1
|
Cho Y, Han EJ, Heo E, Jayasinghe AMK, Won J, Lee S, Kim T, Kim S, Lim S, Woo SO, Han G, Kang W, Ahn G, Byun S. Propolis suppresses atopic dermatitis through targeting the MKK4 pathway. Biofactors 2025; 51:e2119. [PMID: 39163569 PMCID: PMC11681297 DOI: 10.1002/biof.2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Propolis is a natural resinous substance made by bees through mixing various plant sources. Propolis has been widely recognized as a functional food due to its diverse range of beneficial bioactivities. However, the therapeutic effects of consuming propolis against atopic dermatitis (AD) remain largely unknown. The current study aimed to investigate the potential efficacy of propolis against AD and explore the active compound as well as the direct molecular target. In HaCaT keratinocytes, propolis inhibited TNF-α-induced interleukin (IL)-6 and IL-8 secretion. It also led to a reduction in chemokines such as monocyte chemoattractant protein-1 (MCP-1) and macrophage-derived chemokine (MDC), while restoring the levels of barrier proteins, filaggrin and involucrin. Propolis exhibited similar effects in AD-like human skin, leading to the suppression of AD markers and the restoration of barrier proteins. In DNCB-induced mice, oral administration of propolis attenuated AD symptoms, improved barrier function, and reduced scratching frequency and transepidermal water loss (TEWL). In addition, propolis reversed the mRNA levels of AD-related markers in mouse dorsal skin. These effects were attributed to caffeic acid phenethyl ester (CAPE), the active compound identified by comparing major components of propolis. Mechanistic studies revealed that CAPE as well as propolis could directly and selectively target MKK4. Collectively, these findings demonstrate that propolis may be used as a functional food agent for the treatment of AD.
Collapse
Affiliation(s)
- Ye‐Ryeong Cho
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Eui Jeong Han
- Department of Food Technology and NutritionChonnam National UniversityYeosuRepublic of Korea
| | - Eun Heo
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | | | - Jihyun Won
- College of PharmacyChung‐Ang UniversitySeoulRepublic of Korea
| | - Soohwan Lee
- Department of Food Science and BiotechnologyGachon UniversitySeongnamRepublic of Korea
| | - Taegun Kim
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Sung‐Kuk Kim
- Department of Agrobiology, Division of ApicultureNational Institute of Agricultural SciencesWanjuRepublic of Korea
| | - Seokwon Lim
- Department of Food Science and BiotechnologyGachon UniversitySeongnamRepublic of Korea
| | - Soon Ok Woo
- Department of Agrobiology, Division of ApicultureNational Institute of Agricultural SciencesWanjuRepublic of Korea
| | - Gyoonhee Han
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
| | - Wonku Kang
- College of PharmacyChung‐Ang UniversitySeoulRepublic of Korea
| | - Ginnae Ahn
- Department of Food Technology and NutritionChonnam National UniversityYeosuRepublic of Korea
| | - Sanguine Byun
- Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
- POSTECH Biotech CenterPohang University of Science and Technology (POSTECH)PohangRepublic of Korea
| |
Collapse
|
2
|
Sutopo NC, Rahmawati L, Huang L, Kry M, Chhang P, Lee S, Lee BH, Cho JY. Anti-inflammatory, Antioxidative, and Moisturizing Effects of Oxyceros horridus Lour. Ethanol Extract in Human Keratinocytes via the p38 Signaling Pathway. Chem Biodivers 2024; 21:e202301791. [PMID: 38415391 DOI: 10.1002/cbdv.202301791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Skin is the largest and outermost organ in the human body; it serves as a vital defense mechanism against various external threats. Therefore, it is crucial to maintain its health through protection against harmful substances and adequate moisture levels. This study investigates the anti-inflammatory, antioxidant, and moisturizing properties of Oxyceros horridus Lour. (Oh-EE) in human keratinocytes. Oh-EE demonstrates potent antioxidant activity and effectively protects against oxidative stress induced by external stimuli such as UVB radiation and H2O2. Additionally, it exhibits significant anti-inflammatory effects proven by its ability to downregulate the expression of pro-inflammatory cytokines, namely COX-2 and IL-6. The study also explores the involvement of the AP-1 pathway, highlighting the ability of Oh-EE to suppress the expression of p38 and its upstream regulator, MKK3/6, under UVB-induced conditions. Interestingly, Oh-EE can activate the AP-1 pathway in the absence of external triggers. Furthermore, Oh-EE enhances skin moisture by upregulating the expression of key genes involved in skin hydration, namely HAS3 and FLG. These findings underscore the potential of Oh-EE as a versatile ingredient in skincare formulations, providing a range of skin benefits. Further research is warranted to comprehensively understand the underlying mechanisms through which Oh-EE exerts its effects.
Collapse
Affiliation(s)
| | - Laily Rahmawati
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Masphal Kry
- Forestry Administration, Ministry of Agriculture Forestry and Fisheries, #40 Norodom Blvd, Daun Penh, Phnom Penh, Cambodia
| | - Phourin Chhang
- Forestry Administration, Ministry of Agriculture Forestry and Fisheries, #40 Norodom Blvd, Daun Penh, Phnom Penh, Cambodia
| | - Sarah Lee
- Strategic Planning Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Byoung-Hee Lee
- Biological Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
3
|
Li L, Zhang G, Yang Z, Kang X. Stress-Activated Protein Kinases in Intervertebral Disc Degeneration: Unraveling the Impact of JNK and p38 MAPK. Biomolecules 2024; 14:393. [PMID: 38672411 PMCID: PMC11047866 DOI: 10.3390/biom14040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is a major cause of lower back pain. The pathophysiological development of IDD is closely related to the stimulation of various stressors, including proinflammatory cytokines, abnormal mechanical stress, oxidative stress, metabolic abnormalities, and DNA damage, among others. These factors prevent normal intervertebral disc (IVD) development, reduce the number of IVD cells, and induce senescence and apoptosis. Stress-activated protein kinases (SAPKs), particularly, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), control cell signaling in response to cellular stress. Previous studies have shown that these proteins are highly expressed in degenerated IVD tissues and are involved in complex biological signal-regulated processes. Therefore, we summarize the research reports on IDD related to JNK and p38 MAPK. Their structure, function, and signal regulation mechanisms are comprehensively and systematically described and potential therapeutic targets are proposed. This work could provide a reference for future research and help improve molecular therapeutic strategies for IDD.
Collapse
Affiliation(s)
- Lei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Zhili Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (L.L.); (G.Z.); (Z.Y.)
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopedics Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
- The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou 730030, China
| |
Collapse
|
4
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
5
|
Lopez-Tello J, Jimenez-Martinez MA, Salazar-Petres E, Patel R, George AL, Kay RG, Sferruzzi-Perri AN. Identification of Structural and Molecular Signatures Mediating Adaptive Changes in the Mouse Kidney in Response to Pregnancy. Int J Mol Sci 2022; 23:6287. [PMID: 35682969 PMCID: PMC9181623 DOI: 10.3390/ijms23116287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Pregnancy is characterized by adaptations in the function of several maternal body systems that ensure the development of the fetus whilst maintaining health of the mother. The renal system is responsible for water and electrolyte balance, as well as waste removal. Thus, it is imperative that structural and functional changes occur in the kidney during pregnancy. However, our knowledge of the precise morphological and molecular mechanisms occurring in the kidney during pregnancy is still very limited. Here, we investigated the changes occurring in the mouse kidney during pregnancy by performing an integrated analysis involving histology, gene and protein expression assays, mass spectrometry profiling and bioinformatics. Data from non-pregnant and pregnant mice were used to identify critical signalling pathways mediating changes in the maternal kidneys. We observed an expansion of renal medulla due to proliferation and infiltration of interstitial cellular constituents, as well as alterations in the activity of key cellular signalling pathways (e.g., AKT, AMPK and MAPKs) and genes involved in cell growth/metabolism (e.g., Cdc6, Foxm1 and Rb1) in the kidneys during pregnancy. We also generated plasma and urine proteomic profiles, identifying unique proteins in pregnancy. These proteins could be used to monitor and study potential mechanisms of renal adaptations during pregnancy and disease.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | | | - Esteban Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Ritik Patel
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amy L George
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Richard G Kay
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
6
|
Zhang K, Lui VCH, Chen Y, Lok CN, Wong KKY. Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing. Sci Rep 2020; 10:6338. [PMID: 32286492 PMCID: PMC7156632 DOI: 10.1038/s41598-020-63464-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 03/31/2020] [Indexed: 01/14/2023] Open
Abstract
Burn injury is common, and antimicrobial agents are often applied immediately to prevent wound infection and excessive inflammatory response. Although inflammation is essential for clearing bacteria and creating an environment conducive to the healing process, it is unclear what time-frame inflammation should be present for optimal wound healing. This study critically investigated the role of early inflammation in burn wound healing, and also revealed the molecular mechanisms underlying the pro-healing effects of silver nanoparticles (AgNPs). We created a burn injury mouse model using wild-type and Smad3−/− mice, which were topically treated with AgNPs at different post-burn days, and examined the healing processes of the various groups. We also delineated the molecular pathways underlying the anti-inflammation and pro-healing effects of AgNPs by morphological and histological analysis, immuno-histochemistry, and western blotting. Our results showed that (1) AgNPs regulated pro-inflammatory cytokine IL-6 production of keratinocytes and neutrophils infiltration through KGF-2/p38 signaling pathway, (2) Topical AgNPs treatment immediately after burn injury significantly supressed early inflammation but resulted in delayed healing, (3) A short delay in AgNPs application (post-burn day 3 in our model) allowed early inflammation in a controlled manner, and led to optimal burn wound healing. Thus, our current study showed that some degree of early inflammation was beneficial, but prolonged inflammation was detrimental for burn wound healing. Further evaluation and clinical translation of this finding is warranted.
Collapse
Affiliation(s)
- Kangjun Zhang
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China.,The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), Shenzhen, China
| | - Vincent C H Lui
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Yan Chen
- Department of Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, China
| | - Chun Nam Lok
- Department of Chemistry, Faculty of Science, University of Hong Kong, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Surgery, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Palazzo E, Morasso MI, Pincelli C. Molecular Approach to Cutaneous Squamous Cell Carcinoma: From Pathways to Therapy. Int J Mol Sci 2020; 21:ijms21041211. [PMID: 32059344 PMCID: PMC7072792 DOI: 10.3390/ijms21041211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Affiliation(s)
- Elisabetta Palazzo
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy;
- Correspondence:
| | - Maria I. Morasso
- Laboratory of Skin Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, 41100 Modena, Italy;
| |
Collapse
|
8
|
Rogerson C, O'Shaughnessy RFL. Protein kinases involved in epidermal barrier formation: The AKT family and other animals. Exp Dermatol 2019; 27:892-900. [PMID: 29845670 DOI: 10.1111/exd.13696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Formation of a stratified epidermis is required for the performance of the essential functions of the skin; to act as an outside-in barrier against the access of microorganisms and other external factors, to prevent loss of water and solutes via inside-out barrier functions and to withstand mechanical stresses. Epidermal barrier function is initiated during embryonic development and is then maintained throughout life and restored after injury. A variety of interrelated processes are required for the formation of a stratified epidermis, and how these processes are both temporally and spatially regulated has long been an aspect of dermatological research. In this review, we describe the roles of multiple protein kinases in the regulation of processes required for epidermal barrier formation.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Inhibition of oxaliplatin-induced neurotoxicity by silymarin through increased expression of brain-derived neurotrophic factor and inhibition of p38-MAPK. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Comitani F, Gervasio FL. Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH. J Chem Theory Comput 2018; 14:3321-3331. [DOI: 10.1021/acs.jctc.8b00263] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Federico Comitani
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Kimura SR, Hu HP, Ruvinsky AM, Sherman W, Favia AD. Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics. J Chem Inf Model 2017; 57:1388-1401. [PMID: 28537745 DOI: 10.1021/acs.jcim.6b00623] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In recent years, molecular dynamics simulations of proteins in explicit mixed solvents have been applied to various problems in protein biophysics and drug discovery, including protein folding, protein surface characterization, fragment screening, allostery, and druggability assessment. In this study, we perform a systematic study on how mixtures of organic solvent probes in water can reveal cryptic ligand binding pockets that are not evident in crystal structures of apo proteins. We examine a diverse set of eight PDB proteins that show pocket opening induced by ligand binding and investigate whether solvent MD simulations on the apo structures can induce the binding site observed in the holo structures. The cosolvent simulations were found to induce conformational changes on the protein surface, which were characterized and compared with the holo structures. Analyses of the biological systems, choice of probes and concentrations, druggability of the resulting induced pockets, and application to drug discovery are discussed here.
Collapse
Affiliation(s)
- S Roy Kimura
- Schrödinger KK , 17th Fl, Marunouchi Trust Tower North, 1-8-1 Marunouchi, Chiyoda-ku, Tokyo, Japan
| | - Hai Peng Hu
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company , Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| | - Anatoly M Ruvinsky
- Schrödinger LLC , 222 Third Street, Suite 2230, Cambridge, Massachusetts 02142, United States
| | - Woody Sherman
- Schrödinger LLC , 222 Third Street, Suite 2230, Cambridge, Massachusetts 02142, United States
| | - Angelo D Favia
- Lilly China Research and Development Center (LCRDC), Eli Lilly and Company , Building 8, 338 Jia Li Lue Road, Shanghai 201203, PR China
| |
Collapse
|
12
|
Loss of epidermal AP1 transcription factor function reduces filaggrin level, alters chemokine expression and produces an ichthyosis-related phenotype. Cell Death Dis 2017; 8:e2840. [PMID: 28569792 PMCID: PMC5520897 DOI: 10.1038/cddis.2017.238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/21/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
AP1 transcription factors are important controllers of epidermal differentiation. Multiple family members are expressed in the epidermis in a differentiation-dependent manner, where they function to regulate gene expression. To study the role of AP1 factor signaling, TAM67 (dominant-negative c-jun) was inducibly expressed in the suprabasal epidermis. The TAM67-positive epidermis displays keratinocyte hyperproliferation, hyperkeratosis and parakeratosis, delayed differentiation, extensive subdermal vasodilation, nuclear loricrin localization, tail and digit pseudoainhum and reduced filaggrin level. These changes are associated with increased levels of IFNγ, CCL3, CCL5, CXCL9, CXCL10, and CXCL11 (Th1-associated chemokines), and CCL1, CCL2, CCL5 and CCL11 (Th2-associated chemokines) in the epidermis and serum. S100A8 and S100A9 protein levels are also markedly elevated. These changes in epidermal chemokine level are associated with increased levels of the corresponding chemokine mRNA. The largest increases were observed for CXCL9, CXCL10, CXCL11, and S100A8 and S100A9. To assess the role of CXCL9, CXCL10, CXCL11, which bind to CXCR3, on phenotype development, we expressed TAM67 in CXCR3 knockout mice. Using a similar strategy, we examine the role of S100A8 and S100A9. Surprisingly, loss of CXCR3 or S100A8/A9 did not attenuate phenotype development. These studies suggest that interfering with epidermal AP1 factor signaling initiates a loss of barrier function leading to enhanced epidermal chemokine production, but that CXCR3 and S100A8/A9 do not mediate the phenotypic response.
Collapse
|
13
|
Maasz G, Zrinyi Z, Takacs P, Lovas S, Fodor I, Kiss T, Pirger Z. Complex molecular changes induced by chronic progestogens exposure in roach, Rutilus rutilus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:9-17. [PMID: 28092737 DOI: 10.1016/j.ecoenv.2017.01.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 05/14/2023]
Abstract
In our previous study, we measured 0.23-13.67ng/L progestogens (progesterone, drospirenone, levonorgestrel) in natural waters in the catchment area of the largest shallow lake of Central Europe, Lake Balaton. Progestogen contaminations act as potent steroids with mixed progestagenic, androgenic and mild estrogenic effects that is why our aim was to investigate the morphological and molecular effects of mixture of progesterone, drospirenone, and levonorgestrel in environmentally relevant (10ng/L) and higher (50 and 500ng/L) exposure concentrations in common roach, Rutilus rutilus. Steroids (e.g. progestogens) and the protein deglycase DJ-1 chaperon molecule aim the same target molecules in cells, therefore, we hypothesized that a relationship may exist between progestogens and DJ-1. Furthermore, our other aim was to follow the changes of signal molecules of different biological function due to progestogen treatment in serum and brain. Adult roaches were exposed to 10, 50 and 500ng/L of mixture of progestogen for 42 days and their somatic indices (brain-somatic, liver-somatic, gonadosomatic and kidney-somatic) were measured. Vitellogenin (VTG) expression (estrogen effect) or inhibition (androgen effect) in fish is a widely used biomarker so we measured its changes in liver by ELISA. To determine the quantity and to map the spatial distribution of DJ-1 chaperon protein the brain and liver tissues were analyzed by ELISA and immunohistochemistry. Furthermore, we also studied molecular alterations: a) in the serum by measuring cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL) and triglyceride concentrations and b) in brain homogenate using a cell stress array kit (26 protein). The somatic index of liver and kidney significantly in all the treated groups, whereas the gonadosomatic index of 500ng/L treated group showed significant decrease compared to control animals. VTG level increased significantly in 500ng/L progestogen treated group. Since the concentration of DJ-1 significantly increased in brain and liver in all progestogen treatment groups, the DJ-1 protein could be able to a more sensitive marker than VTG. Serum LDL and cholesterol levels of exposed fish were significantly decreased. DJ-1 was mediated through the stimulation of the expression of LDL-receptor which facilitates reuptake subsequently. In summary, our observations unfolded new data about molecular alterations induced by the combined action of environmental progestogens. In addition, the DJ-1 chaperon protein as a possible biomarker helped to trace the abiotic chemical environmental contaminations, like progestogens in the freshwater ecosystems.
Collapse
Affiliation(s)
- Gabor Maasz
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, MTA-Centre for Ecological Research, Balaton Limnological Institute, 8237 Tihany, Hungary.
| | - Zita Zrinyi
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, MTA-Centre for Ecological Research, Balaton Limnological Institute, 8237 Tihany, Hungary.
| | - Peter Takacs
- Department of Hydrozoology, MTA-Centre for Ecological Research, Balaton Limnological Institute, 8237 Tihany, Hungary.
| | - Sandor Lovas
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, MTA-Centre for Ecological Research, Balaton Limnological Institute, 8237 Tihany, Hungary.
| | - Istvan Fodor
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, MTA-Centre for Ecological Research, Balaton Limnological Institute, 8237 Tihany, Hungary.
| | - Tibor Kiss
- Chemical Ecology and Neurobiology, Department of Experimental Zoology, MTA-Centre for Ecological Research, Balaton Limnological Institute, 8237 Tihany, Hungary.
| | - Zsolt Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, MTA-Centre for Ecological Research, Balaton Limnological Institute, 8237 Tihany, Hungary.
| |
Collapse
|
14
|
Uchida R, Aoki R, Aoki-Yoshida A, Tajima A, Takayama Y. Promoting effect of lactoferrin on barrier function and epithelial differentiation of human keratinocytes. Biochem Cell Biol 2017; 95:64-68. [DOI: 10.1139/bcb-2016-0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to elucidate the effects of bovine lactoferrin on keratinocyte differentiation and barrier function. Addition of bovine lactoferrin to differentiating HaCaT human keratinocytes led to increased transepithelial electrical resistance (TER), a marker of epithelial barrier function. This elevation was followed by upregulation of two differentiation markers, involucrin and filaggrin. The expression level of sterol regulatory element-binding protein-1 was also enhanced by bovine lactoferrin. The lactoferrin-induced upregulation of involucrin and filaggrin expression were confirmed in normal human epidermal keratinocytes (NHEK). Treatment with SB203580, a p38 mitogen-activated protein kinase (MAPK) α inhibitor, impaired the upregulation of involucrin and filaggrin expression in response to lactoferrin. The elevation of p38 MAPK phosphorylation was further enhanced by lactoferrin in the initial stage of differentiation of HaCaT keratinocytes. The findings suggest that bovine lactoferrin promotes epithelial differentiation by a p38-MAPK-dependent mechanism.
Collapse
Affiliation(s)
- Ryo Uchida
- Functional Biomolecules Research Group, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Reiji Aoki
- Functional Biomolecules Research Group, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| | - Ayako Aoki-Yoshida
- Functional Biomolecules Research Group, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Atsushi Tajima
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiharu Takayama
- Functional Biomolecules Research Group, National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
15
|
Saha K, Adhikary G, Eckert RL. MEP50/PRMT5 Reduces Gene Expression by Histone Arginine Methylation and this Is Reversed by PKCδ/p38δ Signaling. J Invest Dermatol 2016; 136:214-224. [PMID: 26763441 PMCID: PMC4899982 DOI: 10.1038/jid.2015.400] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 09/03/2015] [Accepted: 09/26/2015] [Indexed: 02/08/2023]
Abstract
PKCδ and p38δ are key proteins in a cascade that stimulates keratinocyte differentiation. This cascade activates transcription of involucrin (hINV) and other genes associated with differentiation. Protein arginine methyltransferase 5 (PRMT5) is an arginine methyltransferase that symmetrically dimethylates arginine residues. This protein interacts with a cofactor, MEP50, and symmetrically dimethylates arginine eight of histone 3 (H3R8me2s) and arginine three of histone 4 (H4R3me2s) to silence gene expression. We use the involucrin gene as a tool to understand the relationship between PKCδ/p38δ and PRMT5/MEP50 signaling. MEP50 suppresses hINV mRNA level and promoter activity. This is associated with increased arginine dimethylation of hINV gene-associated H3/H4. We further show that the PKCδ/p38δ keratinocyte differentiation cascade reduces PRMT5 and MEP50 expression, association with the hINV gene promoter, and H3R8me2s and H4R2me2s formation. We propose that PRMT5/MEP50-dependent methylation is an epigenetic mechanism that assists in silencing of hINV expression, and that PKCδ signaling activates gene expression by directly activating transcription and by suppressing PRMT5/MEP50 dependent arginine dimethylation of promoter associated histones. This is an example of crosstalk between PKCδ/p38δ signaling and PRMT5/MEP50 epigenetic silencing.
Collapse
Affiliation(s)
- Kamalika Saha
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Obstetrics and Gynecology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
16
|
Saha K, Eckert RL. Methylosome Protein 50 and PKCδ/p38δ Protein Signaling Control Keratinocyte Proliferation via Opposing Effects on p21Cip1 Gene Expression. J Biol Chem 2015; 290:13521-30. [PMID: 25851901 PMCID: PMC4505598 DOI: 10.1074/jbc.m115.642868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a key epigenetic regulator that symmetrically dimethylates arginine residues on histones H3 and H4 to silence gene expression. PRMT5 is frequently observed in a complex with the cofactor methylosome protein 50 (MEP50), which is required for PRMT5 activity. PKCδ/p38δ signaling, a key controller of keratinocyte proliferation and differentiation, increases p21(Cip1) expression to suppress keratinocyte proliferation. We now show that MEP50 enhances keratinocyte proliferation and survival via mechanisms that include silencing of p21(Cip1) expression. This is associated with enhanced PRMT5-MEP50 interaction at the p21(Cip1) promoter and enhanced arginine dimethylation of the promoter-associated histones H3 and H4. It is also associated with a MEP50-dependent reduction in the level of p53, a key controller of p21(Cip1) gene expression. We confirm an important biological role for MEP50 and PRMT5 in regulating keratinocyte proliferation using a stratified epidermal equivalent model that mimics in vivo epidermal keratinocyte differentiation. In this model, PRMT5 or MEP50 knockdown results in reduced keratinocyte proliferation. We further show that PKCδ/p38δ signaling suppresses MEP50 expression, leading to reduced H3/H4 arginine dimethylation at the p21(Cip1) promoter, and that this is associated with enhanced p21(Cip1) expression and reduced cell proliferation. These findings describe an opposing action between PKCδ/p38δ MAPK signaling and PRMT5/MEP50 epigenetic silencing mechanisms in regulating cell proliferation.
Collapse
Affiliation(s)
- Kamalika Saha
- From the Departments of Biochemistry and Molecular Biology
| | - Richard L Eckert
- From the Departments of Biochemistry and Molecular Biology, Dermatology, and Obstetrics and Gynecology and the Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
17
|
Li WH, Zhang L, Lyte P, Rodriguez K, Cavender D, Southall MD. p38 MAP Kinase Inhibition Reduces Propionibacterium acnes-Induced Inflammation in Vitro. Dermatol Ther (Heidelb) 2015; 5:53-66. [PMID: 25749612 PMCID: PMC4374066 DOI: 10.1007/s13555-015-0072-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 12/16/2022] Open
Abstract
Introduction Propionibacterium acnes, a ubiquitous skin bacterium, stimulates keratinocytes to produce a number of proinflammatory cytokines and may contribute to inflammatory acne. The aim of the study was to investigate whether P. acnes-induced proinflammatory cytokine release is mediated by P. acnes-induced activation of p38 mitogen-activated protein kinase (p38 MAPK or p38) in human keratinocytes. Methods Immunohistochemistry was used to evaluate p38 phosphorylation in human skin samples with or without acne. Primary human keratinocytes and epidermal skin equivalents were exposed to viable P. acnes. Phosphorylation of MAPKs without or with p38 inhibitors was examined by Western blot and cytokine secretion was detected by Enzyme-Linked Immunosorbent Assay (ELISA). Results Increased levels of phospho-p38 were observed in human acne lesions, predominantly in follicular and perifollicular keratinocytes. Exposure of cultured human keratinocytes to viable P. acnes resulted in phosphorylation of multiple members of the MAPK family, including rapid and transient activation of p38 and extracellular signal-related kinase (ERK1/2) and relatively slow but sustained activation of c-Jun N-terminal kinases (JNK1/2). Viable P. acnes induced the secretion of interleukin-1α (IL-1α), tumor necrosis factor-α (TNF-α), and IL-8 from human keratinocytes. The phosphorylation of p38 (phospho-p38) and the secretion of cytokines induced by P. acnes in cultured keratinocytes were inhibited by SB203580, a p38α/β inhibitor. Furthermore, SCIO-469, a selective inhibitor of p38α, showed similar effects in cultured keratinocytes. Topical treatment of SCIO-469 inhibited the P. acnes-induced phospho-p38 and cytokine secretion in human epidermal equivalents. Conclusion The data demonstrate that P. acnes induces p38-dependent inflammatory responses in keratinocytes, and suggest that p38 may play an important role in the pathogenesis of inflammatory acne. Funding Johnson & Johnson. Electronic supplementary material The online version of this article (doi:10.1007/s13555-015-0072-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Hwa Li
- Department of Skin Biology and Pharmacology, The Johnson & Johnson Skin Research Center, Johnson & Johnson Consumer and Personal Products Worldwide, Division of Johnson and Johnson Consumer Companies, Inc., 199 Grandview Road, Skillman, NJ, 08558, USA,
| | | | | | | | | | | |
Collapse
|
18
|
p38δ MAPK: Emerging Roles of a Neglected Isoform. Int J Cell Biol 2014; 2014:272689. [PMID: 25313309 PMCID: PMC4182853 DOI: 10.1155/2014/272689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/19/2022] Open
Abstract
p38δ mitogen activated protein kinase (MAPK) is a unique stress responsive protein kinase. While the p38 MAPK family as a whole has been implicated in a wide variety of biological processes, a specific role for p38δ MAPK in cellular signalling and its contribution to both physiological and pathological conditions are presently lacking. Recent emerging evidence, however, provides some insights into specific p38δ MAPK signalling. Importantly, these studies have helped to highlight functional similarities as well as differences between p38δ MAPK and the other members of the p38 MAPK family of kinases. In this review we discuss the current understanding of the molecular mechanisms underlying p38δ MAPK activity. We outline a role for p38δ MAPK in important cellular processes such as differentiation and apoptosis as well as pathological conditions such as neurodegenerative disorders, diabetes, and inflammatory disease. Interestingly, disparate roles for p38δ MAPK in tumour development have also recently been reported. Thus, we consider evidence which characterises p38δ MAPK as both a tumour promoter and a tumour suppressor. In summary, while our knowledge of p38δ MAPK has progressed somewhat since its identification in 1997, our understanding of this particular isoform in many cellular processes still strikingly lags behind that of its counterparts.
Collapse
|
19
|
Sohn KC, Lee EJ, Shin JM, Lim EH, No Y, Lee JY, Yoon TY, Lee YH, Im M, Lee Y, Seo YJ, Lee JH, Kim CD. Regulation of keratinocyte differentiation by O-GlcNAcylation. J Dermatol Sci 2014; 75:10-5. [PMID: 24802710 DOI: 10.1016/j.jdermsci.2014.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 04/04/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) modification is one of the posttranslational modification, emerging as an important regulatory mechanism in various cellular events. OBJECTIVE We attempted to investigate whether O-GlcNAcylation is involved in keratinocyte differentiation. METHODS Immunohistochemistry and Western blot were performed to demonstrate O-GlcNAcylation in keratinocyte differentiation. RESULTS During calcium-induced keratinocyte differentiation, overall O-GlcNAcylation was decreased in a temporal manner. We focused our attention on transcription factor Sp-1, which is implicated in keratinocyte differentiation. Total Sp-1 level did not change during keratinocyte differentiation. However, O-GlcNAcylated Sp-1 was decreased in a keratinocyte differentiation-dependent manner. Interestingly, transcriptional activity of Sp-1, in terms of involucrin and loricrin promoter activities, was markedly increased by overexpression of O-GlcNAcase (OGA). In addition, membrane permeable non-O-GlcNAcylated Sp-1 did show transcriptional activity, while membrane permeable O-GlcNAcylated Sp-1 did not, suggesting O-GlcNAcylated Sp-1 is an inactive form in keratinocyte differentiation. CONCLUSION Our results reveal that O-GlcNAcylation is a dynamic regulatory mechanism for keratinocyte differentiation.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Jin Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jung-Min Shin
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hwa Lim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yoonoo No
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Yeoun Lee
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Tae Young Yoon
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Im
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Joon Seo
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chang Deok Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Abdelfadil E, Cheng YH, Bau DT, Ting WJ, Chen LM, Hsu HH, Lin YM, Chen RJ, Tsai FJ, Tsai CH, Huang CY. Thymoquinone induces apoptosis in oral cancer cells through p38β inhibition. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:683-96. [PMID: 23711149 DOI: 10.1142/s0192415x1350047x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oral cancer is a common malignancy associated with high morbidity and mortality. While p38 MAPK is reported to be involved in different cellular activities such as proliferation and differentiation, reports rarely define the roles of the individual members of the p38 MAPK family in cancer. We used two unique cell lines developed by our lab representing chemically induced oral cancer cells (T28) and non-tumor cells (N28) obtained from tissues surrounding the induced cancer as a model to screen out whether p38 MAPK is involved in the malignant transformation processes. The results suggest an association between p38β not p38α and oral cancer development. Additionally, the anti-cancer activity of thymoquinone (TQ) was screened out and we found evidences suggesting that the anti-tumor activity of TQ may be attributed to the downregulation of p38β MAPK.
Collapse
Affiliation(s)
- Ehab Abdelfadil
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
AP1 transcription factors in epidermal differentiation and skin cancer. J Skin Cancer 2013; 2013:537028. [PMID: 23762562 PMCID: PMC3676924 DOI: 10.1155/2013/537028] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/02/2013] [Indexed: 01/17/2023] Open
Abstract
AP1 (jun/fos) transcription factors (c-jun, junB, junD, c-fos, FosB, Fra-1, and Fra-2) are key regulators of epidermal keratinocyte survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and because AP1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Various in vivo genetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and expression of dominant-negative inactivating AP1 transcription factors in epidermis. Taken together, these studies suggest that individual AP1 transcription factors have different functions in the epidermis and in cancer development and that altering AP1 transcription factor function in the basal versus suprabasal layers differentially influences the epidermal differentiation response and disease and cancer development.
Collapse
|
22
|
Kaneko T, Chokechanachaisakul U, Kawamura J, Yamanaka Y, Ito T, Sunakawa M, Suda H, Okiji T. Up-regulation of p38 Mitogen-activated Protein Kinase during Pulp Injury–induced Glial Cell/Neuronal Interaction in the Rat Thalamus. J Endod 2013; 39:488-92. [DOI: 10.1016/j.joen.2012.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 12/26/2022]
|
23
|
Alevy YG, Patel AC, Romero AG, Patel DA, Tucker J, Roswit WT, Miller CA, Heier RF, Byers DE, Brett TJ, Holtzman MJ. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest 2012; 122:4555-68. [PMID: 23187130 PMCID: PMC3533556 DOI: 10.1172/jci64896] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/13/2012] [Indexed: 12/15/2022] Open
Abstract
Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13-driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases.
Collapse
Affiliation(s)
- Yael G. Alevy
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anand C. Patel
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Arthur G. Romero
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dhara A. Patel
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jennifer Tucker
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - William T. Roswit
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chantel A. Miller
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard F. Heier
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E. Byers
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tom J. Brett
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Holtzman
- Drug Discovery Program, Pulmonary and Critical Care Medicine, Department of Medicine,
Department of Pediatrics,
Department of Cell Biology, and
Department of Biochemistry, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
24
|
Tzarum N, Eisenberg-Domovich Y, Gills JJ, Dennis PA, Livnah O. Lipid molecules induce p38α activation via a novel molecular switch. J Mol Biol 2012; 424:339-53. [PMID: 23079240 DOI: 10.1016/j.jmb.2012.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022]
Abstract
p38α mitogen-activated protein kinase (MAPK) is generally activated by dual phosphorylation but has also been shown to exhibit alternative activation modes. One of these modes included a direct interaction with phosphatidylinositol ether lipid analogues (PIA) inducing p38α autoactivation and apoptosis. Perifosine, an Akt inhibitor in phase II clinical trials, also showed p38α activation properties similarly to those of PIAs. The crystal structures of p38α in complex with PIA23, PIA24 and perifosine provide insights into this unique activation mode. The activating molecules bind a unique hydrophobic binding site in the kinase C'-lobe formed in part by the MAPK insert region. In addition, there are conformational changes in the short αEF/αF loop region that acts as an activation switch, inducing autophosphorylation. Structural and biochemical characterization of the αEF/αF loop identified Trp197 as a key residue in the lipid binding and in p38α catalytic activity. The lipid binding site also accommodates hydrophobic inhibitor molecules and, thus, can serve as a novel p38α-target for specific activation or inhibition, with novel therapeutic implications.
Collapse
Affiliation(s)
- Netanel Tzarum
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences and The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
25
|
Eckert RL, Adhikary G, Balasubramanian S, Rorke EA, Vemuri MC, Boucher SE, Bickenbach JR, Kerr C. Biochemistry of epidermal stem cells. Biochim Biophys Acta Gen Subj 2012; 1830:2427-34. [PMID: 22820019 DOI: 10.1016/j.bbagen.2012.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/10/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. SCOPE OF REVIEW A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. MAJOR CONCLUSIONS An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. GENERAL SIGNIFICANCE Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Han B, Rorke EA, Adhikary G, Chew YC, Xu W, Eckert RL. Suppression of AP1 transcription factor function in keratinocyte suppresses differentiation. PLoS One 2012; 7:e36941. [PMID: 22649503 PMCID: PMC3359321 DOI: 10.1371/journal.pone.0036941] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/16/2012] [Indexed: 11/19/2022] Open
Abstract
Our previous study shows that inhibiting activator protein one (AP1) transcription factor function in murine epidermis, using dominant-negative c-jun (TAM67), increases cell proliferation and delays differentiation. To understand the mechanism of action, we compare TAM67 impact in mouse epidermis and in cultured normal human keratinocytes. We show that TAM67 localizes in the nucleus where it forms TAM67 homodimers that competitively interact with AP1 transcription factor DNA binding sites to reduce endogenous jun and fos factor binding. Involucrin is a marker of keratinocyte differentiation that is expressed in the suprabasal epidermis and this expression requires AP1 factor interaction at the AP1-5 site in the promoter. TAM67 interacts competitively at this site to reduce involucrin expression. TAM67 also reduces endogenous c-jun, junB and junD mRNA and protein level. Studies with c-jun promoter suggest that this is due to reduced transcription of the c-jun gene. We propose that TAM67 suppresses keratinocyte differentiation by interfering with endogenous AP1 factor binding to regulator elements in differentiation-associated target genes, and by reducing endogenous c-jun factor expression.
Collapse
Affiliation(s)
- Bingshe Han
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ellen A. Rorke
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
27
|
Leprosy and the natural selection for psoriasis. Med Hypotheses 2012; 78:183-90. [DOI: 10.1016/j.mehy.2011.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/21/2011] [Indexed: 12/30/2022]
|
28
|
Kanade SR, Eckert RL. Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cδ- and p38δ-dependent signaling and keratinocyte differentiation. J Biol Chem 2011; 287:7313-23. [PMID: 22199349 DOI: 10.1074/jbc.m111.331660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKCδ is a key regulator of keratinocyte differentiation that activates p38δ phosphorylation leading to increased differentiation as measured by an increased expression of the structural protein involucrin. Our previous studies suggest that p38δ exists in association with protein partners. A major goal is to identify these partners and understand their role in regulating keratinocyte differentiation. In this study we use affinity purification and mass spectrometry to identify protein arginine methyltransferase 5 (PRMT5) as part of the p38δ signaling complex. PRMT5 is an arginine methyltransferase that symmetrically dimethylates arginine residues on target proteins to alter target protein function. We show that PRMT5 knockdown is associated with increased p38δ phosphorylation, suggesting that PRMT5 impacts the p38δ signaling complex. At a functional level we show that PRMT5 inhibits the PKCδ- or 12-O-tetradecanoylphorbol-13-acetate-dependent increase in human involucrin expression, and PRMT5 dimethylates proteins in the p38δ complex. Moreover, PKCδ expression reduces the PRMT5 level, suggesting that PKCδ activates differentiation in part by reducing PRMT5 level. These studies indicate antagonism between the PKCδ and PRMT5 signaling in control of keratinocyte differentiation.
Collapse
Affiliation(s)
- Santosh R Kanade
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
29
|
New Insights into the p38γ and p38δ MAPK Pathways. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:520289. [PMID: 22175015 PMCID: PMC3235882 DOI: 10.1155/2012/520289] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 10/13/2011] [Indexed: 01/19/2023]
Abstract
The mammalian p38 mitogen-activated protein kinases (MAPKs) family is composed of four members (p38α, p38β, p38γ, and p38δ), which are very similar in amino acid sequence but differ in their expression patterns. This suggests that they may have specific functions in different organs. In the last years most of the effort has been centred on the study of the function of the p38α isoform, which is widely referred to as p38 in the literature. However, the role that other p38 isoforms play in cellular functions and their implication in some of the pathological conditions have not been precisely defined so far. In this paper we highlight recent advances made in defining the functions of the two less studied alternative p38MAPKs, p38γ and p38δ. We describe that these p38MAPKs show similarities to the classical p38α isoform, although they may play central and distinct role in certain physiological and pathological processes.
Collapse
|
30
|
Abstract
The mitogen-activated protein kinase (MAPK) family includes the p38 kinases, which consist of highly conserved proline-directed serine-threonine protein kinases that are activated in response to inflammatory signals. Of the four isoforms, p38α is the most abundant in inflammatory cells and has been the most studied through mainly the availability of small molecule inhibitors. The p38 substrates include transcription factors; other protein kinases, which in turn phosphorylate transcription factors; cytoskeletal proteins and translational components; and other enzymes. Both asthma and COPD are characterized by chronic airflow obstruction, airway and lung remodeling, and chronic inflammation. p38 is involved in the inflammatory responses induced by cigarette smoke exposure, endotoxin, and oxidative stress through activation and release of proinflammatory cytokines/chemokines, posttranslational regulation of these genes, and activation of inflammatory cell migration. Inhibition of p38 MAPK prevented allergen-induced pulmonary eosinophilia, mucus hypersecretion, and airway hyperresponsiveness, effects that may partly result from p38 activation on eosinophil apoptosis and on airway smooth muscle cell production of cytokines/chemokines. In addition, p38 regulates the augmented contractile response induced by oxidative stress. The activation of p38 observed in epithelial cells and macrophages also may underlie corticosteroid insensitivity of severe asthma and COPD. Therefore, p38 inhibitors present a potential attractive treatment of these conditions. Second-generation p38 inhibitors have been disappointing in the treatment of rheumatoid arthritis. In two 6-week studies in patients with COPD, the results were encouraging. Side effects such as liver toxicity remain a possibility, and whether the beneficial effects of p38 inhibitors are clinically significant and sustained need to be determined.
Collapse
Affiliation(s)
- Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, and Biomedical Research Unit, Royal Brompton Hospital, London, England.
| |
Collapse
|
31
|
Zhang J, Bowden GT. Activation of p38 MAP kinase and JNK pathways by UVA irradiation. Photochem Photobiol Sci 2011; 11:54-61. [PMID: 21858326 DOI: 10.1039/c1pp05133d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are more than two million new cases of non-melanoma skin cancers (NMSCs) diagnosed each year in the United States of America. The clear etiological factor is chronic exposure to solar radiation from the sun. The wavelengths of solar light that reach the earth's surface include UVB (280-320 nm), which accounts for 1-10%, and UVA (320-400 nm), which accounts for 90-99% of the radiation. While most published research has focused on the effects of UVB, little is known concerning UVA-mediated signal transduction pathways, and their role in skin tumor promotion and progression, giving rise to squamous cell carcinomas (SCCs). Here, we focus on UVA-mediated activation of p38 MAP kinase and c-Jun N-terminal kinase (JNK), and their roles in activator protein-1 (AP-1) mediated transcription, cyclooxygenase-2 (COX-2) and Bcl-XL expression. Since p38 MAP kinase and JNK play major roles in the expression of UVA-induced AP-1, COX-2 and Bcl-XL, pharmacological inhibitors of these kinases may be useful in the chemoprevention of SCC skin cancer.
Collapse
Affiliation(s)
- Jack Zhang
- Department of Medical Pharmacology, University of Arizona, Tucson, Arizona, USA
| | | |
Collapse
|
32
|
Chew YC, Adhikary G, Wilson GM, Reece EA, Eckert RL. Protein kinase C (PKC) delta suppresses keratinocyte proliferation by increasing p21(Cip1) level by a KLF4 transcription factor-dependent mechanism. J Biol Chem 2011; 286:28772-28782. [PMID: 21652709 PMCID: PMC3190685 DOI: 10.1074/jbc.m110.205245] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/16/2010] [Indexed: 11/06/2022] Open
Abstract
PKCδ increases keratinocyte differentiation and suppresses keratinocyte proliferation and survival. However, the mechanism of proliferation suppression is not well understood. The present studies show that PKCδ overexpression increases p21(Cip1) mRNA and protein level and promoter activity and that treatment with dominant-negative PKCδ, PKCδ-siRNA, or rottlerin inhibits promoter activation. Analysis of the p21(Cip1) promoter upstream regulatory region reveals three DNA segments that mediate PKCδ-dependent promoter activation. The PKCδ response element most proximal to the transcription start site encodes six GC-rich DNA elements. Mutation of these sites results in a loss of PKCδ-dependent promoter activation. Gel mobility supershift and chromatin immunoprecipitation reveal that these DNA elements bind the Kruppel-like transcription factor KLF4. PKCδ increases KLF4 mRNA and protein level and KLF4 binding to the GC-rich elements in the p21(Cip1) proximal promoter. In addition, KLF4-siRNA inhibits PKCδ-dependent p21(Cip1) promoter activity. PKCδ increases KLF4 expression leading to enhanced KLF4 interaction with the GC-rich elements in the p21(Cip1) promoter to activate transcription.
Collapse
Affiliation(s)
- Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - E Albert Reece
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
33
|
Tzarum N, Engelberg D, Livnah O. Conformational bias imposed by source microseeds results in structural ambiguity. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:877-84. [PMID: 21821885 PMCID: PMC3151118 DOI: 10.1107/s1744309111017970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/12/2011] [Indexed: 11/10/2022]
Abstract
The p38 MAP kinase pathway is an essential component of numerous cellular signalling networks which are usually activated in response to extracellular environmental stress conditions. In addition to the canonical activation, several alternative activation pathways have been identified for p38; one of these, in which p38 is initially phosphorylated on Tyr323 and consequently autoactivated, is exclusive to T cells and is induced by TCR activation. Intrinsically active and inactive mutants at position 323 have been developed in order to evaluate the structural changes that occur upon TCR-induced activation. In order to promote crystal growth, cross streak-seeding techniques were utilized. This technique has gained popularity in promoting crystal growth when spontaneous nucleation induces critical defects or is being entirely hindered. The crystal characteristics of some mutants were highly similar to those of the wild-type source seeds (form A). In contrast, other mutants crystallized spontaneously with a different space group and molecular packing (form B). One of the active mutants (Y323T) crystallized in both crystal forms, displaying different packing characteristics and significant differences in molecular conformation that were clearly dictated by the source seeds. This implies that the source seeds used in cross streak-seeding could, in some cases, impose bias on the structural outcome of the studied molecule. Such incidents could occur when the conformational freedom permits crystal packing while not reflecting the authentic structure.
Collapse
Affiliation(s)
- Netanel Tzarum
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - David Engelberg
- The Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Oded Livnah
- The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
34
|
Active Mutants of the TCR-Mediated p38α Alternative Activation Site Show Changes in the Phosphorylation Lip and DEF Site Formation. J Mol Biol 2011; 405:1154-69. [PMID: 21146537 DOI: 10.1016/j.jmb.2010.11.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 12/20/2022]
|
35
|
Dickinson SE, Olson ER, Zhang J, Cooper SJ, Melton T, Criswell PJ, Casanova A, Dong Z, Hu C, Saboda K, Jacobs ET, Alberts DS, Bowden GT. p38 MAP kinase plays a functional role in UVB-induced mouse skin carcinogenesis. Mol Carcinog 2011; 50:469-78. [PMID: 21268131 DOI: 10.1002/mc.20734] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 11/20/2010] [Accepted: 12/04/2010] [Indexed: 01/15/2023]
Abstract
UVB irradiation of epidermal keratinocytes results in the activation of the p38 mitogen-activated protein kinase (MAPK) pathway and subsequently activator protein-1 (AP-1) transcription factor activation and cyclooxygenase-2 (COX-2) expression. AP-1 and COX-2 have been shown to play functional roles in UVB-induced mouse skin carcinogenesis. In this study, the experimental approach was to express a dominant negative p38α MAPK (p38DN) in the epidermis of SKH-1 hairless mice and assess UVB-induced AP-1 activation, COX-2 expression, and the skin carcinogenesis response in these mice compared to wild-type littermates. We observed a significant inhibition of UVB-induced AP-1 activation and COX-2 expression in p38DN transgenic mice, leading to a significant reduction of UVB-induced tumor number and growth compared to wild-type littermates in a chronic UVB skin carcinogenesis model. A potential mechanism for this reduction in tumor number and growth rate is an inhibition of chronic epidermal proliferation, observed as reduced Ki-67 staining in p38DN mice compared to wild-type. Although we detected no difference in chronic apoptotic rates between transgenic and nontransgenic mice, analysis of acutely irradiated mice demonstrated that expression of the p38DN transgene significantly inhibited UVB-induced apoptosis of keratinocytes. These results counter the concerns that inhibition of p38 MAPK in a chronic situation could compromise the ability of the skin to eliminate potentially tumorigenic cells. Our data indicate that p38 MAPK is a good target for pharmacological intervention for UV-induced skin cancer in patients with sun damaged skin, and suggest that inhibition of p38 signaling reduces skin carcinogenesis by inhibiting COX-2 expression and proliferation of UVB-irradiated cells.
Collapse
Affiliation(s)
- Sally E Dickinson
- Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
TRAIL-induced keratinocyte differentiation requires caspase activation and p63 expression. J Invest Dermatol 2011; 131:874-83. [PMID: 21248767 DOI: 10.1038/jid.2010.402] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cornification, the terminal differentiation of keratinocytes, is a special form of programmed cell death in the skin. In this article, we report that tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce the expression of the keratinocyte differentiation markers involucrin and type 1 transglutaminase in normal human epidermal keratinocytes. The induction of differentiation occurs mainly under the activation of caspases 3 and 8, and apoptosis can also be triggered. Inhibition of these apoptotic caspases attenuates both apoptosis and differentiation of keratinocytes caused by TRAIL but barely affects the induction of differentiation caused by calcium and phorbol 12-myristate 13-acetate. Differential regulation of extracellular signal-regulated kinase and p38 activation by TRAIL is also observed. Moreover, the degradation of p63 is induced by TRAIL-elicited caspase activation. However, the existence of p63 is essential for the initiation of keratinocyte differentiation by TRAIL because knockdown of ΔNp63 decreases TRAIL-induced differentiation. Taken together, our results suggest that TRAIL can be an inducer of both differentiation and apoptosis in human keratinocytes, and that caspases critically mediate these processes. This study identifies a new role of apoptotic caspases for terminal differentiation of keratinocytes and further elucidates the molecular pathways involved in this unique model of cell death.
Collapse
|
37
|
Rat mesothelioma cell proliferation requires p38δ mitogen activated protein kinase and C/EBP-α. Lung Cancer 2011; 73:166-70. [PMID: 21227534 DOI: 10.1016/j.lungcan.2010.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/20/2010] [Accepted: 12/06/2010] [Indexed: 11/21/2022]
Abstract
Pleural malignant mesothelioma is a rare but deadly tumour mainly induced by asbestos inhalation. Despite the ban of asbestos in 1990 in 52 countries, mesothelioma cases still increase worldwide. In pleural mesothelioma, p38 mitogen activated protein kinases (MAPK) have been suggested to play a major role in carcinogenesis and aggressiveness of tumours. The aim of this study was to determine the role of the different four p38 MAPK isoforms and their effect on proliferation together with the underlying signalling pathways in a rat pleural mesothelioma cell line. Rat pleural mesothelioma cells were stimulated with platelet-derived growth factor (PDGF)-BB and/or transforming growth factor beta (TGF)-β. MAPK and transcription factor expression and activation was monitored in the cytosol and nucleus by immuno-blotting. Proliferation was determined by manual cell count and siRNAs were used to control MAPK and transcription factor expression and action. Only PDGF-BB, but not TGF-β1 induced proliferation via activated Erk1/2 and p38 MAPK. The p38α and δ isoforms were expressed in the cytosol, and upon activation p38δ translocated into the nucleus, while p38α remained in the cytosol. No other p38 isoform was expressed by rat mesothelioma cells. C/EBP-α was found in both the cytosol and the nucleus, while C/EBP-β was not expressed at all. PDGF-BB induced proliferation was suppressed by down-regulation of either Erk1/2, or p38δ MAPK, or C/EBP-α. Furthermore, TGF-β inhibited PDGF-BB induced proliferation by interruption of p38 MAPK signalling. From this rat model, we conclude that in pleural mesothelioma, p38δ in C/EBP-α mediate proliferation and thus may represent new targets in mesothelioma therapy.
Collapse
|
38
|
Rorke EA, Adhikary G, Jans R, Crish JF, Eckert RL. AP1 factor inactivation in the suprabasal epidermis causes increased epidermal hyperproliferation and hyperkeratosis but reduced carcinogen-dependent tumor formation. Oncogene 2010; 29:5873-82. [PMID: 20818430 PMCID: PMC2974027 DOI: 10.1038/onc.2010.315] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activator protein one (AP1) (jun/fos) factors comprise a family of transcriptional regulators (c-jun, junB, junD, c-fos, FosB, Fra-1 and Fra-2) that are key controllers of epidermal keratinocyte survival and differentiation, and are important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each member is expressed in defined cell layers during epidermal differentiation, and because AP1 factors regulate competing processes (that is, proliferation, apoptosis and differentiation). We have proposed that AP1 factors function differently in basal versus suprabasal epidermis. To test this, we inactivated suprabasal AP1 factor function in mouse epidermis by targeted expression of dominant-negative c-jun (TAM67), which inactivates function of all AP1 factors. This produces increased basal keratinocyte proliferation, delayed differentiation and extensive hyperkeratosis. These findings contrast with previous studies showing that basal layer AP1 factor inactivation does not perturb resting epidermis. It is interesting that in spite of extensive keratinocyte hyperproliferation, susceptibility to carcinogen-dependent tumor induction is markedly attenuated. These novel observations strongly suggest that AP1 factors have distinct roles in the basal versus suprabasal epidermis, confirm that AP1 factor function is required for normal terminal differentiation, and suggest that AP1 factors have a different role in normal epidermis versus cancer progression.
Collapse
Affiliation(s)
- E A Rorke
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
39
|
Adhikary G, Chew YC, Reece EA, Eckert RL. PKC-delta and -eta, MEKK-1, MEK-6, MEK-3, and p38-delta are essential mediators of the response of normal human epidermal keratinocytes to differentiating agents. J Invest Dermatol 2010; 130:2017-30. [PMID: 20445555 PMCID: PMC3120227 DOI: 10.1038/jid.2010.108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies suggest that the novel protein kinase C (PKC) isoforms initiate a mitogen-activated protein kinase (MAPK) signaling cascade that regulates keratinocyte differentiation. However, assigning these functions has relied on treatment with pharmacologic inhibitors and/or manipulating kinase function using overexpression of wild-type or dominant-negative kinases. As these methods are not highly specific, an obligatory regulatory role for individual kinases has not been assigned. In this study, we use small interfering RNA knockdown to study the role of individual PKC isoforms as regulators of keratinocyte differentiation induced by the potent differentiating stimulus, 12-O-tetradecanoylphorbol-13-acetate (TPA). PKC-delta knockdown reduces TPA-activated involucrin promoter activity, nuclear activator protein-1 factor accumulation and binding to DNA, and cell morphology change. Knockdown of PKC downstream targets, including MEKK-1, MEK-6, MEK-3, or p38-delta, indicates that these kinases are required for these responses. Additional studies indicate that knockdown of PKC-eta inhibits TPA-dependent involucrin promoter activation. In contrast, knockdown of PKC-alpha (a classical PKC isoform) or PKC-epsilon (a novel isoform) does not inhibit these TPA-dependent responses. Further studies indicate that PKC-delta is required for calcium and green tea polyphenol-dependent regulation of end responses. These findings are informative as they suggest an essential role for selected PKC and MAPK cascade enzymes in mediating a range of end responses to a range of differentiation stimuli in keratinocytes.
Collapse
Affiliation(s)
- Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yap Ching Chew
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E. Albert Reece
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Okada S, Muto A, Ogawa E, Nakanome A, Katoh Y, Ikawa S, Aiba S, Igarashi K, Okuyama R. Bach1-dependent and -independent regulation of heme oxygenase-1 in keratinocytes. J Biol Chem 2010; 285:23581-9. [PMID: 20501657 DOI: 10.1074/jbc.m109.068197] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bach1 is a member of the basic leucine zipper transcription factor family, and the Bach1/small Maf heterodimer specifically represses transcriptional activity directed by the Maf recognition element (MARE). Because Bach1 is a repressor of the oxidative stress response, we examined the function(s) of Bach1 in keratinocytes subjected to oxidative stress. Oxidative stress induced by H(2)O(2) led to an increase in MARE activity and expression of heme oxygenase-1 (HO-1), an inducible antioxidant defense enzyme. Bach1 depletion by small interfering RNAs or by deletion of Bach1 enhanced HO-1 expression in the absence of H(2)O(2), indicating that Bach1 is a critical repressor of HO-1 in keratinocytes. Although Bach1-deficient or -reduced keratinocytes expressed higher levels of HO-1 than control cells in response to H(2)O(2), Bach1 down-regulation did not attenuate the production of reactive oxygen species by H(2)O(2). In contrast, Bach1 overexpression abolished HO-1 induction by H(2)O(2), which led to increased reactive oxygen species accumulation. HO-1 was induced during keratinocyte differentiation, but MARE activity did not change during differentiation. Furthermore, Bach1 overexpression did not inhibit differentiation-associated induction of HO-1 expression, suggesting that HO-1 induction in differentiation is independent of Bach1. Thus, in response to oxidative stress, Bach1 regulates the oxidation state through the negative control of HO-1 expression prior to terminal keratinocyte differentiation. However, Bach1-mediated repression is negated during keratinocyte differentiation.
Collapse
Affiliation(s)
- Shuko Okada
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Koon HK, Chan PS, Wu ZG, Wong RNS, Lung ML, Chang CK, Mak NK. Role of mitogen-activated protein kinase in Zn-BC-AM PDT-induced apoptosis in nasopharyngeal carcinoma cells. Cell Biochem Funct 2010; 28:239-48. [DOI: 10.1002/cbf.1650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Adams S, Valchanova RS, Munz B. RIP2: A novel player in the regulation of keratinocyte proliferation and cutaneous wound repair? Exp Cell Res 2010; 316:728-36. [DOI: 10.1016/j.yexcr.2009.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 12/25/2022]
|
43
|
Lee IT, Lee CW, Tung WH, Wang SW, Lin CC, Shu JC, Yang CM. Cooperation of TLR2 with MyD88, PI3K, and Rac1 in lipoteichoic acid-induced cPLA2/COX-2-dependent airway inflammatory responses. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1671-84. [PMID: 20167866 DOI: 10.2353/ajpath.2010.090714] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lipoteichoic acid (LTA) plays a role in the pathogenesis of severe inflammatory responses induced by Gram-positive bacterial infection. Cytosolic phospholipase A(2) (cPLA(2)), cyclooxygenase-2 (COX-2), prostaglandin E(2) (PGE(2)), and interleukin (IL)-6 have been demonstrated to engage in airway inflammation. In this study, LTA-induced cPLA(2) and COX-2 expression and PGE(2) or IL-6 synthesis were attenuated by transfection with siRNAs of TLR2, MyD88, Akt, p42, p38, JNK2, and p65 or pretreatment with the inhibitors of PI3K (LY294002), p38 (SB202190), MEK1/2 (U0126), JNK1/2 (SP600125), and NF-kappaB (helenalin) in human tracheal smooth muscle cells (HTSMCs). LTA also induced cPLA(2) and COX-2 expression and leukocyte count in bronchoalveolar lavage fluid in mice. LTA-regulated PGE(2) or IL-6 production was inhibited by pretreatment with the inhibitors of cPLA(2) (AACOCF(3)) and COX-2 (NS-398) or transfection with cPLA(2) siRNA or COX-2 siRNA, respectively. LTA-stimulated NF-kappaB translocation or cPLA(2) phosphorylation was attenuated by pretreatment with LY294002, SB202190, U0126, or SP600125. Furthermore, LTA could stimulate TLR2, MyD88, PI3K, and Rac1 complex formation. We also demonstrated that Staphylococcus aureus could trigger these responses through a similar signaling cascade in HTSMCs. It was found that PGE(2) could directly stimulate IL-6 production in HTSMCs or leukocyte count in bronchoalveolar lavage fluid in mice. These results demonstrate that LTA-induced MAPKs activation is mediated through the TLR2/MyD88/PI3K/Rac1/Akt pathway, which in turn initiates the activation of NF-kappaB, and ultimately induces cPLA(2)/COX-2-dependent PGE(2) and IL-6 generation.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Fujie S, Maita H, Ariga H, Matsumoto KI. Tenascin-X induces cell detachment through p38 mitogen-activated protein kinase activation. Biol Pharm Bull 2010; 32:1795-9. [PMID: 19801846 DOI: 10.1248/bpb.32.1795] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular matrix glycoprotein tenascin-X (TNX) is the largest member of the tenascin family. In this study, we investigated the adhesive properties of TNX and the signaling pathway to be induced to mouse fibroblast L cells on TNX substrate. Approximately 45% of evaluable cells used in the cell adhesion assay were attached to purified TNX but did not spread and were rounded on TNX. The remaining 55% of cells were detached from the TNX substrate and were floating in the conditioned medium. In rounded cells on TNX, phosphorylation of focal adhesion kinase (FAK) was diminished compared with that in cells on control phosphate buffered saline (PBS). To better understand the pathways that lead to the detachment of cells on the TNX substrate, we examined phosphorylation of p38 mitogen-activated protein (MAP) kinase. Phosphorylation of p38 MAP kinase was observed in the rounded cells on TNX in a dose-dependent manner, and the maximum effect was observed at 30 min on TNX. Inhibition of p38 MAP kinase alpha expression by RNA interference partially suppressed the TNX-induced cell detachment. These results suggest that the p38 MAP kinase is a major mediator of TNX-induced cell detachment.
Collapse
Affiliation(s)
- Shinpei Fujie
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo060-0812, Japan
| | | | | | | |
Collapse
|
45
|
Development of a Novel Bioinformatics Tool for In Silico Validation of Protein Interactions. J Biomed Biotechnol 2010; 2010:670125. [PMID: 20625507 PMCID: PMC2896714 DOI: 10.1155/2010/670125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/10/2010] [Accepted: 03/30/2010] [Indexed: 11/17/2022] Open
Abstract
Protein interactions are crucial in most biological processes. Several in silico methods have been recently developed to predict them. This paper describes a bioinformatics method that combines sequence similarity and structural information to support experimental studies on protein interactions. Given a target protein, the approach selects the most likely interactors among the candidates revealed by experimental techniques, but not yet in vivo validated. The sequence and the structural information of the in vivo confirmed proteins and complexes are exploited to evaluate the candidate interactors. Finally, a score is calculated to suggest the most likely interactors of the target protein. As an example, we searched for GRB2 interactors. We ranked a set of 46 candidate interactors by the presented method. These candidates were then reduced to 21, through a score threshold chosen by means of a cross-validation strategy. Among them, the isoform 1 of MAPK14 was in silico confirmed as a GRB2 interactor. Finally, given a set of already confirmed interactors of GRB2, the accuracy and the precision of the approach were 75% and 86%, respectively. In conclusion, the proposed method can be conveniently exploited to select the proteins to be experimentally investigated within a set of potential interactors.
Collapse
|
46
|
Adams S, Munz B. RIP4 is a target of multiple signal transduction pathways in keratinocytes: implications for epidermal differentiation and cutaneous wound repair. Exp Cell Res 2009; 316:126-37. [PMID: 19818768 DOI: 10.1016/j.yexcr.2009.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 12/22/2022]
Abstract
Receptor interacting protein 4 (RIP4) is an important regulator of epidermal morphogenesis during embryonic development. We could previously show that expression of the rip4 gene is strongly downregulated in cutaneous wound repair, which might be initiated by a broad variety of growth factors and cytokines. Here, we demonstrate that in keratinocytes, rip4 expression is controlled by a multitude of different signal transduction pathways, such as the p38 mitogen-activated protein kinase (MAPK) and the nuclear factor kappa B (NF-kappaB) cascade, in a unique and specific manner. Furthermore, we show that the steroid dexamethasone abolishes the physiological rip4 downregulation after injury and might thus contribute to the phenotype of reduced and delayed wound reepithelialization seen in glucocorticoid-treated patients. As a whole, our data indicate that rip4 expression is regulated in a complex manner, which might have therapeutic implications.
Collapse
Affiliation(s)
- Stephanie Adams
- Charité, University Medicine Berlin, Institute of Physiology, Arnimallee 22, D-14195 Berlin, Germany
| | | |
Collapse
|
47
|
Characterization of a murine keyhole limpet hemocyanin (KLH)-delayed-type hypersensitivity (DTH) model: Role for p38 kinase. Int Immunopharmacol 2009; 9:1218-27. [DOI: 10.1016/j.intimp.2009.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 12/18/2022]
|
48
|
Carrozzino F, Pugnale P, Féraille E, Montesano R. Inhibition of basal p38 or JNK activity enhances epithelial barrier function through differential modulation of claudin expression. Am J Physiol Cell Physiol 2009; 297:C775-87. [PMID: 19605737 DOI: 10.1152/ajpcell.00084.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tight junctions (TJs) form a barrier to the paracellular diffusion of ions and solutes across epithelia. Although transmembrane proteins of the claudin family have emerged as critical determinants of TJ permeability, little is known about the signaling pathways that control their expression. The aim of this study was to assess the role of three mitogen-activated protein kinases (MAPKs), i.e., extracellular signal-regulated kinase-1/2 (ERK1/2), c-Jun NH(2)-terminal kinases (JNKs), and p38 kinases, in the regulation of epithelial barrier function and claudin expression in mammary epithelial cells. Addition of either PD169316 (a p38 inhibitor) or SP600125 (a JNK inhibitor) induced formation of domes (a phenomenon dependent on TJ barrier function) and enhanced transepithelial electrical resistance, whereas U0126 (an inhibitor of the ERK1/2 activators MEK1/MEK2) had no significant effect. Similar results were obtained using mechanistically unrelated p38 or JNK inhibitors. PD169316 increased the expression of claudin-4 and -8, whereas SP600125 increased claudin-4 and -9 and downregulated claudin-8. Silencing of p38alpha by isoform-specific small interfering RNAs increased claudin-4 and -8 mRNAs, whereas silencing of p38beta only increased claudin-4 mRNA. Silencing of either JNK1 or JNK2 increased claudin-9 mRNA expression while decreasing claudin-8 mRNA. Moreover, selective silencing of JNK2 increased claudin-4 and -7 mRNAs. Finally, both PD169316 and SP600125 inhibited the paracellular diffusion of Na(+) and Cl(-) across epithelial monolayers. Collectively, these results provide evidence that inhibition of either p38 or JNK enhances epithelial barrier function by selectively modulating claudin expression, implying that the basal activity of these MAPKs exerts a tonic effect on TJ ionic permeability.
Collapse
Affiliation(s)
- Fabio Carrozzino
- Dept. of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
49
|
Chan PS, Koon HK, Wu ZG, Wong RNS, Lung ML, Chang CK, Mak NK. Role of p38 MAPKs in hypericin photodynamic therapy-induced apoptosis of nasopharyngeal carcinoma cells. Photochem Photobiol 2009; 85:1207-17. [PMID: 19496992 DOI: 10.1111/j.1751-1097.2009.00572.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study aims to determine the role of mitogen-activated protein kinases (MAPKs) in hypericin-mediated photodynamic therapy (HY-PDT)-induced apoptosis of the HK-1 nasopharyngeal carcinoma (NPC) cells. HY-PDT was found to induce proteolytic cleavage of procaspase-9 and -3 in HK-1 cells. Apoptotic nuclei were observed at 6 h after PDT whereas B-cell leukemia/lymphoma-2-associated-X-protein (Bax) translocation and formation of Bax channel is responsible for the cell death. Increase in phosphorylation of p38 MAPKs and c-Jun N-terminal kinase 1/2 (JNK1/2) was detected at 15-30 min after HY-PDT. The appearance of phosphorylated form of p38 MAPKs and JNK1/2 was inhibited by the singlet oxygen scavenger l-histidine. HY-PDT-induced cell death was enhanced by the chemical inhibitors for p38 MAPKs (SB202190 and SB203580), but not by the JNKs inhibitor SP600125. Knockdown of the p38alpha and p38beta MAPK isoforms by small interfering RNA (siRNA) are more effective than the p38delta in enhancing PDT-induced cell death. Augmentation of apoptosis by p38alpha or p38beta knockdown is also correlated with the increased proteolytic cleavage of procaspase-9 after HY-PDT treatment. Our results suggested that HY-PDT activated p38 MAPKs through the production of singlet oxygen. Inhibition of p38 MAPKs with chemical inhibitors or siRNA enhances HY-PDT-induced apoptosis of the HK-1 NPC cells.
Collapse
Affiliation(s)
- Pui S Chan
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
50
|
Schindler EM, Hindes A, Gribben EL, Burns CJ, Yin Y, Lin MH, Owen RJ, Longmore GD, Kissling GE, Arthur JSC, Efimova T. p38delta Mitogen-activated protein kinase is essential for skin tumor development in mice. Cancer Res 2009; 69:4648-55. [PMID: 19458068 DOI: 10.1158/0008-5472.can-08-4455] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating Ras mutations occur in a large portion of human tumors. Yet, the signaling pathways involved in Ras-induced tumor formation remain incompletely understood. The mitogen-activated protein kinase pathways are among the best studied Ras effector pathways. The p38 mitogen-activated protein kinase isoforms are important regulators of key biological processes including cell proliferation, differentiation, survival, inflammation, senescence, and tumorigenesis. However, the specific in vivo contribution of individual p38 isoforms to skin tumor development has not been elucidated. Recent studies have shown that p38delta, a p38 family member, functions as an important regulator of epidermal keratinocyte differentiation and survival. In the present study, we have assessed the effect of p38delta deficiency on skin tumor development in vivo by subjecting p38delta knockout mice to a two-stage 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate chemical skin carcinogenesis protocol. We report that mice lacking p38delta gene exhibited a marked resistance to development of 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin papillomas, with increased latency and greatly reduced incidence, multiplicity, and size of tumors compared with wild-type mice. Our data suggest that the underlying mechanism for reduced susceptibility to skin carcinogenesis in p38delta-null mice involves a defect in proliferative response associated with aberrant signaling through the two major transformation-promoting pathways: extracellular signal-regulated kinase 1/2-activator protein 1 and signal transducer and activator of transcription 3. These findings strongly suggest an in vivo role for p38delta in promoting cell proliferation and tumor development in epidermis and may have therapeutic implication for skin cancer.
Collapse
Affiliation(s)
- Eva M Schindler
- Division of Dermatology and Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|