1
|
Maknis TR, Fussi MF, Pariani AP, Huhn V, Vena R, Favre C, Molinas SM, Larocca MC. Activation of angiotensin II type 2 receptor leads to preservation of primary cilia in tubular cells during renal ischaemia-reperfusion injury. J Physiol 2024; 602:5083-5103. [PMID: 39146457 DOI: 10.1113/jp286514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Ischaemia-reperfusion (IR)-associated acute kidney injury (AKI) is a severe clinical condition that lacks effective pharmacological treatments. Our recent research revealed that pretreatment with the angiotensin II type 2 receptor (AT2R) agonist C21 alleviates kidney damage during IR. Primary cilia are organelles crucial for regulation of epithelial cell homeostasis, which are significantly affected by IR injury. This study aimed to evaluate the impact of AT2R activation on cilia integrity during IR and to identify pathways involved in the nephroprotective effect of C21. Rats were subjected to 40 min of unilateral ischaemia followed by 24 h of reperfusion. Immunofluorescence analysis of the kidneys showed that the nephroprotective effect of C21 was associated with preservation of cilia integrity in tubular cells. AT2R agonists increased α-tubulin acetylation in primary cilia in tubular cells in vivo and in a cell model. Analysis of ERK phosphorylation indicated that AT2R activation led to diminished activation of ERK1/2 in tubular cells. Similar to AT2R agonists, inhibitors of α-tubulin deacetylase HDAC6 or inhibitors of ERK activation ameliorated IR-induced cell death and preserved cilia integrity. Immunofluorescence analysis of tubular cells revealed significant ERK localization at primary cilia and demonstrated that ERK inhibition increased cilia levels of acetylated α-tubulin. Overall, our findings demonstrate that C21 elicits a preconditioning effect that enhances cilia stability in renal tubular cells, thereby preserving their integrity when exposed to IR injury. Furthermore, our results indicate that this effect might be mediated by AT2R-induced inhibition of ERK activation. These findings offer potential insights for the development of pharmacological interventions to mitigate IR-associated AKI. KEY POINTS: The AT2R agonist C21 prevents primary cilia shortening and tubular cell deciliation during renal ischaemia-reperfusion. AT2R activation inhibits ERK1/2 in renal tubular cells. Both AT2R agonists and ERK1/2 inhibitors increase alpha-tubulin acetylation at the primary cilium in tubular cells. AT2R activation, ERK1/2 inhibition or inhibition of alpha-tubulin deacetylation elicit protective effects in tubular cells subjected to ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Tomás Rivabella Maknis
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - M Fernanda Fussi
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Alejandro P Pariani
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Victoria Huhn
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Sara M Molinas
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas (FBIOyF), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| |
Collapse
|
2
|
Gutsol AA, Hale TM, Thibodeau JF, Holterman CE, Nasrallah R, Correa JWN, Touyz RM, Kennedy CRJ, Burger D, Hébert RL, Burns KD. Comparative Analysis of Hypertensive Tubulopathy in Animal Models of Hypertension and Its Relevance to Human Pathology. Toxicol Pathol 2023; 51:160-175. [PMID: 37632371 DOI: 10.1177/01926233231191128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.
Collapse
Affiliation(s)
- Alex A Gutsol
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Taben M Hale
- The University of Arizona, Phoenix, Arizona, USA
| | | | | | | | | | | | - Chris R J Kennedy
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Dylan Burger
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Richard L Hébert
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| | - Kevin D Burns
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Wang Y, Yodgee J, Del Borgo M, Spizzo I, Nguyen L, Aguilar MI, Denton KM, Samuel CS, Widdop RE. The Novel AT2 Receptor Agonist β-Pro7-AngIII Exerts Cardiac and Renal Anti-Fibrotic and Anti-Inflammatory Effects in High Salt-Fed Mice. Int J Mol Sci 2022; 23:ijms232214039. [PMID: 36430518 PMCID: PMC9696912 DOI: 10.3390/ijms232214039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
A high salt (HS) diet is associated with an increased risk for cardiovascular diseases (CVDs) and fibrosis is a key contributor to the organ dysfunction involved in CVDs. The activation of the renin angiotensin type 2 receptor (AT2R) has been considered as organ protective in many CVDs. However, there are limited AT2R-selective agonists available. Our first reported β-substituted angiotensin III peptide, β-Pro7-AngIII, showed high selectivity for the AT2R. In the current study, we examine the potential anti-fibrotic and anti-inflammatory effects of this novel AT2R-selective peptide on HS-induced organ damage. FVB/N mice fed with a 5% HS diet for 8 weeks developed cardiac and renal fibrosis and inflammation, which were associated with increased TGF-β1 levels in heart, kidney and plasma. Four weeks' treatment (from weeks 5-8) with β-Pro7-AngIII inhibited the HS-induced cardiac and renal fibrosis and inflammation. These protective effects were accompanied by reduced local and systemic TGF-β1 as well as reduced cardiac myofibroblast differentiation. Importantly, the anti-fibrotic and anti-inflammatory effects caused by β-Pro7-AngIII were attenuated by the AT2R antagonist PD123319. These results demonstrate, for the first time, the cardio- and reno-protective roles of the AT2R-selective β-Pro7-AngIII, highlighting it as an important therapeutic that can target the AT2R to treat end-organ damage.
Collapse
Affiliation(s)
- Yan Wang
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Jonathan Yodgee
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Mark Del Borgo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Levi Nguyen
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Kate M. Denton
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | - Chrishan S. Samuel
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Robert E. Widdop
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
- Departments of Pharmacology, Monash University, Clayton, VIC 3800, Australia
- Correspondence:
| |
Collapse
|
4
|
Abdelbary M, Mohamed R, Gillis EE, Diaz-Sanders K, Baban B, Brands MW, Sullivan JC. Sex differences in apoptosis do not contribute to sex differences in blood pressure or renal T cells in spontaneously hypertensive rats. Front Physiol 2022; 13:1006951. [PMID: 36304583 PMCID: PMC9592703 DOI: 10.3389/fphys.2022.1006951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Apoptosis is a physiological and anti-inflammatory form of cell death that is indispensable for normal physiology and homeostasis. Several studies have reported aberrant activation of apoptosis in various tissues at the onset of hypertension. However, the functional significance of apoptosis during essential hypertension remains largely undefined. The current study was designed to test the hypothesis that apoptosis contributes to sex differences in blood pressure and the T cell profile in spontaneously hypertensive rats (SHR). Apoptosis was measured in kidney, aorta and spleen of 13-week-old adult hypertensive male and female SHR. Female SHR had greater renal and aortic apoptosis compared to age-matched males; apoptosis in the spleen was comparable between the sexes. Based on well-established sex differences in hypertension, we tested the hypothesis that greater apoptosis in female SHR contributes to the lower BP and pro-inflammatory profile compared to males. Male and female SHR were randomized to receive vehicle or ZVAD-FMK, a cell permeable pan-caspase inhibitor, in established hypertension from 13 to 15 weeks of age or at the onset of hypertension from 6 to 12 weeks or age. Treatment with ZVAD-FMK lowered renal apoptosis in both studies, yet neither BP nor renal T cells were altered in either male or female SHR. These results suggest that apoptosis does not contribute to the control or maintenance of BP in male or female SHR or sex differences in renal T cells.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Riyaz Mohamed
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Ellen E. Gillis
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Karl Diaz-Sanders
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Babak Baban
- Department of Oral Biology, Augusta University, Augusta, GA, United States
| | - Michael W. Brands
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Augusta University, Augusta, GA, United States,*Correspondence: Jennifer C. Sullivan,
| |
Collapse
|
5
|
Interactions between the intrarenal dopaminergic and the renin-angiotensin systems in the control of systemic arterial pressure. Clin Sci (Lond) 2022; 136:1205-1227. [PMID: 35979889 DOI: 10.1042/cs20220338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Systemic arterial hypertension is one of the leading causes of morbidity and mortality in the general population, being a risk factor for many cardiovascular diseases. Although its pathogenesis is complex and still poorly understood, some systems appear to play major roles in its development. This review aims to update the current knowledge on the interaction of the intrarenal renin-angiotensin system (RAS) and dopaminergic system in the development of hypertension, focusing on recent scientific hallmarks in the field. The intrarenal RAS, composed of several peptides and receptors, has a critical role in the regulation of blood pressure (BP) and, consequently, the development of hypertension. The RAS is divided into two main intercommunicating axes: the classical axis, composed of angiotensin-converting enzyme, angiotensin II, and angiotensin type 1 receptor, and the ACE2/angiotensin-(1-7)/Mas axis, which appears to modulate the effects of the classical axis. Dopamine and its receptors are also increasingly showing an important role in the pathogenesis of hypertension, as abnormalities in the intrarenal dopaminergic system impair the regulation of renal sodium transport, regardless of the affected dopamine receptor subtype. There are five dopamine receptors, which are divided into two major subtypes: the D1-like (D1R and D5R) and D2-like (D2R, D3R, and D4R) receptors. Mice deficient in any of the five dopamine receptor subtypes have increased BP. Intrarenal RAS and the dopaminergic system have complex interactions. The balance between both systems is essential to regulate the BP homeostasis, as alterations in the control of both can lead to hypertension.
Collapse
|
6
|
Lévy BI, Mourad JJ. Renin Angiotensin Blockers and Cardiac Protection: From Basis to Clinical Trials. Am J Hypertens 2022; 35:293-302. [PMID: 34265036 DOI: 10.1093/ajh/hpab108] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Despite a similar beneficial effect on blood pressure lowering observed with angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor (AT1R) blocker (ARBs), several clinical trials and meta-analyses have reported higher cardiovascular mortality and lower protection against myocardial infarction with ARBs when compared with ACEIs. The European guidelines for the management of coronary syndromes and European guidelines on diabetes recommend using ARBs in patients who are intolerant to ACEIs. We reviewed the main pharmacological differences between ACEIs and ARBs, which could provide insights into the differences in the cardiac protection offered by these 2 drug classes. The effect of ACEIs on the tissue and plasma levels of bradykinin and on nitric oxide production and bioavailability is specific to the mechanism of action of ACEIs; it could account for the different effects of ACEIs and ARBs on endothelial function, atherogenesis, and fibrinolysis. Moreover, chronic blockade of AT1 receptors by ARBs induces a significant and permanent increase in plasma angiotensin II and an overstimulation of its still available receptors. In animal models, AT4 receptors have vasoconstrictive, proliferative, and inflammatory effects. Moreover, in models with kidney damage, atherosclerosis, and/or senescence, activation of AT2 receptors could have deleterious fibrotic, vasoconstrictive, and hypertrophic effects and seems prudent and reasonable to reserve the use of ARBs for patients who have presented intolerance to ACE inhibitors.
Collapse
|
7
|
Tourwé D, Tsiailanis AD, Parisis N, Hirmiz B, Del Borgo M, Aguilar MI, Van der Poorten O, Ballet S, Widdop RE, Tzakos AG. Using conformational constraints at position 6 of Angiotensin II to generate compounds with enhanced AT2R selectivity and proteolytic stability. Bioorg Med Chem Lett 2021; 43:128086. [PMID: 33965531 DOI: 10.1016/j.bmcl.2021.128086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/25/2021] [Accepted: 05/02/2021] [Indexed: 11/27/2022]
Abstract
The Renin-Angiotensin System (RAS) plays a crucial role in numerous pathological conditions. Two of the critical RAS players, the angiotensin receptors AT1R and AT2R, possess differential functional profiles, although they share high sequence similarity. Although the main focus has been placed on AT1R, several epidemiological studies have evidenced that activation of AT2R could operate as a multimodal therapeutic target for different diseases. Thus, the development of selective AT2R ligands could have a high clinical potential for different therapeutic directions. Furthermore, they could serve as a powerful tool to interrogate the molecular mechanisms that are mediated by AT2R. Based on our recently established high affinity and AT2R selective compound [Y]6-AII we developed several analogues through modifying aminoacids located at positions 6 and 7 with various conformationally constrained analogues to enhance both the selectivity and stability. We report the development of high-affinity AT2R binders, which displayed high selectivity for AT2R versus AT1R. Furthermore, all analogues presented enhanced stability in human plasma with respect to the parent hormone Angiotensin II as also [Y]6-AII.
Collapse
Affiliation(s)
- Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Antonis D Tsiailanis
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Nikolaos Parisis
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Baydaa Hirmiz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Mark Del Borgo
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Olivier Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Robert E Widdop
- Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Andreas G Tzakos
- Laboratory of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|
8
|
The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? Cells 2021; 10:cells10030650. [PMID: 33804069 PMCID: PMC7999456 DOI: 10.3390/cells10030650] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 01/18/2023] Open
Abstract
Evidence has arisen in recent years suggesting that a tissue renin-angiotensin system (tRAS) is involved in the progression of various human diseases. This system contains two regulatory pathways: a pathological pro-inflammatory pathway containing the Angiotensin Converting Enzyme (ACE)/Angiotensin II (AngII)/Angiotensin II receptor type 1 (AGTR1) axis and a protective anti-inflammatory pathway involving the Angiotensin II receptor type 2 (AGTR2)/ACE2/Ang1–7/MasReceptor axis. Numerous studies reported the positive effects of pathologic tRAS pathway inhibition and protective tRAS pathway stimulation on the treatment of cardiovascular, inflammatory, and autoimmune disease and the progression of neuropathic pain. Cell senescence and aging are known to be related to RAS pathways. Further, this system directly interacts with SARS-CoV 2 and seems to be an important target of interest in the COVID-19 pandemic. This review focuses on the involvement of tRAS in the progression of the mentioned diseases from an interdisciplinary clinical perspective and highlights therapeutic strategies that might be of major clinical importance in the future.
Collapse
|
9
|
Patel S, Hussain T. Synergism between Angiotensin receptors ligands: Role of Angiotensin-(1-7) in modulating AT 2 R agonist response on nitric oxide in kidney cells. Pharmacol Res Perspect 2020; 8:e00667. [PMID: 33197136 PMCID: PMC7668194 DOI: 10.1002/prp2.667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
Angiotensin-(1-7), an endogenous agonist for the MasR, has been shown to interact with ang-II AT1 R and AT2 R. Earlier we showed a physical and functional interaction between MasR and AT2 R in response to their respective agonists ang-(1-7) and C21. Moreover, ang-(1-7) is cardio-protective via AT1 R and alters ang-II function. Such complex nature of ang-(1-7) function is not clearly understood, particularly in relation to its functional interaction with these receptors. We tested how ang-(1-7) affects AT2 R function by utilizing HK-2 cells. The HK-2 cells were treated with a wide range of concentrations of angiotensin receptor agonists. The generation of NO• in response to agonists was determined as a readout and subjected to Bliss definition (δ score) to assess the nature of functional interaction between these receptors. Preincubation with ang-(1-7) followed by incubation with endogenous AT1 R/AT2 R agonist ang-II (δ = 162) or selective AT2 R agonist C21 (δ = 304) synergized NO• formation. The synergism was also observed when the order of incubation with ang-(1-7)/C21 was reversed (δ = 484), but not when the cells were simultaneously incubated with a mixture of ang-(1-7) and C21 (δ = 76). The synergism with nonpeptidic MasR agonist AVE0991 followed by C21 (δ = 45) was minimal. Ligand binding experiment suggested the binding of ang-(1-7) with these three receptors. However, the synergism observed with ang-(1-7) and ang-II/C21 was sensitive to the antagonists of AT2 R (PD123319) and AT1 R (candesartan), but not MasR (A779). Ang-(1-7) at lower concentrations synergies the AT2 R function in an AT1 R-dependent but MasR-independent manner. This phenomenon may have a physiological significance.
Collapse
Affiliation(s)
- Sanket Patel
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonHoustonTXUSA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical SciencesCollege of PharmacyUniversity of HoustonHoustonTXUSA
| |
Collapse
|
10
|
Piotrowska A, Chmielewska M, Andrzejewski W, Dziegiel P, Podhorska-Okolow M. Influence of Angiotensin II on cell viability and apoptosis in rat renal proximal tubular epithelial cells in in vitro studies. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320949850. [PMID: 32962526 PMCID: PMC7649907 DOI: 10.1177/1470320320949850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction: Angiotensin II (Ang II) is multifunctional peptide that plays an important role in blood pressure regulation and maintenance electrolyte homeostasis. It shows biological effects by activating two main receptors: AT1 and AT2. The aim of the present work was to investigate the effect of Ang II on NRK-52E cells in in vitro studies. Furthermore, an attempt was made to determine the effectiveness of the AT1 and AT2 receptor blocker activity (respectively, losartan and PD123319). Methods: The study was carried out using adherent NRK-52E cell line. Immunofluorescence and Western Blot method were used to confirm the presence of AT1 and AT2 receptors in the cells. The SRB and MTT tests showed decrease in the viability of NRK-52E cells incubated with Ang II in comparison to the control (without Ang II). Results: The blockade of the AT1 receptor caused an increase in cell viability in comparison to cells incubated with Ang II only. The blockade of AT2 receptor also triggered statistically significant increase in cell viability in comparison with cells only exposed to Ang II. Combined administration of blockers for both receptors (losartan and PD123319) decreased Ang II cytotoxicity against NRK-52E cell line. The apoptosis was only observed in cells incubated with Ang II in comparison with control cells. However, simultaneous use of both blockers caused statistically significant decrease in apoptosis. Conclusions: The result of our study indicates that Ang II causes damaging effect on NRK-52E cells by directing them to programmed cell death. It seems that not only does the AT2 receptor itself play an important role in the induction of apoptosis, but also its interaction with AT1 receptor does as well.
Collapse
Affiliation(s)
- Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Poland
| | - Magdalena Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Waldemar Andrzejewski
- Department of Physiotherapy, Wroclaw University School of Physical Education, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Poland.,Department of Physiotherapy, Wroclaw University School of Physical Education, Poland
| | | |
Collapse
|
11
|
Macedo LM, de Ávila RI, Pedrino GR, Colugnati DB, Valadares MC, Lima EM, Borges CL, Kitten GT, Gava E, Castro CH. Effect of angiotensin II and angiotensin-(1-7) on proliferation of stem cells from human dental apical papilla. J Cell Physiol 2020; 236:366-378. [PMID: 32519379 DOI: 10.1002/jcp.29862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
The effects of the renin-angiotensin system (RAS) on stem cells isolated from human dental apical papilla (SCAPs) are completely unknown. Therefore, the aim of this study was to identify RAS components expressed in SCAPs and the effects of angiotensin (Ang) II and Ang-(1-7) on cell proliferation. SCAPs were collected from third molar teeth of adolescents and maintained in cell culture. Messenger RNA expression and protein levels of angiotensin-converting enzyme (ACE), ACE2, and Mas, Ang II type I (AT1) and type II (AT2) receptors were detected in SCAPs. Treatment with either Ang II or Ang-(1-7) increased the proliferation of SCAPs. These effects were inhibited by PD123319, an AT2 antagonist. While Ang II augmented mTOR phosphorylation, Ang-(1-7) induced ERK1/2 phosphorylation. In conclusion, SCAPs produce the main RAS components and both Ang II and Ang-(1-7) treatments induced cell proliferation mediated by AT2 activation through different intracellular mechanisms.
Collapse
Affiliation(s)
- Larissa M Macedo
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Renato I de Ávila
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Centre for Neuroscience and Cardiovascular Research, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Diego B Colugnati
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Marize C Valadares
- Laboratory of Education and Research in In Vitro Toxicology (Tox In), Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Eliana M Lima
- Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Clayton L Borges
- Laboratory of Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Gregory T Kitten
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Elisandra Gava
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlos H Castro
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| |
Collapse
|
12
|
Sobczuk P, Szczylik C, Porta C, Czarnecka AM. Renin angiotensin system deregulation as renal cancer risk factor. Oncol Lett 2017; 14:5059-5068. [PMID: 29098020 PMCID: PMC5652144 DOI: 10.3892/ol.2017.6826] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/03/2017] [Indexed: 12/20/2022] Open
Abstract
For numerous years, the non-cardiovascular role of the renin-angiotensin system (RAS) was underestimated, but recent studies have advanced the understanding of its function in various processes, including carcinogenesis. Numerous evidence comes from preclinical and clinical studies on the use of antihypertensive agents targeting the RAS, including angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers. It has been demonstrated that the use of ACEIs can alter the incidence of renal cell carcinoma (RCC) and may have a positive effect by prolonging patient survival. It has an effect on the complex action of ACEI, resulting in decreased angiotensin II (Ang-II) production and altered levels of bradykinin or Ang 1-7. The present review discusses the existing knowledge on the effects of ACE and its inhibitors on RCC cell lines, xenograft models, and patient survival in clinical studies. A brief introduction to molecular pathways aids in understanding the non-cardiovascular effects of RAS inhibitors and enables the conduction of studies on combined cancer treatment with the application of ACEIs. Recent evidence regarding the treatment of hypertension associated with tyrosine kinase inhibitors, one of the most pronounced and common side effects in modern RCC treatment, are also outlined. Captopril, an ACEI, may be used to lower blood pressure in patients, particularly due to its additional renoprotective actions.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland.,Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Camillo Porta
- Medical Oncology, I.R.C.C.S. San Matteo University Hospital Foundation, I-27100 Pavia, Italy.,Italian Group of Onco-Nephrology/Gruppo Italiano di Onco-Nefrologia (G.I.O.N.), I-27100 Pavia, Italy
| | - Anna M Czarnecka
- Department of Oncology, Military Institute of Medicine, 04-141 Warsaw, Poland
| |
Collapse
|
13
|
Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017; 125:21-38. [PMID: 28619367 DOI: 10.1016/j.phrs.2017.06.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/11/2023]
Abstract
The renin-angiotensin system (RAS) is undisputedly one of the most prominent endocrine (tissue-to-tissue), paracrine (cell-to-cell) and intracrine (intracellular/nuclear) vasoactive systems in the physiological regulation of neural, cardiovascular, blood pressure, and kidney function. The importance of the RAS in the development and pathogenesis of cardiovascular, hypertensive and kidney diseases has now been firmly established in clinical trials and practice using renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, type 1 (AT1) angiotensin II (ANG II) receptor blockers (ARBs), or aldosterone receptor antagonists as major therapeutic drugs. The major mechanisms of actions for these RAS inhibitors or receptor blockers are mediated primarily by blocking the detrimental effects of the classic angiotensinogen/renin/ACE/ANG II/AT1/aldosterone axis. However, the RAS has expanded from this classic axis to include several other complex biochemical and physiological axes, which are derived from the metabolism of this classic axis. Currently, at least five axes of the RAS have been described, with each having its key substrate, enzyme, effector peptide, receptor, and/or downstream signaling pathways. These include the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor, the ANG II/APA/ANG III/AT2/NO/cGMP, the ANG I/ANG II/ACE2/ANG (1-7)/Mas receptor, the prorenin/renin/prorenin receptor (PRR or Atp6ap2)/MAP kinases ERK1/2/V-ATPase, and the ANG III/APN/ANG IV/IRAP/AT4 receptor axes. Since the roles and therapeutic implications of the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor axis have been extensively reviewed, this article will focus primarily on reviewing the roles and therapeutic implications of the vasoprotective axes of the RAS in cardiovascular, hypertensive and kidney diseases.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Jianfeng Zhang
- Department of Emergency Medicine, The 2nd Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| |
Collapse
|
14
|
Dadam FM, Cisternas CD, Macchione AF, Godino A, Antunes-Rodrigues J, Cambiasso MJ, Vivas LM, Caeiro XE. Sex chromosome complement involvement in angiotensin receptor sexual dimorphism. Mol Cell Endocrinol 2017; 447:98-105. [PMID: 28254489 DOI: 10.1016/j.mce.2017.02.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 01/23/2023]
Abstract
This study aimed to define whether sex chromosome complement (SCC) may differentially modulate sex differences in relative gene expression of basal Agtr1a, Agtr2, and Mas1 receptors at fore/hindbrain nuclei and at medulla/cortical kidney. Samples were collected from gonadectomized male (XX and XY) and female (XX and XY) mice of the "four core genotypes" model. At brain level, a SCC effect at the area postrema was demonstrated. An increase in mRNA level of Agtr1a and Agtr1a/Agtr2 ratio in XY-SCC mice was associated with a decrease in Mas1 compared to XX-SCC mice. In the renal cortex, a SCC effect for Agtr2 and Mas1 was observed. Regardless of sex (male or female), XX-SCC mice expressed higher levels of mRNA Agtr2 and Mas1 than XY-SCC mice {F(1,12) = 6,126,p < 0.05; F(1,21) = 5,143,p < 0.05}. Furthermore, XX-female mice showed a significant increase in Mas1 expression compared to XY-female mice. These results reveal a SCC modulatory effect at central and kidney level on angiotensin receptor expression, with an enhancement of the vasodilatory arm in XX-mice and an increase in the vasoconstriction arm in XY-mice, which may underlie sex differences in the regulation of arterial pressure.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Female
- Gene Expression Regulation
- Genotype
- Kidney/metabolism
- Male
- Mice
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Sex Characteristics
- Sex Chromosomes/metabolism
Collapse
Affiliation(s)
- Florencia M Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Carla D Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana F Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, FMRP, USP, Brazil
| | - María J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura M Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ximena E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
15
|
Choudhary R, Kapoor MS, Singh A, Bodakhe SH. Therapeutic targets of renin-angiotensin system in ocular disorders. J Curr Ophthalmol 2016; 29:7-16. [PMID: 28367520 PMCID: PMC5362395 DOI: 10.1016/j.joco.2016.09.009] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/27/2016] [Accepted: 09/30/2016] [Indexed: 12/16/2022] Open
Abstract
Purpose To review current literature on the renin-angiotensin system (RAS)-mediated pathogenic mechanisms and therapeutic targets in ocular diseases. Methods A comprehensive literature survey was performed on PubMed, Scopus, and Google Scholar databases published from 1977 to 2016. The search terms were a RAS, angiotensin, angiotensin receptor, prorenin, pro (renin) receptor, angiotensin converting enzyme inhibitor, angiotensin receptor blocker associated with ocular disorders like cataract, glaucoma, diabetic retinopathy (DR), macular degeneration, and uveitis. Articles were reviewed on the basis of the association between ocular disorders and RAS and relevant articles were discussed. Results The literature revealed that the individual RAS components including renin, angiotensins, angiotensin converting enzymes, and RAS receptors have been expressed in the specific ocular tissues like retina, choroid, and ciliary body. The activation of both circulatory and local RAS potentiate the various inflammatory and angiogenic signaling molecules, including vascular endothelial growth factor (VEGF), extracellular signal-regulated kinase, and advanced glycation end products (AGE) in the ocular tissues and leads to several blinding disorders like DR, glaucoma, and macular degeneration. The classical and newer RAS inhibitors have illustrated protective effects on blinding disorders, including DR, glaucoma, macular degeneration, uveitis, and cataract. Conclusions The RAS components are present in the extrarenal tissues including ocular tissue and have an imperative role in the ocular pathophysiology. The clinical studies are needed to show the role of therapeutic modalities targeting RAS in the treatment of different ocular disorders.
Collapse
|
16
|
Tunçdemir M, Öztürk M. Regulation of the Ku70 and apoptosis-related proteins in experimental diabetic nephropathy. Metabolism 2016; 65:1466-77. [PMID: 27621182 DOI: 10.1016/j.metabol.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Apoptosis contributes nephropathy pathogenesis in diabetes. However, its mechanisms still remain unclear. We examined the extent to which the angiotensin-II type 1 receptor blocker (AT1RB) irbesartan and the angiotensin converting enzyme inhibitor (ACEI) perindopril affected the apoptosis-related proteins Bcl-2, Bax, caspase-3, cytochrome-c and Ku70 in streptozotocin (STZ)-diabetic rats. MATERIALS AND METHODS Animals were divided into five groups of eight each, four of which received STZ (60mg/kg in a single dose, i.p.) to induce diabetes. The groups were performed as untreated diabetic; non-diabetic control; daily irbesartan (15mg/kg/day) or perindopril (6mg/kg/day) and also combined irbesartan and perindopril (respectively, 5mg/kg/day, 3mg/kg/day) were applied by gavage for 30days to STZ-diabetic rats. The kidney tissue analysis was performed by using immunohistochemical staining with Bcl-2, Bax, caspase-3, cytochrome-c and Ku70 antibodies and by using Western blot analysis with caspase-3 and cytochrome-c antibodies. RESULTS Immunoreactivity of Bax, caspase-3, cytochrome-c and Ku70 was increased in the tubuli and glomeruli of the untreated diabetic group, but decreased in all treated diabetic groups. In the irbesartan and perindopril treated diabetic groups Bcl-2 immunoreactivity was higher than that of the untreated diabetic group. Caspase-3 and cytoplasmic cytochrome-c protein levels increased in the untreated diabetic group. CONCLUSIONS We conclude that the increased expression of Bax and caspase-3, and the increased level of cytoplasmic cytochrome-c relate to renal tissue injury. This case is also seen in the early stages of diabetes as a result of the damage caused by local increased expression of renin angiotensin system (RAS) in the renal tissue, which is induced by hyperglycemia. The increase of the cytosolic cytochrome-c, caspase-3 and Ku70 expression in the tubuli is suggestive of apoptosis. Overall, our results show that treatments of irbesartan and perindopril are effective and efficient in preventing renal tissue injury and apoptosis by blocking the RAS in experimental diabetic nephropathy and reducing the expression of proteins associated with apoptosis.
Collapse
Affiliation(s)
- Matem Tunçdemir
- Istanbul University, Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey.
| | - Melek Öztürk
- Istanbul University, Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
17
|
Teplitsky V, Shoenfeld Y, Tanay A. The renin-angiotensin system in lupus: physiology, genes and practice, in animals and humans. Lupus 2016; 15:319-25. [PMID: 16830877 DOI: 10.1191/0961203306lu2306rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although multiple studies suggest a potential role for angiotensin II in inflammation, most were performed either in vitro or in animals with non-immune-complex-mediated diseases. Extrapolation of these findings to humans, particularly patients with lupus, which involves multiple immunoregulatory pathways, is unclear. In autoimmune-prone MRL/lpr mice, angiotensin-converting-enzyme (ACE) inhibition improved survival although to a lesser degree than cyclophosphamide and diminished the glomerular histopathologic damage, proteinuria, lymphoid hyperplasia, dermatitis, and hypergammaglobulinemia, with a reduction in TGF-beta1 and beta 2 expression in the kidneys and renal chemokine mRNA expression. Spleen levels of IL-4 and IL-10 were also reduced. Uncontrolled studies in patients with treatment-refractory lupus nephritis showed a significant reduction in proteinuria with ACE-inhibitors and Angiotensin receptor blockers treatment. The ‘masking’ effect of ACE-inhibitors should be taken into consideration, as an exacerbation of lupus nephritis may be missed when estimated by the magnitude of proteinuria, which is decreased by these treatments. No single ACE genotype was consistently associated with subsets of SLE patients. In retrospective analyses, ACE-inhibitor use predicted a favourable outcome in 94 cases of pauci-immune vasculitis. The attenuating effect of angiotensin II inhibitors on the progression of chronic renal disease is well recognized. The data on the role of this intervention in lupus is limited.
Collapse
Affiliation(s)
- V Teplitsky
- Immunology/Allergy Unit, Rabin Medical Center, Petah Tiqwa, Israel.
| | | | | |
Collapse
|
18
|
The progression of the tubulointerstitial fibrosis driven by stress-induced “proliferation–death” vicious circle. Med Hypotheses 2014; 82:643-7. [DOI: 10.1016/j.mehy.2014.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 01/05/2014] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
|
19
|
Rai P, Lederman R, Haque S, Rehman S, Kumar V, Sataranatrajan K, Malhotra A, Kasinath BS, Singhal PC. Renin angiotensin system modulates mTOR pathway through AT2R in HIVAN. Exp Mol Pathol 2014; 96:431-7. [PMID: 24768585 DOI: 10.1016/j.yexmp.2014.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/10/2014] [Indexed: 01/31/2023]
Abstract
Mammalian target of rapamycin (mTOR) has been reported to contribute to the development of HIV-associated nephropathy (HIVAN). We hypothesized that HIV may be activating renal tissue mTOR pathway through renin angiotensin system (RAS) via Angiotensin Receptor Type II receptor (AT2R). Renal tissues of Vpr transgenic and Tg26 (HIVAN) mice displayed enhanced phosphorylation of mTOR and p70S6K. Aliskiren, a renin inhibitor attenuated phosphorylation of both mTOR and p70S6K in renal tissues of HIVAN mice. Interestingly, Angiotensin Receptor Type I (AT1R) blockade did not modulate renal tissue phosphorylation of mTOR in HIVAN mice; on the other hand, AT2R blockade attenuated renal tissue phosphorylation of mTOR in HIVAN mice. In vitro studies, both renin and Ang II displayed enhanced mouse tubular cell (MTC) phosphorylation of p70S6K in a dose dependent manner. HIV/MTC also displayed enhanced phosphorylation of both mTOR and p70S6K; interestingly this effect of HIV was further enhanced by losartan (an AT1R blocker). On the other hand, AT2R blockade attenuated HIV-induced tubular cell phosphorylation of mTOR and p70S6K, whereas, AT2R agonist enhanced phosphorylation of mTOR and p70S6K. These findings indicate that HIV stimulates mTOR pathway in HIVAN through the activation of renin angiotensin system via AT2R.
Collapse
Affiliation(s)
- Partab Rai
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, NY, United States
| | - Rivka Lederman
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, NY, United States
| | - Shabirul Haque
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, NY, United States
| | - Shabina Rehman
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, NY, United States
| | - Viki Kumar
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, NY, United States
| | | | - Ashwani Malhotra
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, NY, United States
| | | | - Pravin C Singhal
- Renal Molecular Research Laboratory, Feinstein Institute for Medical Research, Hofstra North Shore LIJ Medical School, New York, NY, United States.
| |
Collapse
|
20
|
Jiang Y, Jiang T, Ouyang J, Zhou Q, Liang Y, Cui Y, Chen P, Huang B. Cell atavistic transition: Paired box 2 re-expression occurs in mature tubular epithelial cells during acute kidney injury and is regulated by Angiotensin II. PLoS One 2014; 9:e93563. [PMID: 24710423 PMCID: PMC3977930 DOI: 10.1371/journal.pone.0093563] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/06/2014] [Indexed: 12/20/2022] Open
Abstract
The regeneration of tubular epithelial cells (TECs) after acute kidney injury (AKI) is crucial for the recovery of renal structure and function. The mechanism by which quiescent TECs re-obtain a potential to regenerate remains unknown. In this study, we observed a transient re-expression of embryonic gene Paired box 2 (Pax2) in adult rat TECs in vivo during ischemia-reperfusion induced AKI and most Pax2 positive TECs co-expressed kidney injury molecule-1 (KIM-1), a tubular injury marker. The re-expression of Pax2 was accompanied by increased levels of intrarenal Angiotensin II, which is a crucial injury factor of AKI. Furthermore, we also found a temporary re-expression of Pax2 in NRK-52E cells under the stimulation of Angiotensin II. This stimulatory effect could be blocked by PD123319 (Angiotensin II type 2 receptor (AT2R) inhibitor) and AG490 (Janus Kinase 2 (JAK2) inhibitor). As Pax2 is essential for the phenotypic conversion from mesenchymal stem cells to TECs during kidney development, we proposed that the re-expression of Pax2 in mature TECs may be an indicator of “atavistic” transition which mimics but reverses the processes of development of TECs. This could be proved by that a progenitor marker, CD24, was also found to be transiently expressed shortly after the expression of Pax2 in NRK-52E cells stimulated with Angiotensin II. The expression of CD24 was also suppressed by PD123319 and AG490. Moreover, knockdown of Pax2 by RNA interference could significantly reduce the expression of CD24 in NRK-52E cells stimulated with Angiotension II. Those findings suggest that mature TECs can trans-differentiate into progenitor-like cells by “atavistic transition”, which may participate in the recovery of tissue structure and Pax2 may play a pivotal role in this process. That might have important implications for further understanding of tubular regeneration after injury.
Collapse
Affiliation(s)
- Yushen Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tang Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- * E-mail:
| | - Juan Ouyang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qingsong Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanlan Liang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingpeng Cui
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Peisong Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Campbell DJ. Do intravenous and subcutaneous angiotensin II increase blood pressure by different mechanisms? Clin Exp Pharmacol Physiol 2014; 40:560-70. [PMID: 23551142 DOI: 10.1111/1440-1681.12085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 01/21/2023]
Abstract
Angiotensin (Ang) II plays a key role in blood pressure regulation. Mechanisms of the pressor effect of chronic intravenous AngII administration include vasoconstriction, stimulation of the sympathetic nervous system and aldosterone production, as well as direct effects on renal excretion of sodium and water. Chronic AngII administration by subcutaneous minipump at doses higher than required to increase blood pressure by the intravenous route has identified additional pressor mechanisms, including the immune system, cytokines and matrix metalloproteinases. However, pressor doses of subcutaneous AngII may exceed the angiotensinogen synthesis rate and produce inflammation, fibrosis and necrosis of skin overlying the minipump. Evidence that chronic subcutaneous and intravenous AngII increase blood pressure by different mechanisms includes the prevention of the pressor effects of subcutaneous, but not intravenous, AngII by angiotensin-converting enzyme inhibition. Furthermore, low doses of subcutaneous AngII reduce blood pressure of female, but not male, rodents and higher doses are less pressor in females than in males, whereas intravenous AngII is equally pressor in males and females. Pressor doses of chronic subcutaneous AngII produce greater weight loss, anorexia and reduced kidney weight and cause greater vascular, cardiac and renal pathology than equally pressor doses of chronic intravenous AngII. The different effects of chronic intravenous and subcutaneous AngII suggest that these two models of hypertension give different information and may differ in their relevance to blood pressure regulation in physiological and pathological states such as hypertension in humans.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, Vic., Australia.
| |
Collapse
|
22
|
Wang X, Dai Y, Ding Z, Khaidakov M, Mercanti F, Mehta JL. Regulation of autophagy and apoptosis in response to angiotensin II in HL-1 cardiomyocytes. Biochem Biophys Res Commun 2013; 440:696-700. [PMID: 24099770 DOI: 10.1016/j.bbrc.2013.09.131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Autophagy and apoptosis are two important regulators of cell survival, and are often observed simultaneously in response to noxious stimuli. Anoxia is a known stimulus for autophagy and apoptosis, and angiotensin (Ang) II is a major mediator of anoxic injury. However, specific responses to anoxia and Ang II in terms of occurrence of autophagy and apoptosis have still not been delineated. METHODS AND RESULTS We observed that autophagy (measured as LC3 staining, and Beclin-1 and p62 Western blotting) was an early response and apoptosis (measured as TUNEL staining, and Annexin V and Smac/Diablo Western blotting) became dominant as the duration of anoxia was prolonged. Autophagy also occurred quickly in response to low concentrations of Ang II. When exposed to high concentrations of Ang II, a significant number of cells developed apoptosis, while autophagy response decreased. Ang II-mediated apoptosis was blocked by Ang II type 1 receptor (AT1R) blocker losartan as well as by the AT2R blocker PD123319. Ang II-induced autophagy was blocked by losartan, but not by PD123319. CONCLUSION Exposure to Ang II, a mediator of anoxic injury, initiates a rapid autophagy response, perhaps in an attempt to protect tissues from the impending noxious effects. However, when anoxia (and thereby release of Ang II) is prolonged, the process of apoptosis dominates. These processes will determine the outcome of cardiomyocyte well-being in states of hypoxia.
Collapse
Affiliation(s)
- Xianwei Wang
- Department of Cell Biology, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China; Division of Cardiology, University of Arkansas for Medical Sciences and the Central Arkansas Veterans Healthcare System, Little Rock, AR, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Chao J, Yang L, Buch S, Gao L. Angiotensin II increased neuronal stem cell proliferation: role of AT2R. PLoS One 2013; 8:e63488. [PMID: 23691054 PMCID: PMC3655161 DOI: 10.1371/journal.pone.0063488] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/03/2013] [Indexed: 01/09/2023] Open
Abstract
Angiotensin II (Ang II), known a potent vasoactive substance in the renin-angiotensin system in the brain, plays a critical role in systemic blood pressure control. However, increasing evidence indicated that the physiological role of Ang II go beyond its vasoactive effect. In the present study, we demonstrated that Ang II type-1 receptor (AT1R) and type-2 receptor (AT2R) were expressed in primary rat hippocampal neuronal stem cells (NSCs). Treatment of rat hippocampal NSCs with Ang II increased cell proliferation. Pretreatment of NSCs with specific AT2R, but not AT1R, antagonist significantly suppressed Ang II-induced cell proliferation. Furthermore, Ang II stimulated ERK and Akt phosphorylation in NSCs. Pretreatment of MEK inhibitor, but not PI3K inhibitor, inhibited Ang II-induced ERK phosphorylation as well as cell proliferation. In addition, stimulation of NSCs with Ang II decreased expression of KV 1.2/KV 3.1 channels and blocked K+ currents which lie downstream of ERK activation. Taken together, these findings underpin the role of AT2R as a novel target that regulates cell proliferation mediated by Ang II with implications for therapeutic intervention for regulation of neurogenesis.
Collapse
Affiliation(s)
- Jie Chao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lu Yang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
24
|
Koulis C, de Haan JB, Allen TJ. Novel pathways and therapies in experimental diabetic atherosclerosis. Expert Rev Cardiovasc Ther 2012; 10:323-35. [PMID: 22390805 DOI: 10.1586/erc.12.13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetic subjects are at a greater risk of developing major vascular complications due to abnormalities pertinent to the diabetic milieu. Current treatment options achieve significant improvements in glucose levels and blood pressure control, but do not necessarily prevent or retard diabetes-mediated macrovascular disease. In this review, we highlight several pathways that are increasingly being appreciated as playing a significant role in diabetic vascular injury. We focus particularly on the advanced glycation end product/receptor for advanced glycation end product (AGE/RAGE) axis and its interplay with the nuclear protein HMGB1. We discuss evidence implicating a significant role for the renin-angiotensin system, urotensin II and PPAR, as well as the importance of proinflammatory mediators and oxidative stress in cardiovascular complications. The specific targeting of these pathways may lead to novel therapies to reduce the burden of diabetic vascular complications.
Collapse
Affiliation(s)
- Christine Koulis
- Diabetic Complications Group, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia
| | | | | |
Collapse
|
25
|
Lawnicka H, Ptasinska-Wnuk D, Mucha S, Kunert-Radek J, Pawlikowski M, Stepien H. The involvement of angiotensin type 1 and type 2 receptors in estrogen-induced cell proliferation and vascular endothelial growth factor expression in the rat anterior pituitary. ScientificWorldJournal 2012; 2012:358102. [PMID: 22645419 PMCID: PMC3360946 DOI: 10.1100/2012/358102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/17/2011] [Indexed: 11/23/2022] Open
Abstract
The aim of our study was to examine the involvement of renin-angiotensin system (RAS) in estrogen-induced lactotropes proliferation and vascular endothelial growth factor (VEGF) expression in rat pituitary. The study was performed on Fisher 344 rats underwent 8-day treatment with diethylstilboestrol (DES). The proliferation index (PCNA) and VEGF expression in pituitary sections were estimated using immunohistochemical methods.
Treatment with DES increased the number of PCNA-positive cells, VEGF-positive cells, and VEGF-positive blood vessels in pituitary. Stimulatory effect of estrogen on cell proliferation and VEGF expression in blood vessels was attenuated by losartan, PD123319, and captopril. VEGF immunoreactivity in pituitary cells of DES-treated rats was decreased by AT1 antagonist and not changed by AT2 blocker and ACE inhibitor. Our findings suggest the involvement of RAS in DES-induced cell proliferation and VEGF expression in pituitary. Both the AT1 and AT2 receptors appear to mediate the estrogen-dependent mitogenic and proangiogenic effects in rat pituitary.
Collapse
Affiliation(s)
- Hanna Lawnicka
- Department of Immunoendocrinology, Medical University of Lodz, Dr. Sterling 3 Street, 91-425 Lodz, Poland
| | | | | | | | | | | |
Collapse
|
26
|
Salhan D, Sagar A, Kumar D, Rattanavich R, Rai P, Maheshwari S, Adabala M, Husain M, Ding G, Malhotra A, Chander PN, Singhal PC. HIV-associated nephropathy: role of AT2R. Cell Signal 2012; 24:734-41. [PMID: 22108089 PMCID: PMC3258382 DOI: 10.1016/j.cellsig.2011.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/22/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
Abstract
AT(1)R has been reported to play an important role in the progression of HIV-associated nephropathy (HIVAN); however, the effect of AT(2)R has not been studied. Age and sex matched control (FVB/N) and Tg26 mice aged 4, 8, and 16weeks were studied for renal tissue expression of AT(1)R and AT(2)R (Protocol A). Renal tissue mRNA expression of AT(2)R was lower in Tg26 mice when compared with control mice. In Protocol B, Tg26 mice were treated with either saline, telmisartan (TEL, AT(1) blocker), PD123319 (PD, AT(2)R blocker), or TEL+PD for two weeks. TEL-receiving Tg26 (TRTg) displayed less advanced glomerular and tubular lesions when compared with saline-receiving Tg26 (SRTg). TRTgs displayed enhanced renal tissue AT(2)R expression when compared to SRTgs. Diminution of renal tissue AT(2)R expression was associated with advanced renal lesions in SRTgs; whereas, upregulation of AT(2)R expression in TRTgs was associated with attenuated renal lesions. PD-receiving Tg26 mice (PDRTg) did not show any alteration in the course of HIVAN; whereas, PD+TEL-receiving Tg26 (PD-TRTg) showed worsening of renal lesions when compared to TRTgs. Interestingly, plasma as well as renal tissues of Tg26 mice displayed several fold higher concentration of Ang III, a ligand of AT(2)R.
Collapse
Affiliation(s)
- Divya Salhan
- Division of Kidney Diseases and Hypertension, North Shore-LIJ Health System, Great Neck, NY 11021, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sampson AK, Jennings GLR, Chin-Dusting JPF. Y are males so difficult to understand?: a case where "X" does not mark the spot. Hypertension 2012; 59:525-31. [PMID: 22291445 DOI: 10.1161/hypertensionaha.111.187880] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Amanda K Sampson
- Vascular Pharmacology, Baker IDI Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, Victoria, 3004 Australia.
| | | | | |
Collapse
|
28
|
Reinhold SW, Krüger B, Barner C, Zoicas F, Kammerl MC, Hoffmann U, Bergler T, Banas B, Krämer BK. Nephron-specific expression of components of the renin-angiotensin-aldosterone system in the mouse kidney. J Renin Angiotensin Aldosterone Syst 2012; 13:46-55. [PMID: 22247339 DOI: 10.1177/1470320311432184] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The renin-angiotensin-aldosterone system (RAAS) plays an integral role in the regulation of blood pressure, electrolyte and fluid homeostasis in mammals. The capability of the different nephron segments to form components of the RAAS is only partially known. This study therefore aimed to characterize the nephron-specific expression of RAAS components within the mouse kidney. MATERIALS AND METHODS Defined nephron segments of adult C57B/16 mice were microdissected after collagenase digestion. The gene expression of renin, angiotensinogen (AGT), angiotensin-converting enzyme (ACE), angiotensin II receptors 1a (AT1a), 1b (AT1b), and 2 (AT2) was assessed by reverse transcriptase polymerase chain reaction (RT-PCR). RESULTS Renin mRNA was present in glomeruli, in proximal tubules, in distal convoluted tubules (DCT) and cortical collecting ducts (CCD). AGT mRNA was found in proximal tubules, descending thin limb of Henle's loop (dTL) and in the medullary part of the thick ascending limb (mTAL). ACE mRNA was not detectable in microdissected mouse nephron segments. AT1a, AT1b and AT2 mRNA was detected in glomeruli and proximal convoluted tubules. CONCLUSIONS Our data demonstrate a nephron-specific distribution of RAAS components. All components of the local RAAS - except ACE - are present in proximal convoluted tubules, emphasizing their involvement in sodium and water handling.
Collapse
Affiliation(s)
- Stephan W Reinhold
- Klinik und Poliklinik für Innere Medizin II, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zuern C, Krenacs L, Starke S, Heimrich J, Palmetshofer A, Holtmann B, Sendtner M, Fischer T, Galle J, Wanner C, Seibold S. Microtubule associated tumor suppressor 1 deficient mice develop spontaneous heart hypertrophy and SLE-like lymphoproliferative disease. Int J Oncol 2011; 40:1079-88. [PMID: 22200760 PMCID: PMC3584557 DOI: 10.3892/ijo.2011.1311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/25/2011] [Indexed: 11/05/2022] Open
Abstract
The microtubule associated tumor suppressor gene 1 (MTUS1) is a recently published tumor suppressor gene, which has also been shown to act as an early component in the growth inhibitory signaling cascade of the angiotensin II type 2 receptor (AT2R). In this study we report the generation of MTUS1 knock-out (KO) mice, which develop normally but reveal higher body weights and slightly decreased blood pressure levels. Twenty-eight percent of the studied MTUS1 KO mice also developed heart hypertrophy and 12% developed nephritis, independent of blood pressure levels. Forty-three percent of the MTUS1 KO mice revealed lymphoid hyperplasia affecting spleen (20%), kidney (37%), lung (23%), lymph nodes (17%), and liver (17%) accompanied with leukocytosis, lymphocytosis, and mild anemia. One animal (3%) developed a marginal zone B-cell lymphoma affecting submandibular salivary gland and regional lymph nodes. The symptoms of all mentioned animals are consistent with a B-cell lymphoproliferative disease with features of systemic lupus erythematosus. In addition, body weight of the MTUS1 KO mice was significantly increased and isolated skin fibroblasts showed increased cell proliferation and decreased cell size, compared to wild-type (WT) fibroblasts in response to depleted FCS concentration and lack of growth factors. In conclusion we herein report the first generation of a MTUS1 KO mouse, developing spontaneous heart hypertrophy and increased cell proliferation, confirming once more the anti-proliferative effect of MTUS1, and a SLE-like lymphoproliferative disease suggesting crucial role in regulation of inflammation. These MTUS1 KO mice can therefore serve as a model for further investigations in cardiovascular disease, autoimmune disease and carcinogenesis.
Collapse
Affiliation(s)
- Christina Zuern
- Department of Nephrology and Hypertension, University of Erlangen-Nuernberg, Loschgestr 8, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brown RD, Hilliard LM, Head GA, Jones ES, Widdop RE, Denton KM. Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II. Hypertension 2011; 59:129-35. [PMID: 22124434 DOI: 10.1161/hypertensionaha.111.178715] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Awareness of sex differences in the pathology of cardiovascular disease is increasing. Previously, we have shown a role for the angiotensin type 2 receptor (AT(2)R) in the sex differences in the arterial pressure response to Ang II. Tubuloglomerular feedback (TGF) contributes in setting pressure-natriuresis properties, and its responsiveness is closely coupled to renal Ang II levels. We hypothesize that, in females, the attenuated pressor response to Ang II is mediated via an enhanced AT(2)R mechanism that, in part, offsets Ang II-induced sensitization of the TGF mechanism. Mean arterial pressure was measured via telemetry in male and female wild-type (WT) and AT(2)R knockout (AT(2)R-KO) mice receiving Ang II (600 ng/kg per minute SC). Basal 24-hour mean arterial pressure did not differ among the 4 groups. After 10 days of Ang II infusion, mean arterial pressure increased in the male WT (28±6 mm Hg), male AT(2)R-KO (26±2 mm Hg), and female AT(2)R-KO (26±4 mm Hg) mice, however, the response was attenuated in female WT mice (12±4 mm Hg; P between sex and genotype=0.016). TGF characteristics were determined before and during acute subpressor Ang II infusion (100 ng/kg per minute IV). Basal TGF responses did not differ between groups. The expected increase in maximal change in stop-flow pressure and enhancement of TGF sensitivity in response to Ang II was observed in the male WT, male AT(2)R-KO, and female AT(2)R-KO but not in the female WT mice (P between sex and genotype <0.05; both). In conclusion, these data indicate that an enhanced AT(2)R-mediated pathway counterbalances the hypertensive effects of Ang II and attenuates the Ang II-dependent resetting of TGF activity in females. Thus, the enhancement of the AT(2)R may, in part, underlie the protection that premenopausal women demonstrate against cardiovascular disease.
Collapse
Affiliation(s)
- Russell D Brown
- Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Dolley-Hitze T, Jouan F, Martin B, Mottier S, Edeline J, Moranne O, Le Pogamp P, Belaud-Rotureau MA, Patard JJ, Rioux-Leclercq N, Vigneau C. Angiotensin-2 receptors (AT1-R and AT2-R), new prognostic factors for renal clear-cell carcinoma? Br J Cancer 2010; 103:1698-705. [PMID: 21102591 PMCID: PMC2994218 DOI: 10.1038/sj.bjc.6605866] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: The growth factor Angiotensin-2 signals through Angiotensin receptor type 1 (AT1-R) in a broad range of cell types and tumours and through the type-2 receptor (AT2-R) in a more restricted group of cell types. Although numerous forms of cancer have been shown to overexpress AT1-R, expression of AT1-R and AT2-R by human renal clear-cell carcinoma (RCCC) is not well understood. In this study, the expression of both angiotensin receptors was quantified in a retrospective series of RCCC and correlated with prognostic factors. Methods: Angiotensin receptor type 1 and AT2-R expressions were quantified on tumour tissues by immunohistochemistry (IHC), western blot and quantitative reverse transcriptase PCR (qRT–PCR). IHC results were correlated to Fuhrman's grade and patient progression-free survival (PFS). Results: A total of 84 RCCC were analysed. By IHC, AT1-R and AT2-R were expressed to a greater level in high-grade tumours (AT1-R: P<0.001, AT2-R: P<0.001). Univariate analysis showed a correlation between PFS and AT1-R or AT2-R expression (P=0.001). By multivariate analysis, only AT2-R expression correlated with PFS (HR 1.021, P=0.006) and cancer stage (P<0.001). By western blot, AT1-R and AT1-R were also found to be overexpressed in higher Fuhrman's grade (P<0.01 and P=0.001 respectively). By qRT–PCR, AT1-R but not AT2-R mRNA were downregulated (P=0.001 and P=0.118, respectively). Conclusion: Our results show that AT1-R and AT2-R proteins are overexpressed in the most aggressive forms of RCCC and that AT2-R expression correlates with PFS. AT1-R or AT2-R blockage could, therefore, offer novel directions for anti-RCCC therapy.
Collapse
Affiliation(s)
- T Dolley-Hitze
- CNRS UMR6061/IFR140, Faculté de Médecine Université de Rennes 1, 2 avenue du professeur Léon Bernard, CS34317, 35043 Rennes Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Clere N, Corre I, Faure S, Guihot AL, Vessières E, Chalopin M, Morel A, Coqueret O, Hein L, Delneste Y, Paris F, Henrion D. Deficiency or blockade of angiotensin II type 2 receptor delays tumorigenesis by inhibiting malignant cell proliferation and angiogenesis. Int J Cancer 2010; 127:2279-91. [PMID: 20143398 DOI: 10.1002/ijc.25234] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite significant expression level in cancer cells, the role of the angiotensin II Type 2 receptor (AT2R) in cancer progression remains poorly understood. We aimed to investigate the involvement of AT2R in tumorigenesis, hypothesizing a role in tumor cell proliferation and/or tumor angiogenesis. Two animal tumor models were used: fibrosarcoma induced by 3-methylcholanthrene (3-MCA) in FVB/N mice invalidated for AT2R (AT2R-KO) and carcinoma LL/2 cells injected in C57BL/6N mice treated with AT2R antagonist PD123,319. Tumor growth was monitored, microvascular density (MVD) evaluated by CD31 staining. Proliferation index of LL/2 and 3-MCA tumor cells was evaluated by expression of Ki-67. Angiogenesis was assessed by aorta ring assay and angiogenic mediators' expression by real-time RT-PCR. Tumor induction by 3-MCA was significantly delayed in AT2R-KO compared to wild-type mice (56 days vs. 28 days). Tumorigenesis following LL/2 cell injection in mice was also significantly reduced by early administration of the antagonist PD123,319. In vitro, inactivation or invalidation of AT2R inhibited proliferation of LL/2 and 3-MCA tumor cells, respectively. Tumor MVD was reduced in mice treated early with PD123,319. Ex vivo experiments revealed a significant decrease in angiogenesis after PD123,319 treatment or in AT2R-KO mice. Finally, we identified vascular endothelial growth factor (VEGF) as a soluble proangiogenic factor produced by LL/2 cells and we showed that in LL/2 and 3-MCA tumor cells, inhibition or deficiency of AT2R was associated with impaired production of proangiogenic factors included VEGF. This study uncovered novel mechanisms by which AT2R would promote tumor development, favoring both malignant cell proliferation and tumor angiogenesis.
Collapse
Affiliation(s)
- Nicolas Clere
- Faculté de Médecine, CNRS UMR 6214, INSERM UMR U771, Université d'Angers, Angers, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int 2010; 77:1086-97. [DOI: 10.1038/ki.2010.63] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Fletcher EL, Phipps JA, Ward MM, Vessey KA, Wilkinson-Berka JL. The renin-angiotensin system in retinal health and disease: Its influence on neurons, glia and the vasculature. Prog Retin Eye Res 2010; 29:284-311. [PMID: 20380890 DOI: 10.1016/j.preteyeres.2010.03.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Renin-Angiotensin System is classically recognized for its role in the control of systemic blood pressure. However, the retina is recognized to have all the components necessary for angiotensin II formation, suggestive of a role for Angiotensin II in the retina that is independent of the systemic circulation. The most well described effects of Angiotensin II are on the retinal vasculature, with roles in vasoconstriction and angiogenesis. However, it is now emerging that Angiotensin II has roles in modulation of retinal function, possibly in regulating GABAergic amacrine cells. In addition, Angiotensin II is likely to have effects on glia. Angiotensin II has also been implicated in retinal vascular diseases such as Retinopathy of Prematurity and diabetic retinopathty, and more recently actions in choroidal neovascularizaiton and glaucoma have also emerged. The mechanisms by which Angiotensin II promotes angiogensis in retinal vascular diseases is indicative of the complexity of the RAS and the variety of cell types that it effects. Indeed, these diseases are not purely characterized by direct effects of Angiotensin II on the vasculature. In retinopathy of prematurity, for example, blockade of AT1 receptors prevents pathological angiogenesis, but also promotes revascularization of avascular regions of the retina. The primary site of action of Angiotensin II in this disease may be on retinal glia, rather than the vasculature. Indeed, blockade of AT1 receptors prevents glial loss and promotes the re-establishment of normal vessel growth. Blockade of RAS as a treatment for preventing the incidence and progression of diabetic retinopathy has also emerged based on a series of studies in animal models showing that blockade of the RAS prevents the development of a variety of vascular and neuronal deficits in this disease. Importantly these effects may be independent of actions on systemic blood pressure. This has culminated recently with the completion of several large multi-centre clinical trials that showed that blockade of the RAS may be of benefit in some at risk patients with diabetes. With the emergence of novel compounds targeting different aspects of the RAS even more effective ways of blocking the RAS may be possible in the future.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Cell Biology, The University of Melbourne, Parkville 3010, Victoria, Australia.
| | | | | | | | | |
Collapse
|
36
|
Koïtka A, Cao Z, Koh P, Watson AMD, Sourris KC, Loufrani L, Soro-Paavonen A, Walther T, Woollard KJ, Jandeleit-Dahm KAM, Cooper ME, Allen TJ. Angiotensin II subtype 2 receptor blockade and deficiency attenuate the development of atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes. Diabetologia 2010; 53:584-92. [PMID: 19957160 DOI: 10.1007/s00125-009-1619-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
AIMS/HYPOTHESIS Most of the known actions of angiotensin II have been considered primarily to be the result of angiotensin II subtype 1 receptor activation. However, recent data suggest that the angiotensin II subtype 2 receptor (AT(2)R) may modulate key processes linked to atherosclerosis. The aim of this study was to investigate the role of AT(2)R in diabetes-associated atherosclerosis using pharmacological blockade and genetic deficiency. METHODS Aortic plaque deposition was assessed in streptozotocin-induced diabetic apolipoprotein E (Apoe) knockout (KO) and At ( 2 ) r (also known as Agtr2)/Apoe double-KO (DKO) mice. Control and diabetic Apoe-KO mice received an AT(2)R antagonist PD123319 (5 mg kg(-1) day(-1)) via osmotic minipump for 20 weeks (n = 7-8 per group). RESULTS Diabetes was associated with a sixfold increase in plaque area (diabetic Apoe-KO: 12.7 +/- 1.4% vs control Apoe-KO: 2.3 +/- 0.4%, p < 0.001) as well as a significant increase in aortic expression of the gene At ( 2 ) r (also known as Agtr2). The increase in plaque area with diabetes was attenuated in AT(2)R antagonist-treated diabetic Apoe-KO mice (7.1 +/- 0.5%, p < 0.05) and in diabetic At ( 2 ) r/Apoe DKO mice (9.2 +/- 1.3%, p < 0.05). These benefits occurred independently of glycaemic control or BP, and were associated with downregulation of a range of pro-inflammatory cytokines, adhesion molecules, chemokines and various extracellular matrix proteins. CONCLUSIONS/INTERPRETATION This study provides evidence for AT(2)R playing a role in the development of diabetes-associated atherosclerosis. These findings suggest a potential utility of AT(2)R blockers in the prevention and treatment of diabetic macrovascular complications.
Collapse
Affiliation(s)
- A Koïtka
- JDRF Danielle Alberti Memorial Centre for Diabetic Complications, Diabetes Division, Baker IDI Heart and Diabetes Research Institute, PO Box 6492, St Kilda Road Central, Melbourne, VIC 8008, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Doi C, Egashira N, Kawabata A, Maurya DK, Ohta N, Uppalapati D, Ayuzawa R, Pickel L, Isayama Y, Troyer D, Takekoshi S, Tamura M. Angiotensin II type 2 receptor signaling significantly attenuates growth of murine pancreatic carcinoma grafts in syngeneic mice. BMC Cancer 2010; 10:67. [PMID: 20181281 PMCID: PMC2846883 DOI: 10.1186/1471-2407-10-67] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 02/24/2010] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic cancer is one of the most aggressive human malignancies, with a very poor prognosis. To evaluate the effect of angiotensin II (Ang II) type 2 receptor (AT2) expression in the host's body on the growth of pancreatic carcinoma, we have investigated the growth of mouse pancreatic ductal carcinoma grafts in syngeneic wild type and AT2 receptor-deficient (AT2-KO) mice. Methods The role of AT2 receptor-signaling in stromal cells on the growth of murine pancreatic carcinoma cells (PAN02) was studied using various in vitro and in vivo assays. In vivo cell proliferation, apoptosis, and vasculature in tumors were monitored by Ki-67 immunostaining, TUNEL assay, and von Willebrand factor immunostaining, respectively. In the co-culture study, cell proliferation was measured by MTT cell viability assay. All the data were analyzed using t-test and data were treated as significant when p < 0.05. Results Our results show that the growth of subcutaneously transplanted syngeneic xenografts of PAN02 cells, mouse pancreatic ductal carcinoma cells derived from the C57/BL6 strain, was significantly faster in AT2-KO mice compared to control wild type mice. Immunohistochemical analysis of tumor tissue revealed significantly more Ki-67 positive cells in xenografts grown in AT2-KO mice than in wild type mice. The index of apoptosis is slightly higher in wild type mice than in AT2-KO mice as evaluated by TUNEL assay. Tumor vasculature number was significantly higher in AT2-KO mice than in wild type mice. In vitro co-culture studies revealed that the growth of PAN02 cells was significantly decreased when grown with AT2 receptor gene transfected wild type and AT2-KO mouse-derived fibroblasts. Faster tumor growth in AT2-KO mice may be associated with higher VEGF production in stromal cells. Conclusions These results suggest that Ang II regulates the growth of pancreatic carcinoma cells through modulating functions of host stromal cells; Moreover, Ang II AT2 receptor signaling is a negative regulator in the growth of pancreatic carcinoma cells. These findings indicate that the AT2 receptor in stromal fibroblasts is a potentially important target for chemotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Chiyo Doi
- Department of Anatomy & Physiology, Kansas State University, College of Veterinary Medicine, Manhattan, KS 66506, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nakorchevsky A, Hewel JA, Kurian SM, Mondala TS, Campbell D, Head SR, Marsh CL, Yates JR, Salomon DR. Molecular mechanisms of chronic kidney transplant rejection via large-scale proteogenomic analysis of tissue biopsies. J Am Soc Nephrol 2010; 21:362-73. [PMID: 20093355 DOI: 10.1681/asn.2009060628] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The most common cause of kidney transplant failure is the poorly characterized histopathologic entity interstitial fibrosis and tubular atrophy (IFTA). There are no known unifying mechanisms, no effective therapy, and no proven preventive strategies. Possible mechanisms include chronic immune rejection, inflammation, drug toxicity, and chronic kidney injury from secondary factors. To gain further mechanistic insight, we conducted a large-scale proteogenomic study of kidney transplant biopsies with IFTA of varying severity. We acquired proteomic data using tandem mass spectrometry with subsequent quantification, analysis of differential protein expression, validation, and functional annotations to known molecular networks. We performed genome-wide expression profiling in parallel. More than 1400 proteins with unique expression profiles traced the progression from normal transplant biopsies to biopsies with mild to moderate and severe disease. Multiple sets of proteins were mapped to different functional pathways, many increasing with histologic severity, including immune responses, inflammatory cell activation, and apoptosis consistent with the chronic rejection hypothesis. Two examples include the extensive population of the alternative rather than the classical complement pathway, previously not appreciated for IFTA, and a comprehensive control network for the actin cytoskeleton and cell signaling of the acute-phase response. In summary, this proteomic effort using kidney tissue contributes mechanistic insight into several biologic processes associated with IFTA.
Collapse
Affiliation(s)
- Aleksey Nakorchevsky
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Naito T, Ma LJ, Yang H, Zuo Y, Tang Y, Han JY, Kon V, Fogo AB. Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis. Am J Physiol Renal Physiol 2009; 298:F683-91. [PMID: 20042458 DOI: 10.1152/ajprenal.00503.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Angiotensin type 1 (AT1) receptor blocker (ARB) ameliorates progression of chronic kidney disease. Whether this protection is due solely to blockade of AT1, or whether diversion of angiotensin II from the AT1 to the available AT2 receptor, thus potentially enhancing AT2 receptor effects, is not known. We therefore investigated the role of AT2 receptor in ARB-induced treatment effects in chronic kidney disease. Adult rats underwent 5/6 nephrectomy. Glomerulosclerosis was assessed by renal biopsy 8 wk later, and rats were divided into four groups with equivalent glomerulosclerosis: no further treatment, ARB, AT2 receptor antagonist, or combination. By week 12 after nephrectomy, systolic blood pressure was decreased in all treatment groups, but proteinuria was decreased only with ARB. Glomerulosclerosis increased significantly in AT2 receptor antagonist vs. ARB. Kidney cortical collagen content was decreased in ARB, but increased in untreated 5/6 nephrectomy, AT2 receptor antagonist, and combined groups. Glomerular cell proliferation increased in both untreated 5/6 nephrectomy and AT2 receptor antagonist vs. ARB, and phospho-Erk2 was increased by AT2 receptor antagonist. Plasminogen activator inhibitor-1 mRNA and protein were increased at 12 wk by AT2 receptor antagonist in contrast to decrease with ARB. Podocyte injury is a key component of glomerulosclerosis. We therefore assessed effects of AT1 vs. AT2 blockade on podocytes and interaction with plasminogen activator inhibitor-1. Cultured wild-type podocytes, but not plasminogen activator inhibitor-1 knockout, responded to angiotensin II with increased collagen, an effect that was completely blocked by ARB with lesser effect of AT2 receptor antagonist. We conclude that the benefical effects on glomerular injury achieved with ARB are contributed to not only by blockade of the AT1 receptor, but also by increasing angiotensin effects transduced through the AT2 receptor.
Collapse
Affiliation(s)
- Takashi Naito
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pickel L, Matsuzuka T, Doi C, Ayuzawa R, Maurya DK, Xie SX, Berkland C, Tamura M. Over-expression of angiotensin II type 2 receptor gene induces cell death in lung adenocarcinoma cells. Cancer Biol Ther 2009; 9:277-85. [PMID: 20026904 DOI: 10.4161/cbt.9.4.10643] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The endogenous angiotensin II (Ang II) type 2 receptor (AT 2) has been shown to mediate apoptosis in cardiovascular tissues. Thus, the aim of this study was to explore the anti-cancer effect of AT 2 over-expression on lung adenocarcinoma cells in vitro using adenoviral (Ad), FuGENE, and nanoparticle vectors. All three gene transfection methods efficiently transfected AT 2 cDNA into lung cancer cells but caused minimal gene transfection in normal lung epithelial cells. Ad-AT 2 significantly attenuated multiple human lung cancer cell growth (A549 and H358) as compared to the control viral vector, Ad-LacZ, when cell viability was examined by direct cell count. Examination of annexin V by flow cytometry revealed the activation of the apoptotic pathway via AT 2 over-expression. Western Blot analysis confirmed the activation of caspase-3. Similarly, poly (lactide-co-glycolic acid) (PLGA) biodegradable nanoparticles encapsulated AT 2 plasmid DNA were shown to be effectively taken up into the lung cancer cell. Nanoparticle-based AT 2 gene transfection markedly increased AT 2 expression and resultant cell death in A549 cells. These results indicate that AT 2 over-expression effectively attenuates growth of lung adenocarcinoma cells through intrinsic apoptosis. Our results also suggest that PLGA nanoparticles can be used as an efficient gene delivery vector for lung adenocarcinoma targeted therapy.
Collapse
Affiliation(s)
- Lara Pickel
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Takaya Matsuzuka
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Chiyo Doi
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Rie Ayuzawa
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Dharmendra Kumar Maurya
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Sheng-Xue Xie
- Department of Pharmaceutical Chemistry, Kansas University, Lawrence, KS 66045, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, Kansas University, Lawrence, KS 66045, USA
| | - Masaaki Tamura
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506,
| |
Collapse
|
41
|
Stanković A, Zivković M, Kostić M, Atanacković J, Krstić Z, Alavantić D. Expression profiling of the AT2R mRNA in affected tissue from children with CAKUT. Clin Biochem 2009; 43:71-5. [PMID: 19781541 DOI: 10.1016/j.clinbiochem.2009.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Congenital anomalies of the kidney and urinary tract (CAKUT) are common causes of chronic renal failure in children. The angiotensin II receptor type 2 (AT2R) is one of proposed candidate genes for CAKUT, but the expression was never explored in humans. The aim was to establish the AT2R gene expression in human CAKUT concerning -1332A/G polymorphism, which might affect alternative splicing. DESIGN AND METHODS Forty-eight patients with CAKUT constitute the basis of this study. Genotyping for -1332A/G, RT-PCR for AT2R gene expression and confirmation sequencing were performed. RESULTS The expression of Ex 1/2/3 and Ex 1/3 transcript splice variants of the AT2R mRNA were detected in human CAKUT tissue. The pattern was observed independently of A to G transition. CONCLUSIONS The expression of AT2R mRNA in human CAKUT was established for the first time and was not affected by -1332A/G polymorphism in children with CAKUT.
Collapse
Affiliation(s)
- Aleksandra Stanković
- Vinca Institute of Nuclear Sciences, Laboratory for Radiobiology and Molecular Genetics, 11001 Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
42
|
Lindoso RS, Verdoorn KS, Einicker-Lamas M. Renal recovery after injury: the role of Pax-2. Nephrol Dial Transplant 2009; 24:2628-33. [PMID: 19556301 DOI: 10.1093/ndt/gfp307] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
43
|
Inhibition of renin-angiotensin system in experimental acute pancreatitis in rats: a new therapeutic target? ACTA ACUST UNITED AC 2009; 62:353-60. [PMID: 19525099 DOI: 10.1016/j.etp.2009.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 04/06/2009] [Accepted: 05/11/2009] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Pancreatic renin-angiotensin system has been implied to play a role in the regulation of pancreatic functions and could be a new therapeutic target in acute pancreatitis. The aim of this study was to evaluate the therapeutic potential of angiotensin-converting-enzyme inhibition by captopril and angiotensin II type 1 receptor inhibition by L-158809 and losartan experimentally in acute pancreatitis. DESIGN Rats were randomly divided into 15 groups. Acute edematous pancreatitis was induced by injection of cerulein 20microg/kg SC four times at hourly intervals. Severe necrotizing pancreatitis was induced by retrograde injection of 3% taurocholate into the biliary-pancreatic duct. INTERVENTIONS Captopril, L-158809 and losartan were given intraperitoneally. Main outcome features: pancreatic pathology, pancreatic myeloperoxidase activity and serum amylase activity were assessed. RESULTS Captopril decreased serum amylase (10,809+/-1867 vs. 4085+/-1028U/L, p<0.01), myeloperoxidase activity (3.5+/-0.5 vs. 1.5+/-0.1, p<0.05) and histopathological score (5.0+/-0.4 vs. 1.1+/-0.5, p<0.01) in acute edematous pancreatitis. In taurocholate induced severe necrotizing pancreatitis captopril ameliorated histopathological score (10.1+/-1.2 vs. 3.4+/-0.5, p<0.01), pancreatic parenchymal necrosis (4.5+/-0.6 vs. 0.0+/-0.0, p<0.001), fatty necrosis (2.8+/-0.9 vs. 0.1+/-0.1, p<0.01) and edema (2.1+/-0.3 vs. 1.4+/-0.3, p<0.05). However, L-158809 did not have similar beneficial effects on acute pancreatitis in rats while losartan decreased pancreatic parenchymal necrosis and neutrophil infiltration. CONCLUSIONS This study not only demonstrated the differential effects of captopril, losartan and L-158809 in acute pancreatitis but also showed that there is still much to investigate about pancreatic renin-angiotensin system. Inhibition of angiotensin-converting enzyme should be evaluated carefully as a potential new therapeutic target in acute pancreatitis.
Collapse
|
44
|
Chow L, Rezmann L, Catt KJ, Louis WJ, Frauman AG, Nahmias C, Louis SNS. Role of the renin-angiotensin system in prostate cancer. Mol Cell Endocrinol 2009; 302:219-29. [PMID: 18824067 DOI: 10.1016/j.mce.2008.08.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/19/2022]
Abstract
Prostate cancer is highly prevalent in Western society, and its early stages can be controlled by androgen ablation therapy. However, the cancer eventually regresses to an androgen-independent state for which there is no effective treatment. The renin-angiotensin system (RAS), in particular the octapeptide angiotensin II, is now recognised to have important effects on growth factor signalling and cell growth in addition to its well known actions on blood pressure, fluid homeostasis and electrolyte balance. All components of the RAS have been recently identified in the prostate, consistent with the expression of a local RAS system in this tissue. This review focuses on the role of the RAS in the prostate, and the possibility that this pathway may be a potential therapeutic target for the treatment of prostate cancer and other prostatic diseases.
Collapse
Affiliation(s)
- L Chow
- University of Melbourne, Department of Medicine, Austin Health, Heidelberg, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Jones ES, Vinh A, McCarthy CA, Gaspari TA, Widdop RE. AT2 receptors: functional relevance in cardiovascular disease. Pharmacol Ther 2008; 120:292-316. [PMID: 18804122 PMCID: PMC7112668 DOI: 10.1016/j.pharmthera.2008.08.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/24/2022]
Abstract
The renin angiotensin system (RAS) is intricately involved in normal cardiovascular homeostasis. Excessive stimulation by the octapeptide angiotensin II contributes to a range of cardiovascular pathologies and diseases via angiotensin type 1 receptor (AT1R) activation. On the other hand, tElsevier Inc.he angiotensin type 2 receptor (AT2R) is thought to counter-regulate AT1R function. In this review, we describe the enhanced expression and function of AT2R in various cardiovascular disease settings. In addition, we illustrate that the RAS consists of a family of angiotensin peptides that exert cardiovascular effects that are often distinct from those of Ang II. During cardiovascular disease, there is likely to be an increased functional importance of AT2R, stimulated by Ang II, or even shorter angiotensin peptide fragments, to limit AT1R-mediated overactivity and cardiovascular pathologies.
Collapse
Key Words
- angiotensin ii
- at2 receptor
- at1 receptor
- cardiovascular disease
- ace, angiotensin converting enzyme
- ace2, angiotensin converting enzyme 2
- ang ii, angiotensin ii
- ang iii, angiotensin iii
- ang iv, angiotensin iv
- ang (1–7), angiotensin (1–7)
- atbp50, at2r-binding protein of 50 kda
- atip-1, at2 receptor interacting protein-1
- at1r, angiotensin ii type 1 receptor
- at2r, angiotensin ii type 2 receptor
- at4r, angiotensin ii type 4 receptor
- bk, bradykinin
- bp, blood pressure
- cgmp, cyclic guanine 3′,5′-monophosphate
- ecm, extracellular matrix
- enos, endothelial nitric oxide synthase
- erk-1/2, extracellular-regulated kinases-1,2
- irap, insulin-regulated aminopeptidase
- l-name, ng-nitro-l arginine methyl ester
- lvh, left ventricular hypertrophy
- mapk, mitogen-activated protein kinase
- mcp-1, monocyte chemoattractant protein-1
- mi, myocardial infarction
- mmp, matrix metalloproteinase
- mrna, messenger ribonucleic acid
- nf-κβ, nuclear transcription factor-κβ
- no, nitric oxide
- o2−, superoxide
- pc12w, rat pheochromocytoma cell line
- ras, renin angiotensin system
- ros, reactive oxygen species
- shr, spontaneously hypertensive rat
- timp-1, tissue inhibitor of metalloproteinase-1
- tnfα, tumour-necrosis factor α
- vsmc, vascular smooth muscle cell
- wky, wistar-kyoto rat
Collapse
Affiliation(s)
- Emma S Jones
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | |
Collapse
|
46
|
Dalla Vestra M, Simioni N, Masiero A. Renal effects of dual renin-angiotensin-aldosterone system blockade in patients with diabetic nephropathy. Int Urol Nephrol 2008; 41:119-26. [PMID: 18958580 DOI: 10.1007/s11255-008-9490-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Accepted: 10/06/2008] [Indexed: 12/26/2022]
Abstract
Evidence from recent studies indicates that in patients with diabetic nephropathy combined therapy with ACE inhibitors (ACEI) and AT1-receptor antagonists (ARB) results in more complete blockade of the renin-angiotensin-aldosterone system (RAS) than monotherapy, and reduces proteinuria. Most of these trials, however, had short follow-up, included a small number of patients, and were heterogeneous, so the opportunity to start this treatment in these patients remains unclear. This review summarizes the results of these studies, describing the renal effects of dual RAS blockade in both type 1 and type 2 diabetic patients.
Collapse
|
47
|
Kolasinska-Malkowska K, Filipiak KJ, Gwizdala A, Tykarski A. Current possibilities of ACE inhibitor and ARB combination in arterial hypertension and its complications. Expert Rev Cardiovasc Ther 2008; 6:759-71. [PMID: 18510491 DOI: 10.1586/14779072.6.5.759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) plays a crucial role in blood pressure regulation and hypertension-related complications. Angiotensin-converting enzyme inhibitors (ACEIs) were the first to be used to block the RAAS and now have many compelling indications in the treatment of hypertension and its cardiovascular and renal complications. Angiotensin II receptor blockers (ARBs), introduced 20 years later, have been shown to be equally as effective as antihypertensive treatment and are also associated with a lower number of side effects. Furthermore, in clinical trials ARBs and ACEIs were associated with comparable benefits for their most typical indications. This was confirmed in the 2007 New European Society of Hypertension/European Society of Cardiology (ESH/ESC) guidelines for the management of hypertension by comparable specific recommendations for ARB and ACEI treatment. There is sufficient theoretical background and, in some cases, also clinical evidence that combination therapy with ACEIs and ARBs may be more beneficial than monotherapy with either of the groups alone, both in uncomplicated hypertension and with concomitant heart failure or renal dysfunction. However, the combination of ACEI and ARB was not recommended in the ESH/ESC 2007 Guidelines. This may change after the publication of the Ongoing Telmisartan Alone and in Combination with Ramipril Global End point Trial (ONTARGET) study, the preliminary results of which have just been presented. In heart failure, recent studies have shown that the combination of ACEI and ARB decreases cardiovascular mortality and the number of hospitalizations due to aggravation of heart failure. These results have been reflected in the newest ESC guidelines of the heart failure treatment. Nephroprotective properties of the combination of ACEs and ARBs have been proved both in studies on nondiabetic and diabetic nephropathy. The potential benefits, indications in prespecified groups of patients, the most recent data from clinical trials and latest research regarding dual blockade of RAAS will be reviewed in this article.
Collapse
Affiliation(s)
- Katarzyna Kolasinska-Malkowska
- Katedra i Klinika Hipertensjologii, Angiologii i Chorób Wewnetrznych, Uniwersytetu Medycznego im. Karola Marcinkowskiego w Poznaniu, Poland
| | | | | | | |
Collapse
|
48
|
Renin–angiotensin system blockade in diabetic nephropathy. Diabetes Metab Syndr 2008. [DOI: 10.1016/j.dsx.2008.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59:251-87. [PMID: 17878513 DOI: 10.1124/pr.59.3.3] [Citation(s) in RCA: 867] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Director of the Molecular Core in Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | |
Collapse
|
50
|
Coleman CM, Minor JJ, Burt LE, Thornhill BA, Forbes MS, Chevalier RL. Angiotensin AT1-receptor inhibition exacerbates renal injury resulting from partial unilateral ureteral obstruction in the neonatal rat. Am J Physiol Renal Physiol 2007; 293:F262-8. [PMID: 17442727 DOI: 10.1152/ajprenal.00071.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The renin-angiotensin system is activated in the developing kidney and is necessary for normal renal development, but is further activated by unilateral ureteral obstruction (UUO). During nephrogenesis, there is a switch from a preponderance of angiotensin AT(2) to AT(1) receptors in the rat. We examined the renal cellular response to angiotensin II receptor inhibition in the neonatal rat subjected to partial UUO under anesthesia within 48 h of birth. Group I ("early") received saline vehicle, losartan (AT(1) inhibitor), or PD-123319 (AT(2) inhibitor) during the completion of nephrogenesis in the first 10 days of life. Group II ("late") received each of the three treatments throughout the subsequent 10 days of life. Kidneys were harvested at 21 days, and the distribution of renin, apoptosis, macrophages, alpha-smooth muscle actin, and collagen was determined. Losartan and PD-123319 each increased vascular renin distribution in both kidneys. Partial UUO reduced growth and increased apoptosis, macrophages, alpha-smooth muscle actin, and collagen in the obstructed kidney. Early losartan treatment further increased alpha-smooth muscle actin and collagen in the obstructed kidney and induced apoptosis, macrophages, and collagen in the contralateral kidney. Late losartan treatment had no effect on any of the parameters in either kidney, and PD-123319 had no effect on either kidney. We conclude that selective inhibition of AT(1) receptors during nephrogenesis (but not during subsequent renal maturation) exacerbates injury to the obstructed kidney and also injures the contralateral kidney. These results suggest that angiotensin II receptor blockers should be avoided in the developing hydronephrotic kidney.
Collapse
Affiliation(s)
- Christopher M Coleman
- Dept. of Pediatrics, University of Virginia, Box 800386, Charlottesville VA 22908, USA
| | | | | | | | | | | |
Collapse
|