of diabetic nephropathy (DN). Myo-inositol oxygenase (MIOX) has been implicated in tubulointerstitial injury in the context of DN. We investigated the effect of AGEs on MIOX expression and delineated mechanisms that lead to tubulointerstitial injury. The status of MIOX, RAGE, and relevant cellular signaling pathways activated following AGE:RAGE interaction was examined in tubular cells and kidneys of AGE-BSA-treated mice. A solid-phase assay revealed an enhanced binding of RAGE with AGE-BSA, AGE-laminin, and AGE-collagen IV. The cells treated with AGE-BSA had increased MIOX activity/expression and promoter activity. This was associated with activation of various signaling kinases of phosphatidylinositol 3-kinase (PI3K)-AKT pathway and increased expression of NF-κB, transforming growth factor (TGF)-β, and fibronectin, which was negated with the treatment of MIOX/RAGE- small interfering (si) RNA. Concomitant with MIOX upregulation, there was an increased generation of reactive oxygen species (ROS), which could be abrogated with MIOX/RAGE- siRNA treatment. The kidneys of mice treated with AGE-BSA had significantly high urinary A/C ratio, upregulation of MIOX, RAGE and NF-κB, along with influx of monocytes into the tubulointerstitium, increased the expression of MCP-1, IL-6, and fibronectin and increased the generation of ROS. Such perturbations were abrogated with the concomitant treatment of inhibitors MIOX or RAGE (d-glucarate and FPS-ZM1). These studies support a role of AGE:RAGE interaction in the activation of PI3K-AKT pathway and upregulation of MIOX, with excessive generation of ROS, increased expression of NF-κB, inflammatory cytokines, TGF-β, and fibronectin. Collectively, these observations highlight the relevance of the biology of MIOX in the contribution toward tubulointerstitial injury in DN.
Collapse
Affiliation(s)
- Isha Sharma
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Rashmi S Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University , Pune , India
| | - Aryana K Wallner
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| | - Yashpal S Kanwar
- Departments of Pathology and Medicine, Northwestern University , Chicago, Illinois
| |
Collapse
|
28
|
RAGE-Specific Inhibitor FPS-ZM1 Attenuates AGEs-Induced Neuroinflammation and Oxidative Stress in Rat Primary Microglia. Neurochem Res 2017; 42:2902-2911. [DOI: 10.1007/s11064-017-2321-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
|
29
|
Greco R, Demartini C, Zanaboni AM, Blandini F, Amantea D, Tassorelli C. Modulation of cerebral RAGE expression following nitric oxide synthase inhibition in rats subjected to focal cerebral ischemia. Eur J Pharmacol 2017; 800:16-22. [DOI: 10.1016/j.ejphar.2017.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
|
30
|
Wetzels S, Wouters K, Schalkwijk CG, Vanmierlo T, Hendriks JJA. Methylglyoxal-Derived Advanced Glycation Endproducts in Multiple Sclerosis. Int J Mol Sci 2017; 18:ijms18020421. [PMID: 28212304 PMCID: PMC5343955 DOI: 10.3390/ijms18020421] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS). The activation of inflammatory cells is crucial for the development of MS and is shown to induce intracellular glycolytic metabolism in pro-inflammatory microglia and macrophages, as well as CNS-resident astrocytes. Advanced glycation endproducts (AGEs) are stable endproducts formed by a reaction of the dicarbonyl compounds methylglyoxal (MGO) and glyoxal (GO) with amino acids in proteins, during glycolysis. This suggests that, in MS, MGO-derived AGEs are formed in glycolysis-driven cells. MGO and MGO-derived AGEs can further activate inflammatory cells by binding to the receptor for advanced glycation endproducts (RAGE). Recent studies have revealed that AGEs are increased in the plasma and brain of MS patients. Therefore, AGEs might contribute to the inflammatory status in MS. Moreover, the main detoxification system of dicarbonyl compounds, the glyoxalase system, seems to be affected in MS patients, which may contribute to high MGO-derived AGE levels. Altogether, evidence is emerging for a contributing role of AGEs in the pathology of MS. In this review, we provide an overview of the current knowledge on the involvement of AGEs in MS.
Collapse
Affiliation(s)
- Suzan Wetzels
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Kristiaan Wouters
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 Maastricht, The Netherlands.
| | - Tim Vanmierlo
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| | - Jerome J A Hendriks
- Department of Immunology and Biochemistry, Biomedical Research Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium.
| |
Collapse
|
31
|
Kato J, Agalave NM, Svensson CI. Pattern recognition receptors in chronic pain: Mechanisms and therapeutic implications. Eur J Pharmacol 2016; 788:261-273. [PMID: 27343378 DOI: 10.1016/j.ejphar.2016.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Abstract
For the individual, it is vital to promptly detect and recognize a danger that threatens the integrity of the body. Pattern recognition receptors (PRRs) are several classes of protein families originally classified as receptors detecting exogenous pathogens. PRRs are also capable of recognizing molecules released from damaged tissues (damage-associated molecular pattern molecules; DAMPs) and thereby contribute to danger recognition. Importantly, it is now evident that PRRs, such as toll-like receptors (TLRs) and receptors for advanced glycation end products (RAGE), are not only expressed in peripheral immune cells but also present in neurons and glial cells in the nervous system. These PRR-expressing cells work in concert, enabling highly sensitive danger recognition. However, this sensitiveness can act as a double-edged sword. Accumulated evidence has led to the hypothesis that aberrant activation of PRRs may play a crucial role in the pathogenesis of pathological pain. Indeed, numerous studies employing gene deletion or pharmacological inhibition of PRRs successfully reversed or prevented pathological pain in experimental animal models. Furthermore, a number of preclinical studies have shown the therapeutic potential of targeting PRRs for chronic pain. Here, we review the current knowledge regarding the role of PRRs in chronic pain and discuss the promise and challenges of targeting PRRs as a novel therapeutic approach for chronic pain.
Collapse
Affiliation(s)
- Jungo Kato
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | - Nilesh M Agalave
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9348651. [PMID: 27313835 PMCID: PMC4897723 DOI: 10.1155/2016/9348651] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In this review we highlight these aspects of RAGE signaling regulation in neuronal cells.
Collapse
|
33
|
Chao PC, Yin MC, Mong MC. Anti-apoptotic and anti-glycative effects of asiatic acid in the brain of D-galactose treated mice. Food Funct 2016; 6:542-8. [PMID: 25504333 DOI: 10.1039/c4fo00862f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protection of asiatic acid (AA) in mice brain against D-galactose (DG) induced aging was examined. AA at 5, 10 or 20 mg kg(-1) per day was supplied to DG treated mice for 8 weeks. AA intake at 10 or 20 mg kg(-1) per day increased its deposit in brain. DG treatment increased Bax, cleaved caspase-3 protein expression and decreased Bcl-2 expression. AA intake at 10 and 20 mg kg(-1) per day declined Bax, cleaved caspase-3 expression, and retained Bcl-2 expression. DG treatment decreased brain glutathione content and glutathione peroxidase activity; increased brain reactive oxygen species and protein carbonyl levels, and enhanced NAPDH oxidase expression. AA intake at test doses reversed these changes. DG treatment up-regulated the expression of advanced glycation end product (AGE), carboxymethyllysine, receptor of AGE (RAGE), mitogen-activated protein kinases and CD11b as well as increasing the interleukin (IL)-6 and tumor necrosis factor (TNF)-alpha release in the brain. AA intake at 5, 10 and 20 mg kg(-1) per day lowered AGE and carboxymethyllysine expression, and at 10 and 20 mg kg(-1) per day reduced RAGE production. AA intake dose-dependently suppressed p-p38 expression and lowered IL-6 and TNF-alpha levels, and at 10 and 20 mg kg(-1) per day down-regulated p-JNK and CD11b expression. DG treatment declined brain-derived neurotropic factor (BDNF) expression and raised glial fibrillary acidic protein (GFAP) expression. AA intake at 20 mg kg(-1) per day retained BDNF expression and at 10 and 20 mg kg(-1) per day reduced GFAP expression. These findings indicated that the supplement of asiatic acid might be beneficial to the prevention or alleviation of brain aging.
Collapse
Affiliation(s)
- Pei-chun Chao
- School of Health Diet and Industry Management, Chung Shan Medical University, Taichung City, Taiwan
| | | | | |
Collapse
|
34
|
Effect of Amaranthus on Advanced Glycation End-Products Induced Cytotoxicity and Proinflammatory Cytokine Gene Expression in SH-SY5Y Cells. Molecules 2015; 20:17288-308. [PMID: 26393562 PMCID: PMC6332459 DOI: 10.3390/molecules200917288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022] Open
Abstract
Amaranthus plants, or spinach, are used extensively as a vegetable and are known to possess medicinal properties. Neuroinflammation and oxidative stress play a major role in the pathogenesis of many neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. Advanced glycation end-products (AGEs) cause cell toxicity in the human neuronal cell line, SH-SY5Y, through an increase in oxidative stress, as shown by reducing cell viability and increasing cell toxicity in a dose-dependent manner. We found that preincubation of SH-SY5Y cells with either petroleum ether, dichloromethane or methanol extracts of A. lividus and A. tricolor dose-dependently attenuated the neuron toxicity caused by AGEs treatment. Moreover, the results showed that A. lividus and A. tricolor extracts significantly downregulated the gene expression of the pro-inflammatory cytokines, TNF-α, IL-1 and IL-6 genes in AGEs-induced cells. We concluded that A. lividus and A. tricolor extracts not only have a neuroprotective effect against AGEs toxicity, but also have anti-inflammatory activity by reducing pro-inflammatory cytokine gene expression. This suggests that Amaranthus may be useful for treating chronic inflammation associated with neurodegenerative disorders.
Collapse
|
35
|
Wang SY, Liu JP, Ji WW, Chen WJ, Fu Q, Feng L, Ma SP. Qifu-Yin attenuates AGEs-induced Alzheimer-like pathophysiological changes through the RAGE/NF-κB pathway. Chin J Nat Med 2015; 12:920-8. [PMID: 25556063 DOI: 10.1016/s1875-5364(14)60135-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 11/19/2022]
Abstract
Qifu-Yin (QFY), a widely used formula of traditional Chinese medicine (TCM) derived from "Jingyue Quanshu", is one of the most commonly used TCM prescriptions for the clinical treatment of Alzheimer disease. The role of advanced glycation end products (AGEs) and its receptor RAGE have attracted increasing attention as the pivotal role of Aβ has been questioned. The present study was designed to test the neuroprotective effects of QFY, and the possible mechanism in AGE-induced Alzheimer model rats. After injection of AGE in the CA3 area of the hippocampus, QFY (8.6, 4.3, and 2.15 g·kg(-1)), and a positive control drug donepezil (2 mg·kg(-1)) were administrated through gastric intubation to rats once daily for thirty consecutive days. Another positive control group was the AGE + anti-RAGE group, which was simultaneously injected with anti-RAGE antibody before AGE treatment. The control group, sham-operated group, as well as the AGE + anti-RAGE group received saline at the same dosage. The Morris water maze test and the step-down passive avoidance test were conducted to evaluate the cognitive function of the rats. The expression of RAGE and NF-κB were assayed by immunohistochemical staining. The levels of Aβ, TNF-α, and IL-1β in the hippocampus were measured by enzyme-linked immunosorbent assay (ELISA). The results showed that QFY could significantly attenuate the memory impairment induced by AGE, decrease the expressions of RAGE and NF-κB, and reduce the levels of Aβ, TNF-α, and IL-1β in the hippocampus in a dose-dependent manner. Also, the blockage of RAGE could significantly reduce the impairments caused by AGEs. In conclusion, QFY could attenuate AGEs-induced, Alzheimer-like pathophysiological changes. These neuroprotective effects might be related to the RAGE/NF-κB pathway and its anti-inflammatory activity.
Collapse
Affiliation(s)
- Shu-Yuan Wang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Ji-Ping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Wei-Wei Ji
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Wen-Jiao Chen
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Feng
- Key Laboratory of Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing 210028, China
| | - Shi-Ping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
36
|
Abstract
Scavenger receptors constitute a large family of evolutionally conserved protein molecules that are structurally and functionally diverse. Although scavenger receptors were originally identified based on their capacity to scavenge modified lipoproteins, these molecules have been shown to recognize and bind to a broad spectrum of ligands, including modified and unmodified host-derived molecules or microbial components. As a major subset of innate pattern recognition receptors, scavenger receptors are mainly expressed on myeloid cells and function in a wide range of biological processes, such as endocytosis, adhesion, lipid transport, antigen presentation, and pathogen clearance. In addition to playing a crucial role in maintenance of host homeostasis, scavenger receptors have been implicated in the pathogenesis of a number of diseases, e.g., atherosclerosis, neurodegeneration, or metabolic disorders. Emerging evidence has begun to reveal these receptor molecules as important regulators of tumor behavior and host immune responses to cancer. This review summarizes our current understanding on the newly identified, distinct functions of scavenger receptors in cancer biology and immunology. The potential of scavenger receptors as diagnostic biomarkers and novel targets for therapeutic interventions to treat malignancies is also highlighted.
Collapse
Affiliation(s)
- Xiaofei Yu
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - John R Subjeck
- Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
37
|
Ma C, Zhang Y, Li YQ, Chen C, Cai W, Zeng YL. The Role of PPARγ in Advanced Glycation End Products-Induced Inflammatory Response in Human Chondrocytes. PLoS One 2015; 10:e0125776. [PMID: 26024533 PMCID: PMC4449199 DOI: 10.1371/journal.pone.0125776] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/26/2015] [Indexed: 12/02/2022] Open
Abstract
Objective Advances made in the past ten years highlight the notion that peroxisome proliferator-activated receptors gamma (PPARγ) has protective properties in the pathophysiology of osteoarthritis (OA). The aim of this study was to define the roles of PPARγ in AGEs-induced inflammatory response in human chondrocytes. Methods Primary human chondrocytes were stimulated with AGEs in the presence or absence of neutralizing antibody against RAGE (anti-RAGE), MAPK specific inhibitors and PPARγ agonist pioglitazone. The expression of IL-1, MMP-13, TNF-α, PPARγ, nuclear NF-κB p65 and cytosol IκBα was determined by western blotting and real-time PCR. Results AGEs could enhance the expression of IL-1, TNF-α, and MMP-13, but the level of PPARγ was decreased in a time- and dose-dependent manner, which was inhibited by anti-RAGE, SB203580 (P38 MAPK specific inhibitor) and SP600125 (a selective inhibitor of JNK). PPARγ agonist pioglitazone could inhibit the effects of AGEs-induced inflammatory response and PPARγ down-regulation. In human chondrocytes, AGEs could induce cytosol IκBα degradation and increase the level of nuclear NF-κB p65, which was inhibited by PPARγ agonist pioglitazone. Conclusions In primary human chondrocytes, AGEs could down-regulate PPARγ expression and increase the inflammatory mediators, which could be reversed by PPARγ agonist pioglitazone. Activation of RAGE by AGEs triggers a cascade of downstream signaling, including MAPK JNK/ p38, PPARγ and NF-κB. Taken together, PPARγ could be a potential target for pharmacologic intervention in the treatment of OA.
Collapse
Affiliation(s)
- Chi Ma
- Department of Orthopedics, 163 Central Hospital of the People's Liberation Army, the Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Ying Zhang
- Department of Orthopedics, 163 Central Hospital of the People's Liberation Army, the Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Yu-qing Li
- Department of Orthopedics, 163 Central Hospital of the People's Liberation Army, the Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Cheng Chen
- Department of Orthopedics, 163 Central Hospital of the People's Liberation Army, the Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
- * E-mail:
| | - Wei Cai
- Department of Orthopedics, 163 Central Hospital of the People's Liberation Army, the Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| | - Yue-lin Zeng
- Department of Orthopedics, 163 Central Hospital of the People's Liberation Army, the Second Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410003, China
| |
Collapse
|
38
|
Sabokdast M, Habibi-Rezaei M, Poursasan N, Sabouni F, Ferdousi M, Azimzadeh-Irani E, Moosavi-Movahedi AA. Insulin glycation coupled with liposomal lipid peroxidation and microglial cell death. RSC Adv 2015. [DOI: 10.1039/c4ra16420b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Type 2 diabetes is characterized jointly by hyperglycemia and hyperinsulinemia, which make insulin prone to glycation then fibrillation.
Collapse
Affiliation(s)
| | | | - Najmeh Poursasan
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
| | - Farzaneh Sabouni
- Department of Basic Sciences of Biotechnology
- National Institute of Genetic Engineering and Biotechnology
- Tehran
- Iran
| | - Maryam Ferdousi
- School of Biology
- College of Science
- University of Tehran
- Tehran
- Iran
| | | | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics
- University of Tehran
- Tehran
- Iran
- Center of Excellence in Biothermodynamics
| |
Collapse
|
39
|
Nakajima Y, Inagaki Y, Kido J, Nagata T. Advanced glycation end products increase expression of S100A8 and A9 via RAGE-MAPK in rat dental pulp cells. Oral Dis 2014; 21:328-34. [PMID: 25098709 DOI: 10.1111/odi.12280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/19/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Advanced glycation end products (AGE) are involved in the progression of diabetic complications. Although our previous reports show that AGE increased dental pulp calcification, AGE accumulation is also associated with inflammation. This study examined AGE effect on the expression of inflammation factors using rat dental pulp tissues and cell cultures. MATERIALS AND METHODS Receptor for AGE (RAGE), S100A8, S100A9, and interleukin (IL)-1β were selected as inflammation parameters. Rat dental pulp cells were cultured and treated with AGE, and the effects were determined by real-time PCR. An anti-RAGE antibody or MAPK pathway inhibitors (PD98059, SB203580, and SP60012) were used to investigate AGE signaling pathway. RESULTS The mRNA levels of RAGE, S100A8, S100A9, and IL-1β were higher in diabetic pulp tissues. AGE increased mRNA expressions of S100A8, S100A9, and IL-1β in cultured dental pulp cells. In the presence of anti-RAGE antibody, AGE did not increase in S100A8 or S100A9 expressions. The AGE-induced increases in S100A8 and S100A9 were inhibited by PD98059 and SB203580, respectively. CONCLUSIONS Advanced glycation end products increased mRNA expression of S100A8, S100A9, and IL-1β under diabetic pulp conditions, and AGE-induced increases in S100A8 and S100A9 expressions may be associated with the RAGE-MAPK signaling pathway.
Collapse
Affiliation(s)
- Y Nakajima
- Department of Periodontology and Endodontology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | |
Collapse
|
40
|
The role of microglia in diabetic retinopathy. J Ophthalmol 2014; 2014:705783. [PMID: 25258680 PMCID: PMC4166427 DOI: 10.1155/2014/705783] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/08/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that chronic inflammation plays a role in both the development and progression of diabetic retinopathy. There is also evidence that molecules produced as a result of hyperglycemia can activate microglia. However the exact contribution of microglia, the resident immune cells of the central nervous system, to retinal tissue damage during diabetes remains unclear. Current data suggest that dysregulated microglial responses are linked to their deleterious effects in several neurological diseases associated with chronic inflammation. As inflammatory cytokines and hyperglycemia disseminate through the diabetic retina, microglia can change to an activated state, increase in number, translocate through the retina, and themselves become the producers of inflammatory and apoptotic molecules or alternatively exert anti-inflammatory effects. In addition, microglial genetic variations may account for some of the individual differences commonly seen in patient's susceptibility to diabetic retinopathy.
Collapse
|
41
|
Hu X, Liou AKF, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120:60-84. [PMID: 24923657 PMCID: PMC4121732 DOI: 10.1016/j.pneurobio.2014.06.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made toward deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, 'On' and 'Off' receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| | - Anthony K F Liou
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Chengrui An
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
42
|
Simm A, Philipp C, Friedrich I, Scheubel R, Hofmann HS, Meibodi K, Sablotzki A, Silber RE, Börgermann J. Intraoperative sRAGE kinetics. Z Gerontol Geriatr 2013; 47:666-72. [DOI: 10.1007/s00391-013-0523-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 2013; 25:2185-97. [DOI: 10.1016/j.cellsig.2013.06.013] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/15/2013] [Accepted: 06/25/2013] [Indexed: 01/03/2023]
|
44
|
Stolzing A, Sethe S, Grune T. Chronically active: activation of microglial proteolysis in ageing and neurodegeneration. Redox Rep 2013; 10:207-13. [PMID: 16259788 DOI: 10.1179/135100005x70198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
One of the microglial cell functions is the removal of modified extracellular proteins in the brain. The connection between protein oxidation, proteolysis, and microglial activation is the topic of this review. The effect of various activation agents on microglial cells with regard to changes in substrate uptake, proteolytic capacity and degradation efficiency of different types of oxidized protein materials is reviewed. It is shown that different activation stimuli initiate substrate-specific modulation for uptake and proteolysis, influencing an array of factors including receptor expression, lysosomal pH, and proteasome subunit composition. Age-related alterations in activation and proteolytic capacity in microglial cells are also discussed. In ageing, proteolytic effectiveness is diminished, while microglial cells are chronically activated and lose the oxidative burst ability, possibly supporting a 'vicious circle' of macrophage-induced neurodegeneration.
Collapse
Affiliation(s)
- Alexandra Stolzing
- Centre for Biomaterials and Tissue Engineering, Sheffield University, UK
| | | | | |
Collapse
|
45
|
Abstract
RAGE is a key molecule in the onset and sustainment of the inflammatory response. New studies indicate that RAGE might represent a new link between the innate and adaptive immune system. RAGE belongs to the superfamily of Ig cell-surface receptors and is expressed on all types of leukocytes promoting activation, migration, or maturation of the different cells. RAGE expression is prominent on the activated endothelium, where it mediates leukocyte adhesion and transmigration. Moreover, proinflammatory molecules released from the inflamed or injured vascular system induce migration and proliferation of SMCs. RAGE binds a large number of different ligands and is therefore considered as a PRR, recognizing a structural motif rather than a specific ligand. In this review, we summarize the current knowledge about the signaling pathways activated in the different cell types and discuss a potential activation mechanism of RAGE, as well as putative options for therapeutic intervention.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Department of Neuropathology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
46
|
Lin J, Tang Y, Kang Q, Feng Y, Chen A. Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br J Pharmacol 2012; 166:2212-27. [PMID: 22352842 DOI: 10.1111/j.1476-5381.2012.01910.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Diabetes is characterized by hyperglycaemia, which facilitates the formation of advanced glycation end-products (AGEs). Type 2 diabetes mellitus is commonly accompanied by non-alcoholic steatohepatitis, which could lead to hepatic fibrosis. Receptor for AGEs (RAGE) mediates effects of AGEs and is associated with increased oxidative stress, cell growth and inflammation. The phytochemical curcumin inhibits the activation of hepatic stellate cells (HSCs), the major effectors during hepatic fibrogenesis. The aim of this study was to explore the underlying mechanisms of curcumin in the elimination of the stimulating effects of AGEs on the activation of HSCs. We hypothesize that curcumin eliminates the effects of AGEs by suppressing gene expression of RAGE. EXPERIMENTAL APPROACH Gene promoter activities were evaluated by transient transfection assays. The expression of rage was silenced by short hairpin RNA. Gene expression was analysed by real-time PCR and Western blots. Oxidative stress was evaluated. KEY RESULTS AGEs induced rage expression in cultured HSCs, which played a critical role in the AGEs-induced activation of HSCs. Curcumin at 20 µM eliminated the AGE effects, which required the activation of PPARγ. In addition, curcumin attenuated AGEs-induced oxidative stress in HSCs by elevating the activity of glutamate-cysteine ligase and by stimulating de novo synthesis of glutathione, leading to the suppression of gene expression of RAGE. CONCLUSION AND IMPLICATIONS Curcumin suppressed gene expression of RAGE by elevating the activity of PPARγ and attenuating oxidative stress, leading to the elimination of the AGE effects on the activation of HSCs. LINKED ARTICLE This article is commented on by Stefanska, pp. 2209-2211 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01959.x.
Collapse
Affiliation(s)
- Jianguo Lin
- Department of Pathology, School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
47
|
Sweepers in the CNS: Microglial Migration and Phagocytosis in the Alzheimer Disease Pathogenesis. Int J Alzheimers Dis 2012; 2012:891087. [PMID: 22666624 PMCID: PMC3359803 DOI: 10.1155/2012/891087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/02/2012] [Indexed: 01/28/2023] Open
Abstract
Microglia are multifunctional immune cells in the central nervous system (CNS). In the neurodegenerative diseases such as Alzheimer's disease (AD), accumulation of glial cells, gliosis, occurs in the lesions. The role of accumulated microglia in the pathophysiology of AD is still controversial. When neuronal damage occurs, microglia exert diversified functions, including migration, phagocytosis, and production of various cytokines and chemokines. Among these, microglial phagocytosis of unwanted neuronal debris is critical to maintain the healthy neuronal networks. Microglia express many surface receptors implicated in phagocytosis. It has been suggested that the lack of microglial phagocytosis worsens pathology of AD and induces memory impairment. The present paper summarizes recent evidences on implication of microglial chemotaxis and phagocytosis in AD pathology and discusses the mechanisms related to chemotaxis toward injured neurons and phagocytosis of unnecessary debris.
Collapse
|
48
|
Shaikh SB, Uy B, Perera A, Nicholson LF. AGEs–RAGE mediated up-regulation of connexin43 in activated human microglial CHME-5 cells. Neurochem Int 2012; 60:640-51. [DOI: 10.1016/j.neuint.2012.02.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/14/2011] [Accepted: 02/21/2012] [Indexed: 10/28/2022]
|
49
|
Wu L, Ma L, Nicholson LFB, Black PN. Advanced glycation end products and its receptor (RAGE) are increased in patients with COPD. Respir Med 2010; 105:329-36. [PMID: 21112201 DOI: 10.1016/j.rmed.2010.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/28/2010] [Accepted: 11/04/2010] [Indexed: 01/08/2023]
Abstract
UNLABELLED Advanced Glycation End products (AGEs) are the products of nonenzymatic glycation and oxidation of proteins and lipids. Formation of AGEs is increased in response to hyperglycaemia, reactive oxygen species and ageing. AGEs are proinflammatory and can modify the extracellular matrix. RAGE (Receptor for Advanced Glycation End Products) mediates some of the effects of AGEs. METHODS Formalin-fixed lung tissue from patients who had lobectomy for bronchial carcinoma was used to investigate the presence of AGEs and RAGE. Subjects were divided into those with COPD and controls. Immunostaining for AGEs and RAGE was performed and the intensity of staining measured. RESULTS Subjects with COPD and controls were similar in age and smoking history but FEV(1)% predicted was lower for COPD than controls. Intensity of staining for AGEs was greater in the airways (p = 0.025) and alveolar walls (p = 0.004) in COPD. Intensity of staining for RAGE was also significantly increased in alveolar walls (p = 0.03) but not the airways. FEV(1)% predicted was correlated with the intensity of staining for AGEs in the airways and alveoli. CONCLUSIONS The increased staining for both AGEs and RAGE in COPD lung raises the possibility that the RAGE-AGEs interaction may have a role in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Lian Wu
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | |
Collapse
|
50
|
Münch G, Westcott B, Menini T, Gugliucci A. Advanced glycation endproducts and their pathogenic roles in neurological disorders. Amino Acids 2010; 42:1221-36. [DOI: 10.1007/s00726-010-0777-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/03/2010] [Indexed: 01/11/2023]
|