1
|
Lee HJ, Kim D, Choi HJ, Kim S, Shin M, Kwak S, Lee DK, Kang WH. Potential role of the cell-penetrating peptide-conjugated soluble N-ethylmaleimide-sensitive factor attachment protein receptor motif of vesicle-associated membrane protein 2-patterned peptide in novel cosmeceutical skin product development. J Cosmet Dermatol 2024; 23:666-675. [PMID: 37698157 DOI: 10.1111/jocd.15984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
AIM This study aimed to investigate and verify the effect of cell-penetrating peptide (CPP)-conjugated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) motif of vesicle-associated membrane protein 2 (VAMP2)-patterned peptide (INCI name: Acetyl sh-Oligopeptide-26 sh-Oligopeptide-27 SP, trade name: M.Biome-BT) on improving skin function in vitro. METHODS The cytotoxicity of CPP-conjugated SNARE motif of VAMP2-patterned peptide (CVP) was investigated using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay against B16-F10 cells and human dermal fibroblasts (HDFs) and a reconstructed skin irritation test. The anti-wrinkle activity of M.Biome-BT was determined by assessing the release of norepinephrine and dopamine in PC-12 cells via ELISA. The skin-whitening effects of CVP were assessed in B16-F10 cells by measuring the intra- and extracellular melanin contents and expression levels of melanin production-related genes, such as microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and TRP-2. RESULTS CVP is not cytotoxic to B16-F10 cells and HDFs, and no skin irritation was observed. CVP treatment considerably diminished K+ -induced norepinephrine and dopamine secretion compared with the non-treated control group (62% and 40%, respectively). Additionally, the inhibition ability of CVP on norepinephrine and dopamine release was comparable to that of botulinum neurotoxin type A (BoNT/A). CVP also increased intracellular melanin content in a dose-dependent manner, whereas extracellular melanin content decreased (76%-85%). However, CVP treatment did not affect the mRNA expression of MITF, TYR, TRP-1, and TRP-2. These results suggest that CVP does not inhibit melanin production; however, it may induce a whitening effect by inhibiting melanin transport. CONCLUSIONS Taken together, our findings indicate that CVP could be used as an active and safe cosmeceutical ingredient for antiaging applications.
Collapse
Affiliation(s)
- Hyo Jin Lee
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | - Daehoon Kim
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | | | - Suhyeok Kim
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | - Minhee Shin
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | | | - Dong-Kyu Lee
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| | - Won-Ho Kang
- Gwanggyo R&D Center, Medytox Inc., Suwon-si, Korea
| |
Collapse
|
2
|
Cabaço LC, Bento-Lopes L, Neto MV, Ferreira A, Staubli WB, Ramalho JS, Seabra MC, Barral DC. RAB3A Regulates Melanin Exocytosis and Transfer Induced by Keratinocyte-Conditioned Medium. JID INNOVATIONS 2022; 2:100139. [PMID: 36090299 PMCID: PMC9460155 DOI: 10.1016/j.xjidi.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/26/2022] Open
Abstract
Skin pigmentation is imparted by melanin and is crucial for photoprotection against UVR. Melanin is synthesized and packaged into melanosomes within melanocytes and is then transferred to keratinocytes (KCs). Although the molecular players involved in melanogenesis have been extensively studied, those underlying melanin transfer remain unclear. Previously, our group proposed that coupled exocytosis/phagocytosis is the predominant mechanism of melanin transfer in human skin and showed an essential role for RAB11B and the exocyst tethering complex in this process. In this study, we show that soluble factors present in KC-conditioned medium stimulate melanin exocytosis from melanocytes and transfer to KCs. Moreover, we found that these factors are released by differentiated KCs but not by basal layer KCs. Furthermore, we found that RAB3A regulates melanin exocytosis and transfer stimulated by KC-conditioned medium. Indeed, KC-conditioned medium enhances the recruitment of RAB3A to melanosomes in melanocyte dendrites. Therefore, our results suggest the existence of two distinct routes of melanin exocytosis: a basal route controlled by RAB11B and a RAB3A-dependent route, stimulated by KC-conditioned medium. Thus, this study provides evidence that soluble factors released by differentiated KCs control skin pigmentation by promoting the accumulation of RAB3A-positive melanosomes in melanocyte dendrites and their release and subsequent transfer to KCs.
Collapse
Key Words
- CO2, carbon dioxide
- FBS, fetal bovine serum
- FCM, fibroblast-conditioned medium
- HEKn, human neonatal epidermal keratinocyte
- HEMn-DP, human neonatal epidermal darkly pigmented melanocyte
- KC, keratinocyte
- KCM, keratinocyte-conditioned medium
- MKCM, melanocyte-/keratinocyte-conditioned medium
- miRNA, microRNA
- pKCM, primary keratinocyte-conditioned medium
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Luís C. Cabaço
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Liliana Bento-Lopes
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Matilde V. Neto
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Andreia Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Wanja B.L. Staubli
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - José S. Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C. Seabra
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Duarte C. Barral
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Rachinger N, Mittag N, Böhme-Schäfer I, Xiang W, Kuphal S, Bosserhoff AK. Alpha-Synuclein and Its Role in Melanocytes. Cells 2022; 11:cells11132087. [PMID: 35805172 PMCID: PMC9265281 DOI: 10.3390/cells11132087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 12/04/2022] Open
Abstract
Pigmentation is an important process in skin physiology and skin diseases and presumably also plays a role in Parkinson’s disease (PD). In PD, alpha-Synuclein (aSyn) has been shown to be involved in the pigmentation of neurons. The presynaptic protein is intensively investigated for its pathological role in PD, but its physiological function remains unknown. We hypothesized that aSyn is both involved in melanocytic differentiation and melanosome trafficking processes. We detected a strong expression of aSyn in human epidermal melanocytes (NHEMs) and observed its regulation in melanocytic differentiation via the microphthalmia-associated transcription factor (MITF), a central regulator of differentiation. Moreover, we investigated its role in pigmentation by performing siRNA experiments but found no effect on the total melanin content. We discovered a localization of aSyn to melanosomes, and further analysis of aSyn knockdown revealed an important role in melanocytic morphology and a reduction in melanosome release. Additionally, we found a reduction of transferred melanosomes in co-culture experiments of melanocytes and keratinocytes but no complete inhibition of melanosome transmission. In summary, this study highlights a novel physiological role of aSyn in melanocytic morphology and its so far unknown function in the pigment secretion in melanocytes.
Collapse
Affiliation(s)
- Nicole Rachinger
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Nora Mittag
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany;
| | - Ines Böhme-Schäfer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (N.R.); (I.B.-S.); (S.K.)
- Correspondence:
| |
Collapse
|
4
|
Watson MD, Flynn JD, Lee JC. Raman spectral imaging of 13C 2H 15N-labeled α-synuclein amyloid fibrils in cells. Biophys Chem 2021; 269:106528. [PMID: 33418468 PMCID: PMC7856057 DOI: 10.1016/j.bpc.2020.106528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is characterized by the intracellular accumulation of α-synuclein (α-syn) amyloid fibrils, which are insoluble, β-sheet-rich protein aggregates. Raman spectroscopy is a powerful technique that reports on intrinsic molecular vibrations such as the coupled vibrational modes of the polypeptide backbone, yielding secondary structural information. However, in order to apply this method in cells, spectroscopically unique frequencies are necessary to resolve proteins of interest from the cellular proteome. Here, we report the use of 13C2H15N-labeled α-syn to study the localization of preformed fibrils fed to cells. Isotopic labeling shifts the amide-I (13CO) band away from endogenous 12CO vibrations, permitting secondary structural analysis of internalized α-syn fibrils. Similarly, 13C2H stretches move to lower energies in the "cellular quiet" region, where there is negligible biological spectral interference. This combination of well-resolved, distinct vibrations allows Raman spectral imaging of α-syn fibrils across a cell, which provides conformational information with spatial context.
Collapse
Affiliation(s)
- Matthew D Watson
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Jessica D Flynn
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States of America.
| |
Collapse
|
5
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Abstract
α-Synuclein is a neuronal protein with an ill-defined biological function that is central to Parkinson’s disease etiology. While considered to be involved in exocytosis, how α-synuclein facilitates synaptic vesicle fusion and release remains an open question. To address this, we investigated α-synuclein–lipid interactions at the plasma membrane through the technique of cellular unroofing, which uncovers an intact basal membrane. We conclusively show that α-synuclein is recruited to exocytic sites, preferring liquid-ordered lipid domains. Importantly, heterogeneous populations of α-synuclein conformers are revealed by measurements of fluorescence lifetime distributions, which are not adequately described by current models of α-synuclein structures. Membrane-bound α-synuclein is conformationally dynamic, exquisitely sensitive to lipid/protein composition, enabling the protein to carry out its function. Parkinson’s disease is associated with α-synuclein (α-syn), a cytosolic protein enriched in presynaptic terminals. The biological function of α-syn remains elusive; however, increasing evidence suggests that the protein is involved in the regulation of synaptic vesicle fusion, signifying the importance of α-syn–lipid interactions. We show that α-syn preferentially binds to GM1-rich, liquid-ordered lipid domains on cytoplasmic membranes by using unroofed cells, which encapsulates lipid complexity and cellular topology. Moreover, proteins (Rab3a, syntaxin-1A, and VAMP2) involved in exocytosis also localize with α-syn, supporting its proposed functional role in exocytosis. To investigate how these lipid/protein interactions influence α-syn at the residue level, α-syn was derivatized with an environmentally sensitive fluorophore (7-nitrobenz-2-oxa-1,3-diazol-4-yl [NBD]) at different N- and C-terminal sites. Measurements of NBD fluorescence lifetime distributions reveal that α-syn adopts a multitude of membrane-bound conformations, which were not recapitulated in simple micelle or vesicle models, indicating an exquisite sensitivity of the protein to the complex lipid environment. Interestingly, these data also suggest the participation of the C terminus in membrane localization, which is generally overlooked and thus emphasize the need to use cellularly derived and biologically relevant membranes for biophysical characterization. Collectively, our results demonstrate that α-syn is more conformationally dynamic at the membrane interface than previously appreciated, which may be important for both its physiological and pathological functions.
Collapse
|
8
|
SNARE dynamics during melanosome maturation. Biochem Soc Trans 2018; 46:911-917. [PMID: 30026369 DOI: 10.1042/bst20180130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/22/2018] [Accepted: 06/27/2018] [Indexed: 12/23/2022]
Abstract
Historically, studies on the maturation and intracellular transport of melanosomes in melanocytes have greatly contributed to elucidating the general mechanisms of intracellular transport in many different types of mammalian cells. During melanosome maturation, melanosome cargoes including melanogenic enzymes (e.g. tyrosinase) are transported from endosomes to immature melanosomes by membrane trafficking, which must require a membrane fusion process likely regulated by SNAREs [soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptors]. In the present study, we review the literature concerning the expression and function of SNAREs (e.g. v-SNARE vesicle-associated membrane protein 7 and t-SNAREs syntaxin-3/13 and synaptosomal-associated protein-23) in melanocytes, especially in regard to the fusion process in which melanosome cargoes are finally delivered to immature melanosomes. We also describe the recent discovery of the SNARE recycling system on mature melanosomes in melanocytes. Such SNARE dynamics, especially the SNARE recycling system, on melanosomes will be useful in understanding as yet unidentified SNARE dynamics on other organelles.
Collapse
|
9
|
Choi B, Heo JH, Kwon HJ, Lee ES, Sohn S. Tocotrienols enhance melanosome degradation through endosome docking/fusion proteins in B16F10 melanoma cells. Food Funct 2014; 4:1481-8. [PMID: 23995710 DOI: 10.1039/c3fo60289c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin E inhibits tyrosinase activity and acts as a melanogenesis inhibitor in epidermal melanocytes in vitro. However, there is no direct evidence indicating that melanosomes are degraded in lysosomes in the presence of vitamin E. To determine whether vitamin E-induced melanosome disintegration is related to the expression of endosome docking/fusion proteins in B16F10 melanoma cells, electron microscopy, reverse transcription-polymerase chain reaction (RT-PCR), and real-time PCR were used to observe the effects of tocomin (α-tocopherols and α,γ,δ-tocotrienols in palm oil) on B16F10 melanoma cells. Melanosomal integrity was lost in lysosomes of B16F10 melanoma cells when treated with tocomin, indicating that tocomin caused the degradation of melanosomes in the lysosomal compartment. RT-PCR and real-time PCR analysis demonstrated mRNA expression of tyrosinase and the endosome docking/fusion proteins (syntaxin7, Rab7, Vps11, Vps16, Vps33, Vps39, and Vps41). Expression of syntaxin7, Vps16, Vps33, and Vps41 mRNA increased significantly in cells treated with tocomin compared with that in controls. These results indicate that the tocomin-induced degradation of melanosomes in the lysosomal compartment occurs with an increase in endosome docking/fusion proteins (syntaxin7, Vps16, Vps33, and Vps41) in cultured B16F10 melanoma cells.
Collapse
Affiliation(s)
- Bunsoon Choi
- Laboratory of Cell Biology, Ajou University Institute for Medical Sciences, Suwon 443-721, South Korea.
| | | | | | | | | |
Collapse
|
10
|
Youssef G, Gerner L, Naeem AS, Ralph O, Ono M, O'Neill CA, O'Shaughnessy RFL. Rab3Gap1 mediates exocytosis of Claudin-1 and tight junction formation during epidermal barrier acquisition. Dev Biol 2013; 380:274-85. [PMID: 23685254 PMCID: PMC3995087 DOI: 10.1016/j.ydbio.2013.04.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 12/01/2022]
Abstract
Epidermal barrier acquisition during late murine gestation is accompanied by an increase in Akt kinase activity and cJun dephosphorlyation. The latter is directed by the Ppp2r2a regulatory subunit of the Pp2a phosphatase. This was accompanied by a change of Claudin-1 localisation to the cell surface and interaction between Occludin and Claudin-1 which are thought to be required for tight junction formation. The aim of this study was to determine the nature of the barrier defect caused by the loss of AKT/Ppp2r2a function. There was a paracellular barrier defect in rat epidermal keratinocytes expressing a Ppp2r2a siRNA. In Ppp2r2a knockdown cells, Claudin-1 was located to the cytoplasm and its expression was increased. Inhibiting cJun phosphorylation restored barrier function and plasma membrane localisation of Claudin-1. Expression of the Rab3 GTPase activating protein, Rab3Gap1, was restored in Ppp2r2a siRNA cells when cJun phosphorylation was inhibited. During normal mouse epidermal development, Claudin-1 plasma membrane localisation and Rab3Gap1 cell surface expression were co-incident with Akt activation in mouse epidermis, strongly suggesting a role of Rab3Gap1 in epidermal barrier acquisition. Supporting this hypothesis, siRNA knockdown of Rab3Gap1 prevented plasma membrane Claudin-1 expression and the formation of a barrier competent epithelium. Replacing Rab3Gap1 in Ppp2r2a knockdown cells was sufficient to rescue Claudin-1 transport to the cell surface. Therefore these data suggest Rab3Gap1 mediated exocytosis of Claudin-1 is an important component of epidermal barrier acquisition during epidermal development. Barrier acquisition correlates with Ppp2r2a and cell surface Claudin-1 expression. Ppp2r2a knockdown results in a paracellular barrier defect. Ppp2r2a knockdown prevents cell-surface claudin-1 expression in a c-Jun dependent fashion. Barrier rescue by inhibition of c-Jun phosphorylation involves exocytosis and Rab3Gap1. Rab3Gap1 is induced during barrier acquisition and is necessary for cell surface claudin-1.
Collapse
Affiliation(s)
- G Youssef
- Livingstone Skin Research Centre for Children, UCL Institute of Child Health, London WC1N 1EH, UK
| | | | | | | | | | | | | |
Collapse
|
11
|
Syntaxin-3 is required for melanosomal localization of Tyrp1 in melanocytes. J Invest Dermatol 2013; 133:2237-46. [PMID: 23549422 DOI: 10.1038/jid.2013.156] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/28/2013] [Accepted: 03/11/2013] [Indexed: 11/08/2022]
Abstract
Melanogenic enzymes are transported by vesicular/membrane trafficking to immature melanosomes in melanocytes where they catalyze the synthesis of melanin pigments. Although several factors involved in melanogenic enzyme trafficking have been identified in the past decade, involvement of the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which generally mediate membrane fusion, on melanosomes in the process of melanogenic enzyme trafficking has never been investigated. In this study we identified syntaxin-3, which was originally described as a target SNARE protein at the plasma membrane, as a melanosome-resident protein and investigated whether syntaxin-3 is involved in the trafficking of the melanogenic enzyme Tyrp1 (tyrosinase-related protein 1) in mouse melanocytes. The results showed that knockdown of endogenous syntaxin-3 protein in melanocytes caused a dramatic reduction in Tyrp1 signals, especially from peripheral melanosomes, presumably as a result of lysosomal degradation of Tyrp1. They also showed that syntaxin-3 interacts with another target SNARE SNAP23 (synaptosome-associated protein of 23 kDa) and with vesicle SNARE VAMP7 (vesicle-associated membrane protein 7), which has been shown to be localized at Tyrp1-containing vesicles/organelles. These findings suggested that the SNARE machinery composed of VAMP7 on Tyrp1-containing vesicles and syntaxin-3 and SNAP23 on melanosomes regulates Tyrp1 trafficking to the melanosome in melanocytes.
Collapse
|
12
|
Hume AN, Wilson MS, Ushakov DS, Ferenczi MA, Seabra MC. Semi-automated analysis of organelle movement and membrane content: understanding rab-motor complex transport function. Traffic 2011; 12:1686-701. [PMID: 21920004 PMCID: PMC3264752 DOI: 10.1111/j.1600-0854.2011.01283.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Organelle motility is an essential cellular function that is regulated by molecular motors, and their adaptors and activators. Here we established a new method that allows more direct investigation of the function of these peripheral membrane proteins in organelle motility than is possible by analysis of the organelle movement alone. This method uses multi-channel time-lapse microscopy to record the movement of organelles and associated fluorescent proteins, and automatic organelle tracking, to compare organelle movement parameters with the association of membrane proteins. This approach allowed large-scale, unbiased analysis of the contribution of organelle-associated proteins and cytoskeleton tracks in motility. Using this strategy, we addressed the role of membrane recruitment of Rab GTPases and effectors in organelle dynamics, using the melanosome as a model. We found that Rab27a and Rab32/38 were mainly recruited to sub-populations of slow-moving/static and fast-moving melanosomes, respectively. The correlation of Rab27a recruitment with slow movement/docking was dependent on the effector melanophilin. Meanwhile, using cytoskeleton-disrupting drugs, we observed that this speed:Rab content relationship corresponded to a decreased frequency of microtubule (MT)-based transport and an increased frequency of actin-dependent slow movement/docking. Overall, our data indicate the ability of Rab27a and effector recruitment to switch melanosomes from MT- to actin-based tethering and suggest that a network of Rab signalling may integrate melanosome biogenesis and transport.
Collapse
Affiliation(s)
- Alistair N Hume
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
13
|
Strömberg S, Agnarsdóttir M, Magnusson K, Rexhepaj E, Bolander Å, Lundberg E, Asplund A, Ryan D, Rafferty M, Gallagher WM, Uhlen M, Bergqvist M, Ponten F. Selective Expression of Syntaxin-7 Protein in Benign Melanocytes and Malignant Melanoma. J Proteome Res 2009; 8:1639-46. [DOI: 10.1021/pr800745e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sara Strömberg
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Margrét Agnarsdóttir
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kristina Magnusson
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elton Rexhepaj
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Åsa Bolander
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Emma Lundberg
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna Asplund
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Denise Ryan
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mairin Rafferty
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - William M. Gallagher
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mathias Uhlen
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael Bergqvist
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fredrik Ponten
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185 Uppsala, Sweden, Department of Oncology, Uppsala University Hospital, SE-75185 Uppsala Sweden, Department of Proteomics, School of Biotechnology, AlbaNova University Center, KTH-Royal Institute of Technology, SE-10691 Stockholm, Sweden, and UCD School of Biomolecular and Biomedical Science, UCD, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
14
|
Chiaverini C, Beuret L, Flori E, Busca R, Abbe P, Bille K, Bahadoran P, Ortonne JP, Bertolotto C, Ballotti R. Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport. J Biol Chem 2008; 283:12635-42. [PMID: 18281284 DOI: 10.1074/jbc.m800130200] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Melanosomes are lysosome-related organelles specialized in melanin synthesis and transport. In this study, we show that microphthalmia-associated transcription factor (MITF) silencing induces melanosome gathering around the nucleus and causes the relocalization of Rab27A, Slac2a-Mlph, and Myo5a that control the transport of melanosomes on the actin network. In an attempt to elucidate the mechanism by which MITF controls melanosome distribution, we identify RAB27A as a new MITF target gene. Indeed, MITF silencing leads to a dramatic decrease in Rab27A expression and blocks the stimulation of Rab27A expression evoked by cAMP. Further, forced expression of MITF increases Rab27A expression, indicating that MITF is required and sufficient for Rab27A expression in melanoma cells. MITF binds to two E-boxes in the proximal region of the Rab27A promoter and stimulates its transcriptional activity. Finally, re-expression of Rab27A, in MITF-depleted cells, restores the transport of melanosomes to the cell periphery. These results show that RAB27A is a new direct transcriptional target of MITF and link MITF to melanosome transport, another key parameter of melanocyte differentiation and skin pigmentation. Interestingly, Rab27A is involved in other fundamental physiological functions, such as the transport of lytic granules and insulin secretion. Thus our results, deciphering the mechanism of Rab27A transcriptional regulation, have an interest that goes beyond the skin pigmentation field.
Collapse
Affiliation(s)
- Christine Chiaverini
- INSERM U895, Biologie et Pathologies des Cellules Mélanocytaires de la Pigmentation Cutanée au Mélanome 28, avenue de Valombrose, 06107 Nice Cedex 2, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chapter 6 New Insights into Melanosome Transport in Vertebrate Pigment Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:245-302. [DOI: 10.1016/s1937-6448(08)01606-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Aspengren S, Hedberg D, Wallin M. Melanophores: A model system for neuronal transport and exocytosis? J Neurosci Res 2007; 85:2591-600. [PMID: 17149749 DOI: 10.1002/jnr.21132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Black pigment cells, melanophores, from lower vertebrates are specialized in bidirectional and coordinated translocation of pigment granules, melanosomes, in the cytoplasm. Melanophores develop from the neuronal crest and are most abundant in the dermal and epidermal layers of the skin, where the intracellular distribution of the pigment significantly influences the color of the animal. The transport of pigment is dependent on an intact cytoskeleton and motor proteins associated with cytoskeletal components. The easily cultured melanophores have proved to be excellent models for organelle transport because the intracellular movements of pigment can be visualized via light microscopy, and the granules move in response to defined chemical signals. The ease of achieving a combination of morphological and functional transport studies is the advantage of the melanophore system, and studies on pigment cells have revealed new components of the transport machinery, including molecular motors, their adapters, and transfer of vesicles to other cells. Many cellular components are transported with a combination of the actin- and microtubule-based transport systems, and, since all eukaryotic organisms rely on functional intracellular transport and an intact cytoskeleton, studies on melanophores are important for many aspects of cell biology, including axonal transport. In this review, we present an overview of the research on the pigment transport system and the potential use of pigment cells as a model system.
Collapse
Affiliation(s)
- Sara Aspengren
- Department of Zoology/Zoophysiology, Göteborg University, Göteborg, Sweden.
| | | | | |
Collapse
|
17
|
Pooley RD, Reddy S, Soukoulis V, Roland JT, Goldenring JR, Bader DM. CytLEK1 is a regulator of plasma membrane recycling through its interaction with SNAP-25. Mol Biol Cell 2006; 17:3176-86. [PMID: 16672379 PMCID: PMC1483049 DOI: 10.1091/mbc.e05-12-1127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 04/17/2006] [Accepted: 04/25/2006] [Indexed: 12/26/2022] Open
Abstract
SNAP-25 is a component of the SNARE complex that is involved in membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between SNAP-25 and cytoplasmic Lek1 (cytLEK1), a protein previously demonstrated to associate with the microtubule network. The binding domains within each protein were defined by yeast two-hybrid, coimmunoprecipitation, and colocalization studies. Confocal analyses reveal a high degree of colocalization between the proteins. In addition, the endogenous proteins can be isolated as a complex by immunoprecipitation. Further analyses demonstrate that cytLEK1 and SNAP-25 colocalize and coprecipitate with Rab11a, myosin Vb, VAMP2, and syntaxin 4, components of the plasma membrane recycling pathway. Overexpression of the SNAP-25-binding domain of cytLEK1, and depletion of endogenous Lek1 alters transferrin trafficking, consistent with a function in vesicle recycling. Taken together, our studies indicate that cytLEK1 is a link between recycling vesicles and the microtubule network through its association with SNAP-25. This interaction may play a key role in the regulation of the recycling endosome pathway.
Collapse
Affiliation(s)
- Ryan D. Pooley
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Samyukta Reddy
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Victor Soukoulis
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| | - Joseph T. Roland
- Department of Surgery and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, and Nashville VAMC, Nashville, TN 37212-2175
| | - James R. Goldenring
- Department of Surgery and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, and Nashville VAMC, Nashville, TN 37212-2175
| | - David M. Bader
- *Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300; and
| |
Collapse
|
18
|
Aspengren S, Hedberg D, Wallin M. Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo. ACTA ACUST UNITED AC 2006; 19:136-45. [PMID: 16524429 DOI: 10.1111/j.1600-0749.2005.00290.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Frog melanophores rapidly change colour by dispersion or aggregation of melanosomes. A long-term colour change exists where melanosomes are released from melanophores and transferred to surrounding skin cells. No in vitro model for pigment transfer exists for lower vertebrates. Frog melanophores of different morphology exist both in epidermis where keratinocytes are present and in dermis where fibroblasts dominate. We have examined whether release and transfer of melanosomes can be studied in a melanophore-fibroblast co-culture, as no frog keratinocyte cell line exists. Xenopus laevis melanophores are normally cultured in conditioned medium from fibroblasts and fibroblast-derived factors may be important for melanophore morphology. Melanin was exocytosed as membrane-enclosed melanosomes in a process that was upregulated by alpha-melanocyte-stimulating hormone (alpha-MSH), and melanosomes where taken up by fibroblasts. Melanosome membrane-proteins seemed to be of importance, as the cluster-like uptake pattern of pigment granules was distinct from that of latex beads. In vivo results confirmed the ability of dermal fibroblasts to engulf melanosomes. Our results show that cultured frog melanophores can not only be used for studies of rapid colour change, but also as a model system for long-term colour changes and for studies of factors that affect pigmentation.
Collapse
Affiliation(s)
- Sara Aspengren
- Department of Zoology, Zoophysiology, Göteborg University, Box 463, 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
19
|
Abstract
Skin pigmentation is accomplished by production of melanin in specialized membrane-bound organelles termed melanosomes and by transfer of these organelles from melanocytes to surrounding keratinocytes. The mechanism by which these cells transfer melanin is yet unknown. A central role has been established for the protease-activated receptor-2 of the keratinocyte which effectuates melanin transfer via phagocytosis. What exactly is being phagocytosed - naked melanin, melanosomes or melanocytic cell parts - remains to be defined. Analogy of melanocytes to neuronal cells and cells of the haemopoietic lineage suggests exocytosis of melanosomes and subsequent phagocytosis of naked melanin. Otherwise, microscopy studies demonstrate cytophagocytosis of melanocytic dendrites. Other plausible mechanisms are transfer via melanosome-containing vesicles shed by the melanocyte or transfer via fusion of keratinocyte and melanocyte plasma membranes with formation of tunnelling nanotubes. Molecules involved in transfer are being identified. Transfer is influenced by the interactions of lectins and glycoproteins and, probably, by the action of E-cadherin, SNAREs, Rab and Rho GTPases. Further clues as to what mechanism and molecular machinery will arise with the identification of the function of specific genes which are mutated in diseases that affect transfer.
Collapse
|
20
|
Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW. Functional amyloid formation within mammalian tissue. PLoS Biol 2006; 4:e6. [PMID: 16300414 PMCID: PMC1288039 DOI: 10.1371/journal.pbio.0040006] [Citation(s) in RCA: 592] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 10/31/2005] [Indexed: 11/19/2022] Open
Abstract
Amyloid is a generally insoluble, fibrous cross-β sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin—a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin) may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology. The authors show that native Pmel17 amyloid found in mammalian melanosomes accelerates melanin synthesis.
Collapse
Affiliation(s)
- Douglas M Fowler
- 1 Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Atanas V Koulov
- 2 Department of Cell Biology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christelle Alory-Jost
- 2 Department of Cell Biology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Michael S Marks
- 3 Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - William E Balch
- 2 Department of Cell Biology and the Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jeffery W Kelly
- 1 Department of Chemistry and The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
21
|
Koizumi S, Fujishita K, Inoue K, Shigemoto-Mogami Y, Tsuda M, Inoue K. Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem J 2004; 380:329-38. [PMID: 14967069 PMCID: PMC1224173 DOI: 10.1042/bj20031089] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 12/23/2003] [Accepted: 02/16/2004] [Indexed: 11/17/2022]
Abstract
ATP acts as an intercellular messenger in a variety of cells. In the present study, we have characterized the propagation of Ca2+ waves mediated by extracellular ATP in cultured NHEKs (normal human epidermal keratinocytes) that were co-cultured with mouse DRG (dorsal root ganglion) neurons. Pharmacological characterization showed that NHEKs express functional metabotropic P2Y2 receptors. When a cell was gently stimulated with a glass pipette, an increase in [Ca2+]i (intracellular Ca2+ concentration) was observed, followed by the induction of propagating Ca2+ waves in neighbouring cells in an extracellular ATP-dependent manner. Using an ATP-imaging technique, the release and diffusion of ATP in NHEKs were confirmed. DRG neurons are known to terminate in the basal layer of keratinocytes. In a co-culture of NHEKs and DRG neurons, mechanical-stimulation-evoked Ca2+ waves in NHEKs caused an increase in [Ca2+]i in the adjacent DRG neurons, which was also dependent on extracellular ATP and the activation of P2Y2 receptors. Taken together, extracellular ATP is a dominant messenger that forms intercellular Ca2+ waves in NHEKs. In addition, Ca2+ waves in NHEKs could cause an increase in [Ca2+]i in DRG neurons, suggesting a dynamic cross-talk between skin and sensory neurons mediated by extracellular ATP.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Westbroek W, Lambert J, De Schepper S, Kleta R, Van Den Bossche K, Seabra MC, Huizing M, Mommaas M, Naeyaert JM. Rab27b is Up-Regulated in Human Griscelli Syndrome Type II Melanocytes and Linked to the Actin Cytoskeleton via Exon F-Myosin Va Transcripts. ACTA ACUST UNITED AC 2004; 17:498-505. [PMID: 15357836 DOI: 10.1111/j.1600-0749.2004.00173.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Patients with the autosomal recessive Griscelli-Pruniéras syndrome type II are immunologically impaired and have an unusual silvery-grey hypopigmented colour of scalp hair, eyelashes and eyebrows but no noteworthy pigmentary abnormalities of the skin. In most Griscelli patients, the RAB27A gene, which encodes a small GTPase that is associated with the melanosome membrane in melanocytes, is mutated. Here we discuss a genomic RAB27A deletion found in a 21-month-old Moroccan Griscelli patient. Additionally, we provide evidence that the loss of functional Rab27a in melanocytes of this Griscelli patient is partially compensated by the up-regulation of Rab27b, a homologue of Rab27a. By real-time quantitative PCR and western blot analysis, we found that Rab27b mRNA and protein, expressed at low levels in normal human melanocytes, is significantly up-regulated in melanocytes derived from this patient. Our immunofluorescence and yeast two-hybrid screening studies reveal that Rab27b can form a tripartite complex on the melanosome membrane with Melanophilin, a Rab27a effector, and protein products of Myosin Va transcripts that contain exon F. Our data suggest that up-regulated Rab27b in melanocytes of the Griscelli patient can partially take over the function of Rab27a, which could explain the fact that this patient had an evenly pigmented skin and was able to tan.
Collapse
Affiliation(s)
- Wendy Westbroek
- Department of Dermatology, Ghent University Hospital, De Pintelaan 185, Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Westerhof W, Dingemans KP, Hulsmans RFHJ. Hypermelanocytic guttate and macular segmental hypomelanosis. Br J Dermatol 2004; 151:701-5. [PMID: 15377363 DOI: 10.1111/j.1365-2133.2004.06126.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report two sisters, 27 and 30 years of age, with a cutaneous pigmentary anomaly, which seems to be a new entity. At the age of 26 years the elder sister developed an asymptomatic and persistent rash consisting of discrete, grouped, round to oval, guttate and nummular, hypopigmented macules, 0.2-5 cm in diameter. The distribution of the lesions was unilateral. They were located on the right side of the thorax with a moderately sharp demarcation in the mid-line and ran in a segmental distribution over the right arm, hand and fingers. Microscopic examination of lesional skin scrapings was negative for fungi. Examination with Wood's light accentuated the lesions from the surrounding normal skin. The younger sister had experienced identical, mostly guttate, skin lesions for many years, which at examination were distributed on all extremities and buttocks, and to a lesser degree on the trunk, but here in a segmental distribution. Histological examination (Masson-Fontana staining) of lesional skin of both sisters was identical. A slightly thinned epidermis and a marked decrease in pigmentation of the epidermal basal layer was seen. Electron microscopic examination of lesional skin showed an overall linear increase of morphologically and cytologically normal melanocytes just above the epidermal basal membrane. At many places the density of melanocytes was so high that the keratinocytes were displaced from the basal layer. The melanocytic dendrites extended into the suprabasal layer. The keratinocytes of lesional skin showed a decreased number of melanosomes. It is paradoxical that a hypomelanotic macule shows a histological picture of an increase in normal functioning melanocytes. In all probability a deficient melanosome transfer is responsible for this unexpected phenomenon.
Collapse
Affiliation(s)
- W Westerhof
- Netherlands Institute for Pigmentary Disorders, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
24
|
Nascimento AA, Roland JT, Gelfand VI. Pigment cells: a model for the study of organelle transport. Annu Rev Cell Dev Biol 2004; 19:469-91. [PMID: 14570578 DOI: 10.1146/annurev.cellbio.19.111401.092937] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic organisms rely on intracellular transport to position organelles and other components within their cells. Pigment cells provide an excellent model to study organelle transport as they specialize in the translocation of pigment granules in response to defined chemical signals. Pigment cells of lower vertebrates have traditionally been used as a model for these studies because these cells transport pigment organelles in a highly coordinated fashion, are easily cultured and transfected, are ideal for microsurgery, and are good for biochemical experiments, including in vitro analysis of organelle motility. Many important properties of organelle transport, for example, the requirement of two cytoskeletal filaments (actin and microtubules), the motor proteins involved, and the mechanisms of their regulation and interactions, have been studied using pigment cells of lower vertebrates. Genetic studies of mouse melanocytes allowed the discovery of essential elements involved in organelle transport including the myosin-Va motor and its receptor and adaptor molecules on the organelle surface. Future studies of pigment cells will contribute to our understanding of issues such as the cooperation among multiple motor proteins and the mechanisms of regulation of microtubule motors.
Collapse
Affiliation(s)
- Alexandra A Nascimento
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
25
|
Setaluri V. The Melanosome: Dark Pigment Granule Shines Bright Light on Vesicle Biogenesis and More. J Invest Dermatol 2003; 121:650-60. [PMID: 14632178 DOI: 10.1046/j.1523-1747.2003.12500.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Vijayasaradhi Setaluri
- Department of Dermatology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
26
|
Kushimoto T, Valencia JC, Costin GE, Toyofuku K, Watabe H, Yasumoto KI, Rouzaud F, Vieira WD, Hearing VJ. The Seiji memorial lecture: the melanosome: an ideal model to study cellular differentiation. PIGMENT CELL RESEARCH 2003; 16:237-44. [PMID: 12753396 DOI: 10.1034/j.1600-0749.2003.00034.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Melanosomes provide an intriguing model for study at many levels. In part this is due to their unique structure and function, but also in part to their involvement in pigmentary diseases and as a model to study basic cellular mechanisms of organelle biogenesis. Recent studies have elucidated the full proteome of the melanosome and the metabolic and molecular lesions involved in a number of pigmentary diseases have been resolved. This paper summarizes recent advances in the field in these areas.
Collapse
Affiliation(s)
- Tsuneto Kushimoto
- Pigment Cell Biology Section, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Basrur V, Yang F, Kushimoto T, Higashimoto Y, Yasumoto KI, Valencia J, Muller J, Vieira WD, Watabe H, Shabanowitz J, Hearing VJ, Hunt DF, Appella E. Proteomic analysis of early melanosomes: identification of novel melanosomal proteins. J Proteome Res 2003; 2:69-79. [PMID: 12643545 DOI: 10.1021/pr025562r] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Melanin is a heterogeneous biopolymer produced only by specific cells termed melanocytes, which synthesize and deposit the pigment in specialized membrane-bound organelles known as melanosomes. Although melanosomes have been suspected of being closely related to lysosomes and platelets, the total number of melanosomal proteins is still unknown. Thus far, six melanosome-specific proteins have been identified, and the challenge is to characterize the complete proteome of the melanosome to further understand its mechanism of biogenesis. In this report, we used mass spectrometry and subcellular fractionation to identify protein components of early melanosomes. Using this approach, we have identified all 6 of the known melanosome-specific proteins, 56 proteins that are shared with other organelles, and confirmed the presence of 6 novel melanosomal proteins using western blotting and by immunohistochemistry.
Collapse
Affiliation(s)
- Venkatesha Basrur
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Wessel GM, Conner SD, Berg L. Cortical granule translocation is microfilament mediated and linked to meiotic maturation in the sea urchin oocyte. Development 2002; 129:4315-25. [PMID: 12183383 DOI: 10.1242/dev.129.18.4315] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cortical granules exocytose after the fusion of egg and sperm in most animals, and their contents function in the block to polyspermy by creating an impenetrable extracellular matrix. Cortical granules are synthesized throughout oogenesis and translocate en masse to the cell surface during meiosis where they remain until fertilization. As the mature oocyte is approximately 125 μm in diameter (Lytechinus variegatus), many of the cortical granules translocate upwards of 60 μm to reach the cortex within a 4 hour time window. We have investigated the mechanism of this coordinated vesicular translocation event. Although the stimulus to reinitiate meiosis in sea urchin oocytes is not known, we found many different ways to reversibly inhibit germinal vesicle breakdown, and used these findings to discover that meiotic maturation and cortical granule translocation are inseparable. We also learned that cortical granule translocation requires association with microfilaments but not microtubules. It is clear from endocytosis assays that microfilament motors are functional prior to meiosis, even though cortical granules do not use them. However, just after GVBD, cortical granules attach to microfilaments and translocate to the cell surface. This latter conclusion is based on organelle stratification within the oocyte followed by positional quantitation of the cortical granules. We conclude from these studies that maturation promoting factor (MPF) activation stimulates vesicle association with microfilaments, and is a key regulatory step in the coordinated translocation of cortical granules to the egg cortex.
Collapse
Affiliation(s)
- Gary M Wessel
- Department of Molecular and Cell Biology & Biochemistry, 69 Brown Street, Box G, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
29
|
Stjernschantz JW, Albert DM, Hu DN, Drago F, Wistrand PJ. Mechanism and clinical significance of prostaglandin-induced iris pigmentation. Surv Ophthalmol 2002; 47 Suppl 1:S162-75. [PMID: 12204714 DOI: 10.1016/s0039-6257(02)00292-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The new glaucoma drugs latanoprost, isopropyl unoprostone, travoprost, and bimatoprost cause increased pigmentation of the iris in some patients. The purpose of the present article is to survey the available preclinical and clinical data on prostaglandin-induced iris pigmentation and to assess the phenomenon from a clinical perspective. Most of the data have been obtained with latanoprost, and it appears that there is a predisposition to latanoprost-induced iris pigmentation in individuals with hazel or heterochromic eye color. As latanoprost and travoprost are selective agonists for the prostaglandin F(2alpha) receptor, it is likely that the phenomenon is mediated by this receptor. Several studies indicate that latanoprost stimulates melanogenesis in iridial melanocytes, and transcription of the tyrosinase gene is upregulated. The safety aspects of latanoprost-induced iris pigmentation have been addressed in histopathologic studies, and no evidence of harmful consequences of the side effect has been found. Although a final assessment of the clinical significance of prostaglandin-induced iris pigmentation currently is impossible to make, it appears that the only clear-cut disadvantage is a potential heterochromia between the eyes in unilaterally treated patients because the heterochromia is likely to be permanent, or very slowly reversible.
Collapse
Affiliation(s)
- Johan W Stjernschantz
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 572 BMC, S-751 82 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
30
|
Barral DC, Ramalho JS, Anders R, Hume AN, Knapton HJ, Tolmachova T, Collinson LM, Goulding D, Authi KS, Seabra MC. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J Clin Invest 2002. [DOI: 10.1172/jci0215058] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Barral DC, Ramalho JS, Anders R, Hume AN, Knapton HJ, Tolmachova T, Collinson LM, Goulding D, Authi KS, Seabra MC. Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J Clin Invest 2002; 110:247-57. [PMID: 12122117 PMCID: PMC151050 DOI: 10.1172/jci15058] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Griscelli syndrome (GS) patients and the corresponding mouse model ashen exhibit defects mainly in two types of lysosome-related organelles, melanosomes in melanocytes and lytic granules in CTLs. This disease is caused by loss-of-function mutations in RAB27A, which encodes 1 of the 60 known Rab GTPases, critical regulators of vesicular transport. Here we present evidence that Rab27a function can be compensated by a closely related protein, Rab27b. Rab27b is expressed in platelets and other tissues but not in melanocytes or CTLs. Morphological and functional tests in platelets derived from ashen mice are all within normal limits. Both Rab27a and Rab27b are found associated with the limiting membrane of platelet-dense granules and to a lesser degree with alpha-granules. Ubiquitous transgenic expression of Rab27a or Rab27b rescues ashen coat color, and melanocytes derived from transgenic mice exhibit widespread peripheral distribution of melanosomes instead of the perinuclear clumping observed in ashen melanocytes. Finally, transient expression in ashen melanocytes of Rab27a or Rab27b, but not other Rab's, restores peripheral distribution of melanosomes. Our data suggest that Rab27b is functionally redundant with Rab27a and that the pathogenesis of GS is determined by the relative expression of Rab27a and Rab27b in specialized cell types.
Collapse
MESH Headings
- Animals
- Blood Platelets/pathology
- Blood Platelets/physiology
- Disease Models, Animal
- Gene Expression
- Histiocytosis, Non-Langerhans-Cell/etiology
- Histiocytosis, Non-Langerhans-Cell/genetics
- Histiocytosis, Non-Langerhans-Cell/pathology
- Histiocytosis, Non-Langerhans-Cell/physiopathology
- Humans
- Hypopigmentation/etiology
- Hypopigmentation/genetics
- Hypopigmentation/pathology
- Hypopigmentation/physiopathology
- Melanocytes/pathology
- Melanocytes/physiology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Mutation
- Syndrome
- T-Lymphocytes, Cytotoxic/physiology
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/physiology
- rab27 GTP-Binding Proteins
Collapse
Affiliation(s)
- Duarte C Barral
- Cell and Molecular Biology, Division of Biomedical Sciences, Faculty of Medicine, Imperial College, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Borges CR, Martin SD, Meyer LJ, Wilkins DG, Rollins DE. Influx and efflux of amphetamine and N-acetylamphetamine in keratinocytes, pigmented melanocytes, and nonpigmented melanocytes. J Pharm Sci 2002; 91:1523-35. [PMID: 12115851 DOI: 10.1002/jps.10144] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To establish an in vitro model of drug incorporation into hair and to elucidate the potential roles of hair cell selectivity and hair color in the incorporation of certain drugs into hair, the basic drug amphetamine and its nonbasic analog N-acetylamphetamine (N-AcAp) were analyzed for influx and efflux into and out of keratinocytes, pigmented melanocytes (PM), and nonpigmented melanocytes (NPM) as a model for incorporation and efflux of these drugs from hair cells. NPM were of the same melan-a cell line as PM, but cultured in the presence of the tyrosinase inhibitor phenylthiocarbamide. Results show that PM take up large amounts of the basic drug amphetamine (levels of uptake dependent on melanin content), whereas keratinocytes and NPM take up only small amounts of amphetamine. None of the cells take up N-AcAp above background levels. Interestingly, whereas keratinocytes and NPM quickly efflux most of the influxed drug, PM are slow to efflux and only efflux approximately 65% of influxed drug, if efflux media is not refreshed. (If efflux media is periodically refreshed, PM will eventually redistribute essentially all influxed drug back into the media.) These results demonstrate that pigmented cells take up greater amounts of the basic drug amphetamine, and efflux it more slowly than nonpigmented cells. Also, these results are consistent with previous data for in vivo incorporation of amphetamine in animal hair. In combination with previous data, an overall comparison of the amphetamine and N-AcAp incorporation data support a non-diffusion mediated model for drug incorporation into hair cells.
Collapse
Affiliation(s)
- Chad R Borges
- Department of Pharmacology and Toxicology, University of Utah, 20 South 2030 East, Room 490, Salt Lake City 84112, USA.
| | | | | | | | | |
Collapse
|
33
|
Loftus SK, Larson DM, Baxter LL, Antonellis A, Chen Y, Wu X, Jiang Y, Bittner M, Hammer JA, Pavan WJ. Mutation of melanosome protein RAB38 in chocolate mice. Proc Natl Acad Sci U S A 2002; 99:4471-6. [PMID: 11917121 PMCID: PMC123672 DOI: 10.1073/pnas.072087599] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations of genes needed for melanocyte function can result in oculocutaneous albinism. Examination of similarities in human gene expression patterns by using microarray analysis reveals that RAB38, a small GTP binding protein, demonstrates a similar expression profile to melanocytic genes. Comparative genomic analysis localizes human RAB38 to the mouse chocolate (cht) locus. A G146T mutation occurs in the conserved GTP binding domain of RAB38 in cht mice. Rab38(cht)/Rab38(cht) mice exhibit a brown coat similar in color to mice with a mutation in tyrosinase-related protein 1 (Tyrp1), a mouse model for oculocutaneous albinism. The targeting of TYRP1 protein to the melanosome is impaired in Rab38(cht)/Rab38(cht) melanocytes. These observations, and the fact that green fluorescent protein-tagged RAB38 colocalizes with end-stage melanosomes in wild-type melanocytes, suggest that RAB38 plays a role in the sorting of TYRP1. This study demonstrates the utility of expression profile analysis to identify mammalian disease genes.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Falcón-Pérez JM, Dell'Angelica EC. The pallidin (Pldn) gene and the role of SNARE proteins in melanosome biogenesis. PIGMENT CELL RESEARCH 2002; 15:82-6. [PMID: 11936273 DOI: 10.1034/j.1600-0749.2002.1r082.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review focuses on the product of the pallidin (Pldn) gene, one of a number of genes that in mice are associated with pigmentation defects and platelet dense granule deficiency. A similar combination of defects is also observed in patients suffering from Hermansky-Pudlak (HPS) and Chediak-Higashi (CHS) syndromes. Pldn encodes a novel, approximately 20-kDa protein that is expressed ubiquitously in mammalian tissues. The pallidin protein was found to bind to syntaxin 13, a member of the syntaxin family of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). As SNARE proteins mediate fusion of intracellular membranes, pallidin may play a role in membrane fusion events required for melanosome biogenesis.
Collapse
Affiliation(s)
- Juan M Falcón-Pérez
- Department of Human Genetics, University of California at Los Angeles (UCLA) School of Medicine, 90095, USA
| | | |
Collapse
|
35
|
Scott G, Leopardi S, Printup S, Madden BC. Filopodia are conduits for melanosome transfer to keratinocytes. J Cell Sci 2002; 115:1441-51. [PMID: 11896192 DOI: 10.1242/jcs.115.7.1441] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Melanosomes are specialized melanin-synthesizing organelles critical for photoprotection in the skin. Melanosome transfer to keratinocytes, which involves whole organelle donation to another cell, is a unique biological process and is poorly understood. Time-lapse digital movies and electron microscopy show that filopodia from melanocyte dendrites serve as conduits for melanosome transfer to keratinocytes. Cdc42, a small GTP-binding protein, is known to mediate filopodia formation. Melanosome-enriched fractions isolated from human melanocytes expressed the Cdc42 effector proteins PAK1 and N-WASP by western blotting. Expression of constitutively active Cdc42(Cdc42V12) in melanocytes co-cultured with keratinocytes induced a highly dendritic phenotype with extensive contacts between melanocytes and keratinocytes through filopodia, many of which contained melanosomes. These results suggest a unique role for filopodia in organelle transport and, in combination with our previous work showing the presence of SNARE proteins and rab3a on melanosomes, suggest a novel model system for melanosome transfer to keratinocytes.
Collapse
Affiliation(s)
- Glynis Scott
- Department of Dermatology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Regulated secretion of stored secretory products is important in many cell types. In contrast to professional secretory cells, which store their secretory products in specialized secretory granules, some secretory cells store their secretory proteins in a dual-function organelle, called a secretory lysosome. Functionally, secretory lysosomes are unusual in that they serve both as a degradative and as a secretory compartment. Recent work shows that cells with secretory lysosomes use new sorting and secretory pathways. The importance of these organelles is highlighted by several genetic diseases, in which immune function and pigmentation--two processes that normally involve secretory lysosomes--are impaired.
Collapse
Affiliation(s)
- Emma J Blott
- Sir William Dunn School of Pathology, Oxford University, South Parks Rd, Oxford OX1 3RE, UK
| | | |
Collapse
|
37
|
Virador VM, Muller J, Wu X, Abdel-Malek ZA, Yu ZX, Ferrans VJ, Kobayashi N, Wakamatsu K, Ito S, Hammer JA, Hearing VJ. Influence of alpha-melanocyte-stimulating hormone and ultraviolet radiation on the transfer of melanosomes to keratinocytes. FASEB J 2002; 16:105-7. [PMID: 11729101 DOI: 10.1096/fj.01-0518fje] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The epidermal melanin unit in human skin is composed of melanocytes and keratinocytes. Melanocytes, located in the basal layer of the epidermis, manufacture melanin-loaded organelles called melanosomes. Through their dendritic processes, melanocytes distribute melanosomes to neighboring keratinocytes, where their presence confers to the skin its characteristic color and photoprotective properties. In this study, we used murine melanocytes and keratinocytes alone and in coculture to characterize the processes involved in melanosome transfer. Ultraviolet (UV) radiation induced an accumulation of melanosomes in melanocytes, whereas treatment with a-melanocyte-stimulating hormone (MSH) induced exocytosis of melanosomes accompanied by ruffling of the melanocyte membrane. We found that keratinocytes phagocytose melanosomes and latex beads equally well and that this phagocytic process was increased by exposure of keratinocytes to UV radiation or to MSH. Coculture of melanocytes and keratinocytes resulted in an increase in MSH released to the medium. Gene array analysis of MSH-treated melanocytes showed up-regulation of many genes associated with exocytosis. In our studies, we never observed cytophagocytosis of melanosome-filled processes. This result, together with the other findings, suggests that a combination of signals that increase melanosome production and release by melanocytes and that stimulate phagocytosis by keratinocytes are the most relevant mechanisms involved in skin tanning.
Collapse
Affiliation(s)
- Victoria M Virador
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Melanosomes are morphologically and functionally unique organelles within which melanin pigments are synthesized and stored. Melanosomes share some characteristics with lysosomes, but can be distinguished from them in many ways. The biogenesis and intracellular movement of melanosomes and related organelles are disrupted in several genetic disorders in mice and humans. The recent characterization of genes defective in these diseases has reinvigorated interest in the melanosome as a model system for understanding the molecular mechanisms that underlie intracellular membrane dynamics.
Collapse
Affiliation(s)
- M S Marks
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104-6082, USA.
| | | |
Collapse
|