1
|
Del Rosso JQ, Kircik L. The cutaneous effects of androgens and androgen-mediated sebum production and their pathophysiologic and therapeutic importance in acne vulgaris. J DERMATOL TREAT 2024; 35:2298878. [PMID: 38192024 DOI: 10.1080/09546634.2023.2298878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Background: The recognition of an association between the development of acne vulgaris (AV) and pubertal hormonal changes during adolescence dates back almost 100 years. Since these formative observations, a significant role of circulating hormones in the pathophysiology of AV and other cutaneous disorders has been established.Aims: This review article aims to provide an overview of clinical and preclinical evidence supporting the influences of androgens on the skin and their therapeutic importance in AV pathophysiology.Results: The cutaneous effects of hormones are attributable, to a large extent, to the influence of steroid hormones, particularly androgens, on sebocyte development and sebum production in both sexes. Androgen-mediated excess sebum production is implicated as a necessary early step in AV pathophysiology and is therefore considered an important therapeutic target in AV treatment. Although the local production and/or activity of androgens within the skin is believed to be important in AV pathophysiology, it has received limited therapeutic attention.Conclusions: We have summarized the current evidence in support of the therapeutic benefits of targeted hormonal treatment to decrease androgen-stimulated sebum production for the effective and safe treatment of AV in both male and female patients.
Collapse
Affiliation(s)
- James Q Del Rosso
- Touro University Nevada, Henderson, NV, USA
- JDR Dermatology Research, Las Vegas, NV, USA
- Advanced Dermatology and Cosmetic Surgery, Maitland, FL, USA
| | - Leon Kircik
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Indiana University, School of Medicine, Indianapolis, IN, USA
- Physicians Skin Care, PLLC, Louisville, KY, USA
- DermResearch, PLLC, Louisville, KY, USA
| |
Collapse
|
2
|
Liu J, Xu D, Yan J, Wang B, Zhang L, Liu X, Zhang H, Yan G, Yang J, Zeng Q, Wang X. A novel H‑tert immortalized human sebaceous gland cell line (XL-i-20) for the investigation of photodynamic therapy. Photodiagnosis Photodyn Ther 2024; 48:104238. [PMID: 38848883 DOI: 10.1016/j.pdpdt.2024.104238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Acne vulgaris is a species-specific human disease. To date, there has been no established human sebocyte cell line of Asian origin. Our previous study has demonstrated the efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in the treatment of acne vulgaris, primarily attributed to its cytotoxic properties; however, its regulatory mechanism remains largely unknown. OBJECTIVES To establish an immortalized human sebocyte cell line derived from Chinese population and investigate the underlying mechanism of ALA-PDT. METHODS Human primary sebocytes were transfected with the human tert gene (h‑tert). The biological characteristics, including cell proliferation, cell markers, and sebum secretion function, were compared between primary sebocytes and the immortalized sebocytes (XL-i-20). Stimulations such as ALA-PDT, were applied respectively to both primary sebocytes and XL-i-20 cells to assess changes in their cellular functions. The transcriptome differences between primary sebocytes and XL-i-20 sebocytes were investigated using RNA-seq analysis. The XL-i-20 cell line was used to establish a sebaceous gland (SG) organoid culture, serving as a representative model of SG for the investigation of ALA-PDT. RESULTS The h‑tert immortalized sebocyte cell line exhibited the ability to be consecutively cultured for more than fifty passages. Both primary and immortalized cells expressed sebocyte markers such as epithelial membrane antigens (EMA, or MUC-1), Cytokeratin 7 (CK7) and adipose differentiation-related protein associated antigens (ADRP), and maintained sebum secretion function. The proliferative capacity of XL-i-20 was found to be significantly higher than that of primary sebocytes. The responses of XL-i-20 to ALA-PDT were indistinguishable from those elicited by primary sebocytes. Cell viability and sebum secretion were decreased after ALA-PDT in both two cell lines, and lipid-related proteins (SREBP-1/PPARγ) were down-regulated. The transcriptome data consistently demonstrated upregulation of genes related to inflammatory responses and downregulation of genes involved in lipid metabolism in both cell types following PDT. The analysis of common differential genes of primary sebocytes and XL-i-20 sebocytes post ALA-PDT showed that TNF signaling pathways, MAPK signaling pathways and JAK-STAT signaling pathways were activated. The SG organoids were spherical, which expressed markers of FANS and PLET1. Ki-67 was down-regulated after ALA-PDT. CONCLUSIONS We have developed an h‑tert immortalized sebocyte cell line from an Asian population. The cell line, XL-i-20, maintains the essential characteristics of its parent primary sebocytes. Moreover, XL-i-20 sebocyte exhibited a significant respond to ALA-PDT, demonstrating comparable phenotypic and molecular changes to primary sebocytes. Therefore, XL-i-20 and its derived SG organoid serve as appropriate in vitro models for investigating the efficacy and mechanisms of ALA-PDT in SG-related diseases.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Detian Xu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Jianna Yan
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Bo Wang
- Department of Dermatology, University of Michigan. Ann Arbor, MI, USA
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Xiaojing Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Jiayi Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China
| | - Qingyu Zeng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200040, China.
| |
Collapse
|
3
|
Choa R, Harris JC, Yang E, Yokoyama Y, Okumura M, Kim M, To J, Lou M, Nelson A, Kambayashi T. Thymic stromal lymphopoietin induces IL-4/IL-13 from T cells to promote sebum secretion and adipose loss. J Allergy Clin Immunol 2024; 154:480-491. [PMID: 38157943 PMCID: PMC11211244 DOI: 10.1016/j.jaci.2023.11.923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND The cytokine TSLP promotes type 2 immune responses and can induce adipose loss by stimulating lipid loss from the skin through sebum secretion by sebaceous glands, which enhances the skin barrier. However, the mechanism by which TSLP upregulates sebaceous gland function is unknown. OBJECTIVES This study investigated the mechanism by which TSLP stimulates sebum secretion and adipose loss. METHODS RNA-sequencing analysis was performed on sebaceous glands isolated by laser capture microdissection and single-cell RNA-sequencing analysis was performed on sorted skin T cells. Sebocyte function was analyzed by histological analysis and sebum secretion in vivo and by measuring lipogenesis and proliferation in vitro. RESULTS This study found that TSLP sequentially stimulated the expression of lipogenesis genes followed by cell death genes in sebaceous glands to induce holocrine secretion of sebum. TSLP did not affect sebaceous gland activity directly. Rather, single-cell RNA-sequencing revealed that TSLP recruited distinct T-cell clusters that produce IL-4 and IL-13, which were necessary for TSLP-induced adipose loss and sebum secretion. Moreover, IL-13 was sufficient to cause sebum secretion and adipose loss in vivo and to induce lipogenesis and proliferation of a human sebocyte cell line in vitro. CONCLUSIONS This study proposes that TSLP stimulates T cells to deliver IL-4 and IL-13 to sebaceous glands, which enhances sebaceous gland function, turnover, and subsequent adipose loss.
Collapse
Affiliation(s)
- Ruth Choa
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - EnJun Yang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A∗STAR), Singapore
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Mariko Okumura
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - MinJu Kim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jerrick To
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Meng Lou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Amanda Nelson
- Department of Dermatology, Penn State Milton S. Hershey Medical Center, Hershey, Pa
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
4
|
Lee JH, Yoon JY, Kim DH, Kwon YG, Kim GH, Park BJ, Suh DH. Potential of cannabidiol as acne and acne scar treatment: novel insights into molecular pathways of pathophysiological factors. Arch Dermatol Res 2024; 316:428. [PMID: 38904694 PMCID: PMC11192675 DOI: 10.1007/s00403-024-03131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
Cannabidiol (CBD), which is derived from hemp, is gaining recognition because of its anti-inflammatory and lipid-modulating properties that could be utilized to treat acne. We conducted experiments to quantitatively assess the effects of CBD on acne-related cellular pathways. SEB-1 sebocytes and HaCaT keratinocytes were exposed to various CBD concentrations. CBD exhibited a concentration-dependent impact on cell viability and notably reduced SEB-1 viability; furthermore, it induced apoptosis and a significant increase in the apoptotic area at higher concentrations. Additionally, CBD remarkably reduced pro-inflammatory cytokines, including CXCL8, IL-1α, and IL-1β. Additionally, it inhibited lipid synthesis by modulating the AMPK-SREBP-1 pathway and effectively reduced hyperkeratinization-related protein keratin 16. Simultaneously, CBD stimulated the synthesis of elastin, collagen 1, and collagen 3. These findings emphasize the potential of CBD for the management of acne because of its anti-inflammatory, apoptotic, and lipid-inhibitory effects. Notably, the modulation of the Akt/AMPK-SREBP-1 pathway revealed a novel and promising mechanism that could address the pathogenesis of acne.
Collapse
Affiliation(s)
- Jun Hyo Lee
- Department of Dermatology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Ji Young Yoon
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Dong Hyo Kim
- Department of Dermatology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Yoon Gyung Kwon
- Skin and Natural Products Laboratory, Kolmar Korea Co., Ltd, Seoul, Republic of Korea
| | - Geun-Hyeong Kim
- Skin and Natural Products Laboratory, Kolmar Korea Co., Ltd, Seoul, Republic of Korea
| | - Byoung Jun Park
- Skin and Natural Products Laboratory, Kolmar Korea Co., Ltd, Seoul, Republic of Korea
| | - Dae Hun Suh
- Department of Dermatology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory, Seoul National University Hospital, Seoul, 03080, Republic of Korea.
| |
Collapse
|
5
|
Harris JC, Prouty SM, Nelson MA, Sung DC, Nelson AM, Seykora JT, Kambayashi T, Grice EA. Laser-Capture Microdissection-Based RNA Sequencing for Profiling Mouse and Human Sebaceous Gland Transcriptomes. J Invest Dermatol 2024; 144:1161-1165.e8. [PMID: 37979774 PMCID: PMC11034724 DOI: 10.1016/j.jid.2023.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/20/2023]
Affiliation(s)
- Jordan C Harris
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen M Prouty
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Molly A Nelson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Derek C Sung
- Penn Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Sardana K, Muddebihal A, Sehrawat M, Bansal P, Khurana A. An updated clinico-investigative approach to diagnosis of cutaneous hyperandrogenism in relation to adult female acne, female pattern alopecia & hirsutism a primer for dermatologists. Expert Rev Endocrinol Metab 2024; 19:111-128. [PMID: 38205927 DOI: 10.1080/17446651.2023.2299400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Hyperandrogenism is a clinical state consequent to excess androgen production by the ovary, adrenals, or increased peripheral conversion of androgens. The varied manifestations of hyperandrogenism include seborrhea, acne, infertility, hirsutism, or overt virilization of which adult female acne, hirsutism, and female pattern hair loss are of clinical relevance to dermatologists. AREAS COVERED We limited our narrative review to literature published during period from 1 January 1985 to Dec 2022 and searched PubMed/MEDLINE, Web of Science (WOS), Scopus, and Embase databases with main search keywords were 'Hyperandrogenism,' 'Female,' 'Biochemical,' 'Dermatological', and 'Dermatology.' We detail the common etiological causes, nuances in interpretation of biochemical tests and imaging tools, followed by an algorithmic approach which can help avoid extensive tests and diagnose the common causes of hyperandrogenism. EXPERT OPINION Based on current data, total testosterone, sex hormone binding globulin, DHEAS, prolactin, free androgen index, and peripheral androgenic metabolites like 3-alpha diol and androsterone glucuronide are ideal tests though not all are required in all patients. Abnormalities in these biochemical investigations may require radiological examination for further clarification. Total testosterone levels can help delineate broadly the varied causes of hyperandrogenism. Serum AMH could be used for defining PCOM in adults.
Collapse
Affiliation(s)
- Kabir Sardana
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| | - Aishwarya Muddebihal
- Department of Dermatology, North DMC Medical College & Hindu Rao Hospital, Gandhi Square, Malka Ganj, Delhi, India
| | - Manu Sehrawat
- Department of Dermatology, Buckhinghumshire NHS Trust, Buckhinghumshire, UK
| | - Prekshi Bansal
- Department of Dermatology, Gian Sagar Medical College and Hospital, Banur, Punjab, India
| | - Ananta Khurana
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
7
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
8
|
He Q, Shu H, Peng Y, Xu Y, Liu L, Zhou J, Zhao J, Xiong X, Li C. Untargeted metabolomics analysis of plasma metabolic characteristics in patients with acne and insulin resistance. Amino Acids 2023; 55:1417-1428. [PMID: 37726574 DOI: 10.1007/s00726-023-03320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
Acne vulgaris is a chronic inflammatory disease with high incidence, diverse clinical manifestations, poor clinical efficacy, and easy recurrence. Recent studies have found that the occurrence of acne is related to metabolic factors such as insulin resistance; however, the specific mechanism of action remains unclear. This study aimed to identify significantly different metabolites and related metabolic pathways in the serum of acne vulgaris patients with or without insulin resistance. LC-MS/MS was used to analyze serum samples from patients about acne with insulin resistance (n = 51) and acne without insulin resistance (n = 69) to identify significant metabolites and metabolic pathways. In this study, 18 significant differential metabolites were screened for the first time. In the positive-ion mode, the upregulated substances were creatine, sarcosine, D-proline, uracil, Phe-Phe, L-pipecolic acid, and DL-phenylalanine; the downregulated substances were tridecanoic acid (tridecylic acid), L-lysine, cyclohexylamine, sphingomyelin (d18:1/18:0), gamma-L-Glu-epsilon-L-Lys, and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine. In the negative-ion mode, the upregulated substance was cholesterol sulfate, and the downregulated substances were D(-)-beta-hydroxybutyric acid, myristic acid, D-galacturonic acid, and dihydrothymine. Cholesterol sulfate showed the most significant expression among all differential metabolites (VIP = 7.3411). Based on the KEGG database, necroptosis and ABC transporters were the most significantly enriched metabolic pathways in this experiment. The differential metabolites and pathways identified in this study may provide new possibilities for the clinical diagnosis and development of targeted drugs for acne patients with insulin resistance.
Collapse
Affiliation(s)
- Qingqing He
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Huiling Shu
- Department of Dermatology, The People's Hospital of Chongzhou, Chengdu, Sichuan, China
| | - Yu Peng
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Xu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhou
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Juan Zhao
- Department of Dermatology, The Hejiang People's Hospital, Luzhou, Sichuan, China
| | - Xia Xiong
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Changqiang Li
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- Department of Dermatology, The Hejiang People's Hospital, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Gawronska-Kozak B, Kopcewicz M, Machcinska-Zielinska S, Walendzik K, Wisniewska J, Drukała J, Wasniewski T, Rutkowska J, Malinowski P, Pulinski M. Gender Differences in Post-Operative Human Skin. Biomedicines 2023; 11:2653. [PMID: 37893027 PMCID: PMC10604277 DOI: 10.3390/biomedicines11102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Although the impact of age, gender, and obesity on the skin wound healing process has been extensively studied, the data related to gender differences in aspects of skin scarring are limited. The present study performed on abdominal human intact and scar skin focused on determining gender differences in extracellular matrix (ECM) composition, dermal white adipose tissue (dWAT) accumulation, and Foxn1 expression as a part of the skin response to injury. Scar skin of men showed highly increased levels of COLLAGEN 1A1, COLLAGEN 6A3, and ELASTIN mRNA expression, the accumulation of thick collagen I-positive fibers, and the accumulation of α-SMA-positive cells in comparison to the scar skin of women. However, post-injured skin of women displayed an increase (in comparison to post-injured men's skin) in collagen III accumulation in the scar area. On the contrary, women's skin samples showed a tendency towards higher levels of adipogenic-related genes (PPARγ, FABP4, LEPTIN) than men, regardless of intact or scar skin. Intact skin of women showed six times higher levels of LEPTIN mRNA expression in comparison to men intact (p < 0.05), men post-injured (p < 0.05), or women post-injured scar (p < 0.05) skin. Higher levels of FOXN1 mRNA and protein were also detected in women than in men's skin. In conclusion, the present data confirm and extend (dWAT layer) the data related to the presence of differences between men and women in the skin, particularly in scar tissues, which may contribute to the more effective and gender-tailored improvement of skin care interventions.
Collapse
Affiliation(s)
- Barbara Gawronska-Kozak
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Marta Kopcewicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Sylwia Machcinska-Zielinska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Katarzyna Walendzik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Joanna Wisniewska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (M.K.); (S.M.-Z.); (K.W.); (J.W.)
| | - Justyna Drukała
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Tomasz Wasniewski
- Department of Obstetrics, Perinatology and Gynecology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Joanna Rutkowska
- Department of Internal Medicine, Clinic of Endocrinology, Diabetology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Piotr Malinowski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Michał Pulinski
- Department of Surgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
10
|
Palmer MA, Dias IHK, Smart E, Benatzy Y, Haslam IS. Cholesterol homeostasis in hair follicle keratinocytes is disrupted by impaired ABCA5 activity. Biochim Biophys Acta Mol Cell Biol Lipids 2023:159361. [PMID: 37348644 DOI: 10.1016/j.bbalip.2023.159361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/27/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The importance of cholesterol in hair follicle biology is underscored by its links to the pathogenesis of alopecias and hair growth disorders. Reports have associated defects in ABCA5, a membrane transporter, with altered keratinocyte cholesterol distribution in individuals with a form of congenital hypertrichosis, yet the biological basis for this defect in hair growth remains unknown. This study aimed to determine the impact of altered ABCA5 activity on hair follicle keratinocyte behaviour. Primary keratinocytes isolated from the outer root sheath of plucked human hair follicles were utilised as a relevant cell model. Following exogenous cholesterol loading, an increase in ABCA5 co-localisation to intracellular organelles was seen. Knockdown of ABCA5 revealed a dysregulation in cholesterol homeostasis, with LXR agonism leading to partial restoration of the homeostatic response. Filipin staining and live BODIPY cholesterol immunofluorescence microscopy revealed a reduction in endo-lysosomal cholesterol following ABCA5 knockdown. Analysis of oxysterols showed a significant increase in the fold change of 25-hydroxycholesterol and 7-β-hydroxycholesterol following cholesterol loading in ORS keratinocytes, after ABCA5 knockdown. These data suggest a role for ABCA5 in the intracellular compartmentalisation of free cholesterol in primary hair follicle keratinocytes. The loss of normal homeostatic response, following the delivery of excess cholesterol after ABCA5 knockdown, suggests an impact on LXR-mediated transcriptional activity. The loss of ABCA5 in the hair follicle could lead to impaired endo-lysosomal cholesterol transport, impacting pathways known to influence hair growth. This avenue warrants further investigation.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK; Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Eleanor Smart
- Centre for Dermatology Research, University of Manchester, UK
| | - Yvonne Benatzy
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Iain S Haslam
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| |
Collapse
|
11
|
Lee YB, Hwang HJ, Kim E, Lim SH, Chung CH, Choi EH. Hyperglycemia-activated 11β-hydroxysteroid dehydrogenase type 1 increases endoplasmic reticulum stress and skin barrier dysfunction. Sci Rep 2023; 13:9206. [PMID: 37280272 PMCID: PMC10244460 DOI: 10.1038/s41598-023-36294-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
The diabetes mellitus (DM) skin shows skin barrier dysfunction and skin lipid abnormality, similar to conditions induced by systemic or local glucocorticoid excess and aged skin. Inactive glucocorticoid (GC) is converted into active glucocorticoid by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). Hyperglycemia in DM and excessive GC are known to increase endoplasmic reticulum (ER) stress. We hypothesized that hyperglycemia affects systemic GC homeostasis and that the action of skin 11β-HSD1 and GC contributes to increased ER stress and barrier defects in DM. We compared 11β-HSD1, active GC, and ER stress between hyperglycemic and normoglycemic conditions in normal human keratinocytes and db/db mice. 11β-HSD1 and cortisol increased with time in keratinocyte culture under hyperglycemic conditions. 11β-HSD1 siRNA-transfected cells did not induce cortisol elevation in hyperglycemic condition. The production of 11β-HSD1 and cortisol was suppressed in cell culture treated with an ER stress-inhibitor. The 14-week-old db/db mice showed higher stratum corneum (SC) corticosterone, and skin 11β-HSD1 levels than 8-week-old db/db mice. Topical 11β-HSD1 inhibitor application in db/db mice decreased SC corticosterone levels and improved skin barrier function. Hyperglycemia in DM may affect systemic GC homeostasis, activate skin 11β-HSD1, and induce local GC excess, which increases ER stress and adversely affects skin barrier function.
Collapse
Affiliation(s)
- Young Bin Lee
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Hyun Jee Hwang
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Eunjung Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Sung Ha Lim
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea
| | - Choon Hee Chung
- Department of Endocrinology and Metabolism, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, 26426, Republic of Korea.
- Research Institute of Metabolism and Inflammation, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea.
| |
Collapse
|
12
|
Pineider J, Eckert KM, McDonald JG, Harris-Tryon T. Cutaneous Hormone Production Is Distinct between Anatomical Sites and between Males and Females. J Invest Dermatol 2023; 143:596-601. [PMID: 36208831 DOI: 10.1016/j.jid.2022.08.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022]
Abstract
The skin acts as an endocrine organ capable of hormone production and response. Moreover, many skin conditions clinically improve with antiandrogen therapies. Despite their importance, we have an incomplete understanding of the composition of hormones produced by the skin. In this study, we have characterized the hormonal landscape of the skin across anatomical sites and between the sexes through analysis of skin secretions. In this observational pilot study, we collected skin secretions from the antecubital fossa, forehead, back, and axilla of 12 male and 10 female subjects using commercially available adhesive patches. We then developed a method to extract and quantify hormones from these secretions through liquid chromatography-tandem mass spectrometry. We were able to detect seven hormones and observed anatomical site differences in glucocorticoids, cortisone, and 11-deoxycorticosterone. Most notably, we observed marked elevations in dehydroepiandrosterone in the axilla and androstenedione on the forehead. We also detected differences in several sex steroid hormones between male and female subjects, with the majority consistent with known systemic hormone differences. Through this approach, future studies will determine how hormonal composition of skin secretions is altered in skin diseases.
Collapse
Affiliation(s)
- Juliana Pineider
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kaitlyn M Eckert
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tamia Harris-Tryon
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
13
|
Unluhizarci K, Hacioglu A, Taheri S, Karaca Z, Kelestimur F. Idiopathic hirsutism: Is it really idiopathic or is it misnomer? World J Clin Cases 2023; 11:292-298. [PMID: 36686351 PMCID: PMC9850967 DOI: 10.12998/wjcc.v11.i2.292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Hirsutism, which is characterized by excessive growth of terminal hair in a male pattern, may result from various causes including polycystic ovary syndrome (PCOS), non-classic congenital adrenal hyperplasia, adrenal or ovarian tumors or it may be idiopathic. Idiopathic hirsutism is currently defined as hirsutism associated with normal ovulatory function, normal serum androgen levels and normal ovarian morphology, however, the pathogenesis of idiopathic hirsutism is not clear. The androgens are the main hormones to stimulate growth of body hair, therefore, there should be any form of increased androgen effect irrespective of normal serum androgen levels in any patient with hirsutism. In accordance to this scientific truth, we have previously shown that, although within normal limits, patients with idiopathic hirsutism have relatively higher serum androgen levels (relative hyperandrogenemia) in comparison to healthy subjects which let as to think that is idiopathic hirsutism really idiopathic? In addition to relative hyperandrogenemia, we have previously shown that, in comparison to healthy subjects, women with idiopathic hirsutism demonstrated higher expression of steroid sulphatase and 17-beta hydroxysteroid dehydrogenase mRNA both in the subumbilical region and arm skin, which contributes to local androgen metabolism. Those results support the idea that, in some patients, although the adrenals or ovaries do not secrete increased amount of androgens leading to hyperandrogenemia, pilocebaceous unit locally produce increased amount of androgens leading to hirsutism without ovulatory dysfunction. Upon the demonstration of relative hyperandrogenemia and possible increase in local androgen synthesis in patients with idiopathic hirsutism, we think that idiopathic hirsutism is not idiopathic and it may be named as “normoandrogenic hirsutism”. Furthermore, it may not be a different entity but may be an early stage of hyperandrogenic disorders such as PCOS. Clinically, this can be find out by following-up patients with idiopathic hirsutism prospectively.
Collapse
Affiliation(s)
- Kursad Unluhizarci
- Department of Endocrinology, Erciyes University Medical School, Kayseri 38039, Turkey
| | - Aysa Hacioglu
- Department of Endocrinology, Erciyes University Medical School, Kayseri 38039, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Erciyes University Medical School, Kayseri 38039, Turkey
| | - Zuleyha Karaca
- Department of Endocrinology, Erciyes University Medical School, Kayseri 38039, Turkey
| | - Fahrettin Kelestimur
- Department of Endocrinology, Yeditepe University Medical School, Istanbul 34755, Turkey
| |
Collapse
|
14
|
The Critical Role of Galectin-12 in Modulating Lipid Metabolism in Sebaceous Glands. J Invest Dermatol 2022; 143:913-924.e4. [PMID: 36535362 DOI: 10.1016/j.jid.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Sebaceous glands play an important role in maintaining the skin barrier function by producing lipids. Dysregulated lipid production in these glands may contribute to the pathogenesis of human skin diseases. Galectin-12, a member of the β-galactoside‒binding lectin family, is preferentially expressed in adipocytes, where it regulates adipogenesis and functions as an intrinsic negative regulator of lipolysis. It is also expressed by sebocytes and contributes to the proliferation of this cell type. In this study, we show the association between galectin-12 expression and sebocyte differentiation. Galectin-12 knockdown in a human sebocyte cell line reduced lipogenesis and decreased the production of cholesteryl esters, triglycerides, free fatty acids, and cholesterol. Metabolomic analysis of skin surface lipids showed that the levels of the lipids mentioned earlier decreased in sebaceous gland‒specific galectin-12‒knockout mice compared with that in wild-type mice. In addition, galectin-12 positively regulated peroxisome proliferator‒activated receptor-γ transcriptional activity in sebocytes stimulated with fatty acids. Downregulating galectin-12 suppressed the expression of peroxisome proliferator‒activated receptor-γ target genes-acetyl-coenzyme A synthetase 2 gene ACS2 and diacylglycerol O-acyltransferase 1 gene DGAT1-that are required for fatty acid activation and cholesterol and triglyceride biosynthesis. In conclusion, galectin-12 is a positive regulator of sebaceous lipid metabolism with a potential role in the maintenance of skin homeostasis.
Collapse
|
15
|
Borzyszkowska D, Niedzielska M, Kozłowski M, Brodowska A, Przepiera A, Malczyk-Matysiak K, Cymbaluk-Płoska A, Sowińska-Przepiera E. Evaluation of Hormonal Factors in Acne Vulgaris and the Course of Acne Vulgaris Treatment with Contraceptive-Based Therapies in Young Adult Women. Cells 2022; 11:4078. [PMID: 36552842 PMCID: PMC9777314 DOI: 10.3390/cells11244078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Acne vulgaris is a common chronic inflammatory skin disease, which is considered one of the diseases of civilization due to the significant influence of environmental factors on the severity and frequency of these lesions. The aim of this study was to evaluate the hormonal profile of patients before treatment and to assess selected hormonal parameters after treatment. Our first objective was to examine the correlation between the selected hormonal parameters and the severity of acne before treatment. Our second objective was to evaluate the impact of treatment with three therapies, as measured by the selected hormonal parameters and acne severity. Statistical calculations were performed using the R v.4.1.1 statistical calculation environment (IDE RStudio v. 1.4.1717) with a significance level for the statistical tests set at α = 0.05. The results showed that the women in the pre-treatment (T1) and control (C) groups had significant differences in testosterone, androstendione, FAI, SHBG, prolactin, ACTH, and cortisol concentrations. After treatment, there were still significant differences in testosterone, androstendione, FAI, and SHBG concentrations between the post-treatment (T2) and control groups. We concluded that testosterone, androstendione, and cortisol concentrations correlate with acne severity. Acne in adult women may be an important clinical marker of androgen excess syndrome and cannot be considered a transient symptom of puberty. The mainstay of acne treatment is contraceptive therapy (ethonylestradiol and drospirenone). In this study, we confirmed the effectiveness of three contraceptive-based treatments using hormonal parameters and acne severity.
Collapse
Affiliation(s)
- Dominika Borzyszkowska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Mirela Niedzielska
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Mateusz Kozłowski
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Adam Przepiera
- Department of Urology and Urologic Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Kinga Malczyk-Matysiak
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Aneta Cymbaluk-Płoska
- Department of Reconstructive Surgery and Gynecological Oncology, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Elżbieta Sowińska-Przepiera
- Department of Endocrinology, Metabolic and Internal Diseases, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
- Pediatric, Adolescent Gynecology Clinic, Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| |
Collapse
|
16
|
Coenye T, Spittaels KJ, Achermann Y. The role of biofilm formation in the pathogenesis and antimicrobial susceptibility of Cutibacterium acnes. Biofilm 2022; 4:100063. [PMID: 34950868 PMCID: PMC8671523 DOI: 10.1016/j.bioflm.2021.100063] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
Cutibacterium acnes (previously known as Propionibacterium acnes) is frequently found on lipid-rich parts of the human skin. While C. acnes is most known for its role in the development and progression of the skin disease acne, it is also involved in many other types of infections, often involving implanted medical devices. C. acnes readily forms biofilms in vitro and there is growing evidence that biofilm formation by this Gram-positive, facultative anaerobic micro-organism plays an important role in vivo and is also involved in treatment failure. In this brief review we present an overview on what is known about C. acnes biofilms (including their role in pathogenesis and reduced susceptibility to antibiotics), discuss model systems that can be used to study these biofilms in vitro and in vivo and give an overview of interspecies interactions occurring in polymicrobial communities containing C. acnes.
Collapse
Affiliation(s)
- Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Karl-Jan Spittaels
- Laboratory of Pharmaceutical Microbiology, Ghent University, Gent, Belgium
| | - Yvonne Achermann
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Zouboulis CC, Coenye T, He L, Kabashima K, Kobayashi T, Niemann C, Nomura T, Oláh A, Picardo M, Quist SR, Sasano H, Schneider MR, Törőcsik D, Wong SY. Sebaceous immunobiology - skin homeostasis, pathophysiology, coordination of innate immunity and inflammatory response and disease associations. Front Immunol 2022; 13:1029818. [PMID: 36439142 PMCID: PMC9686445 DOI: 10.3389/fimmu.2022.1029818] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 08/01/2023] Open
Abstract
This review presents several aspects of the innovative concept of sebaceous immunobiology, which summarizes the numerous activities of the sebaceous gland including its classical physiological and pathophysiological tasks, namely sebum production and the development of seborrhea and acne. Sebaceous lipids, which represent 90% of the skin surface lipids in adolescents and adults, are markedly involved in the skin barrier function and perifollicular and dermal innate immune processes, leading to inflammatory skin diseases. Innovative experimental techniques using stem cell and sebocyte models have clarified the roles of distinct stem cells in sebaceous gland physiology and sebocyte function control mechanisms. The sebaceous gland represents an integral part of the pilosebaceous unit and its status is connected to hair follicle morphogenesis. Interestingly, professional inflammatory cells contribute to sebocyte differentiation and homeostasis, whereas the regulation of sebaceous gland function by immune cells is antigen-independent. Inflammation is involved in the very earliest differentiation changes of the pilosebaceous unit in acne. Sebocytes behave as potent immune regulators, integrating into the innate immune responses of the skin. Expressing inflammatory mediators, sebocytes also contribute to the polarization of cutaneous T cells towards the Th17 phenotype. In addition, the immune response of the perifollicular infiltrate depends on factors produced by the sebaceous glands, mostly sebaceous lipids. Human sebocytes in vitro express functional pattern recognition receptors, which are likely to interact with bacteria in acne pathogenesis. Sex steroids, peroxisome proliferator-activated receptor ligands, neuropeptides, endocannabinoids and a selective apoptotic process contribute to a complex regulation of sebocyte-induced immunological reaction in numerous acquired and congenital skin diseases, including hair diseases and atopic dermatitis.
Collapse
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuro Kobayashi
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Attila Oláh
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Sven R. Quist
- Department of Dermatology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Hironobu Sasano
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Marlon R. Schneider
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Daniel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen and ELKH-DE Allergology Research Group, Debrecen, Hungary
| | - Sunny Y. Wong
- Departments of Dermatology and Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Botulinum Neurotoxin Type A Directly Affects Sebocytes and Modulates Oleic Acid-Induced Lipogenesis. Toxins (Basel) 2022; 14:toxins14100708. [PMID: 36287976 PMCID: PMC9609209 DOI: 10.3390/toxins14100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
Excess sebum (seborrhea) results in oily skin and is associated with large pore size and acne. Studies in healthy, seborrheic volunteers have reported that intradermal injection of commercial preparations of botulinum neurotoxin type A (BoNT/A) (onabotulinumtoxinA, abobotulinumtoxinA, and incobotulinumtoxinA) reduced sebum production, and thus, skin oiliness and pore size. The mechanism for these effects has not been fully elucidated; however, several theories involving direct or indirect effects of BoNT/A on neuronal and/or dermal cells (e.g., sebocytes) have been proposed. In the present study, we evaluated the direct effect of native research grade BoNT/A complex, a commercial preparation of BoNT/A (onabotA), and BoNT/A variants on sebocyte lipogenesis using an in vitro sebocyte cell model. We show that picomolar concentrations of BoNT/A (BoNT/A complex: half maximal effective concentration [EC50] = 24 pM; BoNT/A 150 kDa: EC50 = 34 pM) modulate sebocyte lipogenesis and reduce oleic acid-induced sebocyte differentiation, lipogenesis, and holocrine-like secretion. Comparative studies with the binding domain of BoNT/A, which lacks enzymatic activity, show that this effect is independent of the enzymatic activity of BoNT/A and likely occurs via sebocyte cell surface receptors (e.g., fibroblast growth factor receptors). Overall, these results shed light on the potential mechanism of action and rationale for use of BoNT/A for treatment of sebum-related conditions.
Collapse
|
19
|
Murakami K, Sawada A, Mori T, Sakuyama S, Tokudome Y. Effect of estrogen/progesterone ratio on the differentiation and the barrier function of epidermal keratinocyte and three-dimensional cultured human epidermis. Life Sci 2022; 293:120356. [DOI: 10.1016/j.lfs.2022.120356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022]
|
20
|
Svoboda RM, Nawaz N, Zaenglein AL. Hormonal Treatment of Acne and Hidradenitis Suppurativa in Adolescent Patients. Dermatol Clin 2022; 40:167-178. [DOI: 10.1016/j.det.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Salehzadeh M, Soma KK. Glucocorticoid production in the thymus and brain: Immunosteroids and neurosteroids. Brain Behav Immun Health 2021; 18:100352. [PMID: 34988497 PMCID: PMC8710407 DOI: 10.1016/j.bbih.2021.100352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/05/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Glucocorticoids (GCs) regulate a myriad of physiological systems, such as the immune and nervous systems. Systemic GC levels in blood are often measured as an indicator of local GC levels in target organs. However, several extra-adrenal organs can produce and metabolize GCs locally. More sensitive and specific methods for GC analysis (i.e., mass spectrometry) allow measurement of local GC levels in small tissue samples with low GC concentrations. Consequently, is it now apparent that systemic GC levels often do not reflect local GC levels. Here, we review the use of systemic GC measurements in clinical and research settings, discuss instances where systemic GC levels do not reflect local GC levels, and present evidence that local GC levels provide useful insights, with a focus on local GC production in the thymus (immunosteroids) and brain (neurosteroids). Lastly, we suggest key areas for further research, such as the roles of immunosteroids and neurosteroids in neonatal programming and the potential clinical relevance of local GC modulators.
Collapse
Affiliation(s)
- Melody Salehzadeh
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Kiran K Soma
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Abstract
The approach to hyperandrogenism in women varies depending on the woman's age and severity of symptoms. Once tumorous hyperandrogenism is excluded, the most common cause is PCOS. Hirsutism is the most common presenting symptom. The woman's concern about her symptoms plays an important role in the management of disease. Although measurement of testosterone is useful in identifying an underlying cause, care must be taken when interpreting the less accurate assays that are available commercially. Surgical resection is curative in tumorous etiologies, whereas medical management is the mainstay for non-tumorous causes.
Collapse
Affiliation(s)
- Anu Sharma
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, EIHG 2110A, 15 N 2030 E, Salt Lake City, UT 84112, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, EIHG 2110A, 15 N 2030 E, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Transcriptional Differences in Lipid-Metabolizing Enzymes in Murine Sebocytes Derived from Sebaceous Glands of the Skin and Preputial Glands. Int J Mol Sci 2021; 22:ijms222111631. [PMID: 34769061 PMCID: PMC8584257 DOI: 10.3390/ijms222111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Sebaceous glands are adnexal structures, which critically contribute to skin homeostasis and the establishment of a functional epidermal barrier. Sebocytes, the main cell population found within the sebaceous glands, are highly specialized lipid-producing cells. Sebaceous gland-resembling tissue structures are also found in male rodents in the form of preputial glands. Similar to sebaceous glands, they are composed of lipid-specialized sebocytes. Due to a lack of adequate organ culture models for skin sebaceous glands and the fact that preputial glands are much larger and easier to handle, previous studies used preputial glands as a model for skin sebaceous glands. Here, we compared both types of sebocytes, using a single-cell RNA sequencing approach, to unravel potential similarities and differences between the two sebocyte populations. In spite of common gene expression patterns due to general lipid-producing properties, we found significant differences in the expression levels of genes encoding enzymes involved in the biogenesis of specialized lipid classes. Specifically, genes critically involved in the mevalonate pathway, including squalene synthase, as well as the sphingolipid salvage pathway, such as ceramide synthase, (acid) sphingomyelinase or acid and alkaline ceramidases, were significantly less expressed by preputial gland sebocytes. Together, our data revealed tissue-specific sebocyte populations, indicating major developmental, functional as well as biosynthetic differences between both glands. The use of preputial glands as a surrogate model to study skin sebaceous glands is therefore limited, and major differences between both glands need to be carefully considered before planning an experiment.
Collapse
|
24
|
Everts HB, Silva KA, Schmidt AN, Opalenik S, Duncan FJ, King LE, Sundberg JP, Ong DE. Estrogen regulates the expression of retinoic acid synthesis enzymes and binding proteins in mouse skin. Nutr Res 2021; 94:10-24. [PMID: 34571215 PMCID: PMC8845065 DOI: 10.1016/j.nutres.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Topical 17-beta-estradiol (E2) regulates the hair cycle, hair shaft differentiation, and sebum production. Vitamin A also regulates sebum production. Vitamin A metabolism proteins localized to the pilosebaceous unit (PSU; hair follicle and sebaceous gland); and were regulated by E2 in other tissues. This study tests the hypothesis that E2 also regulates vitamin A metabolism in the PSU. First, aromatase and estrogen receptors localized to similar sites as retinoid metabolism proteins during mid-anagen. Next, female and male wax stripped C57BL/6J mice were topically treated with E2, the estrogen receptor antagonist ICI 182,780 (ICI), letrozole, E2 plus letrozole, or vehicle control (acetone) during mid-anagen. E2 or one of its inhibitors regulated most of the vitamin A metabolism genes and proteins examined in a sex-dependent manner. Most components were higher in females and reduced with ICI in females. ICI reductions occurred in the premedulla, sebaceous gland, and epidermis. Reduced E2 also reduced RA receptors in the sebaceous gland and bulge in females. However, reduced E2 increased the number of retinal dehydrogenase 2 positive hair follicle associated dermal dendritic cells in males. These results suggest that estrogen regulates vitamin A metabolism in the skin. Interactions between E2 and vitamin A have implications in acne treatment, hair loss, and skin immunity.
Collapse
Affiliation(s)
- Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA; Department of Nutrition, The Ohio State University, Columbus, OH, USA; Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Adriana N Schmidt
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Susan Opalenik
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - F Jason Duncan
- Department of Nutrition, The Ohio State University, Columbus, OH, USA
| | - Lloyd E King
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA; Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David E Ong
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
25
|
Interleukins 4 and 13 drive lipid abnormalities in skin cells through regulation of sex steroid hormone synthesis. Proc Natl Acad Sci U S A 2021; 118:2100749118. [PMID: 34521750 DOI: 10.1073/pnas.2100749118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by skin dryness, inflammation, and itch. A major hallmark of AD is an elevation of the immune cytokines IL-4 and IL-13. These cytokines lead to skin barrier disruption and lipid abnormalities in AD, yet the underlying mechanisms are unclear. Sebaceous glands are specialized sebum-producing epithelial cells that promote skin barrier function by releasing lipids and antimicrobial proteins to the skin surface. Here, we show that in AD, IL-4 and IL-13 stimulate the expression of 3β-hydroxysteroid dehydrogenase 1 (HSD3B1), a key rate-limiting enzyme in sex steroid hormone synthesis, predominantly expressed by sebaceous glands in human skin. HSD3B1 enhances androgen production in sebocytes, and IL-4 and IL-13 drive lipid abnormalities in human sebocytes and keratinocytes through HSD3B1. Consistent with our findings in cells, HSD3B1 expression is elevated in the skin of AD patients and can be restored by treatment with the IL-4Rα monoclonal antibody, Dupilumab. Androgens are also elevated in a mouse model of AD, though the mechanism in mice remains unclear. Our findings illuminate a connection between type 2 immunity and sex steroid hormone synthesis in the skin and suggest that abnormalities in sex steroid hormone synthesis may underlie the disrupted skin barrier in AD. Furthermore, targeting sex steroid hormone synthesis pathways may be a therapeutic avenue to restoring normal skin barrier function in AD patients.
Collapse
|
26
|
Slominski RM, Raman C, Elmets C, Jetten AM, Slominski AT, Tuckey RC. The significance of CYP11A1 expression in skin physiology and pathology. Mol Cell Endocrinol 2021; 530:111238. [PMID: 33716049 PMCID: PMC8205265 DOI: 10.1016/j.mce.2021.111238] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
CYP11A1, a member of the cytochrome P450 family, plays several key roles in the human body. It catalyzes the first and rate-limiting step in steroidogenesis, converting cholesterol to pregnenolone. Aside from the classical steroidogenic tissues such as the adrenals, gonads and placenta, CYP11A1 has also been found in the brain, gastrointestinal tract, immune systems, and finally the skin. CYP11A1 activity in the skin is regulated predominately by StAR protein and hence cholesterol levels in the mitochondria. However, UVB, UVC, CRH, ACTH, cAMP, and cytokines IL-1, IL-6 and TNFα can also regulate its expression and activity. Indeed, CYP11A1 plays several critical roles in the skin through its initiation of local steroidogenesis and specific metabolism of vitamin D, lumisterol, and 7-dehydrocholesterol. Products of these pathways regulate the protective barrier and skin immune functions in a context-dependent fashion through interactions with a number of receptors. Disturbances in CYP11A1 activity can lead to skin pathology.
Collapse
Affiliation(s)
- R M Slominski
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Raman
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Elmets
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA
| | - A M Jetten
- Cell Biology Section, Immunity, Inflammation, Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - A T Slominski
- Department of Dermatology, USA; VA Medical Center, Birmingham, AL, USA.
| | - R C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
27
|
Ferredoxin reductase regulates proliferation, differentiation, cell cycle and lipogenesis but not apoptosis in SZ95 sebocytes. Exp Cell Res 2021; 405:112680. [PMID: 34090862 DOI: 10.1016/j.yexcr.2021.112680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/07/2021] [Accepted: 05/28/2021] [Indexed: 01/14/2023]
Abstract
Ferredoxin reductase (FDXR), a mitochondrial membrane-associated flavoprotein, is essential for electron transfer and modulates p53-dependent apoptosis in cancer cells.FDXR may be implicated in epidermal and sebocytic differentiation, but its explicit function in sebocytes remains to be elucidated. In the present study, immunohistochemistry revealed that FDXR expression was increased in sebaceous cells of acne lesions. FDXR, PPARγ, LXRα/β, SREBP1 and Sox9 expression was incremental during sebocyte differentiation. FDXR overexpression induced by Ad-GFP-FDXR infection enhanced differentiation, reactive oxygen species (ROS), lipogenesis and PPARγ expression, and consequnently inhibited proliferation in SZ95 sebocytes. Flow cytometry showed that FDXR overexpression induced significant blockade of G2/M phase but had no effect on sub-G1 (apoptotic) sebocytes. Insulin-like growth factor-1 (IGF-1)-induced FDXR and PPARγ expression and lipogenesis were abolished by pretreatment with PI3K inhibitor LY294002. These results suggest that FDXR overexpression might promote differentiation and lipogenesis via ROS production and suppress proliferation via G2/S blockade in SZ95 sebocytes. IGF-1 could facilitate differentiation and lipogenesis through PI3K/Akt/FDXR pathway. FDXR could serve as a potential marker of advanced sebaceous differentiation, and its overexpression may be involved in the development of acne lesions.
Collapse
|
28
|
Luo Y, Wang X, Yu X, Jin R, Liu L. Imaging sebaceous gland using optical coherence tomography with deep learning assisted automatic identification. JOURNAL OF BIOPHOTONICS 2021; 14:e202100015. [PMID: 33710798 DOI: 10.1002/jbio.202100015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/19/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Imaging sebaceous glands and evaluating morphometric parameters are important for diagnosis and treatment of serum problems. In this article, we investigate the feasibility of high-resolution optical coherence tomography (OCT) in combination with deep learning assisted automatic identification for these purposes. Specifically, with a spatial resolution of 2.3 μm × 6.2 μm (axial × lateral, in air), OCT is capable of clearly differentiating sebaceous gland from other skin structures and resolving the sebocyte layer. In order to achieve efficient and timely imaging analysis, a deep learning approach built upon ResNet18 is developed to automatically classify OCT images (with/without sebaceous gland), with a classification accuracy of 97.9%. Based on the result of automatic identification, we further demonstrate the possibility to measure gland size, sebocyte layer thickness and gland density.
Collapse
Affiliation(s)
- Yuemei Luo
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xianghong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Ruibing Jin
- Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Linbo Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
29
|
Geueke A, Niemann C. Stem and progenitor cells in sebaceous gland development, homeostasis and pathologies. Exp Dermatol 2021; 30:588-597. [PMID: 33599012 DOI: 10.1111/exd.14303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Sebaceous glands (SGs), typically associated with hair follicles, are critical for the homeostasis and function of mammalian skin. The main physiological function of SGs is the production and holocrine secretion of sebum to lubricate and protect the skin. Defective SGs have been linked to a variety of skin disorders, including acne, seborrheic dermatitis and formation of sebaceous tumors. Thus, a better understanding how SGs are formed and maintained is important to unravel the underlying molecular and cellular mechanisms of SG pathologies and to find better and effective therapies. Over the last two decades, research has come a long way from the initial identification of skin epithelial stem cells to the isolation and functional characterization of multiple stem cell pools as well as a better understanding of their unique and complex activities that drive skin homeostasis and operate in skin pathologies. Here, we discuss recent progress in unravelling cellular mechanisms underlying SG development, homeostasis and sebaceous tumor formation and assess the role of stem and progenitor cells in controlling SG physiology and disease processes. The development of elegant in vivo imaging as well as various in vitro and ex vivo stem cell and SG tissue models will advance mechanistic studies on SG function and allow drug screening and testing for efficient and successful targeting SG pathologies.
Collapse
Affiliation(s)
- Anna Geueke
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany
| | - Catherin Niemann
- Center for Molecular Medicine Cologne, CMMC Research Institute, University of Cologne, Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Mokra K. Endocrine Disruptor Potential of Short- and Long-Chain Perfluoroalkyl Substances (PFASs)-A Synthesis of Current Knowledge with Proposal of Molecular Mechanism. Int J Mol Sci 2021; 22:2148. [PMID: 33670069 PMCID: PMC7926449 DOI: 10.3390/ijms22042148] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/25/2023] Open
Abstract
Endocrine disruptors are a group of chemical compounds that, even in low concentrations, cause a hormonal imbalance in the body, contributing to the development of various harmful health disorders. Many industry compounds, due to their important commercial value and numerous applications, are produced on a global scale, while the mechanism of their endocrine action has not been fully understood. In recent years, per- and polyfluoroalkyl substances (PFASs) have gained the interest of major international health organizations, and thus more and more studies have been aimed to explain the toxicity of these compounds. PFASs were firstly synthesized in the 1950s and broadly used in the industry in the production of firefighting agents, cosmetics and herbicides. The numerous industrial applications of PFASs, combined with the exceptionally long half-life of these substances in the human body and extreme environmental persistence, result in a common and chronic exposure of the general population to their action. Available data have suggested that human exposure to PFASs can occur during different stages of development and may cause short- or/and long-term health effects. This paper synthetizes the current literature reports on the presence, bioaccumulation and, particularly, endocrine toxicity of selected long- and short-chain PFASs, with a special emphasis on the mechanisms underlying their endocrine actions.
Collapse
Affiliation(s)
- Katarzyna Mokra
- Department of Environmental Pollution Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143 St., 90-236 Lodz, Poland
| |
Collapse
|
31
|
Localisation and regulation of cholesterol transporters in the human hair follicle: mapping changes across the hair cycle. Histochem Cell Biol 2021; 155:529-545. [PMID: 33404706 PMCID: PMC8134313 DOI: 10.1007/s00418-020-01957-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 02/06/2023]
Abstract
Cholesterol has long been suspected of influencing hair biology, with dysregulated homeostasis implicated in several disorders of hair growth and cycling. Cholesterol transport proteins play a vital role in the control of cellular cholesterol levels and compartmentalisation. This research aimed to determine the cellular localisation, transport capability and regulatory control of cholesterol transport proteins across the hair cycle. Immunofluorescence microscopy in human hair follicle sections revealed differential expression of ATP-binding cassette (ABC) transporters across the hair cycle. Cholesterol transporter expression (ABCA1, ABCG1, ABCA5 and SCARB1) reduced as hair follicles transitioned from growth to regression. Staining for free cholesterol (filipin) revealed prominent cholesterol striations within the basement membrane of the hair bulb. Liver X receptor agonism demonstrated active regulation of ABCA1 and ABCG1, but not ABCA5 or SCARB1 in human hair follicles and primary keratinocytes. These results demonstrate the capacity of human hair follicles for cholesterol transport and trafficking. Future studies examining the role of cholesterol transport across the hair cycle may shed light on the role of lipid homeostasis in human hair disorders.
Collapse
|
32
|
Zouboulis CC. Endocrinology and immunology of acne: Two sides of the same coin. Exp Dermatol 2020; 29:840-859. [DOI: 10.1111/exd.14172] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| |
Collapse
|
33
|
Diviccaro S, Giatti S, Borgo F, Falvo E, Caruso D, Garcia-Segura LM, Melcangi RC. Steroidogenic machinery in the adult rat colon. J Steroid Biochem Mol Biol 2020; 203:105732. [PMID: 32777355 DOI: 10.1016/j.jsbmb.2020.105732] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Gastrointestinal function is known to be regulated by steroid molecules produced by the gonads, the adrenal glands and the gut microbiota. However, we have a limited knowledge on the functional significance of local steroid production by gastrointestinal tract tissue. On this basis, we have here evaluated, as a first methodological approach, the expression of steroidogenic molecules and the local levels of key steroids in the male rat colon. Our findings indicate that the colon tissue expresses molecules involved in the early steps of steroidogenesis and in the consecutive synthesis and metabolism of steroid hormones, such as progesterone, testosterone and 17β-estradiol. In addition, the levels of the steroid hormone precursor pregnenolone and the levels of active metabolites of progesterone and testosterone, such as dihydroprogesterone, tetrahydroprogesterone, dihydrotestosterone and 17β-estradiol, were higher in colon than in plasma. Higher levels of the androgen metabolite 3α-diol were detected in the colon in comparison with another non-classical steroidogenic tissue, such as the cerebral cortex. These findings suggest the existence of local steroid synthesis and metabolism in the colon, with the production of active steroid metabolites that may impact on the activity of the enteric nervous system and on the composition of the gut microbiota.
Collapse
Affiliation(s)
- S Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - S Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F Borgo
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - E Falvo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - D Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy,.
| |
Collapse
|
34
|
Zouboulis CC, Yoshida GJ, Wu Y, Xia L, Schneider MR. Sebaceous gland: Milestones of 30‐year modelling research dedicated to the “brain of the skin”. Exp Dermatol 2020; 29:1069-1079. [DOI: 10.1111/exd.14184] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology Dessau Medical Center Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg Dessau Germany
| | - Go J. Yoshida
- Department of Immunological Diagnosis Juntendo University School of Medicine Bunkyo‐ku, Tokyo Japan
| | - Yaojiong Wu
- Shenzhen Key Laboratory of Health Sciences and Technology Tsinghua Shenzhen International Graduate School and Tsinghua‐Berkeley Shenzhen Institute Tsinghua University Beijing China
| | - Longqing Xia
- Department of Dermatology Renji Hospital School of Medicine Shanghai Jiaotong University Shanghai China
| | - Marlon R. Schneider
- German Federal Institute for Risk Assessment (BfR) German Centre for the Protection of Laboratory Animals (Bf3R) Berlin Germany
| |
Collapse
|
35
|
Matsuda A, Mitsui I, Shimizu Y, Kanda T, Ohnishi A, Miyabe M, Itoh Y. Establishment and characterization of a canine sebaceous epithelial cell line derived from an eyelid mass. J Vet Med Sci 2020; 82:1577-1584. [PMID: 32921644 PMCID: PMC7719885 DOI: 10.1292/jvms.20-0179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Little is known about the pathological roles of sebaceous glands in canine skin diseases, as most examinations have been conducted with cultured human
sebaceous epithelial cell lines. To our knowledge, there is no available canine sebaceous epithelial cell line. The purpose of this study was to establish a
canine sebaceous epithelial cell line and characterize it. An eyelid mass in a dog was surgically resected for treatment, and it was histologically diagnosed as
sebaceous epithelioma. Collected tissue was conducted for culture, and the growing epithelial-like cells were passaged. The cells showed continuous
proliferation for over 6 months. After 40 passages, the cells were named CMG-1. Lipid droplets in the cytoplasm of CMG-1 cells were confirmed by Oil Red O
staining. As reported in studies with human sebaceous epithelial cell lines, lipogenesis in CMG-1 cells was promoted by linoleic acid, whereas transforming
growth factor-β (TGF-β) suppressed it. Additionally, real-time PCR revealed that the expression levels of chemokines and cytokines, including CC chemokine
ligand (CCL)-2, CCL-20, CXCL-10, Tumor necrosis factor-α (TNF-α), Interleukin (IL)-1α, IL-1β, and IL-8, were significantly increased in CMG-1 cells following
treatment with lipopolysaccharide. In conclusion, we successfully established a new canine sebaceous epithelial cell line. Our data indicated that lipogenesis
and inflammatory responses were quantitatively evaluable in this cell line. CMG-1 cells could be useful for the pathological analysis of sebaceous gland
diseases in dogs.
Collapse
Affiliation(s)
- Akira Matsuda
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Ikki Mitsui
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Yuki Shimizu
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Teppei Kanda
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Akihiro Ohnishi
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Masahiro Miyabe
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| | - Yoshiki Itoh
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
36
|
|
37
|
Adalsteinsson JA, Kaushik S, Muzumdar S, Guttman-Yassky E, Ungar J. An update on the microbiology, immunology and genetics of seborrheic dermatitis. Exp Dermatol 2020; 29:481-489. [PMID: 32125725 DOI: 10.1111/exd.14091] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 02/07/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
The underlying mechanism of seborrheic dermatitis (SD) is poorly understood but major scientific progress has been made in recent years related to microbiology, immunology and genetics. In light of this, the major goal of this article was to summarize the most recent articles on SD, specifically related to underlying pathophysiology. SD results from Malassezia hydrolysation of free fatty acids with activation of the immune system by the way of pattern recognition receptors, inflammasome, IL-1β and NF-kB. M. restricta and M. globosa are likely the most virulent subspecies, producing large quantities of irritating oleic acids, leading to IL-8 and IL-17 activation. IL-17 and IL-4 might play a big role in pathogenesis, but this needs to be further studied using novel biologics. No clear genetic predisposition has been established; however, recent studies implicated certain increased-risk human leucocyte antigen (HLA) alleles, such as A*32, DQB1*05 and DRB1*01 as well as possible associations with psoriasis and atopic dermatitis (AD) through the LCE3 gene cluster while SD, and SD-like syndromes, shares genetic mutations that appear to impair the ability of the immune system to restrict Malassezia growth, partially due to complement system dysfunction. A paucity of studies exists looking at the relationship between SD and systemic disease. In HIV, SD is thought to be secondary to a combination of immune dysregulation and disruption in skin microbiota with unhindered Malassezia proliferation. In Parkinson's disease, SD is most likely secondary to parasympathetic hyperactivity with increased sebum production as well as facial immobility which leads to sebum accumulation.
Collapse
Affiliation(s)
| | - Shivani Kaushik
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sonal Muzumdar
- Department of Dermatology, University of Connecticut, Farmington, Connecticut
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jonathan Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
38
|
Extra-adrenal glucocorticoid biosynthesis: implications for autoimmune and inflammatory disorders. Genes Immun 2020; 21:150-168. [PMID: 32203088 PMCID: PMC7276297 DOI: 10.1038/s41435-020-0096-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Glucocorticoid synthesis is a complex, multistep process that starts with cholesterol being delivered to the inner membrane of mitochondria by StAR and StAR-related proteins. Here its side chain is cleaved by CYP11A1 producing pregnenolone. Pregnenolone is converted to cortisol by the enzymes 3-βHSD, CYP17A1, CYP21A2 and CYP11B1. Glucocorticoids play a critical role in the regulation of the immune system and exert their action through the glucocorticoid receptor (GR). Although corticosteroids are primarily produced in the adrenal gland, they can also be produced in a number of extra-adrenal tissue including the immune system, skin, brain, and intestine. Glucocorticoid production is regulated by ACTH, CRH, and cytokines such as IL-1, IL-6 and TNFα. The bioavailability of cortisol is also dependent on its interconversion to cortisone which is inactive, by 11βHSD1/2. Local and systemic glucocorticoid biosynthesis can be stimulated by ultraviolet B, explaining its immunosuppressive activity. In this review, we want to emphasize that dysregulation of extra-adrenal glucocorticoid production can play a key role in a variety of autoimmune diseases including multiple sclerosis (MS), lupus erythematosus (LE), rheumatoid arthritis (RA), and skin inflammatory disorders such as psoriasis and atopic dermatitis (AD). Further research on local glucocorticoid production and its bioavailability may open doors into new therapies for autoimmune diseases.
Collapse
|
39
|
Yao Y, Zuo J, Chen L, Wei Y. Combination of metformin and berberine represses the apoptosis of sebocytes in high-fat diet-induced diabetic hamsters and an insulin-treated human cell line. Cell Biochem Funct 2020; 38:567-573. [PMID: 32080865 DOI: 10.1002/cbf.3504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/15/2020] [Indexed: 11/07/2022]
Abstract
Obesity and insulin resistance affect metabolic reactions, but their ensuing contributions to macrophage metabolism remain insufficiently understood. We investigated the contributions of berberine and metformin combination to the inhibition of sebocyte apoptosis in high-fat diet-induced diabetic hamsters and an insulin-treated human cell line. Golden hamsters were fed a high-glucose high-fat diet and administered a 6-week treatment with a combination of metformin and two concentrations of berberine (100 or 50 mg·kg-1 ). Body weights of treated hamsters were remarkably reduced compared with those of controls. Histological examination indicated that berberine repressed liver fat accumulation. Moreover, insulin and glucose concentrations were noticeably decreased by the combination treatments. In glucose tolerance tests, hamsters receiving berberine displayed higher tolerance to glucose, compared with the control group. Sebocytes isolated from high-fat diet-induced diabetic hamsters and insulin-treated human sebocytes displayed elevated cell death rates, which were attenuated by berberine and metformin treatments. Further studies showed that the effects of metformin and berberine on cellular apoptosis were mediated via the Bik pathway. Thus, berberine may effectively decrease circulating glucose levels, ameliorate insulin resistance, reduce body weight, and attenuate sebocyte apoptosis in diabetic hamsters, potentially decreasing vulnerability to the cardiovascular complications of diabetes. SIGNIFICANCE OF THE STUDY: The present data indicate that insulin stimulates changes in the expression levels of cell death-associated proteins, which participate in sebaceous gland diseases during obesity or diabetes. The anti-apoptotic effects of BBR and MET in sebaceous gland cells are regulated partially by Bik expression. To the best of our knowledge, this study is the first to suggest cell death counteracting effects of BBR in hamster and human sebocytes as well as to propose BBR as an innovative therapeutic agent for insulin-related sebaceous gland diseases, including acne.
Collapse
Affiliation(s)
- Yan Yao
- Department of Dermatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zuo
- Department of Ophthalmology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Chen
- Department of Dermatology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuegang Wei
- Department of Dermatology, The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Brückner A, Parker J. Molecular evolution of gland cell types and chemical interactions in animals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb211938. [PMID: 32034048 DOI: 10.1242/jeb.211938] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.
Collapse
Affiliation(s)
- Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
41
|
Zhao L, Qiu J, Yin X, Zhang N, Wu W, Wang C, Ji B, Zhang L, Zhou F. Blossom and bee pollen from Rosa rugosa as potential intervention for acne caused by excessive androgen secretion in golden hamster acne model. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1674788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Liang Zhao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, People’s Republic of China
| | - Jiafei Qiu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Xiaoting Yin
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Nanhai Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Wei Wu
- College of Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, People’s Republic of China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Liebing Zhang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Kanwar IL, Haider T, Kumari A, Dubey S, Jain P, Soni V. Models for acne: A comprehensive study. Drug Discov Ther 2019; 12:329-340. [PMID: 30674767 DOI: 10.5582/ddt.2018.01079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Acne vulgaris (AV) is the familiar chronic skin ailment affecting most of the individuals. This multifarious, disease involves the bacterium gram-positive, anaerobic Propionibacterium acnes (P. acnes) which resides on skin microflora, and participated in acne inflammation and acne lesions. The object of this review is to discuss presently available in vitro, ex vivo, and in vivo models to evaluate the cosmetic formulations that are developed for dealing and prevention of acne formation. These various available models offer new chances for further research on biologically active materials, drugs & pharmaceutical as well as cosmetics for acne treatment.
Collapse
Affiliation(s)
- Indu Lata Kanwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Anju Kumari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Sandeep Dubey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Priyanka Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University
| |
Collapse
|
43
|
Palmer MA, Blakeborough L, Harries M, Haslam IS. Cholesterol homeostasis: Links to hair follicle biology and hair disorders. Exp Dermatol 2019; 29:299-311. [PMID: 31260136 DOI: 10.1111/exd.13993] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/24/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023]
Abstract
Lipids and lipid metabolism are critical factors in hair follicle (HF) biology, and cholesterol has long been suspected of influencing hair growth. Altered cholesterol homeostasis is involved in the pathogenesis of primary cicatricial alopecia, mutations in a cholesterol transporter are associated with congenital hypertrichosis, and dyslipidaemia has been linked to androgenic alopecia. The underlying molecular mechanisms by which cholesterol influences pathways involved in proliferation and differentiation within HF cell populations remain largely unknown. As such, expanding our knowledge of the role for cholesterol in regulating these processes is likely to provide new leads in the development of treatments for disorders of hair growth and cycling. This review describes the current state of knowledge with respect to cholesterol homeostasis in the HF along with known and putative links to hair pathologies.
Collapse
Affiliation(s)
- Megan A Palmer
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Liam Blakeborough
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Matthew Harries
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Iain S Haslam
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
44
|
Piquero-Casals J, Hexsel D, Mir-Bonafé JF, Rozas-Muñoz E. Topical Non-Pharmacological Treatment for Facial Seborrheic Dermatitis. Dermatol Ther (Heidelb) 2019; 9:469-477. [PMID: 31396944 PMCID: PMC6704200 DOI: 10.1007/s13555-019-00319-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Indexed: 11/26/2022] Open
Abstract
Facial seborrheic dermatitis (FSD) is a chronic and relapsing inflammatory skin disorder occurring in areas of the face rich in sebaceous glands. It clinically manifests as erythematous scaly macules or plaques, often associated with pruritus. Although the pathogenesis of seborrheic dermatitis is not yet fully understood, Malassezia yeast, hormones, sebum levels, and immune response are known to play important roles. Additional factors including drugs, cold temperatures, and stress may exacerbate the condition. Currently, the available treatments do not cure the disease but relieve symptoms. Various pharmacological treatments are available, including antifungal agents, keratolytics, topical low-potency steroids, and calcineurin inhibitors. All of them provide several benefits, but they also have potential side effects. Seborrheic dermatitis tends to have a chronic, recurrent course. To avoid the long-term use of drugs, topical non-pharmacological products such as cosmetics or medical devices may improve clinical outcomes. Products with antimicrobial and anti-inflammatory ingredients such as zinc, piroctone olamine, dihydroavenanthramide, biosaccharide gum-2, and stearyl glycyrrhetinate may speed FSD recovery and avoid flare-ups. Finally, the use of specific cleansers, moisturizers, and sunscreens formulated as light creams or gel/creams should be strongly recommended to all FSD patients. We provide a brief review of the most used non-pharmacological cleansers, topical gel/creams, and specific sunscreens in the management of FSD.
Collapse
Affiliation(s)
- Jaime Piquero-Casals
- Department of Dermatology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain.
| | - Doris Hexsel
- Brazilian Center for Studies in Dermatology, Porto Alegre, RS, Brazil
| | | | - Eduardo Rozas-Muñoz
- Department of Dermatology, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| |
Collapse
|
45
|
Muku GE, Blazanin N, Dong F, Smith PB, Thiboutot D, Gowda K, Amin S, Murray IA, Perdew GH. Selective Ah receptor ligands mediate enhanced SREBP1 proteolysis to restrict lipogenesis in sebocytes. Toxicol Sci 2019; 171:146-158. [PMID: 31225620 PMCID: PMC6736396 DOI: 10.1093/toxsci/kfz140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) induced toxicity that can lead to chloracne in humans. A characteristic of chloracne, in contrast to acne vulgaris, is shrinkage or loss of sebaceous glands. Acne vulgaris, on the other hand, is often accompanied by excessive sebum production. Here, we examined the role of AHR in lipid synthesis in human sebocytes using distinct classes of AHR ligands. Modulation of AHR activity attenuated the expression of lipogenic genes and key pro-inflammatory markers in the absence of canonical DRE-driven transcription of the AHR target gene CYP1A1. Furthermore, topical treatment with TCDD, which mediates DRE-dependent activity, and SGA360, which fails to induce DRE-mediated responses, both exhibited a decrease in the size of sebaceous glands and the number of sebocytes within each gland in the skin. To elucidate the mechanism of AHR-mediated repression of lipid synthesis, we demonstrated that selective AHR modulators, SGA360 and SGA315 increased the protein turnover of the mature sterol regulatory element-binding protein (mSREBP-1), the principal transcriptional regulator of the fatty acid synthesis pathway. Interestingly, selective AHR ligand treatment significantly activated the AMPK-dependent kinase (AMPK) in sebocytes. Moreover, we demonstrated an inverse correlation between the active AMPK and the mSREBP-1 protein, which is consistent with the previously reported role of AMPK in inhibiting cleavage of SREBP-1. Overall, our findings indicate a DRE-independent function of selective AHR ligands in modulating lipid synthesis in human sebocytes, which might raise the possibility of using AHR as a therapeutic target for treatment of acne.
Collapse
Affiliation(s)
- Gulsum E Muku
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Nicholas Blazanin
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Fangcong Dong
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Philip B Smith
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Diane Thiboutot
- Department of Dermatology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Krishne Gowda
- Department of Pharmacology or Penn State College of Medicine, Hershey, Pennsylvania
| | - Shantu Amin
- Department of Pharmacology or Penn State College of Medicine, Hershey, Pennsylvania
| | - Iain A Murray
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
46
|
Neuroendocrine Aspects of Skin Aging. Int J Mol Sci 2019; 20:ijms20112798. [PMID: 31181682 PMCID: PMC6600459 DOI: 10.3390/ijms20112798] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Skin aging is accompanied by a gradual loss of function, physiological integrity and the ability to cope with internal and external stressors. This is secondary to a combination of complex biological processes influenced by constitutive and environmental factors or by local and systemic pathologies. Skin aging and its phenotypic presentation are dependent on constitutive (genetic) and systemic factors. It can be accelerated by environmental stressors, such as ultraviolet radiation, pollutants and microbial insults. The skin’s functions and its abilities to cope with external stressors are regulated by the cutaneous neuroendocrine systems encompassing the regulated and coordinated production of neuropeptides, neurohormones, neurotransmitters and hormones, including steroids and secosteroids. These will induce/stimulate downstream signaling through activation of corresponding receptors. These pathways and corresponding coordinated responses to the stressors decay with age or undergo pathological malfunctions. This affects the overall skin phenotype and epidermal, dermal, hypodermal and adnexal functions. We propose that skin aging can be attenuated or its phenotypic presentation reversed by the topical use of selected factors with local neurohormonal activities targeting specific receptors or enzymes. Some of our favorite factors include melatonin and its metabolites, noncalcemic secosteroids and lumisterol derivatives, because of their low toxicity and their desirable local phenotypic effects.
Collapse
|
47
|
Dhingra N, Bonati LM, Wang EB, Chou M, Jagdeo J. Medical and aesthetic procedural dermatology recommendations for transgender patients undergoing transition. J Am Acad Dermatol 2019; 80:1712-1721. [DOI: 10.1016/j.jaad.2018.05.1259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 11/28/2022]
|
48
|
Sanford JA, O'Neill AM, Zouboulis CC, Gallo RL. Short-Chain Fatty Acids from Cutibacterium acnes Activate Both a Canonical and Epigenetic Inflammatory Response in Human Sebocytes. THE JOURNAL OF IMMUNOLOGY 2019; 202:1767-1776. [PMID: 30737272 DOI: 10.4049/jimmunol.1800893] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/21/2018] [Indexed: 01/09/2023]
Abstract
The regulation of cutaneous inflammatory processes is essential for the human skin to maintain homeostasis in the presence of the dense communities of resident microbes that normally populate this organ. Forming the hair follicle-associated sebaceous gland, sebocytes are specialized lipid-producing cells that can release inflammatory mediators. Cytokine and chemokine expression by pilosebaceous epithelial cells (i.e., sebocytes and follicular keratinocytes) has been proposed to contribute to the common human skin disease acne vulgaris. The underlying mechanisms that drive inflammatory gene expression in acne-involved pilosebaceous epithelial cells are still unknown because almost all sebaceous follicles contain dense concentrations of bacteria yet only some show an inflammatory reaction. In this study, we hypothesized that metabolites from the abundant skin-resident microbe Propionibacterium acnes can influence cytokine expression from human sebocytes. We show that short-chain fatty acids produced by P. acnes under environmental conditions that favor fermentation will drive inflammatory gene expression from sebocytes. These molecules are shown to influence sebocyte behavior through two distinct mechanisms: the inhibition of histone deacetylase (HDAC) activity and the activation of fatty acid receptors. Depletion of HDAC8 and HDAC9 in human sebocytes resulted in an enhanced cytokine response to TLR-2 activation that resembled the transcriptional profile of an acne lesion. These data provide a new insight into the regulation of inflammatory gene expression in the skin, further characterize the contribution of sebocytes to epidermal immunity, and demonstrate how changes in the metabolic state of the skin microbiome can promote inflammatory acne.
Collapse
Affiliation(s)
- James A Sanford
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| | - Alan M O'Neill
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| | - Christos C Zouboulis
- Department of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, 06847 Dessau, Germany
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093; and
| |
Collapse
|
49
|
Kobayashi T, Voisin B, Kim DY, Kennedy EA, Jo JH, Shih HY, Truong A, Doebel T, Sakamoto K, Cui CY, Schlessinger D, Moro K, Nakae S, Horiuchi K, Zhu J, Leonard WJ, Kong HH, Nagao K. Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell 2019; 176:982-997.e16. [PMID: 30712873 DOI: 10.1016/j.cell.2018.12.031] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/05/2018] [Accepted: 12/19/2018] [Indexed: 01/23/2023]
Abstract
Immune cells and epithelium form sophisticated barrier systems in symbiotic relationships with microbiota. Evidence suggests that immune cells can sense microbes through intact barriers, but regulation of microbial commensalism remain largely unexplored. Here, we uncovered spatial compartmentalization of skin-resident innate lymphoid cells (ILCs) and modulation of sebaceous glands by a subset of RORγt+ ILCs residing within hair follicles in close proximity to sebaceous glands. Their persistence in skin required IL-7 and thymic stromal lymphopoietin, and localization was dependent on the chemokine receptor CCR6. ILC subsets expressed TNF receptor ligands, which limited sebocyte growth by repressing Notch signaling pathway. Consequently, loss of ILCs resulted in sebaceous hyperplasia with increased production of antimicrobial lipids and restricted commensalism of Gram-positive bacterial communities. Thus, epithelia-derived signals maintain skin-resident ILCs that regulate microbial commensalism through sebaceous gland-mediated tuning of the barrier surface, highlighting an immune-epithelia circuitry that facilitates host-microbe symbiosis.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Benjamin Voisin
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Do Young Kim
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA; Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Elizabeth A Kennedy
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Jay-Hyun Jo
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- Laboratory of Immunology, Molecular Immunology and Inflammation Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Amanda Truong
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Thomas Doebel
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Keiko Sakamoto
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Chang-Yi Cui
- Human Genetics Section, Laboratory of Genetics and Genomics, NIA, NIH, Baltimore, MD 21224, USA
| | - David Schlessinger
- Human Genetics Section, Laboratory of Genetics and Genomics, NIA, NIH, Baltimore, MD 21224, USA
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, 359-8513, Japan
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and Immunology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Heidi H Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, NIAMS, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Extra-adrenal glucocorticoid synthesis at epithelial barriers. Genes Immun 2019; 20:627-640. [PMID: 30692606 DOI: 10.1038/s41435-019-0058-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/02/2019] [Indexed: 01/08/2023]
Abstract
Epithelial barriers play an important role in the exchange of nutrients, gases, and other signals between our body and the outside world. However, they protect it also from invasion by potential pathogens. Defective epithelial barriers and associated overshooting immune responses are the basis of many different inflammatory disorders of the skin, the lung, and the intestinal mucosa. The anti-inflammatory activity of glucocorticoids has been efficiently used for the treatment of these diseases. Interestingly, epithelia in these tissues are also a rich source of endogenous glucocorticoids, suggesting that local glucocorticoid synthesis is part of a tissue-specific regulatory circuit. In this review, we summarize current knowledge about the extra-adrenal glucocorticoid synthesis at the epithelial barriers of the intestine, lung and the skin, and discuss their relevance in the pathogenesis of inflammatory diseases and as therapeutic targets.
Collapse
|