1
|
Gurevich E, Segev Y, Landau D. Growth Hormone and IGF1 Actions in Kidney Development and Function. Cells 2021; 10:cells10123371. [PMID: 34943879 PMCID: PMC8699155 DOI: 10.3390/cells10123371] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023] Open
Abstract
Growth hormone (GH) exerts multiple effects on different organs including the kidneys, either directly or via its main mediator, insulin-like-growth factor-1 (IGF-1). The GH/IGF1 system plays a key role in normal kidney development, glomerular hemodynamic regulation, as well as tubular water, sodium, phosphate, and calcium handling. Transgenic animal models demonstrated that GH excess (and not IGF1) may lead to hyperfiltration, albuminuria, and glomerulosclerosis. GH and IGF-1 play a significant role in the early development of diabetic nephropathy, as well as in compensatory kidney hypertrophy after unilateral nephrectomy. Chronic kidney disease (CKD) and its complications in children are associated with alterations in the GH/IGF1 axis, including growth retardation, related to a GH-resistant state, attributed to impaired kidney postreceptor GH-signaling and chronic inflammation. This may explain the safety of prolonged rhGH-treatment of short stature in CKD.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
| | - Yael Segev
- Shraga Segal Department of Microbiology and Immunology, Ben Gurion University, Beer Sheva 8410501, Israel;
| | - Daniel Landau
- Department of Nephrology, Schneider Children’s Medical Center of Israel, 14 Kaplan Street, Petach Tikva 4920235, Israel;
- Sackler School of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3925-3651
| |
Collapse
|
2
|
Growth plate alterations in chronic kidney disease. Pediatr Nephrol 2020; 35:367-374. [PMID: 30552565 DOI: 10.1007/s00467-018-4160-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 12/17/2022]
Abstract
Growth retardation is a major feature of chronic kidney disease (CKD) of onset in infants or children and is associated with increased morbidity and mortality. Several factors have been shown to play a causal role in the growth impairment of CKD. All these factors interfere with growth by disturbing the normal physiology of the growth plate of long bones. To facilitate the understanding of the pathogenesis of growth impairment in CKD, this review discusses cellular and molecular alterations of the growth plate during uremia, including structural and dynamic changes of chondrocytes, alterations in their process of maturation and hypertrophy, and disturbances in the growth hormone signaling pathway.
Collapse
|
3
|
Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF. Growth and the Growth Hormone-Insulin Like Growth Factor 1 Axis in Children With Chronic Inflammation: Current Evidence, Gaps in Knowledge, and Future Directions. Endocr Rev 2016; 37:62-110. [PMID: 26720129 DOI: 10.1210/er.2015-1026] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Growth failure is frequently encountered in children with chronic inflammatory conditions like juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis. Delayed puberty and attenuated pubertal growth spurt are often seen during adolescence. The underlying inflammatory state mediated by proinflammatory cytokines, prolonged use of glucocorticoid, and suboptimal nutrition contribute to growth failure and pubertal abnormalities. These factors can impair growth by their effects on the GH-IGF axis and also directly at the level of the growth plate via alterations in chondrogenesis and local growth factor signaling. Recent studies on the impact of cytokines and glucocorticoid on the growth plate further advanced our understanding of growth failure in chronic disease and provided a biological rationale of growth promotion. Targeting cytokines using biological therapy may lead to improvement of growth in some of these children, but approximately one-third continue to grow slowly. There is increasing evidence that the use of relatively high-dose recombinant human GH may lead to partial catch-up growth in chronic inflammatory conditions, although long-term follow-up data are currently limited. In this review, we comprehensively review the growth abnormalities in children with juvenile idiopathic arthritis, inflammatory bowel disease, and cystic fibrosis, systemic abnormalities of the GH-IGF axis, and growth plate perturbations. We also systematically reviewed all the current published studies of recombinant human GH in these conditions and discussed the role of recombinant human IGF-1.
Collapse
Affiliation(s)
- S C Wong
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - R Dobie
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - M A Altowati
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - G A Werther
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - C Farquharson
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| | - S F Ahmed
- Developmental Endocrinology Research Group (S.C.W., M.A.A., S.F.A.), University of Glasgow, Royal Hospital for Children, Glasgow G51 4TF, United Kingdom; Division of Developmental Biology (R.D., C.F.), Roslin Institute, University of Edinburgh, Midlothian EH25 9RG, United Kingdom; and Hormone Research (G.A.W.), Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia
| |
Collapse
|
4
|
Sundström K, Cedervall T, Ohlsson C, Camacho-Hübner C, Sävendahl L. Combined treatment with GH and IGF-I: additive effect on cortical bone mass but not on linear bone growth in female rats. Endocrinology 2014; 155:4798-807. [PMID: 25243853 DOI: 10.1210/en.2014-1160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The growth-promoting effect of combined therapy with GH and IGF-I in normal rats is not known. We therefore investigated the efficacy of treatment with recombinant human (rh)GH and/or rhIGF-I on longitudinal bone growth and bone mass in intact, prepubertal, female Sprague-Dawley rats. rhGH was injected twice daily sc (5 mg/kg·d) and rhIGF-I continuously infused sc (2.2 or 4.4 mg/kg·d) for 28 days. Longitudinal bone growth was monitored by weekly x-rays of tibiae and nose-anus length measurements, and tibial growth plate histomorphology was analyzed. Bone mass was evaluated by peripheral quantitative computed tomography. In addition, serum levels of IGF-I, rat GH, acid labile subunit, IGF binding protein-3, 150-kDa ternary complex formation, and markers of bone formation and degradation were measured. Monotherapy with rhGH was more effective than rhIGF-I (4.4 mg/kg·d) to increase tibia and nose-anus length, whereas combined therapy did not further increase tibia, or nose-anus, lengths or growth plate height. In contrast, combined rhGH and rhIGF-I (4.4 mg/kg·d) therapy had an additive stimulatory effect on cortical bone mass vs rhGH alone. Combined treatment with rhGH and rhIGF-I resulted in markedly higher serum IGF-I concentrations vs rhGH alone but did not compromise the endogenous secretion of GH. We conclude that rhIGF-I treatment augments cortical bone mass but does not further improve bone growth in rhGH-treated young, intact, female rats.
Collapse
Affiliation(s)
- Katja Sundström
- Pediatric Endocrinology Unit (K.S., T.C., C.C.-H., L.S.), Department of Women's and Children's Health, Karolinska Institutet, SE-17176 Stockholm, Sweden; and Centre for Bone and Arthritis Research (C.O.), Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, SE-41345 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
5
|
Kamenický P, Mazziotti G, Lombès M, Giustina A, Chanson P. Growth hormone, insulin-like growth factor-1, and the kidney: pathophysiological and clinical implications. Endocr Rev 2014; 35:234-81. [PMID: 24423979 DOI: 10.1210/er.2013-1071] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Besides their growth-promoting properties, GH and IGF-1 regulate a broad spectrum of biological functions in several organs, including the kidney. This review focuses on the renal actions of GH and IGF-1, taking into account major advances in renal physiology and hormone biology made over the last 20 years, allowing us to move our understanding of GH/IGF-1 regulation of renal functions from a cellular to a molecular level. The main purpose of this review was to analyze how GH and IGF-1 regulate renal development, glomerular functions, and tubular handling of sodium, calcium, phosphate, and glucose. Whenever possible, the relative contributions, the nephronic topology, and the underlying molecular mechanisms of GH and IGF-1 actions were addressed. Beyond the physiological aspects of GH/IGF-1 action on the kidney, the review describes the impact of GH excess and deficiency on renal architecture and functions. It reports in particular new insights into the pathophysiological mechanism of body fluid retention and of changes in phospho-calcium metabolism in acromegaly as well as of the reciprocal changes in sodium, calcium, and phosphate homeostasis observed in GH deficiency. The second aim of this review was to analyze how the GH/IGF-1 axis contributes to major renal diseases such as diabetic nephropathy, renal failure, renal carcinoma, and polycystic renal disease. It summarizes the consequences of chronic renal failure and glucocorticoid therapy after renal transplantation on GH secretion and action and questions the interest of GH therapy in these conditions.
Collapse
Affiliation(s)
- Peter Kamenický
- Assistance Publique-Hôpitaux de Paris (P.K., M.L., P.C.), Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Le Kremlin Bicêtre F-94275, France; Univ Paris-Sud (P.K., M.L., P.C.), Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre F-94276, France; Inserm Unité 693 (P.K., M.L., P.C.), Le Kremlin Bicêtre F-94276, France; and Department of Clinical and Experimental Sciences (A.G., G.M.), Chair of Endocrinology, University of Brescia, 25125 Brescia, Italy
| | | | | | | | | |
Collapse
|
6
|
Troib A, Landau D, Kachko L, Rabkin R, Segev Y. Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease–related growth retardation. Kidney Int 2013; 84:940-9. [DOI: 10.1038/ki.2013.196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/15/2022]
|
7
|
Kiepe D, Tönshoff B. Insulin-like growth factors in normal and diseased kidney. Endocrinol Metab Clin North Am 2012; 41:351-74, vii. [PMID: 22682635 DOI: 10.1016/j.ecl.2012.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This article reviews the physiology of the insulin-like growth factor (IGF) system in the kidney and the changes and potential role of this system in selected renal diseases. The potential therapeutic uses of recombinant human IGF-I for the treatment of acute and chronic kidney failure are briefly discussed.
Collapse
Affiliation(s)
- Daniela Kiepe
- Department of Pediatrics I, University Children's Hospital Heidelberg, INF 430, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
8
|
Gil H, Lozano JJ, Alvarez-García O, Secades-Vázquez P, Rodríguez-Suárez J, García-López E, Carbajo-Pérez E, Santos F. Differential gene expression induced by growth hormone treatment in the uremic rat growth plate. Growth Horm IGF Res 2008; 18:353-359. [PMID: 18331806 DOI: 10.1016/j.ghir.2008.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 01/09/2008] [Accepted: 01/29/2008] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Treatment with growth hormone (GH) improves growth retardation of chronic renal failure. cDNA microarrays were used to investigate GH-induced modifications in gene expression in the tibial growth plate of young rats. DESIGN RNA was extracted from the tibial growth plate from two groups, untreated and treated with GH, of young rats made uremic by subtotal nephrectomy (n=10). To validate changes shown by the Agilent oligo microarrays, some modulated genes known to play a physiological role in growth plate metabolism were analyzed by real-time quantitative polymerase chain reaction (qPCR). RESULTS The microarrays showed that GH modified the expression of 224 genes, 195 being upregulated and 29 downregulated. qPCR results confirmed the sense of expression change found in the arrays for insulin-like growth factor I, insulin-like growth factor II, collagen V alpha 1, bone morphogenetic protein 3 and proteoglycan type II. CONCLUSIONS This study shows for the first time the profile of growth plate gene expression modifications caused by GH treatment in experimental uremia and provides a basis to further investigate selected individual genes with potential implication in the stimulating effect on the growth of GH treatment in chronic renal failure.
Collapse
Affiliation(s)
- Helena Gil
- Hospital Universitario Central de Asturias, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) are important physiologic regulators of growth, body composition, and kidney function. Perturbations in the GH-IGF-I axis are responsible for many important complications seen in chronic kidney disease (CKD), such as growth retardation and cachectic wasting, as well as disease progression. Recent evidence suggests that CKD is characterized by abnormalities in GH and IGF-I signal transduction and the interaction of these pathways with those that involve other molecules such as ghrelin, myostatin, and the suppressor of cytokine signaling (SOCS) family. Further understanding of GH/IGF pathophysiology in CKD may lead to the development of therapeutic strategies for these devastating complications, which are associated with high rates of mortality and morbidity.
Collapse
Affiliation(s)
- Robert H Mak
- Department of Pediatrics, Division of Pediatric Nephrology, University of California at San Diego, La Jolla, CA 92093-0634, USA.
| | | | | |
Collapse
|
10
|
Stefanidis CJ, Klaus G. Growth of prepubertal children on dialysis. Pediatr Nephrol 2007; 22:1251-9. [PMID: 17401584 PMCID: PMC6904393 DOI: 10.1007/s00467-007-0481-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 02/26/2007] [Accepted: 03/01/2007] [Indexed: 11/26/2022]
Abstract
Growth failure is a common and significant clinical problem for children on dialysis and often remains a major impediment to their rehabilitation. Early referral to a paediatric nephrology centre and appropriate management before the initiation of dialysis may significantly prevent growth deterioration. Growth in children on dialysis can be affected by nutritional, metabolic, and hormonal changes. Early diagnosis of malnutrition and aggressive management should be a priority. Gastrostomy feeding should be used when adequate oral intake to maintain normal height and weight velocity cannot be achieved. Active vitamin D metabolites should be used carefully, to prevent low-turnover bone disease. All children should have an adequate regimen of dialysis and an appropriate management of malnutrition, renal osteodystrophy, metabolic acidosis, salt wasting and anaemia, before recombinant human growth hormone (rhGH) administration is considered. The current challenge of reversing growth impairment in children on dialysis can only be achieved by optimization of their care.
Collapse
Affiliation(s)
- Constantinos J Stefanidis
- Department of Nephrology, P. & A. Kyriakou Children's Hospital of Athens, Goudi, 14562, Athens, Greece.
| | | |
Collapse
|
11
|
Greenstein J, Guest S, Tan JC, Tummala P, Busque S, Rabkin R. Circulating growth hormone binding protein levels and mononuclear cell growth hormone receptor expression in uremia. J Ren Nutr 2006; 16:141-9. [PMID: 16567271 DOI: 10.1053/j.jrn.2006.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Resistance to growth hormone (GH) in end-stage renal disease (ESRD) causes growth retardation and muscle wasting. In humans, circulating GH binding protein (GHBP), the extracellular domain of the GH receptor that is shed into the circulation and is believed to reflect tissue GH receptor levels, is reduced in uremia and suggests that cellular GH receptor levels are correspondingly reduced. If true, this could be a cause of GH resistance. We set out to establish whether serum GHBP levels reflect cellular GH receptor levels and whether changes in serum GHBP levels are related to nutritional or inflammatory status. METHODS GH receptor protein expression in peripheral blood mononuclear cells (PBMC) from 21 ESRD and 14 normal subjects were analyzed by fluorochrome flow cytometry. RESULTS The GH receptor density and percent total PBMCs expressing the GH receptor were similar in the 2 groups, and there was no difference in percent GH receptor positive T or B cells or monocytes. In contrast, serum GHBP levels were 80% lower in ESRD. GHBP levels did not correlate with serum albumin, body mass index, or muscle mass but seemed to be partly related to the log serum C-reactive protein levels. CONCLUSIONS Serum GHBP levels are markedly reduced in ESRD; this seems to occur independent of nutritional status and may in part be caused by inflammation. Because GH receptor expression on PBMC of ESRD and control subjects was similar, our findings argue against a reduction in GH receptor as a cause of GH resistance and the use of serum GHBP levels as a reliable marker of specific tissue GH receptor levels.
Collapse
|
12
|
Edmondson SR, Thumiger SP, Kaur P, Loh B, Koelmeyer R, Li A, Silha JV, Murphy LJ, Wraight CJ, Werther GA. Insulin-like growth factor binding protein-3 (IGFBP-3) localizes to and modulates proliferative epidermal keratinocytes in vivo. Br J Dermatol 2005; 152:225-30. [PMID: 15727632 DOI: 10.1111/j.1365-2133.2004.06350.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The colocalization of insulin-like growth factor binding protein-3 (IGFBP-3) and IGF-I receptor (IGF-IR) in the basal/germinative layer of the epidermis suggests a key role in modulating epidermal homeostasis. OBJECTIVES We aimed to clarify both the specific cellular localization and the effect of excess epidermal IGFBP-3 on keratinocyte proliferation. METHODS (i) Total RNA was isolated from fluorescence-activated cell sorted basal human keratinocyte subtypes [keratinocyte stem cells, transit amplifying keratinocytes (TA), postmitotic differentiating keratinocytes (PMD)], and real-time polymerase chain reaction analysis was used to determine the abundance of IGFBP-3 and IGF-IR mRNAs. (ii) An IGFBP-3 transgenic mouse model was then used to assess the effect of excess epidermal IGFBP-3 on keratinocyte proliferation. Excess epidermal IGFBP-3 mRNA and protein was determined by in situ hybridization and immunohistochemistry, respectively. RESULTS (i) The highest levels of IGFBP-3 mRNA were detected in TA keratinocytes, in contrast to IGF-IR mRNA levels which were highest in PMD keratinocytes. (ii) Elevated human IGFBP-3 mRNA and protein was confirmed in the epidermis of skin derived from transgenic mice. Excess IGFBP-3 reduced the relative percentage of proliferative keratinocytes (Ki67 positive) irrespective of skin location (belly, back and tail). Thus, in the epidermis, IGFBP-3 mRNA is highly expressed by proliferative keratinocytes (TA) and overexpression of IGFBP-3 inhibits keratinocyte proliferation. CONCLUSIONS We conclude that in vivo IGFBP-3 ensures epidermal homeostasis via downregulation of keratinocyte proliferation, and thus modulates the early stages of keratinocyte differentiation.
Collapse
Affiliation(s)
- S R Edmondson
- Epithelial Stem Cell Biology Laboratory, Peter MacCallum Cancer Institute, East Melbourne, 3002 Victoria, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rabkin R, Sun DF, Chen Y, Tan J, Schaefer F. Growth hormone resistance in uremia, a role for impaired JAK/STAT signaling. Pediatr Nephrol 2005; 20:313-8. [PMID: 15692835 DOI: 10.1007/s00467-004-1713-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 09/24/2004] [Accepted: 09/27/2004] [Indexed: 12/11/2022]
Abstract
Resistance to growth hormone (GH) is a significant complication of advanced chronic renal failure. Thus while the circulating GH levels are normal or even elevated in uremia, resistance to the hormone leads to stunting of body growth in children and contributes to muscle wasting in adults. Insensitivity to GH is the consequence of multiple defects in the GH/insulin-like growth factor-1 (IGF-1) system. Expression of the GH receptor may be reduced, although this is not a consistent finding, GH activation of the Janus kinase 2-signal transducer (JAK2) and activator of transcription (STAT) signal transduction pathway is depressed and this leads to reduced IGF-1 expression, and finally there is resistance to IGF-1, a major mediator of GH action. We review these various defects with an emphasis on the GH-activated JAK2-STAT5 pathway, since this pathway is essential for normal body growth and there has been recent progress in our understanding of the perturbations that occur in uremia.
Collapse
Affiliation(s)
- Ralph Rabkin
- Veterans Affairs, Palo Alto Health Care System, Palo Alto, California 94304, USA.
| | | | | | | | | |
Collapse
|
14
|
Santos F, Carbajo-Pérez E, Rodríguez J, Fernández-Fuente M, Molinos I, Amil B, García E. Alterations of the growth plate in chronic renal failure. Pediatr Nephrol 2005; 20:330-4. [PMID: 15549411 DOI: 10.1007/s00467-004-1652-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2004] [Revised: 07/28/2004] [Accepted: 07/30/2004] [Indexed: 10/26/2022]
Abstract
Chronic renal failure modifies the morphology and dynamics of the growth plate (GP) of long bones. In young uremic rats, the height of cartilage columns of GP may vary markedly. The reasons for this variation are unknown, although the severity and duration of renal failure and the type of renal osteodystrophy have been shown to influence the height of GP cartilage. Expansion of GP cartilage is associated with that of the hypertrophic stratum. The interference of uremia with the process of chondrocyte differentiation is suggested by some morphological features. However, analysis by immunohistochemistry and/or in situ hybridization of markers of chondrocyte maturation in the GP of uremic rats has yielded conflicting results. Thus, there have been reported normal and reduced mRNA levels for collagen X, parathyroid hormone/parathyroid hormone-related peptide receptor, and matrix metalloproteinase 9, as well as normal mRNA and protein expression for vascular endothelial growth factor and chondromodulin I, peptides related to the control of angiogenesis. In addition, a decreased immunohistochemical signal for growth hormone receptor and low insulin-like growth factor I mRNA in the proliferative zone of uremic GP are supportive of reduced chondrocyte proliferation. Growth hormone treatment improves chondrocyte maturation and activates bone metabolism in the primary spongiosa.
Collapse
Affiliation(s)
- Fernando Santos
- SESPA and School of Medicine, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo, Asturias, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Greenbaum LA, Del Rio M, Bamgbola F, Kaskel F. Rationale for growth hormone therapy in children with chronic kidney disease. Adv Chronic Kidney Dis 2004. [DOI: 10.1053/j.ackd.2004.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Amil B, Fernandez-Fuente M, Molinos I, Rodriguez J, Carbajo-Pérez E, Garcia E, Yamamoto T, Santos F. Chondromodulin-I expression in the growth plate of young uremic rats. Kidney Int 2004; 66:51-9. [PMID: 15200412 DOI: 10.1111/j.1523-1755.2004.00708.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Growth retardation of chronic renal failure is associated with alterations in the growth plate suggestive of a disturbed chondrocyte maturation process and abnormal vascular invasion at the chondro-osseous interphase. Chondromodulin I (ChM-I) is a potent cartilage-specific angiostatic factor. Its pattern of expression in the uremic rat growth plate is unknown. Persistence of ChM-I synthesis and/or imbalance between ChM-I and vascular endothelial growth factor (VEGF) expressions might play a role in the alterations of uremic growth plate. METHODS Growth cartilage ChM-I expression was investigated by immunohistochemistry, in situ hybridization, and reverse transcription-polymerase chain reaction (RT-PCR) in growth-retarded young uremic rats (UREM), control rats, fed ad libitum (SAL) or pair-fed with the UREM group (SPF), and uremic rats treated with growth hormone (UREM-GH). VEGF expression was analyzed by immunohistochemistry. RESULTS ChM-I and ChM-I mRNA were confined to the proliferative and early hypertrophic zones of growth cartilage. A similar number of chondrocytes per column was positive for ChM-I in the 4 groups. In accordance with the elongation of the hypertrophic stratum in uremia, the distance (X+/-SEM, microm) between the extracellular ChM-I signal and the metaphyseal end of growth cartilage was higher (P < 0.003) in UREM (236 +/- 40) and UREM-GH (297 +/- 17) than in SAL (92 +/- 7) and SPF (113 +/- 6). No differences in ChM-I expression were appreciated by RT-PCR. Similar VEGF positivity was observed in the hypertrophic chondrocytes of all groups. CONCLUSION In experimental uremia, expansion of growth cartilage does not result from increased or persistent expression of ChM-I or from reduced VEGF expression at the cartilage-metaphyseal bone interphase. GH treatment does not modify ChM-I and VEGF expressions.
Collapse
Affiliation(s)
- Benito Amil
- Hospital Central de Asturias, Oviedo, Asturias, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
GH increases linear growth in children with chronic renal failure, but the response remains suboptimal in some patients. Some of the factors that may explain the poor response to GH include high doses of calcitriol and exogenous calcium loading to prevent hyperphosphatemia. High doses of exogenous calcium adversely affect chondrocyte proliferation and delay mineralization in the growth plate of rats with renal failure; bone histomorphometric changes in these animals are comparable to adynamic bone. To evaluate GH effects on adynamic bone in renal failure, 48 weanling rats underwent sham nephrectomy (Intact-Control) or 5/6 nephrectomy (Nx). Nx animals were fed a high-calcium diet (Nx-Ca(2+)) to induce adynamic bone. After 4 wk, the Nx-Ca(2+) animals were treated with GH (Nx-Ca(2+) + GH), calcitriol (Nx-Ca(2+) + D), or a combination of GH and calcitriol (Nx-Ca(2+)GH + D) for 2 wk. Serum intact PTH and IGF-I levels did not differ among all nephrectomized groups given high calcium. GH did not increase body length or tibial length at the end of study period. In the proximal tibia, the width of the growth plate and the growth plate architecture did not improve with GH. There was a decline in histone-4 expression, IGF-I protein, IGF binding protein-3, and bone morphogenetic protein-7 staining and a mild increase in IGF-I receptor, GH receptor, and gelatinase B expression in the Nx-Ca(2+) + GH group when compared with the Intact-Control group. Calcitriol blunted some of the mitogenic effects of GH in the growth plate. Thus, there was a poor response to GH therapy in calcium-loaded animals with renal failure.
Collapse
Affiliation(s)
- Cheryl P Sanchez
- Department of Pediatrics, University of Wisconsin Medical School, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
18
|
|
19
|
Affiliation(s)
- Frederick Kaskel
- Children's Hospital at Montefiore, Bronx, New York, New York, USA.
| |
Collapse
|
20
|
Gevers EF, van der Eerden BCJ, Karperien M, Raap AK, Robinson ICAF, Wit JM. Localization and regulation of the growth hormone receptor and growth hormone-binding protein in the rat growth plate. J Bone Miner Res 2002; 17:1408-19. [PMID: 12162495 DOI: 10.1359/jbmr.2002.17.8.1408] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Growth hormone (GH) has direct effects on the growth plate to stimulate longitudinal growth, but it is not clear which chondrocyte populations GH acts on. The dual effector theory suggests that GH would act primarily on the "stem cells." However, staining with a GH receptor (GHR) antibody is found in all layers of the growth plate in rabbits and humans. We now have investigated the localization and regulation of GHR and the related GH binding protein (GHBP) in the rat growth plate using a sensitive immunohistochemical method involving tyramide signal amplification (TSA) and antibodies specific for GHR or GHBP. Both GHR and GHBP were shown in the germinal and proliferative chondrocytes, but most clearly in early maturing chondrocytes at the interface between proliferative and hypertrophic cells. Staining for GHR and GHBP was located in both the cytoplasm and the nucleus. Expression of GHR mRNA and GHBP mRNA in the growth plate was confirmed by reverse-transcription polymerase chain reaction (RT-PCR). Immunohistochemical staining for GHR and GHBP decreased with age; in 12-week-old normal rats, only the early maturing chondrocytes were stained. In GH-deficient dwarf rats, staining seemed less than in normal rats, and in hypophysectomized (Hx) rats, staining for GHBP was clearly reduced. Treatment of Hx rats with thyroid hormones (T3 + T4), via subcutaneously (sc) implanted osmotic minipumps, induced little growth and induced a small layer of GHR-positive and GHBP-positive early maturing chondrocytes. Treatment with GH and thyroid hormones (TH) resulted in greater growth and a broader layer of GHR-positive and GHBP-positive cells, indistinguishable from normal rats. In contrast, dexamethasone treatment of normal rats inhibited their growth and reduced GHR and GHBP staining in the growth plate. These results show that GHR and GHBP in the growth plate are under hormonal control. The localization of GHR/GHBP suggests that in addition to actions on germinal and proliferative cells in young rats, GH also has effects on early maturing chondrocytes and may be involved in their differentiation to a fully hypertrophic chondrocyte.
Collapse
Affiliation(s)
- Evelien F Gevers
- Department of Pediatrics, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Robson H, Siebler T, Shalet SM, Williams GR. Interactions between GH, IGF-I, glucocorticoids, and thyroid hormones during skeletal growth. Pediatr Res 2002; 52:137-47. [PMID: 12149488 DOI: 10.1203/00006450-200208000-00003] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Linear growth occurs during development and the childhood years until epiphyseal fusion occurs. This process results from endochondral ossification in the growth plates of long bones and is regulated by systemic hormones and paracrine or autocrine factors. The major regulators of developmental and childhood growth are GH, IGF-I, glucocorticoids, and thyroid hormone. Sex steroids are responsible for the pubertal growth spurt and epiphyseal fusion. This review will consider interactions between GH, IGF-I, glucocorticoids, and thyroid hormone during linear growth. It is well known from physiologic and clinical studies that these hormones interact at the level of the hypothalamus and pituitary. Interacting effects on peripheral tissues such as liver are also well understood, but we concentrate here on the epiphyseal growth plate as an important and newly appreciated target organ for convergent hormone action.
Collapse
Affiliation(s)
- Helen Robson
- Department of Clinical Research, Christie Hospital National Health Service Trust, Manchester, UK
| | | | | | | |
Collapse
|
22
|
Roelfsema V, Clark RG. The growth hormone and insulin-like growth factor axis: its manipulation for the benefit of growth disorders in renal failure. J Am Soc Nephrol 2001; 12:1297-1306. [PMID: 11373355 DOI: 10.1681/asn.v1261297] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal failure is associated with dramatic changes in the growth hormone/insulin-like growth factor (GH/IGF) axis. In children, this results in growth retardation, which is treated with injections of recombinant human GH (rhGH). Given the many recent advances in the knowledge of the components of the GH/IGF axis, it is timely to review the role of GH in renal failure and to discuss likely new treatments for growth failure. Renal failure is not a state of GH deficiency but a state of GH and IGF resistance, making other approaches to manipulating the GH axis more logical than treatment with rhGH alone. Although in children rhGH is safe, in critically ill adults it can be lethal. As the mechanisms of these lethal actions of rhGH are unknown, caution is advised when using rhGH outside approved indications. In renal failure, an optimal balance between safety and efficacy for growth may be achieved with the use of the combination of rhGH and rhIGF-I, as animal studies have shown synergistic growth responses. However, inhibition of the GH axis, with the use of GH antagonists, is likely to be tested clinically given the beneficial effects of GH antagonists on renal function in animal models of renal disease. Manipulating IGF-I by either administering rhIGF-1 or its binding proteins or increasing IGF-I bioavailability with the use of IGF displacers could prove to be a safer and more effective alternative to the use of rhGH in renal failure. In the future, both rhGH and rhIGF-1 likely will be included in growth-promoting hormone cocktails tailored to correct specific growth disorders.
Collapse
Affiliation(s)
- Vincent Roelfsema
- Research Centre for Developmental Medicine and Biology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| | - Ross G Clark
- Research Centre for Developmental Medicine and Biology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Schaefer F, Chen Y, Tsao T, Nouri P, Rabkin R. Impaired JAK-STAT signal transduction contributes to growth hormone resistance in chronic uremia. J Clin Invest 2001; 108:467-75. [PMID: 11489940 PMCID: PMC209355 DOI: 10.1172/jci11895] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chronic renal failure (CRF) is associated with resistance to the growth-promoting and anabolic actions of growth hormone (GH). In rats with CRF induced by partial renal ablation, 7 days of GH treatment had a diminished effect on weight gain and hepatic IGF-1 and IGFBP-1 mRNA levels, compared with sham-operated pair-fed controls. To assess whether GH resistance might be due to altered signal transduction, activation of the JAK-STAT pathway was studied 10 or 15 minutes after intravenous injection of 5 mg/kg GH or vehicle. Hepatic GH receptor (GHR) mRNA levels were significantly decreased in CRF, but GHR protein abundance and GH binding to microsomal and plasma membranes was unaltered. JAK2, STAT1, STAT3, and STAT5 protein abundance was also unchanged. However, GH-induced tyrosine phosphorylation of JAK2, STAT5, and STAT3 was 75% lower in the CRF animals. Phosphorylated STAT5 and STAT3 were also diminished in nuclear extracts. The expression of the suppressor of cytokine signaling-2 (SOCS-2) was increased twofold in GH-treated CRF animals, and SOCS-3 mRNA levels were elevated by 60% in CRF, independent of GH treatment. In conclusion, CRF causes a postreceptor defect in GH signal transduction characterized by impaired phosphorylation and nuclear translocation of GH-activated STAT proteins, which is possibly mediated, at least in part, by overexpression of SOCS proteins.
Collapse
Affiliation(s)
- F Schaefer
- Research Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|
24
|
Lupu F, Terwilliger JD, Lee K, Segre GV, Efstratiadis A. Roles of growth hormone and insulin-like growth factor 1 in mouse postnatal growth. Dev Biol 2001; 229:141-62. [PMID: 11133160 DOI: 10.1006/dbio.2000.9975] [Citation(s) in RCA: 515] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To examine the relationship between growth hormone (GH) and insulin-like growth factor 1 (IGF1) in controlling postnatal growth, we performed a comparative analysis of dwarfing phenotypes manifested in mouse mutants lacking GH receptor, IGF1, or both. This genetic study has provided conclusive evidence demonstrating that GH and IGF1 promote postnatal growth by both independent and common functions, as the growth retardation of double Ghr/Igf1 nullizygotes is more severe than that observed with either class of single mutant. In fact, the body weight of these double-mutant mice is only approximately 17% of normal and, in absolute magnitude ( approximately 5 g), only twice that of the smallest known mammal. Thus, the growth control pathway in which the components of the GH/IGF1 signaling systems participate constitutes the major determinant of body size. To complement this conclusion mainly based on extensive growth curve analyses, we also present details concerning the involvement of the GH/IGF1 axis in linear growth derived by a developmental study of long bone ossification in the mutants.
Collapse
Affiliation(s)
- F Lupu
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
25
|
Mehls O, Haas S. Effects of recombinant human growth hormone in catabolic adults with chronic renal failure. Growth Horm IGF Res 2000; 10 Suppl B:S31-S37. [PMID: 10984251 DOI: 10.1016/s1096-6374(00)80007-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Growth hormone (GH) has been used for the treatment of catabolism in a few pilot studies and in two placebo-controlled studies of 6 months duration. Treatment with GH in doses of 2-4 IU/m2/day (0.67-1.33 mg/m2/day) resulted in clear anabolic effects and a significant change in body composition. Lean body mass increased by more than 3 kg within 6 months, whereas fat mass was decreased by the same amount, resulting in a constant total body weight. As there were no major side-effects, controlled long-term studies are justified.
Collapse
Affiliation(s)
- O Mehls
- Division of Pediatric Nephrology, University Children's Hospital of Germany, Heidelberg
| | | |
Collapse
|