1
|
Sieminska I, Pieniawska M, Grzywa TM. The Immunology of Psoriasis-Current Concepts in Pathogenesis. Clin Rev Allergy Immunol 2024; 66:164-191. [PMID: 38642273 PMCID: PMC11193704 DOI: 10.1007/s12016-024-08991-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 04/22/2024]
Abstract
Psoriasis is one of the most common inflammatory skin diseases with a chronic, relapsing-remitting course. The last decades of intense research uncovered a pathological network of interactions between immune cells and other types of cells in the pathogenesis of psoriasis. Emerging evidence indicates that dendritic cells, TH17 cells, and keratinocytes constitute a pathogenic triad in psoriasis. Dendritic cells produce TNF-α and IL-23 to promote T cell differentiation toward TH17 cells that produce key psoriatic cytokines IL-17, IFN-γ, and IL-22. Their activity results in skin inflammation and activation and hyperproliferation of keratinocytes. In addition, other cells and signaling pathways are implicated in the pathogenesis of psoriasis, including TH9 cells, TH22 cells, CD8+ cytotoxic cells, neutrophils, γδ T cells, and cytokines and chemokines secreted by them. New insights from high-throughput analysis of lesional skin identified novel signaling pathways and cell populations involved in the pathogenesis. These studies not only expanded our knowledge about the mechanisms of immune response and the pathogenesis of psoriasis but also resulted in a revolution in the clinical management of patients with psoriasis. Thus, understanding the mechanisms of immune response in psoriatic inflammation is crucial for further studies, the development of novel therapeutic strategies, and the clinical management of psoriasis patients. The aim of the review was to comprehensively present the dysregulation of immune response in psoriasis with an emphasis on recent findings. Here, we described the role of immune cells, including T cells, B cells, dendritic cells, neutrophils, monocytes, mast cells, and innate lymphoid cells (ILCs), as well as non-immune cells, including keratinocytes, fibroblasts, endothelial cells, and platelets in the initiation, development, and progression of psoriasis.
Collapse
Affiliation(s)
- Izabela Sieminska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Pieniawska
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz M Grzywa
- Laboratory of Immunology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
- Department of Methodology, Medical University of Warsaw, Warsaw, Poland.
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, USA.
| |
Collapse
|
2
|
Zhang S, Zheng R, Pan Y, Sun H. Potential Therapeutic Value of the STING Inhibitors. Molecules 2023; 28:3127. [PMID: 37049889 PMCID: PMC10096477 DOI: 10.3390/molecules28073127] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The stimulator of interferon genes (STING) is a critical protein in the activation of the immune system in response to DNA. It can participate the inflammatory response process by modulating the inflammation-preferred translation program through the STING-PKR-like endoplasmic reticulum kinase (PERK)-eIF2α pathway or by inducing the secretion of type I interferons (IFNs) and a variety of proinflammatory factors through the recruitment of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) or the regulation of the nuclear factor kappa-B (NF-κB) pathway. Based on the structure, location, function, genotype, and regulatory mechanism of STING, this review summarizes the potential value of STING inhibitors in the prevention and treatment of infectious diseases, psoriasis, systemic lupus erythematosus, non-alcoholic fatty liver disease, and other inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Shangran Zhang
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runan Zheng
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yanhong Pan
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
3
|
Barbieux C, Bonnet des Claustres M, Fahrner M, Petrova E, Tsoi LC, Gouin O, Leturcq F, Nicaise-Roland P, Bole C, Béziat V, Bourrat E, Schilling O, Gudjonsson JE, Hovnanian A. Netherton syndrome subtypes share IL-17/IL-36 signature with distinct IFN-α and allergic responses. J Allergy Clin Immunol 2022; 149:1358-1372. [PMID: 34543653 DOI: 10.1016/j.jaci.2021.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/12/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Netherton syndrome (NS) is a rare recessive skin disorder caused by loss-of-function mutations in SPINK5 encoding the protease inhibitor LEKTI (lymphoepithelial Kazal-type-related inhibitor). NS patients experience severe skin barrier defects, display inflammatory skin lesions, and have superficial scaling with atopic manifestations. They present with typical ichthyosis linearis circumflexa (NS-ILC) or scaly erythroderma (NS-SE). OBJECTIVE We used a combination of several molecular profiling methods to comprehensively characterize the skin, immune cells, and allergic phenotypes of NS-ILC and NS-SE patients. METHODS We studied a cohort of 13 patients comprising 9 NS-ILC and 4 NS-SE. RESULTS Integrated multiomics revealed abnormal epidermal proliferation and differentiation and IL-17/IL-36 signatures in lesion skin and in blood in both NS endotypes. Although the molecular profiles of NS-ILC and NS-SE lesion skin were very similar, nonlesion skin of each disease subtype displayed distinctive molecular features. Nonlesion and lesion NS-SE epidermis showed activation of the type I IFN signaling pathway, while lesion NS-ILC skin differed from nonlesion NS-ILC skin by increased complement activation and neutrophil infiltration. Serum cytokine profiling and immunophenotyping of circulating lymphocytes showed a TH2-driven allergic response in NS-ILC, whereas NS-SE patients displayed mainly a TH9 axis with increased CCL22/MDC and CCL17/TARC serum levels. CONCLUSIONS This study confirms IL-17/IL-36 as the predominant signaling axes in both NS endotypes and unveils molecular features distinguishing NS-ILC and NS-SE. These results identify new therapeutic targets and could pave the way for precision medicine of NS.
Collapse
Affiliation(s)
- Claire Barbieux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | | | - Matthias Fahrner
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Evgeniya Petrova
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Lam C Tsoi
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Olivier Gouin
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Florent Leturcq
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France
| | - Pascale Nicaise-Roland
- Department of Immunology, Bichat Hospital, AP-HP-Nord, Paris, France; INSERM UMR 1152, Paris, France
| | | | - Vivien Béziat
- INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Paris, France
| | | | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Alain Hovnanian
- University of Paris, Paris, France; Department of Genetics, Necker Hospital for Sick Children (AP-HP), Paris, France; Department of Dermatology, University of Michigan, Ann Arbor, Mich.
| |
Collapse
|
4
|
Suppression of Stromal Interferon Signaling by Human Papillomavirus 16. J Virol 2019; 93:JVI.00458-19. [PMID: 31292244 DOI: 10.1128/jvi.00458-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/29/2019] [Indexed: 01/09/2023] Open
Abstract
Human papillomaviruses (HPVs) infect squamous epithelia and cause several important cancers. Immune evasion is critical for viral persistence. Fibroblasts in the stromal microenvironment provide growth signals and cytokines that are required for proper epithelial differentiation, maintenance, and immune responses and are critical in the development of many cancers. In this study, we examined the role of epithelial-stromal interactions in the HPV16 life cycle using organotypic (raft) cultures as a model. Rafts were created using uninfected human foreskin keratinocytes (HFKs) and HFKs containing either wild-type HPV16 or HPV16 with a stop mutation to prevent the expression of the viral oncogene E5. Microarray analysis revealed significant changes in gene expression patterns in the stroma in response to HPV16, some of which were E5 dependent. Interferon (IFN)-stimulated genes (ISGs) and extracellular matrix remodeling genes were suppressed, the most prominent pathways affected. STAT1, IFNAR1, IRF3, and IRF7 were knocked down in stromal fibroblasts using lentiviral short hairpin RNA (shRNA) transduction. HPV late gene expression and viral copy number in the epithelium were increased when the stromal IFN pathway was disrupted, indicating that the stroma helps control the late phase of the HPV life cycle in the epithelium. Increased late gene expression correlated with increased late keratinocyte differentiation but not decreased IFN signaling in the epithelium. These studies show HPV16 has a paracrine effect on stromal innate immunity, reveal a new role for E5 as a stromal innate immune suppressor, and suggest that stromal IFN signaling may influence keratinocyte differentiation.IMPORTANCE The persistence of high-risk human papillomavirus (HPV) infections is the key risk factor for developing HPV-associated cancers. The ability of HPV to evade host immunity is a critical component of its ability to persist. The environment surrounding a tumor is increasingly understood to be critical in cancer development, including immune evasion. Our studies show that HPV can suppress the expression of immune-related genes in neighboring fibroblasts in a three-dimensional (3D) model of human epithelium. This finding is significant, because it indicates that HPV can control innate immunity not only in the infected cell but also in the microenvironment. In addition, the ability of HPV to regulate stromal gene expression depends in part on the viral oncogene E5, revealing a new function for this protein as an immune evasion factor.
Collapse
|
5
|
Zhang LJ. Type1 Interferons Potential Initiating Factors Linking Skin Wounds With Psoriasis Pathogenesis. Front Immunol 2019; 10:1440. [PMID: 31293591 PMCID: PMC6603083 DOI: 10.3389/fimmu.2019.01440] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
Psoriasis is a chronic autoimmune skin disease that can often be triggered upon skin injury, known as Koebner phenomenon. Type 1 interferons (IFNα and IFNβ), key cytokines that activate autoimmunity during viral infection, have been suggested to play an indispensable role in initiating psoriasis during skin injury. Type 1 IFN-inducible gene signature has been identified as one of the major upregulated gene signatures in psoriatic skin. Type 1 IFNs treatments often directly induce or exacerbate psoriasis, whereas blocking type 1 IFNs signaling pathway in animal models effectively inhibits the development of T cell-mediated skin inflammation and psoriasis-like inflammatory diseases. Epidermal keratinocytes (KCs) occupy the outermost position in the skin and are the first responder to skin injury. Skin injury rapidly induces IFNβ from KCs and IFNα from dermal plasmacytoid dendritic cells (pDCs) through distinct mechanisms. Host antimicrobial peptide LL37 potentiates double-stranded RNA (dsRNA) immune pathways in keratinocytes and single-stranded RNA or DNA pathways in pDCs, leading to production of distinct type 1 IFN genes. IFNβ from KC promotes dendritic cell maturation and the subsequent T cell proliferation, contributing to autoimmune activation during skin injury and psoriasis pathogenesis. Accumulating evidences have indicated an important role of this dsRNA immune pathway in psoriasis pathogenesis. Together, this review describes how skin injury induces type 1 IFNs from skin cells and how this may initiate autoimmune cascades that trigger psoriasis. Targeting keratinocytes or type 1 IFNs in combination with T cell therapy may result in more sustainable effect to treat auto-inflammatory skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Ling-Juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Department of Dermatology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Marchisone C, Benelli R, Albini A, Santi L, Noonan DM. Inhibition of Angiogenesis by Type I Interferons in Models of Kaposi'S Sarcoma. Int J Biol Markers 2018; 14:257-62. [PMID: 10669956 DOI: 10.1177/172460089901400411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Kaposi's Sarcoma (KS) is a pathology which occurs with increased frequency and in a particularly aggressive form in AIDS patients. The HIV-1 Tat protein appears to be an important co-factor in the induction of the extensive neo-vascularization associated with AIDS-KS. Tat acts as a chemoattractant for endothelial cells in vitro, inducing both chemotactic and invasive responses. Several clinical trials have been performed testing the effectiveness of diverse biological agents in therapy of KS, among these the type I interferons. Type I IFNs have diverse biological functions besides their anti-viral activity, including anti-angiogenic properties. We have shown that IFNα and IFNβ are potent inhibitors of both primary and immortalized endothelial cell migration and morphogenesis in vitro as well as neo-angiogenesis induced by HIV-1 Tat in vivo. The inhibitory effect of IFN class I on HIV-Tat associated angiogenesis further supports its use as a therapy for epidemic Kaposi's sarcoma. The use of recombinant IFNs at the levels required to obtain a therapeutic effect are associated with side effects and toxicity, therefore we are now developing a gene therapy approach for constant and local delivery type I IFNs.
Collapse
Affiliation(s)
- C Marchisone
- National Institute for Cancer Research, Advanced Biotechnologies Center, Genova, Italy
| | | | | | | | | |
Collapse
|
7
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
8
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
9
|
Ramnath D, Powell EE, Scholz GM, Sweet MJ. The toll-like receptor 3 pathway in homeostasis, responses to injury and wound repair. Semin Cell Dev Biol 2016; 61:22-30. [PMID: 27552920 DOI: 10.1016/j.semcdb.2016.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/16/2016] [Accepted: 08/18/2016] [Indexed: 12/11/2022]
Abstract
In addition to their established roles in host defence, Toll-like Receptors (TLRs) have emerging roles in control of homeostasis, injury and wound repair. The dsRNA-sensing receptor, TLR3, has been particularly implicated in such processes in several different tissues including the skin, intestine and liver, as well as in the control of reparative mechanisms in the brain, heart and kidneys, following ischemia reperfusion injury. In this review, we provide an overview of TLR3 signalling and functions in inflammation, tissue damage and repair processes, as well as therapeutic opportunities that may arise in the future from knowledge of such pathways.
Collapse
Affiliation(s)
- Divya Ramnath
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Qld 4072, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Qld 4072, Australia; Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Elizabeth E Powell
- Centre for Liver Disease Research, School of Medicine, The University of Queensland, Translational Research Institute, Brisbane, Qld 4102, Australia; Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld 4102, Australia
| | - Glen M Scholz
- Melbourne Dental School and Oral Health Cooperative Research Centre, The University of Melbourne, Parkville 3010, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville 3010, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Qld 4072, Australia; IMB Centre for Inflammation and Disease Research, The University of Queensland, Brisbane, Qld 4072, Australia; Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
10
|
Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, Arevalo JMG, Ma J, Nicassio P, Bootzin R, Cole S. Cognitive behavioral therapy and tai chi reverse cellular and genomic markers of inflammation in late-life insomnia: a randomized controlled trial. Biol Psychiatry 2015; 78:721-9. [PMID: 25748580 PMCID: PMC4524803 DOI: 10.1016/j.biopsych.2015.01.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Sleep disturbance is associated with activation of systemic and cellular inflammation, as well as proinflammatory transcriptional profiles in circulating leukocytes. Whether treatments that target insomnia-related complaints might reverse these markers of inflammation in older adults with insomnia is not known. METHODS In this randomized trial, 123 older adults with insomnia were randomly assigned to cognitive-behavioral therapy for insomnia (CBT-I), tai chi chih (TCC), or sleep seminar education active control condition for 2-hour sessions weekly over 4 months with follow-up at 7 and 16 months. We measured C-reactive protein (CRP) at baseline and months 4 and 16; toll-like receptor-4 activated monocyte production of proinflammatory cytokines at baseline and months 2, 4, 7, and 16; and genome-wide transcriptional profiling at baseline and month 4. RESULTS As compared with sleep seminar education active control condition, CBT-I reduced levels of CRP (months 4 and 16, ps < .05), monocyte production of proinflammatory cytokines (month 2 only, p < .05), and proinflammatory gene expression (month 4, p < .01). TCC marginally reduced CRP (month 4, p = .06) and significantly reduced monocyte production of proinflammatory cytokines (months 2, 4, 7, and 16; all ps < .05) and proinflammatory gene expression (month 4, p < .001). In CBT-I and TCC, TELiS promoter-based bioinformatics analyses indicated reduced activity of nuclear factor-κB and AP-1. CONCLUSIONS Among older adults with insomnia, CBT-I reduced systemic inflammation, TCC reduced cellular inflammatory responses, and both treatments reduced expression of genes encoding proinflammatory mediators. The findings provide an evidence-based molecular framework to understand the potential salutary effects of insomnia treatment on inflammation, with implications for inflammatory disease risk.
Collapse
Affiliation(s)
- Michael R Irwin
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience; Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine; Department of Psychology, University of California, Los Angeles.
| | - Richard Olmstead
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience; Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine
| | - Elizabeth C Breen
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience; Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine
| | - Tuff Witarama
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience
| | - Carmen Carrillo
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience
| | - Nina Sadeghi
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience
| | - Jesusa M G Arevalo
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience; Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine; Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Jeffrey Ma
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience; Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine; Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California
| | - Perry Nicassio
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience; Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine
| | - Richard Bootzin
- Department of Psychology, University of Arizona, Tucson, Arizona
| | - Steve Cole
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience; Department of Psychiatry and Biobehavioral Sciences, UCLA David Geffen School of Medicine; Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
11
|
Irwin MR, Olmstead R, Breen EC, Witarama T, Carrillo C, Sadeghi N, Arevalo JMG, Ma J, Nicassio P, Ganz PA, Bower JE, Cole S. Tai chi, cellular inflammation, and transcriptome dynamics in breast cancer survivors with insomnia: a randomized controlled trial. J Natl Cancer Inst Monogr 2015; 2014:295-301. [PMID: 25749595 DOI: 10.1093/jncimonographs/lgu028] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Mind-body therapies such as Tai Chi are widely used by breast cancer survivors, yet effects on inflammation are not known. This study hypothesized that Tai Chi Chih (TCC) would reduce systemic, cellular, and genomic markers of inflammation as compared with cognitive behavioral therapy for insomnia (CBT-I). METHODS In this randomized trial for the treatment of insomnia, 90 breast cancer survivors with insomnia were assigned to TCC or CBT-I for 2-hour sessions weekly for 3 months. At baseline and postintervention, blood samples were obtained for measurement of C-reactive protein and toll-like receptor-4-activated monocyte production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF), with a random subsample (n = 48) analyzed by genome-wide transcriptional profiling. RESULTS Levels of C-reactive protein did not change in the TCC and CBT-I groups. Levels of toll-like receptor-4-activated monocyte production of IL-6 and TNF combined showed an overall reduction in TCC versus CBT-I (P < .02), with similar effects for IL-6 (P = .07) and TNF (P < .05) alone. For genome-wide transcriptional profiling of circulating peripheral blood mononuclear cells, expression of genes encoding proinflammatory mediators showed an overall reduction in TCC versus CBT-I (P = .001). TELiS promoter-based bioinformatics analyses implicated a reduction of activity of the proinflammatory transcription factor, nuclear factor-κB, in structuring these differences. CONCLUSIONS Among breast cancer survivors with insomnia, 3 months of TCC reduced cellular inflammatory responses, and reduced expression of genes encoding proinflammatory mediators. Given the link between inflammation and cancer, these findings provide an evidence-based molecular framework to understand the potential salutary effects of TCC on cancer survivorship.
Collapse
Affiliation(s)
- Michael R Irwin
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB).
| | - Richard Olmstead
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Elizabeth C Breen
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Tuff Witarama
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Carmen Carrillo
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Nina Sadeghi
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Jesusa M G Arevalo
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Jeffrey Ma
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Perry Nicassio
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Patricia A Ganz
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Julienne E Bower
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| | - Steve Cole
- Cousins Center for Psychoneuroimmunology, UCLA Semel Institute for Neuroscience, Los Angeles, CA (MRI, RO, ECB, TW, CC, NS, JMGA, JM, PN, JEB, SC); Department of Psychiatry and Biobehavioral Sciences (MRI, RO, ECB, JMGA, JM, PN, JEB, SC), and Department of Medicine (JMGA, PAG, SC), UCLA David Geffen School of Medicine, Los Angeles, CA; Division of Health Policy and Management, UCLA Fielding School of Public Health, Los Angeles, CA (PAG); Division of Cancer Prevention and Control Research, UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA (MRI, PAG, JEB, SC); Department of Psychology, UCLA, Los Angeles, CA (MRI, JEB)
| |
Collapse
|
12
|
Neuropilin 1 expression correlates with differentiation status of epidermal cells and cutaneous squamous cell carcinomas. J Transl Med 2014; 94:752-65. [PMID: 24791743 PMCID: PMC4074450 DOI: 10.1038/labinvest.2014.66] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 12/18/2022] Open
Abstract
Neuropilins (NRPs) are cell surface receptors for vascular endothelial growth factor (VEGF) and SEMA3 (class 3 semaphorin) family members. The role of NRPs in neurons and endothelial cells has been investigated, but the expression and role of NRPs in epithelial cells is much less clear. Herein, the expression and localization of NRP1 was investigated in human and mouse skin and squamous cell carcinomas (SCCs). Results indicated that NRP1 mRNA and protein was expressed in the suprabasal epithelial layers of the skin sections. NRP1 staining did not overlap with that of keratin 14 (K14) or proliferating cell nuclear antigen, but did co-localize with staining for keratin 1, indicating that differentiated keratinocytes express NRP1. Similar to the expression of NRP1, VEGF-A was expressed in suprabasal epithelial cells, whereas Nrp2 and VEGFR2 were not detectable in the epidermis. The expression of NRP1 correlated with a high degree of differentiation in human SCC specimens, human SCC xenografts, and mouse K14-HPV16 transgenic SCC. UVB irradiation of mouse skin induced Nrp1 upregulation. In vitro, Nrp1 was upregulated in primary keratinocytes in response to differentiating media or epidermal growth factor-family growth factors. In conclusion, the expression of NRP1 is regulated in the skin and is selectively produced in differentiated epithelial cells. NRP1 may function as a reservoir to sequester VEGF ligand within the epithelial compartment, thereby modulating its bioactivity.
Collapse
|
13
|
Type I interferons: key players in normal skin and select cutaneous malignancies. Dermatol Res Pract 2014; 2014:847545. [PMID: 24516470 PMCID: PMC3913103 DOI: 10.1155/2014/847545] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of naturally existing glycoproteins known for their antiviral activity and their ability to influence the behavior of normal and transformed cell types. Type I Interferons include IFN- α and IFN- β . Currently, IFN- α has numerous approved antitumor applications, including malignant melanoma, in which IFN- α has been shown to increase relapse free survival. Moreover, IFN- α has been successfully used in the intralesional treatment of cutaneous squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In spite of these promising clinical results; however, there exists a paucity of knowledge on the precise anti-tumor action of IFN- α / β at the cellular and molecular levels in cutaneous malignancies such as SCC, BCC, and melanoma. This review summarizes current knowledge on the extent to which Type I IFN influences proliferation, apoptosis, angiogenesis, and immune function in normal skin, cutaneous SCC, BCC, and melanoma.
Collapse
|
14
|
The mRNA expression profile of cytokines connected to the regulation of melanocyte functioning in vitiligo skin biopsy samples and peripheral blood mononuclear cells. Hum Immunol 2012; 73:393-8. [DOI: 10.1016/j.humimm.2012.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 01/06/2012] [Accepted: 01/24/2012] [Indexed: 11/23/2022]
|
15
|
Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JMG, Morizono K, Karanikolas BDW, Wu L, Sood AK, Cole SW. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res 2010; 70:7042-52. [PMID: 20823155 DOI: 10.1158/0008-5472.can-10-0522] [Citation(s) in RCA: 595] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metastasis to distant tissues is the chief driver of breast cancer-related mortality, but little is known about the systemic physiologic dynamics that regulate this process. To investigate the role of neuroendocrine activation in cancer progression, we used in vivo bioluminescence imaging to track the development of metastasis in an orthotopic mouse model of breast cancer. Stress-induced neuroendocrine activation had a negligible effect on growth of the primary tumor but induced a 30-fold increase in metastasis to distant tissues including the lymph nodes and lung. These effects were mediated by β-adrenergic signaling, which increased the infiltration of CD11b(+)F4/80(+) macrophages into primary tumor parenchyma and thereby induced a prometastatic gene expression signature accompanied by indications of M2 macrophage differentiation. Pharmacologic activation of β-adrenergic signaling induced similar effects, and treatment of stressed animals with the β-antagonist propranolol reversed the stress-induced macrophage infiltration and inhibited tumor spread to distant tissues. The effects of stress on distant metastasis were also inhibited by in vivo macrophage suppression using the CSF-1 receptor kinase inhibitor GW2580. These findings identify activation of the sympathetic nervous system as a novel neural regulator of breast cancer metastasis and suggest new strategies for antimetastatic therapies that target the β-adrenergic induction of prometastatic gene expression in primary breast cancers.
Collapse
Affiliation(s)
- Erica K Sloan
- UCLA Norman Cousins Center, Semel Institute for Neuroscience and Human Behavior, Medical Plaza 300, Room 3129, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Beglin M, Melar-New M, Laimins L. Human papillomaviruses and the interferon response. J Interferon Cytokine Res 2009; 29:629-35. [PMID: 19715460 PMCID: PMC2956683 DOI: 10.1089/jir.2009.0075] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human papillomaviruses (HPV) are small DNA viruses that target stratified keratinocytes for infection. A subset of HPV types infect epithelia in the genital tract and are the causative agents of cervical as well as other anogenital cancers. Interferon treatment of existing genital HPV lesions has had mixed results. While HPV proteins down-regulate the expression of interferon-inducible genes, interferon treatment ultimately induces their high-level transcription after a delay. Cells containing complete HPV genomes that are able to undergo productive replication upon differentiation are sensitive to interferon-induced growth arrest, while cells from high-grade cancers that only express E6 and E7 are resistant. Recent studies indicate this sensitivity is dependent upon the binding of the interferon-inducible factor, p56, to the E1 replication protein. The response to interferon by HPV proteins is complex and results from the action of multiple viral proteins.
Collapse
Affiliation(s)
- Melanie Beglin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
17
|
Li Q, Tang L, Roberts PC, Kraniak JM, Fridman AL, Kulaeva OI, Tehrani OS, Tainsky MA. Interferon regulatory factors IRF5 and IRF7 inhibit growth and induce senescence in immortal Li-Fraumeni fibroblasts. Mol Cancer Res 2008; 6:770-84. [PMID: 18505922 DOI: 10.1158/1541-7786.mcr-07-0114] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNalpha in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2'-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development.
Collapse
Affiliation(s)
- Qunfang Li
- Program in Molecular Biology and Genetics, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 East Warren, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Capillary regeneration in scleroderma: stem cell therapy reverses phenotype? PLoS One 2008; 3:e1452. [PMID: 18197262 PMCID: PMC2175530 DOI: 10.1371/journal.pone.0001452] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 12/21/2007] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Scleroderma is an autoimmune disease with a characteristic vascular pathology. The vasculopathy associated with scleroderma is one of the major contributors to the clinical manifestations of the disease. METHODOLOGY/PRINCIPAL FINDINGS We used immunohistochemical and mRNA in situ hybridization techniques to characterize this vasculopathy and showed with morphometry that scleroderma has true capillary rarefaction. We compared skin biopsies from 23 scleroderma patients and 24 normal controls and 7 scleroderma patients who had undergone high dose immunosuppressive therapy followed by autologous hematopoietic cell transplant. Along with the loss of capillaries there was a dramatic change in endothelial phenotype in the residual vessels. The molecules defining this phenotype are: vascular endothelial cadherin, a supposedly universal endothelial marker required for tube formation (lost in the scleroderma tissue), antiangiogenic interferon alpha (overexpressed in the scleroderma dermis) and RGS5, a signaling molecule whose expression coincides with the end of branching morphogenesis during development and tumor angiogenesis (also overexpressed in scleroderma skin. Following high dose immunosuppressive therapy, patients experienced clinical improvement and 5 of the 7 patients with scleroderma had increased capillary counts. It was also observed in the same 5 patients, that the interferon alpha and vascular endothelial cadherin had returned to normal as other clinical signs in the skin regressed, and in all 7 patients, RGS5 had returned to normal. CONCLUSION/SIGNIFICANCE These data provide the first objective evidence for loss of vessels in scleroderma and show that this phenomenon is reversible. Coordinate changes in expression of three molecules already implicated in angiogenesis or anti-angiogenesis suggest that control of expression of these three molecules may be the underlying mechanism for at least the vascular component of this disease. Since rarefaction has been little studied, these data may have implications for other diseases characterized by loss of capillaries including hypertension, congestive heart failure and scar formation.
Collapse
|
19
|
Hebner C, Beglin M, Laimins LA. Human papillomavirus E6 proteins mediate resistance to interferon-induced growth arrest through inhibition of p53 acetylation. J Virol 2007; 81:12740-7. [PMID: 17898049 PMCID: PMC2169108 DOI: 10.1128/jvi.00987-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The high-risk human papillomavirus (HPV) E6 and E7 proteins act cooperatively to mediate multiple activities in viral pathogenesis. For instance, E7 acts to increase p53 levels while E6 accelerates its rate of turnover through the binding of the cellular ubiquitin ligase E6AP. Interferons are important antiviral agents that modulate both the initial and persistent phases of viral infection. The expression of HPV type 16 E7 was found to sensitize keratinocytes to the growth-inhibitory effects of interferon, while coexpression of E6 abrogates this inhibition. Treatment of E7-expressing cells with interferon ultimately resulted in cellular senescence through a process that is dependent upon acetylation of p53 by p300/CBP at lysine 382. Cells expressing mutant forms of E6 that are unable to bind p300/CBP or bind p53 failed to block acetylation of p53 at lysine 382 and were sensitive to growth arrest by interferon. In contrast, mutant forms of E6 that are unable to bind E6AP remain resistant to the effects of interferon, demonstrating that the absolute levels of p53 are not the major determinants of this activity. Finally, p53 acetylation at lysine 382 was found not to be an essential determinant of other types of senescence such as that induced by overexpression of Ras in human fibroblasts. This study identifies an important physiological role for E6 binding to p300/CBP in blocking growth arrest of human keratinocytes in the presence of interferon and so contributes to the persistence of HPV-infected cells.
Collapse
Affiliation(s)
- Christy Hebner
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 320 E. Superior St., Chicago, IL 60611, USA
| | | | | |
Collapse
|
20
|
Khan ZA, Melero-Martin JM, Wu X, Paruchuri S, Boscolo E, Mulliken JB, Bischoff J. Endothelial progenitor cells from infantile hemangioma and umbilical cord blood display unique cellular responses to endostatin. Blood 2006; 108:915-21. [PMID: 16861344 PMCID: PMC1895853 DOI: 10.1182/blood-2006-03-006478] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Infantile hemangiomas are composed of endothelial cells (ECs), endothelial progenitor cells (EPCs), as well as perivascular and hematopoietic cells. Our hypothesis is that hemangioma-derived EPCs (HemEPCs) differentiate into the mature ECs that comprise the major compartment of the tumor. To test this, we isolated EPCs (CD133(+)/Ulex europeus- I(+)) and mature ECs (CD133(-)/Ulex europeus-I(+)) from proliferating hemangiomas and used a previously described property of hemangioma-derived ECs (HemECs), enhanced migratory activity in response to the angiogenesis inhibitor endostatin, to determine if HemEPCs share this abnormal behavior. Umbilical cord blood-derived EPCs (cbEPCs) were analyzed in parallel as a normal control. Our results show that HemEPCs, HemECs, and cbEPCs exhibit increased adhesion, migration, and proliferation in response to endostatin. This angiogenic response to endostatin was consistently expressed by HemEPCs over several weeks in culture, whereas HemECs and cbEPCs shifted toward the mature endothelial response to endostatin. Similar mRNA-expression patterns among HemEPCs, HemECs, and cbEPCs, revealed by microarray analyses, provided further indication of an EPC phenotype. This is the first demonstration that human EPCs, isolated from blood or from a proliferating hemangioma, are stimulated by an angiogenesis inhibitor. These findings suggest that EPCs respond differently from mature ECs when exposed to angiogenic or antiangiogenic signals.
Collapse
Affiliation(s)
- Zia A Khan
- Vascular Biology Research Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Moiseeva O, Mallette FA, Mukhopadhyay UK, Moores A, Ferbeyre G. DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 2006; 17:1583-92. [PMID: 16436515 PMCID: PMC1415317 DOI: 10.1091/mbc.e05-09-0858] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Interferons are cytokines with potent antiviral and antiproliferative activities. We report that although a transient exposure to beta-interferon induces a reversible cell cycle arrest, a sustained treatment triggers a p53-dependent senescence program. Beta-interferon switched on p53 in two steps. First, it induced the acetylation of p53 at lysine 320 and its dephosphorylation at serine 392 but not p53 activity. Later on, it triggered a DNA signaling pathway, the phosphorylation of p53 at serine 15 and its transcriptional activity. In agreement, beta-interferon-treated cells accumulated gamma-H2AX foci and phosphorylated forms of ATM and CHK2. The DNA damage signaling pathway was activated by an increase in reactive oxygen species (ROS) induced by interferon and was inhibited by the antioxidant N-acetyl cysteine. More important, RNA interference against ATM inhibited p53 phosphorylation at serine 15, p53 activity and senescence in response to beta-interferon. Beta-interferon-induced senescence was more efficient in cells expressing either, p53, or constitutive allele of ERK2 or RasV12. Hence, beta-interferon-induced senescence targets preferentially cells with premalignant changes.
Collapse
Affiliation(s)
- Olga Moiseeva
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
22
|
Lee H, Baek S, Joe SJ, Pyo SN. Modulation of IFN-γ production by TNF-α in macrophages from the tumor environment: Significance as an angiogenic switch. Int Immunopharmacol 2006; 6:71-8. [PMID: 16332515 DOI: 10.1016/j.intimp.2005.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 07/23/2005] [Accepted: 08/01/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND The role of macrophages in tumor angiogenesis has been known to influence in the production of angiogenic cytokines and growth factors including TNF-alpha. Recently, macrophages were also found to produce INF-gamma, which were found to be involved in angiogenic inhibition. Thus, the importance of macrophages in tumor angiogenesis might be the angiogenic switch. The hypothesis tested here is that TNF-alpha can modulate the INF-gamma production in macrophages in tumor environment as part of the tumor angiogenic switch. METHODS Macrophages in tumor environment were obtained from peritoneal cavity and s.c. grown tumor of C57BL/6 mice injected with B16F10 melanoma cell line for 6 and 11 days, respectively. Mac1+-macrophages were purified using magnetic beads (MACs; Milteny Biotech, Germany) and cultured with various concentrations of TNF-alpha at various time points at 37 degrees C. The supernatants were analyzed for IFN-gamma or VEGF by ELISA kit. RESULTS Residential macrophages from peritoneal cavity did not respond to LPS or TNF-alpha to produce INF-gamma. However, the cells from tumor environment produced IFN-gamma as well as VEGF. Upregulation of IFN-gamma production by the addition of LPS or TNF-alpha was observed in macrophages from the tumor bearing peritoneal cavity. RT-PCR analysis revealed external TNF-alpha-induced IFN-gamma gene expression in macrophages from tumor environment. CONCLUSION The overall data suggest that the macrophages in tumor environment might play an important role not only in angiogenic signal but also in anti-angiogenic signal by producing related cytokines. Moreover, TNF-alpha might be a key cytokine functioning as a tumor angiogenic switch.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line, Tumor
- Female
- In Vitro Techniques
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Lipopolysaccharides/pharmacology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/immunology
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Signal Transduction
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/pharmacology
- Vascular Endothelial Growth Factor A/biosynthesis
Collapse
Affiliation(s)
- Hyunah Lee
- The Cancer Center, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 50 IL-Won Dong, Kang-Nam Gu, 135-710, Seoul, Korea.
| | | | | | | |
Collapse
|
23
|
Park GT, Seo EY, Lee KM, Lee DY, Yang JM. Tob is a potential marker gene for the basal layer of the epidermis and is stably expressed in human primary keratinocytes. Br J Dermatol 2005; 154:411-8. [PMID: 16445768 DOI: 10.1111/j.1365-2133.2005.07037.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Epidermis consists of multiple layers, from the proliferating basal layer to terminal differentiated cornified layers, and these layers are defined by differentiation status. Tob gene product is known to be a member of the BTG antiproliferative protein family. We investigated the expression pattern of Tob gene product to understand the possible role in differentiation of keratinocytes and epidermis. OBJECTIVES In this study, we examined the expression of Tob gene product in the primary cultured human keratinocytes and in the in vivo epidermis. METHODS The expression of Tob gene product was assessed by Western blotting analysis. Cellular localization of Tob was detected using the green fluorescent protein-tagged Tob cDNA expression construct. In vivo expression of Tob gene product in the epidermis was determined by immunohistochemistry with paraffin sections. RESULTS Tob family members are degraded by the ubiquitine-proteasome system triggered by the growth signal. Tob is stably and abundantly expressed in primary cultured human keratinocytes. Furthermore, the expression of Tob in the keratinocytes persists during the differentiation induced by calcium; however, it was not detected in primary cultured fibroblasts. Also, the subcellular localization of Tob is mainly in the cellular membrane in the primary human keratinocytes. We evaluated Tob expression in normal skin, oral mucosa and different diseases, such as psoriasis, X-linked ichthyosis and squamous cell carcinoma (SCC). Using immunohistochemical analysis, we observed that Tob was selectively expressed in the basal layer of X-linked ichythyosis and the hyperproliferative basal layer of psoriasis and oral mucosa as well as in normal epidermis. In SCC, the expression of Tob gene product was relatively decreased. CONCLUSIONS Tob is stably expressed in primary human keratinocytes and it is specifically expressed in the basal layer of in vivo epidermis.
Collapse
Affiliation(s)
- G T Park
- Clinical Research Centre, Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | | | |
Collapse
|
24
|
Mamluk R, Klagsbrun M, Detmar M, Bielenberg DR. Soluble neuropilin targeted to the skin inhibits vascular permeability. Angiogenesis 2005; 8:217-27. [PMID: 16328161 DOI: 10.1007/s10456-005-9009-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 06/01/2005] [Accepted: 06/01/2005] [Indexed: 01/01/2023]
Abstract
Neuropilin 1 (NRP1) is a co-receptor for vascular endothelial growth factor (VEGF(165)), an inducer of vascular permeability and angiogenesis. Numerous physiological factors enhance VEGF expression and function but only a few have been shown to be negative regulators. Previously, we have shown that the naturally occurring soluble form of NRP1 (sNRP1) inhibits binding of VEGF(165) to endothelial cells in vitro and impairs tumor growth in vivo. To investigate the role of sNRP1 in the regulation of vascular development and function, sNRP1 expression was targeted to the skin, where it is not normally expressed, using a keratin 14 (K14) promoter expression construct. K14-sNRP1 transgenic mice displayed normal skin architecture with a subtle abnormal vascular phenotype. While the overall number of skin blood vessels remained unchanged, the lumen size of smooth muscle-associated dermal vessels was reduced. K14-sNRP1 mice had reduced vascular permeability in response to VEGF(165), but also to VEGF(121) and platelet activating factor, suggesting that the lack of permeability was not solely due to the sequestration of VEGF. sNRP1 also reversed the increase in inflammation and edema induced by transgenic VEGF overexpression in cutaneous delayed-type hypersensitivity reactions. In summary, sNRP1 appears to primarily regulate vessel permeability while its effect on physiological angiogenesis is less evident in this model.
Collapse
Affiliation(s)
- Roni Mamluk
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Karp Family Research Building, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
25
|
Fujita H, Asahina A, Tada Y, Fujiwara H, Tamaki K. Type I interferons inhibit maturation and activation of mouse Langerhans cells. J Invest Dermatol 2005; 125:126-33. [PMID: 15982312 DOI: 10.1111/j.0022-202x.2005.23803.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Type I interferons (IFN) have an essential role in antiviral defense, and they are produced upon viral infection in a variety of cells. IFN-alpha/beta treatment of immature dendritic cells (DC) is known to induce their phenotypic and functional maturation, but it remains unclear whether stimulation by this cytokine family influences the functions and maturation of Langerhans cells (LC). We used highly enriched (>95%) LC directly isolated from BALB/c mouse skin and addressed this issue, comparing LC with splenic CD11c(+) DC. Type I IFN-treated LC exhibited impaired ability to produce IL-12 and inflammatory cytokines, IL-6 and TNF-alpha, whereas IL-10 production was not augmented. In splenic DC, the production of inflammatory cytokines was rather enhanced by type I IFN treatment. With regard to chemokines, in both LC and splenic DC, type I IFN upregulated the production of inflammatory chemokines, such as CXCL10, CXCL11, CCL3, CCL4, and CCL5. Strikingly, IFN-beta treatment reduced the expression of CD40, CD54, CD80, and CD86 on LC, whereas IFN-beta-treated splenic DC showed enhanced expression of these molecules. Furthermore, IFN-beta-treated LC had impaired costimulatory activity for anti-CD3-induced proliferation of T cells. Finally, treatment with IFN-alpha/beta reduced the migratory capacity of LC to CCL21. These results indicate that type I IFN inhibit maturation and activation of LC in a direct manner. Our observations may provide a novel explanation for the reported inability of LC to act as potent antigen-presenting cells in cutaneous and mucosal viral infection.
Collapse
Affiliation(s)
- Hideki Fujita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Mitrani E, Nadel G, Hasson E, Harari E, Shimoni Y. Epithelial-mesenchymal interactions allow for epidermal cells to display an in vivo-like phenotype in vitro. Differentiation 2005; 73:79-87. [PMID: 15811131 DOI: 10.1111/j.1432-0436.2005.07302002.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We here report that preservation of the basic epithelial-mesenchymal interactions allows for highly complex ex vivo function of epidermal cells. The approach taken is based on the preparation of organ fragments that preserve the basic epithelial/mesenchymal interactions but also ensure appropriate diffusion of nutrients and gases to all cells. Human and mice keratinocytes in such organ fragments, remain viable, proliferate and express epidermal-specific gene products when cultured in serum-free medium without added growth factors, for several weeks in vitro. When implanted into syngeneic animals they remain viable, become vascularized and continue to function and transcribe tissue-specific gene products for several months. Such fragments allow primary cells ex vivo to preserve most of the functional attributes of the in vivo system. Clearly, the effect of the extracellular matrix is critical in this system in order for the cells to proliferate and differentiate ex vivo. We are not aware of any other system which allows for localized expression of epidermal-specific genes ex vivo for significant periods in culture in defined serum-free medium.
Collapse
Affiliation(s)
- Eduardo Mitrani
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | | | |
Collapse
|
27
|
Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96:1593-603. [PMID: 15523088 DOI: 10.1093/jnci/djh299] [Citation(s) in RCA: 611] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND High concentrations of interferon beta (IFN-beta) inhibit malignant cell growth in vitro. However, the therapeutic utility of IFN-beta in vivo is limited by its excessive toxicity when administered systemically at high doses. Mesenchymal stem cells (MSC) can be used to target delivery of agents to tumor cells. We tested whether MSC can deliver IFN-beta to tumors, reducing toxicity. METHODS Human MSC were transduced with an adenoviral expression vector carrying the human IFN-beta gene (MSC-IFN-beta cells). Flow cytometry was used to measure tumor cell proliferation among in vitro co-cultures of MSC-IFN-beta cells and human MDA 231 breast carcinoma cells or A375SM melanoma cells. We used a severe combined immunodeficiency mouse xenograft model (4-10 mice per group) to examine the effects of injected MSC-IFN-beta cells and human recombinant IFN-beta on the growth of MDA 231- and A375SM-derived pulmonary metastases in vivo and on survival. All statistical tests were two-sided. RESULTS Co-culture of MSC-IFN-beta cells with A375SM cells or MDA 231 cells inhibited tumor cell growth as compared with growth of the tumor cells cultured alone (differences in mean percentage of control cell growth: -94.0% [95% confidence interval [CI] = -81.2% to -106.8%; P<.001] and -104.8% [95% CI = -82.1% to -127.5%; P<.001], respectively). Intravenous injection of MSC-IFN-beta cells into mice with established MDA 231 or A375SM pulmonary metastases led to incorporation of MSC in the tumor architecture and, compared with untreated control mice, to prolonged mouse survival (median survival for MDA 231-injected mice: 60 and 37 days for MSC-injected and control mice, respectively [difference = 23.0 days (95% CI = 14.5 to 34.0 days; P<.001]; median survival for A375SM-injected mice: 73.5 and 30.0 days for MSC-injected and control mice, respectively [difference = 43.5 days (95% CI = 37.0 to 57.5 days; P<.001]). By contrast, intravenous injection of recombinant IFN-beta did not prolong survival in the same models (median survival for MDA 231-injected mice: 41.0 and 37.0 days for IFN-beta-injected and control mice, respectively [difference = 4 days, 95% CI = -5 to 10 days; P = .308]; median survival for A375SM-injected mice: 32.0 and 30.0 days for IFN-beta-injected and control mice, respectively [difference = 2 days, 95% CI = 0 to 4.5 days; P = .059]). CONCLUSIONS Injected MSC-IFN-beta cells suppressed the growth of pulmonary metastases, presumably through the local production of IFN-beta in the tumor microenvironment. MSC may be an effective platform for the targeted delivery of therapeutic proteins to cancer sites.
Collapse
Affiliation(s)
- Matus Studeny
- Department of Blood and Marrow Transplantation, Section of Molecular Hematology and Therapy, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Unit 448, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cernea CR, Ferraz AR, de Castro IV, Sotto MN, Logullo AF, Bacchi CE, Potenza AS. Angiogenesis and skin carcinomas with skull base invasion: a case-control study. Head Neck 2004; 26:396-400. [PMID: 15122655 DOI: 10.1002/hed.10399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Some skin carcinomas may be very aggressive. Intensity of angiogenesis, measured by intratumoral vessel density using expression of CD34, has been associated with tumor aggressiveness. In this study, the expression of CD34 in basal cell carcinomas ( BCCs) and squamous cell carcinomas (SCCs) with skull base invasion was compared with that in tumors with good outcome. METHODS Expression of CD34 was graded as mild, moderate, and intense, in 24 BCCs and 11 SCCs with skull base invasion. The control group included 23 BCCs and 10 SCCs. RESULTS Intense expression of CD34 was noted in 25.00% of BCCs with skull base invasion, compared with 4.35% in the control group (p =.058). Regarding SCCs, intense expression of CD34 was found in 54.55% of aggressive tumors, compared with 10.00% in the control group (p =.133). CONCLUSIONS A trend toward denser microvascular angiogenesis was observed in both BCCs and SCCs with skull base invasion compared with less aggressive controls.
Collapse
Affiliation(s)
- Claudio R Cernea
- Department of Head and Neck Surgery, University of São Paulo Medical School, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
29
|
McCarty MF, Bielenberg DR, Nilsson MB, Gershenwald JE, Barnhill RL, Ahearne P, Bucana CD, Fidler IJ. Epidermal hyperplasia overlying human melanoma correlates with tumour depth and angiogenesis. Melanoma Res 2003; 13:379-87. [PMID: 12883364 DOI: 10.1097/00008390-200308000-00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to determine whether epidermal hyperplasia overlying cutaneous human melanoma is associated with increased tumour angiogenesis, tumour growth and the potential for metastasis. Forty-two surgical specimens of cutaneous human melanoma of different depths, each containing epidermis present in the tumour-free margin, were analysed by immunohistochemistry for the expression of the pro-angiogenic molecules basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) and the anti-angiogenic molecule interferon-beta (IFN-beta). The epidermis overlying intermediate and thick (1.0-10.0 mm), but not thin (0.5-1.0 mm), melanoma specimens was hyperplastic. Although the expression level of bFGF, VEGF and IL-8 in the epidermis directly overlying the tumour was similar to that in the distant epidermis, the expression of IFN-beta was significantly decreased in keratinocytes overlying intermediate and thick, but not thin, melanomas. The microvessel density was also increased in intermediate and thick specimens. Human melanoma cells were injected subcutaneously into nude mice. The resulting tumours were used to determine the association between overlying epidermal hyperplasia and neoplastic angiogenesis. Similar to human autochthonous melanomas, epidermal hyperplasia was found only over lesions produced by metastatic cells. Although there was no change in the expression of the pro-angiogenic molecules, the expression of IFN-beta was significantly decreased in the hyperplastic epidermis. Conditioned medium collected from cultures of the metastatic cell line induced in vitro proliferation of mouse keratinocytes, whereas conditioned medium collected from cultures of the non-metastatic cell line did not. Collectively, the data demonstrate that metastatic melanoma cells induce keratinocyte proliferation, leading to decreased expression of the negative regulator of angiogenesis, IFN-beta, and hence to increased angiogenesis.
Collapse
Affiliation(s)
- M F McCarty
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Stoeltzing O, Liu W, Reinmuth N, Parikh A, Ahmad SA, Jung YD, Fan F, Ellis LM. Angiogenesis and antiangiogenic therapy of colon cancer liver metastasis. Ann Surg Oncol 2003; 10:722-33. [PMID: 12900362 DOI: 10.1245/aso.2003.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fact that tumor growth and metastatic spread relies on angiogenesis has been widely proven and accepted. The understanding of cancer biology and metastasis formation has led to the development of new therapeutic approaches that target tumor biology. The survival and establishment of metastatic lesions depend on a shift in the normal balance of proangiogenic and antiangiogenic factors that favor angiogenesis. Colorectal cancer is one of the leading cancer deaths worldwide. Angiogenesis has been associated with colon cancer progression and metastatic spread, thereby significantly affecting patient survival. New experimental approaches that inhibit angiogenic processes have demonstrated promising antineoplastic effects on metastatic colorectal cancer and are partially being investigated in clinical trials. This review focuses on angiogenesis in colorectal cancer metastasis formation as a target for antiangiogenic therapy, describing the experience from experimental studies and current clinical trials.
Collapse
Affiliation(s)
- Oliver Stoeltzing
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The progressive growth of neoplasms and the production of metastasis depend on the development of adequate vasculature, i.e., angiogenesis. The extent of angiogenesis is determined by the balance between positive- and negative-regulating molecules that are released by tumor and host cells in the microenvironment. The growth of many neoplasms is associated with the absence of the endogenous inhibitor of angiogenesis, interferon beta (IFN beta). A survey of multiple mouse and human tumors shows a lack of IFN beta associated with extensive angiogenesis. Therapy with IFN alpha or beta either by subcutaneous injection of the protein or by introduction of viral vectors that contain the IFN beta gene inhibit angiogenesis and, hence, progressive tumor growth.
Collapse
Affiliation(s)
- I J Fidler
- Department of Cancer Biology, Box 173, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030,USA.
| |
Collapse
|
32
|
Brenneisen P, Blaudschun R, Gille J, Schneider L, Hinrichs R, Wlaschek M, Eming S, Scharffetter-Kochanek K. Essential role of an activator protein-2 (AP-2)/specificity protein 1 (Sp1) cluster in the UVB-mediated induction of the human vascular endothelial growth factor in HaCaT keratinocytes. Biochem J 2003; 369:341-9. [PMID: 12358602 PMCID: PMC1223081 DOI: 10.1042/bj20021032] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2002] [Revised: 09/09/2002] [Accepted: 10/02/2002] [Indexed: 12/17/2022]
Abstract
Chronic sun exposure of the skin has long been postulated to enhance cutaneous angiogenesis, resulting in highly vascularized skin cancers. As the UVB component of sunlight is a major contributor to photocarcinogenesis, we aimed to explore the effects of UVB radiation on vascular endothelial growth factor (VEGF) gene expression, using the immortalized keratinocyte cell line HaCaT as a model for transformed premalignant epithelial cells. In the present paper, we studied the molecular mechanism of UVB-induced VEGF providing a major angiogenic activity in tumour progression and invasion. After 12-24 h of UVB irradiation, a 2.4- to 2.7-fold increase in endogenous VEGF protein level was measured, correlating with an up to 2.5-fold induction of promoter-based reporter gene constructs of VEGF. Furthermore, we identified a GC-rich UVB-responsive region between -87 and -65 bp of the VEGF promoter. In electrophoretic mobility-shift assays, this region binds Sp1-dependent protein complexes constitutively and an additional UVB-inducible protein complex distinct from Sp1 protein. The transcription factor AP-2 (activator protein-2) was detected as a component of the UVB-inducible protein complex. The critical role of the AP-2/Sp1 (specificity protein 1) cluster was supported by demonstration of a significant reduction of UVB-mediated promoter activity upon deletion of this recognition site. The specificity of this region for UVB irradiation was demonstrated using PMA, which increased VEGF activity in HaCaT cells after transient transfection of the deleted promoter construct. In conclusion, our data clarified regulatory mechanisms of UVB-dependent VEGF stimulation which may be critical for angiogenic processes in the skin.
Collapse
Affiliation(s)
- Peter Brenneisen
- Institute for Physiological Chemistry I, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bachmann A, Hanke B, Zawatzky R, Soto U, van Riggelen J, zur Hausen H, Rösl F. Disturbance of tumor necrosis factor alpha-mediated beta interferon signaling in cervical carcinoma cells. J Virol 2002; 76:280-91. [PMID: 11739693 PMCID: PMC135709 DOI: 10.1128/jvi.76.1.280-291.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2001] [Accepted: 09/28/2001] [Indexed: 11/20/2022] Open
Abstract
In the present study we show that malignant human papillomavirus (HPV)-positive cells lost their ability to synthesize endogenous beta interferon (IFN-beta) upon tumor necrosis factor alpha (TNF-alpha) treatment. IFN-beta transcription, however, was reinducible in nonmalignant HPV-positive cells, which was confirmed in functional protection assays against encephalomyocarditis virus or vesicular stomatitis virus infections. Addition of neutralizing antibodies against IFN-beta blocked the antiviral effect, excluding the possibility that other IFN types were involved. Conversely, both malignant and immortalized cells could be protected against viral cytolysis when either IFN-beta, IFN-alpha, or IFN-gamma was added exogenously. This indicates that only the cross talk between TNF-alpha and the IFN-beta pathways, and not IFN-alpha/beta and IFN-gamma signaling in general, is perturbed in cervical carcinoma cells. Notably, full virus protection was restricted exclusively to nonmalignant cells, indicating that the antiviral effect correlates with the growth-inhibitory and virus-suppressive properties of TNF-alpha. The IFN-regulatory factors IRF-1 and p48 (ISGF3gamma) emerged as key regulatory molecules in the differential IFN-beta response, since their transcription was either absent or only inefficiently enhanced in tumorigenic cells upon treatment with TNF-alpha. Inducibility of both genes, however, became reestablished in cervical carcinoma cells, which were complemented to nontumorigenicity after somatic cell hybridization. Complementation was paralleled by the entire reconstitution of cytokine-mediated IFN-beta expression and the ability of TNF-alpha to exert an antiviral state. In contrast, under conditions where tumor suppression was not accomplished upon somatic cell hybridization, neither expression of IRF-1, p48, and IFN-beta nor antiviral activity could be restored.
Collapse
Affiliation(s)
- Anastasia Bachmann
- Forschungsschwerpunkt Angewandte Tumorvirologie, Abteilung Tumorvirus-Immunologie, Deutsches Krebsforschungszentrum, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Keratinocytes (KC) produce a vast repertoire of cytokines, including interleukins, growth factors, colony stimulating factors, and chemokines. Under normal conditions, most of them are not synthesized or remain in the cytoplasm, but external stimuli, such as trauma, bacterial infections, chemical substances, or ultraviolet irradiation induce the production and release of these cytokines from KC. KC-derived cytokines regulate the immune and inflammatory responses through their receptors on KC, Langerhans cells, dermal fibroblasts and endothelial cells, and infiltrating T-cells.
Collapse
Affiliation(s)
- H Uchi
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, 812-8582, Fukuoka, Japan
| | | | | | | |
Collapse
|
35
|
Kuniyasu H, Yasui W, Shinohara H, Yano S, Ellis LM, Wilson MR, Bucana CD, Rikita T, Tahara E, Fidler IJ. Induction of angiogenesis by hyperplastic colonic mucosa adjacent to colon cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 157:1523-35. [PMID: 11073812 PMCID: PMC1885738 DOI: 10.1016/s0002-9440(10)64790-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2000] [Indexed: 12/16/2022]
Abstract
We determined whether hyperplastic mucosa adjacent to colon cancer contributes to neoplastic angiogenesis. Surgical specimens of human colon cancer (40 Dukes' stage B and 34 Dukes' stage C) were analyzed by immunohistochemistry for expression of proliferative and angiogenic molecules. The mucosa adjacent to Dukes' stage C tumors (but not Dukes' stage B tumors) had a higher Ki-67 labeling index and a higher expression of epidermal growth factor receptor and transforming growth factor-alpha than distant mucosa. The expression levels of vascular endothelial growth factor, basic fibroblast growth factor, interleukin-8, and the vascular density in the adjacent mucosa were similar to those in the tumor lesions and significantly higher than those in the distant mucosa. The expression of interferon-beta inversely correlated with the level of pro-angiogenic molecules and the vascular density. The injection of metastatic human colon cancer cells and murine colon cancer cells into the cecal wall of mice induced hyperplastic changes in the adjacent mucosa which expressed higher levels of epidermal growth factor receptor, basic fibroblast growth factor, and vascular endothelial growth factor, and lower levels of interferon-beta than did the control mucosa, which directly correlated with the degree of hyperplasia. These data suggest that metastatic human colon cancer cells can induce hyperplasia in the adjacent mucosa, which in turn produces angiogenic molecules that contribute to neoplastic angiogenesis.
Collapse
Affiliation(s)
- H Kuniyasu
- Departments of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schreiber H, Wu TH, Nachman J, Rowley DA. Immunological enhancement of primary tumor development and its prevention. Semin Cancer Biol 2000; 10:351-7. [PMID: 11100883 DOI: 10.1006/scbi.2000.0331] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While it has been known for decades that the growth of tumor transplants can be enhanced immunologically, the potential significance of these previous findings to the development of primary tumors and the mechanisms of tumor enhancement has remained obscure. This review will summarize recent experiments indicating that primary tumor development can be enhanced by active immunization. The evidence suggests that antibodies, B cells and CD4+ T cells can play a critical role in enhancing the development of primary, tumors, whereas endogenous interferon-gamma (IFNgamma) can counteract enhancement. Thus, we envision two possible functions of IFNgamma: (i) preventing B cell and antibody enhancement and (ii) counteracting tumor promotion independent of T and B cells.
Collapse
Affiliation(s)
- H Schreiber
- Department of Pathology, The University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
37
|
Salcedo R, Resau JH, Halverson D, Hudson EA, Dambach M, Powell D, Wasserman K, Oppenheim JJ. Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB J 2000; 14:2055-64. [PMID: 11023990 DOI: 10.1096/fj.99-0963com] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The basis for the angiogenic effects of CXC chemokines such as interleukin 8 (IL-8) and for angiostatic chemokines such as interferon-inducible protein 10 (IP-10) has been difficult to assess. We recently reported, based on an RNase protection assay, that human umbilical vein endothelial cells (HUVECs) did not express detectable mRNA for the IL-8 receptors CXCR1 and CXCR2. This raised the possibility of heterogeneity of receptor expression by different endothelial cell (ECs) types. Since systemic angiogenesis induced by IL-8 would more likely involve microvessel ECs, we investigated CXC receptor expression on human microvascular dermal endothelial cells (HMECs). By confocal microscopy and immunofluorescence we observed that HMECs consistently expressed high levels of CXCR1 and CXCR4 (mean fluorescence intensity of 261+/-22.1 and 306.2+/-19, respectively) and intermediate levels of CXCR3 and CXCR2 (173.9+/-30. 2 and 156+/-30.9, respectively). In contrast, only a small proportion of HUVEC preparations expressed low levels of CXCR1, -2, and -3 (66+/-19.9; 49+/-15, and 81.4+/-17.9, respectively). However, both HMECs and HUVECs expressed equal levels of CXCR4. As expected, HMECs had more potent chemotactic responses to IL-8 than HUVECs, and this was correlated with the levels of IL-8 receptors on the ECs. Antibodies to CXCR1 and CXCR2 each had inhibitory effects on chemotaxis of HMECs to IL-8, indicating that both IL-8 receptors contributed to the migratory response of these cells toward IL-8. Assessment of the functional capacity of CXCR3 unexpectedly revealed that HMECs migrated in response to relatively higher concentrations (100-500 ng/ml) of each of the 'angiostatic' chemokines IP-10, ITAC, and MIG. Despite this, the 'angiostatic' chemokines inhibited the chemotactic response of HMECs to IL-8. IL-8 and SDF-1alpha but not IP-10 induced calcium mobilization in adherent ECs, suggesting that signaling events associated with calcium mobilization are separable from those required for chemotaxis. Taken together, our data indicated that functional differences among EC types is dependent on the level of the expression of CXC chemokine receptors. Whether this heterogeneity in receptor expression by ECs reflects distinct differentiation pathways remains to be established.
Collapse
Affiliation(s)
- R Salcedo
- Laboratory of Molecular Immunoregulation, ABL-BRP Data Management Sevices, Inc; Frederick, Maryland 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|