1
|
Gui C, Liu S, Fu Z, Li H, Zhang D, Deng Y. Integrated bioinformatics analysis for identifying fibroblast-associated biomarkers and molecular subtypes in human membranous nephropathy. Heliyon 2024; 10:e38424. [PMID: 39524772 PMCID: PMC11546183 DOI: 10.1016/j.heliyon.2024.e38424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Background Membranous nephropathy (MN) is characterized by immune complex deposition in the glomerular basement membrane, leading to proteinuria and potentially progressive renal dysfunction. Fibroblasts have been implicated in the pathogenesis of MN through their involvement in tissue remodeling and immune modulation. Methods We employed integrated bioinformatics analyses to identify fibroblast-associated biomarkers and molecular subtypes in MN. The xCell algorithm was used to assess fibroblast infiltration, and weighted gene co-expression network analysis (WGCNA) identified fibroblast-related gene modules. Differentially expressed fibroblast-associated genes (DEFAGs) were screened between MN and healthy controls (HC) using differential expression analysis and protein-protein interaction (PPI) network construction. Consensus clustering categorized MN patients into distinct subtypes based on DEFAG expression profiles. Results Fibroblast scores were a significant elevation in MN compared to HC, indicating increased fibroblast involvement in MN pathogenesis. WGCNA identified 13 fibroblast-related gene modules, with the brown and turquoise modules showing strong correlation with fibroblast scores (correlation coefficient = 0.79 and 0.75, respectively, p < 0.01). DEFAG analysis revealed 308 genes overlapping between WGCNA and differentially expressed genes (DEGs) in MN. Consensus clustering identified two molecular subtypes (C1 and C2) based on DEFAG expression patterns, with differential gene expression enriching pathways related to immune response and extracellular matrix remodeling. Core biomarker analysis highlighted COL3A1 and TGFB1 as central genes associated with MN, with elevated expression validated across multiple datasets. Conclusion Integrated bioinformatics analysis identified fibroblast-associated molecular subtypes in MN, revealing distinct immune profiles and biomarkers. COL3A1 emerged as a potential diagnostic and therapeutic target, implicating its role in immune regulation and disease progression in MN.
Collapse
Affiliation(s)
- Chuying Gui
- Corresponding author. The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, NO.725, South Wanping Road, Xuhui District, Shanghai, 200032, China.
| | | | - Zhike Fu
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Huijie Li
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Di Zhang
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yueyi Deng
- The Department of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| |
Collapse
|
2
|
Fey RM, Nichols RA, Tran TT, Vandenbark AA, Kulkarni RP. MIF and CD74 as Emerging Biomarkers for Immune Checkpoint Blockade Therapy. Cancers (Basel) 2024; 16:1773. [PMID: 38730725 PMCID: PMC11082995 DOI: 10.3390/cancers16091773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint blockade (ICB) therapy is used to treat a wide range of cancers; however, some patients are at risk of developing treatment resistance and/or immune-related adverse events (irAEs). Thus, there is a great need for the identification of reliable predictive biomarkers for response and toxicity. The cytokine MIF (macrophage migration inhibitory factor) and its cognate receptor CD74 are intimately connected with cancer progression and have previously been proposed as prognostic biomarkers for patient outcome in various cancers, including solid tumors such as malignant melanoma. Here, we assess their potential as predictive biomarkers for response to ICB therapy and irAE development. We provide a brief overview of their function and roles in the context of cancer and autoimmune disease. We also review the evidence showing that MIF and CD74 may be of use as predictive biomarkers of patient response to ICB therapy and irAE development. We also highlight that careful consideration is required when assessing the potential of serum MIF levels as a biomarker due to its reported circadian expression in human plasma. Finally, we suggest future directions for the establishment of MIF and CD74 as predictive biomarkers for ICB therapy and irAE development to guide further research in this field.
Collapse
Affiliation(s)
- Rosalyn M. Fey
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Rebecca A. Nichols
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
| | - Thuy T. Tran
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Arthur A. Vandenbark
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, Portland, OR 97239, USA
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rajan P. Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA (R.A.N.)
- Cancer Early Detection Advanced Research Center (CEDAR), Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Operative Care Division, U.S. Department of Veterans Affairs Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
3
|
Hu J, Zhang X, Ma F, Huang C, Jiang Y. LncRNA CASC2 Alleviates Renal Interstitial Inflammation and Fibrosis through MEF2C Downregulation-Induced Hinderance of M1 Macrophage Polarization. Nephron Clin Pract 2023; 148:245-263. [PMID: 38142674 DOI: 10.1159/000531919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 05/25/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION Long noncoding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) alleviates the progression of diabetic nephropathy by inhibiting inflammation and fibrosis. This study investigated how CASC2 impacts renal interstitial fibrosis (RIF) through regulating M1 macrophage (M1) polarization. METHOD Nine-week-old mice underwent unilateral ureteral obstruction (UUO) establishment. Macrophages were induced toward M1 polarization using lipopolysaccharide (LPS) in vitro and cocultured with fibroblasts to examine how M1 polarization influences RIF. LnCeCell predicted that CASC2 interacted with myocyte enhancer factor 2 C (MEF2C), which was validated by dual-luciferase reporter assay. CASC2/MEF2C overexpression was achieved by lentivirus-expressing lncRNA CASC2 injection in vivo or CASC2 and MEF2C transfection in vitro. Renal injury was evaluated through biochemical analysis and hematoxylin-eosin/Masson staining. Macrophage infiltration and M1 polarization in the kidney and/or macrophages were detected by immunofluorescence, flow cytometry, and/or quantitative reverse transcription polymerase chain reaction (qRT-PCR). Expressions of CASC2, MEF2C, and markers related to inflammation/M1/fibrosis in the kidney/macrophages/fibroblasts were analyzed by qRT-PCR, fluorescence in situ hybridization, enzyme-linked immunosorbent assay, and/or Western blot. RESULT In the kidneys of mice, CASC2 was downregulated and macrophage infiltration was promoted time-dependently from days 3 to 14 post-UUO induction; CASC2 overexpression alleviated renal histological abnormalities, hindered macrophage infiltration and M1 polarization, downregulated renal function markers serum creatinine and blood urea nitrogen and inflammation/M1/fibrosis-related makers, and offset UUO-induced MEF2C upregulation. LncRNA CASC2 overexpression inhibited fibroblast fibrosis and M1 polarization in cocultured fibroblasts with LPS-activated macrophages. Also, CASC2 bound to MEF2C and inhibited its expression in LPS-activated macrophages. Furthermore, MEF2C reversed the inhibitory effects of lncRNA CASC2 overexpression. CONCLUSION CASC2 alleviates RIF by inhibiting M1 polarization through directly downregulating MEF2C expression. CASC2 might represent a promising value of future investigations on treatment for RIF.
Collapse
Affiliation(s)
- Jinping Hu
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Ma
- Department of Nephrology, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yali Jiang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Liu Y, Gong Y, Xu G. The role of mononuclear phagocyte system in IgA nephropathy: pathogenesis and prognosis. Front Immunol 2023; 14:1192941. [PMID: 37529043 PMCID: PMC10390225 DOI: 10.3389/fimmu.2023.1192941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
Although the "multiple hits" theory is a widely accepted pathogenesis in IgA nephropathy (IgAN), increasing evidence suggests that the mononuclear/macrophage system plays important roles in the progression of IgAN; however, the exact mechanism is unclear. In the present study, we explored 1,067 patients in 15 studies and found that the number of macrophages per glomerulus was positively related with the degree of hematuria, and the macrophages in the glomeruli were mainly related to mesangial proliferation (M) in renal biopsy. In the tubulointerstitium, macrophages were significantly paralleled to tubulointerstitial α-SMA and NF-kB expression, tubulointerstitial lesion, tubule atrophy/interstitial fibrosis (T), and segmental glomerulosclerosis (S). In the glomeruli and tubulointerstitium, M1 accounted for 85.41% in the M classification according to the Oxford MEST-C, while in the blood, M1 accounted for 100%, and the patients with low CD89+ monocyte mean fluorescence intensity displayed more severe pathological characteristics (S1 and T1-2) and clinical symptoms. M1 (CD80+) macrophages were associated with proinflammation in the acute phase; however, M2 (CD163+) macrophages participated in tissue repair and remodeling, which correlated with chronic inflammation. In the glomeruli, M2 macrophages activated glomerular matrix expansion by secreting cytokines such as IL-10 and tumor necrosis factor-β (TGF-β), and M0 (CD68+) macrophages stimulated glomerular hypercellularity. In the tubulointerstitium, M2 macrophages played pivotal roles in renal fibrosis and sclerosis. It is assumed that macrophages acted as antigen-presenting cells to activate T cells and released diverse cytokines to stimulate an inflammatory response. Macrophages infiltrating glomeruli destroy the integrity of podocytes through the mesangio-podocytic-tubular crosstalk as well as the injury of the tubule.
Collapse
Affiliation(s)
- Yiwen Liu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Gaosi Xu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Liu M, Zhang L, Wang Y, Hu W, Wang C, Wen Z. Mesangial cell: A hub in lupus nephritis. Front Immunol 2022; 13:1063497. [PMID: 36591251 PMCID: PMC9795068 DOI: 10.3389/fimmu.2022.1063497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Lupus nephritis (LN) is a severe renal disease caused by the massive deposition of the immune complexes (ICs) in renal tissue, acting as one of the significant organ manifestations of systemic lupus erythematosus (SLE) and a substantial cause of death in clinical patients. As mesangium is one of the primary sites for IC deposition, mesangial cells (MCs) constantly undergo severe damage, resulting in excessive proliferation and increased extracellular matrix (ECM) production. In addition to playing a role in organizational structure, MCs are closely related to in situ immunomodulation by phagocytosis, antigen-presenting function, and inflammatory effects, aberrantly participating in the tissue-resident immune responses and leading to immune-mediated renal lesions. Notably, such renal-resident immune responses drive a second wave of MC damage, accelerating the development of LN. This review summarized the damage mechanisms and the in situ immune regulation of MCs in LN, facilitating the current drug research for exploring clinical treatment strategies.
Collapse
Affiliation(s)
- Mengdi Liu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yixin Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Weijie Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Chunhong Wang
- Cyrus Tang Hematology Center, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China,*Correspondence: Zhenke Wen, ; Chunhong Wang,
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China,*Correspondence: Zhenke Wen, ; Chunhong Wang,
| |
Collapse
|
6
|
Ding N, Li PL, Wu KL, Lv TG, Yu WL, Hao J. Macrophage migration inhibitory factor levels are associated with disease activity and possible complications in membranous nephropathy. Sci Rep 2022; 12:18558. [PMID: 36329091 PMCID: PMC9633699 DOI: 10.1038/s41598-022-23440-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Membranous nephropathy (MN) is an autoimmune disease characterized by the deposition of immunoglobulin G (IgG) and complementary components in the epithelium of the glomerular capillary wall. Macrophage migration inhibitory factor (MIF) is an inflammatory mediator released by macrophages. MIF plays a key regulatory function in the pathogenesis of immune-mediated glomerulonephritis. This study aimed to investigate whether MIF level could be associated with the activity of MN. Plasma and urine samples from 57 MN patients and 20 healthy controls were collected. The MIF levels in plasma and urine were determined by an enzyme-linked immunosorbent assay (ELISA) kit. The expression of MIF in the renal specimens from 5 MN patients was detected by immunohistochemistry (IHC). The associations of the plasma and urinary levels of MIF and glomerular MIF expression with clinical and pathological characteristics were analyzed. It was revealed that with the increase of MIF levels in plasma and urine, the severity of renal pathological injury in MN patients gradually increased. Correlation analysis showed that the MIF levels in plasma were positively correlated with the platelet (PLT) count (r = 0.302, P = 0.022), and inversely correlated with the prothrombin time (PT) (r = - 0.292, P = 0.028) in MN patients. The MIF levels in plasma were positively correlated with the C-reactive protein (CRP) level and erythrocyte sedimentation rate (ESR) (r = 0.651, P < 0.0001; r = 0.669, P < 0.0001) in MN patients. The urinary levels of MIF were positively correlated with ESR (r = 0.562, P < 0.0001). IHC suggested that MIF was expressed in glomerular basement membrane and tubulointerstitial areas. MIF levels in plasma and urine could reflect the severity of MN, and MIF levels in plasma and urine could be associated with venous thrombosis and infectious complications in MN patients. The glomerular MIF expression could be used to indicate the activity of MN.
Collapse
Affiliation(s)
- Na Ding
- grid.410612.00000 0004 0604 6392Inner Mongolia Medical University, Huhehot, 010059 Inner Mongolia China
| | - Peng-Lei Li
- grid.413375.70000 0004 1757 7666Renal Division, Department of Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050 Inner Mongolia China
| | - Kai-Li Wu
- grid.410612.00000 0004 0604 6392Inner Mongolia Medical University, Huhehot, 010059 Inner Mongolia China
| | - Tie-Gang Lv
- grid.413375.70000 0004 1757 7666Renal Division, Department of Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050 Inner Mongolia China
| | - Wen-Lu Yu
- grid.413375.70000 0004 1757 7666Renal Division, Department of Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050 Inner Mongolia China ,grid.410612.00000 0004 0604 6392Inner Mongolia Medical University, Huhehot, 010059 Inner Mongolia China
| | - Jian Hao
- grid.413375.70000 0004 1757 7666Renal Division, Department of Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050 Inner Mongolia China ,grid.410612.00000 0004 0604 6392Inner Mongolia Medical University, Huhehot, 010059 Inner Mongolia China
| |
Collapse
|
7
|
Du Y, Hao H, Ma H, Liu H. Macrophage migration inhibitory factor in acute kidneyinjury. Front Physiol 2022; 13:945827. [PMID: 36117692 PMCID: PMC9478040 DOI: 10.3389/fphys.2022.945827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Acute kidney injury (AKI) is a complex clinical syndrome with multiple etiologies and pathogenesis, which lacks early biomarkers and targeted therapy. Recently, macrophage migration inhibitory factor (MIF) family protein have received increasing attention owing to its pleiotropic protein molecule character in acute kidney injury, where it performed a dual role in the pathological process. macrophage migration inhibitory factor and macrophage migration inhibitory factor-2 are released into the peripheral circulation when Acute kidney injury occurs and interact with various cellular pathways. On the one hand, macrophage migration inhibitory factor exerts a protective effect in anti-oxidation and macrophage migration inhibitory factor-2 promotes cell proliferation and ameliorates renal fibrosis. On the other hand, macrophage migration inhibitory factor aggravates renal injury as an upstream inflammation factor. Herein, we provide an overview on the biological role and possible mechanisms of macrophage migration inhibitory factor and macrophage migration inhibitory factor-2 in the process of Acute kidney injury and the clinical application prospects of macrophage migration inhibitory factor family proteins as a potential therapeutic target.
Collapse
Affiliation(s)
- Yiwei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Hao Hao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Heng Ma,
| | - Hongbao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi’an, China
- *Correspondence: Hongbao Liu, ; Heng Ma,
| |
Collapse
|
8
|
Akama-Garren EH, Carroll MC. T Cell Help in the Autoreactive Germinal Center. Scand J Immunol 2022; 95:e13192. [PMID: 35587582 DOI: 10.1111/sji.13192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
The germinal center serves as a site of B cell selection and affinity maturation, critical processes for productive adaptive immunity. In autoimmune disease tolerance is broken in the germinal center reaction, leading to production of autoreactive B cells that may propagate disease. Follicular T cells are crucial regulators of this process, providing signals necessary for B cell survival in the germinal center. Here we review the emerging roles of follicular T cells in the autoreactive germinal center. Recent advances in immunological techniques have allowed study of the gene expression profiles and repertoire of follicular T cells at unprecedented resolution. These studies provide insight into the potential role follicular T cells play in preventing or facilitating germinal center loss of tolerance. Improved understanding of the mechanisms of T cell help in autoreactive germinal centers provides novel therapeutic targets for diseases of germinal center dysfunction.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Macrophage Migration Inhibitory Factor (MIF) as a Stress Molecule in Renal Inflammation. Int J Mol Sci 2022; 23:ijms23094908. [PMID: 35563296 PMCID: PMC9102975 DOI: 10.3390/ijms23094908] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Renal inflammation is an initial pathological process during progressive renal injury regardless of the initial cause. Macrophage migration inhibitory factor (MIF) is a truly proinflammatory stress mediator that is highly expressed in a variety of both inflammatory cells and intrinsic kidney cells. MIF is released from the diseased kidney immediately upon stimulation to trigger renal inflammation by activating macrophages and T cells, and promoting the production of proinflammatory cytokines, chemokines, and stress molecules via signaling pathways involving the CD74/CD44 and chemokine receptors CXCR2, CXCR4, and CXCR7 signaling. In addition, MIF can function as a stress molecule to counter-regulate the immunosuppressive effect of glucocorticoid in renal inflammation. Given the critical position of MIF in the upstream inflammatory cascade, this review focuses on the regulatory role and molecular mechanisms of MIF in kidney diseases. The therapeutic potential of targeting MIF signaling to treat kidney diseases is also discussed.
Collapse
|
10
|
Murkamilov IT. The bi-directional effect of markers of inflammation and a decrease in glomerular filtration rate in chronic kidney disease. Klin Lab Diagn 2022; 67:37-42. [PMID: 35077068 DOI: 10.51620/0869-2084-2022-67-1-37-42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the study was to analyze and evaluate the relationship between the cytokine profile, C-reactive blood protein, fibrinogen, and glomerular filtration rate in patients with chronic kidney disease. The study involved individuals (n = 816) with chronic kidney disease (CKD) from the 1st to 5th stage of the disease, aged 20 to 76 years. The male to female ratio was 48% and 52%, respectively. All examined individuals underwent a comprehensive clinical and laboratory study evaluating the concentration of interleukins (IL, IL-10, IL-6, TNF-α) and acute phase inflammation proteins (C-reactive protein, fibrinogen) in the blood. CKD categories were evaluated by glomerular filtration rate (GFR), which was calculated using the CKD-EPI formula (Chronic Kidney Disease Epidemiology Collaboration). In individuals with CKD, significantly high concentrations of IL-10 and IL-6 were observed at stage 3b of the disease. Systolic blood pressure, median TNF-α, blood fibrinogen, and the number of individuals with high CRP were significant at stage 4 of CKD. A statistically significant correlation was found between the estimated GFR with the level of IL-6, CRP, blood fibrinogen at the 2nd stage of the disease and the concentration of IL-10 at 3b and TNF-α at the 4th stage of CKD. At the initial stage of CKD, there is a significant relationship between a decrease in estimated GFR and an increase in the level of IL-6, IL-10, TNF-α, as well as an increase in CRP and blood fibrinogen, which becomes pronounced at stages 3b and 4 of CKD.
Collapse
Affiliation(s)
- I T Murkamilov
- Kyrgyz State Medical Academy named after I.K. Akhunbaev.,Kyrgyz-Russian slavic university
| |
Collapse
|
11
|
Morning Cortisol and Circulating Inflammatory Cytokine Levels: A Mendelian Randomisation Study. Genes (Basel) 2022; 13:genes13010116. [PMID: 35052454 PMCID: PMC8774857 DOI: 10.3390/genes13010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023] Open
Abstract
Cortisol exerts a broad anti-inflammatory effect on the immune system. Inflammatory cytokines contribute to the molecular signalling pathways implicated in various autoimmune and inflammatory conditions. However, the mechanisms by which cortisol modulates such signalling pathways remain uncertain. Leveraging summary-level data from the CORtisol NETwork (CORNET, n = 25,314) and FINRISK (n = 8293) genome-wide association studies, we used two-sample Mendelian randomisation to investigate the causal effect of genetically proxied morning cortisol levels on 42 circulating cytokines. We found that increased genetically proxied morning cortisol levels were associated with reduced levels of IL-8 and increased levels of MIF. These results provide mechanistic insight into the immunomodulatory effects of endogenous cortisol and the therapeutic effects of exogenous corticosteroids. Clinically, our findings underline the therapeutic importance of steroids in inflammatory conditions where IL-8 and MIF play a central pathophysiological role in the onset and progression of disease.
Collapse
|
12
|
Immune-Related Gene Polymorphisms and Pharmacogenetic Studies in Nephrology. Clin Ther 2021; 43:2148-2153. [PMID: 34740465 DOI: 10.1016/j.clinthera.2021.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
A large subgroup of patients with chronic kidney disease still encounter serious adverse effects and lack of responsiveness to medications, possibly because of the interindividual genetic variability in genes involved in the metabolism and transport of the treatments used. As a consequence, several pharmacogenetic studies have been conducted in nephrology patients that examine the effect of genetic variants in response to treatment in kidney diseases. The present commentary focuses on immune-related genes (TNF [tumor necrosis factor], MIF [macrophage migration inhibitory factor], and IL-10 [interleukin 10]) or those genes that may regulate the response to immunosuppressive medications (ABCB1 [ATP binding cassette subfamily B member 1] and ITPA [inosine triphosphatase]) used in kidney diseases. These genes were selected from those showing significant results in a recent meta-analysis of pharmacogenetic studies of patients with chronic kidney disease. This commentary highlights that certain polymorphisms should be investigated in patients with kidney diseases, especially if they are to be administered immunosuppressive agents. In certain cases, flavonoids such as quercetin may be beneficial.
Collapse
|
13
|
Gene knockout or inhibition of macrophage migration inhibitory factor alleviates lipopolysaccharide-induced liver injury via inhibiting inflammatory response. Hepatobiliary Pancreat Dis Int 2021; 20:469-477. [PMID: 34348873 DOI: 10.1016/j.hbpd.2021.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Liver injury is one of the most common complications during sepsis. Macrophage migration inhibitory factor (MIF) is an important proinflammatory cytokine. This study explored the role of MIF in the lipopolysaccharide (LPS)-induced liver injury through genetically manipulated mouse strains. METHODS The model of LPS-induced liver injury was established in wild-type and Mif-knockout C57/BL6 mice. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBil) were detected, and the expressions of MIF, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured. Liver histopathology was conducted to assess liver injury. Moreover, the inhibitions of MIF with (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) and 4-iodo-6-phenylpyrimidine (4-IPP) were used to evaluate their therapeutic potential of liver injury. RESULTS Compared with wild-type mice, the liver function indices and inflammation factors presented no significant difference in the Mif-/- mice. After 72 h of the LPS-induced liver injury, serum levels of ALT, AST, and TBil as well as TNF-α and IL-1β were significantly increased, but the knockout of Mif attenuated liver injury and inflammatory response. In liver tissue, mRNA levels of TNF-α, IL-1β and NF-κB p65 were remarkably elevated in LPS-induced liver injury, while the knockout of Mif reduced these levels. Moreover, in LPS-induced liver injury, the inhibitions of MIF with ISO-1 and 4-IPP alleviated liver injury and slightly attenuated inflammatory response. Importantly, compared to mice with LPS-induced liver injury, Mif knockout or MIF inhibitions significantly prolonged the survival of the mice. CONCLUSIONS In LPS-induced liver injury, the knockout of Mif or MIF inhibitions alleviated liver injury and slightly attenuated inflammatory response, thereby prolonged the survival of the mice. Targeting MIF may be an important strategy to protect the liver from injury during sepsis.
Collapse
|
14
|
Development of Biomarkers and Molecular Therapy Based on Inflammatory Genes in Diabetic Nephropathy. Int J Mol Sci 2021; 22:ijms22189985. [PMID: 34576149 PMCID: PMC8465809 DOI: 10.3390/ijms22189985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic Nephropathy (DN) is a debilitating consequence of both Type 1 and Type 2 diabetes affecting the kidney and renal tubules leading to End Stage Renal Disease (ESRD). As diabetes is a world epidemic and almost half of diabetic patients develop DN in their lifetime, a large group of people is affected. Due to the complex nature of the disease, current diagnosis and treatment are not adequate to halt disease progression or provide an effective cure. DN is now considered a manifestation of inflammation where inflammatory molecules regulate most of the renal physiology. Recent advances in genetics and genomic technology have identified numerous susceptibility genes that are associated with DN, many of which have inflammatory functions. Based on their role in DN, we will discuss the current aspects of developing biomarkers and molecular therapy for advancing precision medicine.
Collapse
|
15
|
Preoperative Serum Macrophage Migration Inhibitory Factor Level Correlates with Surgical Difficulty and Outcome in Patients with Autoimmune Thyroiditis. J Clin Med 2021; 10:jcm10184034. [PMID: 34575145 PMCID: PMC8467916 DOI: 10.3390/jcm10184034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022] Open
Abstract
Surgical treatment for autoimmune thyroid disease is theoretically risky due to its chronic inflammatory status. This study aimed to investigate the correlation between preoperative serum migration inhibitory factor (MIF) levels and the difficulty of thyroidectomy in patients with autoimmune thyroiditis. Forty-four patients (average age: 54 years) were prospectively recruited: 30 with autoimmune thyroiditis and 14 with nodular goiter. Preoperative serum samples were collected to measure MIF levels. The difficulty of thyroidectomy was evaluated using a 20-point thyroidectomy difficulty scale (TDS) scoring system. The potential correlations between MIF levels and clinicopathological features as well as postoperative complications were analyzed. Preoperative serum thyroid-stimulating hormone (TSH), TSH receptor antibody, thyroid peroxidase antibodies levels, TDS score, and serum MIF levels were significantly higher in the autoimmune thyroiditis group than those in the goiter group. MIF levels were significantly associated with postoperative transient recurrent laryngeal nerve injury and hypoparathyroidism. MIF levels were positively correlated with TDS score, operation time, and blood loss in the autoimmune thyroiditis group. Increased preoperative serum MIF levels are associated with higher TDS scores, operation time, blood loss, and postoperative complications. Preoperative serum MIF level may be a useful predictor of difficult thyroidectomy and help surgeons provide better preoperative management.
Collapse
|
16
|
Deleersnijder D, Van Craenenbroeck AH, Sprangers B. Deconvolution of Focal Segmental Glomerulosclerosis Pathophysiology Using Transcriptomics Techniques. GLOMERULAR DISEASES 2021; 1:265-276. [PMID: 36751384 PMCID: PMC9677714 DOI: 10.1159/000518404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Background Focal segmental glomerulosclerosis is a histopathological pattern of renal injury and comprises a heterogeneous group of clinical conditions with different pathophysiology, clinical course, prognosis, and treatment. Nevertheless, subtype differentiation in clinical practice often remains challenging, and we currently lack reliable diagnostic, prognostic, and therapeutic biomarkers. The advent of new transcriptomics techniques in kidney research poses great potential in the identification of gene expression biomarkers that can be applied in clinical practice. Summary Transcriptomics techniques have been completely revolutionized in the last 2 decades, with the evolution from low-throughput reverse-transcription polymerase chain reaction and in situ hybridization techniques to microarrays and next-generation sequencing techniques, including RNA-sequencing and single-cell transcriptomics. The integration of human gene expression profiles with functional in vitro and in vivo experiments provides a deeper mechanistic insight into the candidate genes, which enable the development of novel-targeted therapies. The correlation of gene expression profiles with clinical outcomes of large patient cohorts allows for the development of clinically applicable biomarkers that can aid in diagnosis and predict prognosis and therapy response. Finally, the integration of transcriptomics with other "omics" modalities creates a holistic view on disease pathophysiology. Key Messages New transcriptomics techniques allow high-throughput gene expression profiling of patients with focal segmental glomerulosclerosis (FSGS). The integration with clinical outcomes and fundamental mechanistic studies enables the discovery of new clinically useful biomarkers that will finally improve the clinical outcome of patients with FSGS.
Collapse
Affiliation(s)
- Dries Deleersnijder
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Leuven, Belgium,Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Amaryllis H. Van Craenenbroeck
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium,Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Leuven, Belgium,Division of Nephrology, University Hospitals Leuven, Leuven, Belgium,*Ben Sprangers,
| |
Collapse
|
17
|
Glomerular Macrophages in Human Auto- and Allo-Immune Nephritis. Cells 2021; 10:cells10030603. [PMID: 33803230 PMCID: PMC7998925 DOI: 10.3390/cells10030603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/10/2023] Open
Abstract
Macrophages are involved in tissue homeostasis. They participate in inflammatory episodes and are involved in tissue repair. Macrophages are characterized by a phenotypic heterogeneity and a profound cell plasticity. In the kidney, and more particularly within glomeruli, macrophages are thought to play a maintenance role that is potentially critical for preserving a normal glomerular structure. Literature on the glomerular macrophage role in human crescentic glomerulonephritis and renal transplantation rejection with glomerulitis, is sparse. Evidence from preclinical models indicates that macrophages profoundly modulate disease progression, both in terms of number-where depletion has resulted in a reduced glomerular lesion-and sub-phenotype-M1 being more profoundly detrimental than M2. This evidence is corroborated by better outcomes in patients with a lower number of glomerular macrophages. However, due to the very limited biopsy sample size, the type and role of macrophage subpopulations involved in human proliferative lesions is more difficult to precisely define and synthesize. Therefore, specific biomarkers of macrophage activation may enhance our ability to assess their role, potentially enabling improved monitoring of drug activity and ultimately allowing the development of novel therapeutic strategies to target these elusive cellular players.
Collapse
|
18
|
Zhang T, Duran V, Vanarsa K, Mohan C. Targeted urine proteomics in lupus nephritis - a meta-analysis. Expert Rev Proteomics 2021; 17:767-776. [PMID: 33423575 DOI: 10.1080/14789450.2020.1874356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Proteomic approaches are central in biomarker discovery. While mass-spectrometry-based techniques are widely used, novel targeted proteomic platforms have enabled the high-throughput detection of low-abundance proteins in an affinity-based manner. Urine has gained growing attention as an ideal biofluid for monitoring renal disease including lupus nephritis (LN). METHODS Pubmed was screened for targeted proteomic studies of LN urine interrogating ≥1000 proteins. Data from the primary studies were combined and a meta-analysis was performed. Shared proteins elevated in active LN across studies were identified, and relevant pathways were elucidated using ingenuity pathway and gene ontology analysis. Urine proteomic data was cross-referenced against renal single-cell RNAseq data from LN kidneys. RESULTS Two high-throughput targeted proteomic platforms with capacity to interrogate ≥1000 proteins have been used to investigate LN urine. Twenty-three urine proteins were significantly elevated in both studies, including 10 chemokines, and proteins implicated in angiogenesis, and extracellular matrix turnover. Of these, Cathepsin S, CXCL10, FasL, ferritin, macrophage migration inhibitory factor (MIF), and resistin were also significantly elevated within LN kidneys. CONCLUSION Targeted urinary proteomics have uncovered multiple novel biomarkers for LN. Further validation in prospective cohorts and mechanistic studies are warranted to establish their clinical utility.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Valeria Duran
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston , Houston, Texas, USA
| |
Collapse
|
19
|
Chen CA, Chang JM, Yang YL, Chang EE, Chen HC. Macrophage migration inhibitory factor regulates integrin-β1 and cyclin D1 expression via ERK pathway in podocytes. Biomed Pharmacother 2020; 124:109892. [PMID: 31986415 DOI: 10.1016/j.biopha.2020.109892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 11/29/2022] Open
Abstract
AIMS Macrophage migration inhibitory factor (MIF) is found to increase in proliferative glomerulonephritis. MIF binds to the MIF receptor (CD74) that activates MAP kinase (ERK and p38). Integrins and cyclinD1 regulate cell proliferation, differentiation and adhesion. This study evaluates whether MIF can regulate integrin-β1/cyclin D1 expression and cell adhesion of podocytes. MAIN METHODS Expression of integrin-β1 mRNA/protein and cyclin D1 mRNA under stimulation of MIF was evaluated by real-time PCR and Western blotting. MIF receptor (CD74) and MAP kinase under MIF treatment were examined to determine which pathway regulated integrin-β1 and cyclin D1 expression. Cell adhesion was evaluated under MIF treatment and/or anti-integrin-β1 antibody by cell adhesion assay. KEY FINDINGS Protein levels of integrin-β1 were up-regulated under MIF treatment in a dosage-dependent manner. CD74 protein levels were not changed after MIF treatment. Integrin-β1 and cyclin D1 mRNA levels were up-regulated after MIF 100 ng/ml treatment. ERK inhibitor U0126 reduced MIF-induced the increase in integrin-β1 mRNA and protein expression following MIF stimulation. However, p38 inhibitor SB 203580 did not inhibit MIF-induced increase in integrin-β1 mRNA and protein expression following MIF stimulation. MIF-induced increase in cyclin D1 mRNA level also was inhibited only by U0126 following MIF stimulation. Podocyte adhesion was increased after MIF treatment, but, anti-integrin-β1 antibody decreased MIF-enhanced podocyte adhesion. SIGNIFICANCE MIF increases integrin-β1 and cyclin D1 expression through the ERK pathway in podocytes, and the up-regulated expression of integrin-β1 increases podocyte adhesion. These results provide further understanding for the role of MIF in developing proliferative glomerulonephritis.
Collapse
Affiliation(s)
- Chien-An Chen
- Department of Nephrology, Tainan Sinlau Hospital, Tainan, 701, Taiwan; Department of Health Care Administration, Chang Jung Christian University, Tainan, 711, Taiwan.
| | - Jer-Ming Chang
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Yu-Lin Yang
- Graduate Institute of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, 703, Taiwan
| | - Eddy-Essen Chang
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hung-Chun Chen
- Department of Nephrology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
20
|
Sung SSJ, Fu SM. Interactions among glomerulus infiltrating macrophages and intrinsic cells via cytokines in chronic lupus glomerulonephritis. J Autoimmun 2019; 106:102331. [PMID: 31495649 DOI: 10.1016/j.jaut.2019.102331] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Inflammation plays a key role in the pathogenesis of lupus nephritis (LN) and inflammatory cytokines within the glomeruli are critical in this process. However, little information is available for the identities of the cell types that are primarily responsible for the production and function of the various cytokines. We have devised a novel method to visualize cytokine signals in the kidney by confocal microscopy and found that cytokine production within the glomerulus is cell type-specific and under translational control. In the lupus-prone NZM2328 mice with chronic glomerulonephritis, IL-6, IL-1β, and TNF-α in the glomerulus were produced predominantly by mesangial cells, podocytes, and glomerulus-infiltrating blood-derived macrophages, respectively. Microarray and RNASeq analyses showed that these cells expressed the receptors for these cytokines. Together the 3 cell types form a cytokine circuit in amplifying cytokine responses in LN. The intrinsic cells and infiltrating macrophages also produced other cytokines including M-CSF, SCF, and IL-34 that constituted within the enclosed glomerular space the soluble effector milieu which may mediate cellular damage and proliferation, and cytokine transcriptional and translation regulation. IL-10 and IL-1β were translationally regulated in the glomeruli in the intact kidney in a cell type-specific manner. The production of these 2 cytokines by infiltrating macrophages was undetectable in a visualization system for in situ protein accumulation despite high mRNA expression levels. However, these macrophages in isolated glomeruli which are released from Bowman's capsules produced large amounts of IL-10 and IL-1β. These data reveal the complexity of cytokine regulation, production, and function in the glomerulus and provide a model in which cytokine blocking may be beneficial in LN treatment.
Collapse
Affiliation(s)
- Sun-Sang J Sung
- Center for Immunity, Inflammation, and Regenerative Medicine, Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Shu Man Fu
- Center for Immunity, Inflammation, and Regenerative Medicine, Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
21
|
Bilsborrow JB, Doherty E, Tilstam PV, Bucala R. Macrophage migration inhibitory factor (MIF) as a therapeutic target for rheumatoid arthritis and systemic lupus erythematosus. Expert Opin Ther Targets 2019; 23:733-744. [PMID: 31414920 DOI: 10.1080/14728222.2019.1656718] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction. Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine with upstream regulatory roles in innate and adaptive immunity and is implicated in the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Several classes of MIF inhibitors such as small molecule inhibitors and peptide inhibitors are in clinical development. Areas covered. The role of MIF in the pathogenesis of RA and SLE is examined; the authors review the structure, physiology and signaling characteristics of MIF and the related cytokine D-DT/MIF-2. The preclinical and clinical trial data for MIF inhibitors are also reviewed; information was retrieved from PubMed and ClinicalTrials.gov using the keywords MIF, D-DT/MIF-2, CD74, CD44, CXCR2, CXCR4, Jab-1, rheumatoid arthritis, systemic lupus erythematosus, MIF inhibitor, small molecule, anti-MIF, anti-CD74, and peptide inhibitor. Expert opinion. Studies in mice and in humans demonstrate the therapeutic potential of MIF inhibition for RA and SLE. MIF- directed approaches could be particularly efficacious in patients with high expression MIF genetic polymorphisms. In patients with RA and SLE and high expression MIF alleles, targeted MIF inhibition could be a precision medicine approach to treatment. Anti-MIF pharmacotherapies could also be steroid-sparing in patients with chronic glucocorticoid dependence or refractory autoimmune disease.
Collapse
Affiliation(s)
- Joshua B Bilsborrow
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Edward Doherty
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Pathricia V Tilstam
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
22
|
Hao J, Lv T, Xu L, Ran M, Wu K. Macrophage migration inhibitory factor is involved in antineutrophil cytoplasmic antibody-mediated activation of C5a-primed neutrophils. BMC Immunol 2019; 20:22. [PMID: 31248381 PMCID: PMC6598351 DOI: 10.1186/s12865-019-0306-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/24/2019] [Indexed: 11/23/2022] Open
Abstract
Background C5a is important for antineutrophil cytoplasmic antibody (ANCA)-mediated activation of neutrophils. The present study aimed to assess the role of macrophage migration inhibitory factor (MIF) in ANCA-mediated activation of C5a-primed neutrophils. The effects of MIF on ANCA-mediated neutrophil respiratory burst and degranulation were determined. In addition, the effect of a MIF antagonist on the activation of C5a-primed neutrophils was assessed. Results MIF treatment resulted in increased membrane proteinase-3 (mPR3) expression on neutrophils and enhanced myeloperoxidase (MPO) amounts in neutrophil culture supernatants. The concentration of MIF was significantly higher in the neutrophils supernatant primed with C5a (negative control: 14.2 ± 1.16 ng/ml; C5a: 45.8 ± 2.8 ng/ml, P < 0.001 vs. negative control; C5a + IgG: 44.8 ± 1.93 ng/ml, P < 0.001 vs. negative control; C5a + MPO-ANCA: 73.0 ± 5.5 ng/ml, P < 0.001 vs. C5a; and C5a + PR3-ANCA: 69.4 ± 5.35 ng/ml, P < 0.001 vs. C5a). MIF primed neutrophils to undergo respiratory burst and degranulation in response to ANCA. Indeed, mean fluorescence intensity (a measure of respiratory burst) was significantly higher in MIF-primed neutrophils activated with MPO-ANCA-positive IgG or PR3-ANCA-positive IgG compared with non-primed neutrophils. Meanwhile, a MIF antagonist reduced oxygen radical production in C5a-primed neutrophils treated with patient-derived ANCA-positive IgG. Conclusions MIF can prime neutrophils to undergo ANCA-mediated respiratory burst and degranulation. Blocking MIF resulted in reduced ANCA-mediated activation of C5a-primed neutrophils. These findings indicated that the interaction between MIF and C5a may contribute to ANCA-mediated neutrophil activation.
Collapse
Affiliation(s)
- Jian Hao
- Renal Division, Department of Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050, Inner Mongolia, China.
| | - Tiegang Lv
- Renal Division, Department of Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050, Inner Mongolia, China
| | - Liping Xu
- Renal Division, Department of Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050, Inner Mongolia, China
| | - Mao Ran
- Renal Division, Department of Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050, Inner Mongolia, China
| | - Kaili Wu
- Renal Division, Department of Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Huhehot, 010050, Inner Mongolia, China
| |
Collapse
|
23
|
Kang I, Bucala R. The immunobiology of MIF: function, genetics and prospects for precision medicine. Nat Rev Rheumatol 2019; 15:427-437. [DOI: 10.1038/s41584-019-0238-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
|
24
|
Harris J, VanPatten S, Deen NS, Al-Abed Y, Morand EF. Rediscovering MIF: New Tricks for an Old Cytokine. Trends Immunol 2019; 40:447-462. [DOI: 10.1016/j.it.2019.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/14/2022]
|
25
|
Zheng J, Guo R, Tang Y, Fu Q, Chen J, Wu L, Leng L, Bucala R, Song Y, Lu L. miR-152 Attenuates the Severity of Lupus Nephritis Through the Downregulation of Macrophage Migration Inhibitory Factor (MIF)-Induced Expression of COL1A1. Front Immunol 2019; 10:158. [PMID: 30787934 PMCID: PMC6372555 DOI: 10.3389/fimmu.2019.00158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/17/2019] [Indexed: 12/24/2022] Open
Abstract
Background: The role of miR-152 in lupus nephritis has not been elucidated. The aim of this study was to investigate the role of miR-152 in the pathogenesis of lupus nephritis (LN). Methods: miR-152 expression was detected using RT-PCR in LN tissue and normal controls. The miR-152 expression was compared with clinical parameters such as 24 h urine protein excretion level, serum creatinine, and serum complement level and SLEDAI score. The function of miR-152 was examined using human renal proximal tubular epithelial cells (HRPTE). miR-152 mimics and inhibitors were transfected to HRPTEs to ascertain the effects of miR-152. Results: miR-152 expression was downregulated in LN tissue. There was an inverse correlation between miR-152 expression in LN tissue and clinical parameters like 24 h urine protein excretion levels and serum creatinine, but not serum complement levels or SLEDAI. Further analysis showed that macrophage migration inhibitory factor (MIF) was a direct target of miR-152. Downregulation of MIF through complementary binding of miR-152 inhibited the renal expression of COL1A1. Conclusion: miR-152 expression was tapered in LN tissue and miR-152 expression was inversely correlated with chronicity index (CI), serum creatinine and severity of proteinuria. miR-152 may attenuate the severity of LN through the downregulation of MIF-induced expression of COL1A1. These findings suggest that miR-152 may be a potential target for the treatment of LN.
Collapse
Affiliation(s)
- Jiayi Zheng
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruru Guo
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanjia Tang
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong Fu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingling Wu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Yang Song
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjing Lu
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 626] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
27
|
Gow DJ, Jackson H, Forsythe P, Gow AG, Mellanby RJ, Hume DA, Nuttall T. Measurement of serum macrophage migration inhibitory factor (MIF) and correlation with severity and pruritus scores in client owned dogs with atopic dermatitis. Vet Dermatol 2019; 30:115. [PMID: 30672038 DOI: 10.1111/vde.12721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a common inflammatory skin disease of dogs. Macrophage migration inhibitory factor (MIF) initiates pro-inflammatory cytokine release in human AD and serum concentrations are correlated with disease severity. HYPOTHESIS Canine serum MIF concentrations are increased in dogs with AD and correlate with clinical lesion and pruritus scores. ANIMALS Client owned dogs (n = 49) diagnosed with AD and 17 healthy, unaffected control dogs were used for the study. METHODS AND MATERIALS A commercially available MIF ELISA was optimized for the dog and serum from clinical cases used. Information regarding treatment, Canine Atopic Dermatitis Extent and Severity Index, (CADESI-4) and pruritus Visual Analog Scale (pVAS) were recorded for each dog at the time of serum collection. RESULTS Dogs with AD which had not received steroid therapy and those treated with oclacitinib had significantly elevated serum MIF concentrations compared to controls. Concentrations of MIF were not significantly different in AD dogs receiving steroids compared to controls. There was no significant correlation between MIF concentrations and clinical scores (CADESI-4 or pVAS). CONCLUSIONS AND CLINICAL IMPORTANCE Serum MIF concentrations are increased in dogs with AD and MIF might be a target for therapy.
Collapse
Affiliation(s)
- Debbie J Gow
- R(D)SVS and The Roslin Institute, Hospital for Small Animals, The University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Hilary Jackson
- The Dermatology Referral Service Ltd, 528 Paisley Road West, Glasgow, G51 1RN, Scotland, UK
| | - Peter Forsythe
- The Dermatology Referral Service Ltd, 528 Paisley Road West, Glasgow, G51 1RN, Scotland, UK
| | - Adam G Gow
- R(D)SVS and The Roslin Institute, Hospital for Small Animals, The University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Richard J Mellanby
- R(D)SVS and The Roslin Institute, Hospital for Small Animals, The University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - David A Hume
- R(D)SVS and The Roslin Institute, Hospital for Small Animals, The University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
- Mater Research Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tim Nuttall
- R(D)SVS and The Roslin Institute, Hospital for Small Animals, The University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| |
Collapse
|
28
|
Shin MS, Kang Y, Wahl ER, Park HJ, Lazova R, Leng L, Mamula M, Krishnaswamy S, Bucala R, Kang I. Macrophage Migration Inhibitory Factor Regulates U1 Small Nuclear RNP Immune Complex-Mediated Activation of the NLRP3 Inflammasome. Arthritis Rheumatol 2018; 71:109-120. [PMID: 30009530 DOI: 10.1002/art.40672] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/12/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE High-expression alleles of macrophage migration inhibitory factor (MIF) are linked genetically to the severity of systemic lupus erythematosus (SLE). The U1 small nuclear RNP (snRNP) immune complex containing U1 snRNP and anti-U1 snRNP antibodies, which are found in patients with SLE, activates the NLRP3 inflammasome, comprising NLRP3, ASC, and procaspase 1, in human monocytes, leading to the production of interleukin-1β (IL-1β). This study was undertaken to investigate the role of the snRNP immune complex in up-regulating the expression of MIF and its interface with the NLRP3 inflammasome. METHODS MIF, IL-1β, NLRP3, caspase 1, ASC, and MIF receptors were analyzed by enzyme-linked immunosorbent assay, Western blotting, quantitative polymerase chain reaction, and cytometry by time-of-flight mass spectrometry (CytoF) in human monocytes incubated with or without the snRNP immune complex. MIF pathway responses were probed with the novel small molecule antagonist MIF098. RESULTS The snRNP immune complex induced the production of MIF and IL-1β from human monocytes. High-dimensional, single-cell CytoF analysis established that MIF regulates activation of the NLRP3 inflammasome, including findings of a quantitative relationship between MIF and its receptors and IL-1β levels in the monocytes. MIF098, which blocks MIF binding to its cognate receptor, suppressed the production of IL-1β, the up-regulation of NLRP3, which is a rate-limiting step in NLRP3 inflammasome activation, and the activation of caspase 1 in snRNP immune complex-stimulated human monocytes. CONCLUSION The U1 snRNP immune complex is a specific stimulus of MIF production in human monocytes, with MIF having an upstream role in defining the inflammatory characteristics of activated monocytes by regulating NLRP3 inflammasome activation and downstream IL-1β production. These findings provide mechanistic insight and a therapeutic rationale for targeting MIF in subgroups of lupus patients, such as those classified as high genotypic MIF expressers or those with anti-snRNP antibodies.
Collapse
Affiliation(s)
- Min Sun Shin
- Yale University School of Medicine, New Haven, Connecticut
| | - Youna Kang
- Yale University School of Medicine, New Haven, Connecticut
| | - Elizabeth R Wahl
- Yale University School of Medicine, New Haven, Connecticut, and University of Washington, Seattle
| | - Hong-Jai Park
- Yale University School of Medicine, New Haven, Connecticut
| | - Rossitza Lazova
- Yale University School of Medicine, New Haven, Connecticut, and California Skin Institute, San Jose
| | - Lin Leng
- Yale University School of Medicine, New Haven, Connecticut
| | - Mark Mamula
- Yale University School of Medicine, New Haven, Connecticut
| | | | - Richard Bucala
- Yale University School of Medicine, New Haven, Connecticut
| | - Insoo Kang
- Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
29
|
L'Imperio V, Smith A, Ajello E, Piga I, Stella M, Denti V, Tettamanti S, Sinico RA, Pieruzzi F, Garozzo M, Vischini G, Nebuloni M, Pagni F, Magni F. MALDI-MSI Pilot Study Highlights Glomerular Deposits of Macrophage Migration Inhibitory Factor as a Possible Indicator of Response to Therapy in Membranous Nephropathy. Proteomics Clin Appl 2018; 13:e1800019. [PMID: 30358918 DOI: 10.1002/prca.201800019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/07/2018] [Indexed: 11/12/2022]
Abstract
PURPOSE Membranous nephropathy (MN) is the most frequent cause of nephrotic syndrome in adults and the disease course is characterized by the "rule of third", with one-third of patients experiencing complete remission and the remaining experiencing relapses or progression of the disease. Additionally, the therapeutic approach is not standardized, leading to further heterogeneity in terms of response and outcome. EXPERIMENTAL DESIGN In this pilot study, MALDI-MSI analysis is performed on renal biopsies (n = 13) obtained from two homogeneous groups of patients, which differentially responded to the immunosuppressive treatments (Ponticelli regimen). RESULTS A signal at m/z 1303 displays the greatest discriminatory power when comparing the two groups and is observed to be of higher intensity in the glomeruli of the non-responding patients. The corresponding tryptic peptide is identified as macrophage migration inhibitory factor (MIF). CONCLUSIONS AND CLINICAL RELEVANCE Despite much effort being made in recent years to understand the pathogenesis of MN, a biomarker able to predict the outcome of these patients following therapeutic treatment is still lacking. Here, a protein (MIF), verified by immunohistochemistry, that can differentiate between these MN patients and could be a valuable starting point for a further study focused on verifying its predictive role in therapy response is highlighted.
Collapse
Affiliation(s)
- Vincenzo L'Imperio
- Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Elena Ajello
- Department of Medicine and Surgery, Nephrology Unit, University of Milano-Bicocca, Monza, Italy
| | - Isabella Piga
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Stella
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Silvia Tettamanti
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Renato Alberto Sinico
- Department of Medicine and Surgery, Nephrology Unit, University of Milano-Bicocca, Monza, Italy
| | - Federico Pieruzzi
- Department of Medicine and Surgery, Nephrology Unit, University of Milano-Bicocca, Monza, Italy
| | - Maurizio Garozzo
- Department of Nephrology, Santa Marta e Santa Venera Hospital, Acireale, Italy
| | - Gisella Vischini
- Department of Nephrology, Ospedale Agostino Gemelli, Rome, Italy
| | - Manuela Nebuloni
- Research Center for Renal Immunopathology, University of Milan, Milan, Italy.,Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy.,Research Center for Renal Immunopathology, University of Milan, Milan, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| |
Collapse
|
30
|
Vincent FB, Slavin L, Hoi AY, Kitching AR, Mackay F, Harris J, Kandane-Rathnayake R, Morand EF. Analysis of urinary macrophage migration inhibitory factor in systemic lupus erythematosus. Lupus Sci Med 2018; 5:e000277. [PMID: 30397495 PMCID: PMC6203042 DOI: 10.1136/lupus-2018-000277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023]
Abstract
Objective To characterise the clinical relevance of urinary macrophage migration inhibitory factor (uMIF) concentrations in patients with systemic lupus erythematosus (SLE). Methods MIF, adjusted for urine creatinine, was quantified by ELISA in urine samples from 64 prospectively recruited patients with SLE. Serum MIF and urinary monocyte chemoattractant protein 1 (uMCP-1) were quantified by ELISA in a subset of patients (n = 39). Disease activity was assessed using the SLE Disease Activity Index-2000 (SLEDAI-2K) score. Results uMIF was detectable in all patients with SLE. uMIF was positively correlated with overall SLEDAI-2K, was significantly higher in patients with SLE with high disease activity (SLEDAI-2K≥10) compared with those with inactive disease (SLEDAI-2K<4), and this association remained significant after adjusting for ethnicity, flare and use of immunosuppressants. uMIF was also significantly higher in SLE patients with flare of disease, although not confirmed in multivariable analysis. No significant differences in uMIF levels were observed according to the presence of renal disease activity, as assessed by renal SLEDAI-2K or biopsy-confirmed lupus nephritis. In contrast, uMCP-1 was significantly higher in SLE patients with active renal disease. uMIF expression was not associated with irreversible organ damage accrual or glucocorticoid use. Conclusions These data suggest uMIF as a potential overall but not renal-specific SLE biomarker, whereas uMCP-1 is a renal-specific SLE biomarker.
Collapse
Affiliation(s)
- Fabien B Vincent
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Laura Slavin
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Alberta Y Hoi
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Arthur Richard Kitching
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Fabienne Mackay
- Department of Microbiology and Immunology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - James Harris
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Rangi Kandane-Rathnayake
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
Höllriegl W, Bauer A, Baumgartner B, Dietrich B, Douillard P, Kerschbaumer RJ, Höbarth G, McKee JS, Schinagl A, Tam FWK, Thiele M, Weber A, Wolfsegger M, Turecek M, Muchitsch EM, Scheiflinger F, Glantschnig H. Pharmacokinetics, disease-modifying activity, and safety of an experimental therapeutic targeting an immunological isoform of macrophage migration inhibitory factor, in rat glomerulonephritis. Eur J Pharmacol 2018; 820:206-216. [PMID: 29274331 DOI: 10.1016/j.ejphar.2017.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
New therapeutic agents are needed to overcome the toxicity and suboptimal efficacy observed in current treatment of glomerulonephritis (GN). BaxB01 is a fully human monoclonal antibody targeting a disease-related immunologically distinct isoform of Macrophage migration Inhibitory Factor (MIF), designated oxidized MIF (oxMIF) and locally expressed in inflammatory conditions. We report the pharmacokinetic profile of BaxB01, and its dose and exposure-related disease-modifying activity in experimentally induced rat GN. BaxB01 bound to rat oxMIF with high affinity and reduced rat macrophage migration in vitro. After intravenous administration in rats, BaxB01 demonstrated favorable pharmacokinetics, with a half-life of up to nine days. Disease modification was dose-related (≥ 10mg/kg) as demonstrated by significantly reduced proteinuria and diminished histopathological glomerular crescent formation. Importantly, a single dose was sufficient to establish an exposure-related, anti-inflammatory milieu via amelioration of glomerular cellular inflammation. Pharmacodynamic modeling corroborated these findings, consistently predicting plasma exposures that were effective in attenuating both anti-inflammatory activity and reducing loss of kidney function. This pharmacologic benefit on glomerular function and structure was sustained during established disease, while correlation analyses confirmed a link between the antibody's anti-inflammatory activity and reduced crescent formation in individual rats. Finally, safety assessment in rats showed that the experimental therapeutic was well tolerated without signs of systemic toxicity or negative impact on kidney function. These data define therapeutically relevant exposures correlated with mechanism-based activity in GN, while toxicological evaluation suggests a large therapeutic index and provides evidence for achieving safe and effective exposure to a MIF isoform-directed therapeutic in nephritis-associated disease.
Collapse
Affiliation(s)
- Werner Höllriegl
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Alexander Bauer
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Bernhard Baumgartner
- Research & Development, Baxter Healthcare Corporation, One Baxter Parkway, Deerfield, IL 60015, United States
| | - Barbara Dietrich
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Patrice Douillard
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | | | - Gerald Höbarth
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Jeffrey S McKee
- Research & Development, Baxter Healthcare Corporation, One Baxter Parkway, Deerfield, IL 60015, United States
| | - Alexander Schinagl
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Frederick W K Tam
- Imperial College Renal and Transplant Centre, Renal and Vascular Inflammation Section, Department of Medicine, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Michael Thiele
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Alfred Weber
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Martin Wolfsegger
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Marietta Turecek
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | - Eva-Maria Muchitsch
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria
| | | | - Helmut Glantschnig
- Research & Nonclinical Development, Shire, Industriestrasse 67, A-1220 Vienna, Austria.
| |
Collapse
|
32
|
Xu Q, Cao S, Rajapakse S, Matsubara JA. Understanding AMD by analogy: systematic review of lipid-related common pathogenic mechanisms in AMD, AD, AS and GN. Lipids Health Dis 2018; 17:3. [PMID: 29301530 PMCID: PMC5755337 DOI: 10.1186/s12944-017-0647-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/17/2017] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Age-related macular degeneration (AMD) is one of the leading causes of blindness among the elderly. Due to its complex etiology, current treatments have been insufficient. Previous studies reveal three systems closely involved in AMD pathogenesis: lipid metabolism, oxidation and inflammation. These systems are also involved in Alzheimer's disease, atherosclerosis and glomerulonephritis. Understanding commonalities of these four diseases may provide insight into AMD etiology. OBJECTIVES To understand AMD pathogenesis by analogy and suggest ideas for future research, this study summarizes main commonalities in disease pathogenesis of AMD, Alzheimer's disease, atherosclerosis and glomerulonephritis. METHODS Articles were identified through PubMed, Ovid Medline and Google Scholar. We summarized the common findings and synthesized critical differences. RESULTS Oxidation, lipid deposition, complement activation, and macrophage recruitment are involved in all four diseases shown by genetic, molecular, animal and human studies. Shared genetic variations further strengthen their connection. Potential areas for future research are suggested throughout the review. CONCLUSIONS The four diseases share many steps of an overall framework of pathogenesis. Various oxidative sources cause oxidative stress. Oxidized lipids and related molecules accumulate and lead to complement activation, macrophage recruitment and pathology. Investigations that arise under this structure may aid us to better understand AMD pathology.
Collapse
Affiliation(s)
- Qinyuan Xu
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Sijia Cao
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Sanjeeva Rajapakse
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| |
Collapse
|
33
|
Comparison of macrophage migration inhibitory factor and neutrophil gelatinase-associated lipocalin-2 to predict acute kidney injury after liver transplantation: An observational pilot study. PLoS One 2017; 12:e0183162. [PMID: 28813470 PMCID: PMC5557601 DOI: 10.1371/journal.pone.0183162] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 07/31/2017] [Indexed: 01/13/2023] Open
Abstract
Introduction Several biomarkers have been suggested as early predictors of acute kidney injury (AKI) after orthotopic liver transplantation (OLT). Neutrophil gelatinase-associated lipocalin-2 (NGAL) appears to be a promising predictor of AKI after OLT, but the clinical benefit remains to be proven. Recently, systemic macrophage migration inhibitory factor (MIF) has been proposed as early indicator for requirement of renal replacement therapy after OLT. The aim of this prospective, observational pilot study was to compare the predictive values of serum and urinary MIF for severe AKI after OLT to those of serum and urinary NGAL. Methods Concentrations of MIF and NGAL were measured in serum and urine samples collected from patients undergoing OLT. Acute kidney injury was classified according to the KDIGO criteria, with stages 2 and 3 summarized as severe AKI. Areas under the receiver operating curves (AUC) were calculated to assess predictive values of MIF and NGAL for the development of severe AKI. Results Forty-five patients (mean age 55±8 years) were included. Nineteen patients (38%) developed severe AKI within 48 hours after reperfusion. At the end of OLT, serum MIF was predictive of severe AKI (AUC 0.73; 95% confidence intervals, CI 0.55–0.90; P = 0.03), whereas urinary MIF, serum NGAL, and urinary NGAL were not. On the first postoperative day, serum MIF (AUC 0.78; CI 0.62–0.93; P = 0.006), urinary MIF (AUC 0.71; CI 0.53–0.88; P = 0.03), and urinary NGAL (AUC 0.79; CI 0.64–0.93; P = 0.02) were predictive for severe AKI, while serum NGAL was not. Conclusion In the setting of OLT, MIF and NGAL had similar predictive values for the development of severe AKI.
Collapse
|
34
|
Djudjaj S, Martin IV, Buhl EM, Nothofer NJ, Leng L, Piecychna M, Floege J, Bernhagen J, Bucala R, Boor P. Macrophage Migration Inhibitory Factor Limits Renal Inflammation and Fibrosis by Counteracting Tubular Cell Cycle Arrest. J Am Soc Nephrol 2017; 28:3590-3604. [PMID: 28801314 DOI: 10.1681/asn.2017020190] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/03/2017] [Indexed: 01/18/2023] Open
Abstract
Renal fibrosis is a common underlying process of progressive kidney diseases. We investigated the role of macrophage migration inhibitory factor (MIF), a pleiotropic proinflammatory cytokine, in this process. In mice subjected to unilateral ureteral obstruction, genetic deletion or pharmacologic inhibition of MIF aggravated fibrosis and inflammation, whereas treatment with recombinant MIF was beneficial, even in established fibrosis. In two other models of progressive kidney disease, global Mif deletion or MIF inhibition also worsened fibrosis and inflammation and associated with worse kidney function. Renal MIF expression was reduced in tubular cells in fibrotic compared with healthy murine and human kidneys. Bone marrow chimeras showed that Mif expression in bone marrow-derived cells did not affect fibrosis and inflammation after UUO. However, Mif gene deletion restricted to renal tubular epithelial cells aggravated these effects. In LPS-stimulated tubular cell cultures, Mif deletion led to enhanced G2/M cell-cycle arrest and increased expression of the CDK inhibitor 1B (p27Kip1) and of proinflammatory and profibrotic mediators. Furthermore, MIF inhibition reduced tubular cell proliferation in vitro In all three in vivo models, global Mif deletion or MIF inhibition caused similar effects and attenuated the expression of cyclin B1 in tubular cells. Mif deletion also resulted in reduced tubular cell apoptosis after UUO. Recombinant MIF exerted opposing effects on tubular cells in vitro and in vivo Our data identify renal tubular MIF as an endogenous renoprotective factor in progressive kidney diseases, raising the possibility of pharmacologic intervention with MIF pathway agonists, which are in advanced preclinical development.
Collapse
Affiliation(s)
| | | | | | | | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Marta Piecychna
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, Rheinish-Westphalian Technical University, Aachen University, Aachen, Germany.,Department of Vascular Biology, Institute for Stroke and Dementia Research, Munich University Hospital, Ludwig-Maximilians-University, Munich, Germany; and.,German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Peter Boor
- Departments of Pathology and .,Nephrology and Immunology, and
| |
Collapse
|
35
|
Caster DJ, Powell DW, Miralda I, Ward RA, McLeish KR. Re-Examining Neutrophil Participation in GN. J Am Soc Nephrol 2017; 28:2275-2289. [PMID: 28620081 DOI: 10.1681/asn.2016121271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Significant advances in understanding the pathogenesis of GN have occurred in recent decades. Among those advances is the finding that both innate and adaptive immune cells contribute to the development of GN. Neutrophils were recognized as key contributors in early animal models of GN, at a time when the prevailing view considered neutrophils to function as nonspecific effector cells that die quickly after performing antimicrobial functions. However, advances over the past two decades have shown that neutrophil functions are more complex and sophisticated. Specifically, research has revealed that neutrophil survival is regulated by the inflammatory milieu and that neutrophils demonstrate plasticity, mediate microbial killing through previously unrecognized mechanisms, demonstrate transcriptional activity leading to the release of cytokines and chemokines, interact with and regulate cells of the innate and adaptive immune systems, and contribute to the resolution of inflammation. Therefore, neutrophil participation in glomerular diseases deserves re-evaluation. In this review, we describe advances in understanding classic neutrophil functions, review the expanded roles of neutrophils in innate and adaptive immune responses, and summarize current knowledge of neutrophil contributions to GN.
Collapse
Affiliation(s)
- Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, .,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| | - David W Powell
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Irina Miralda
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Richard A Ward
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky.,Nephrology Section, Medicine Service, Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, and
| |
Collapse
|
36
|
Hao J, Lv TG, Wang C, Xu LP, Zhao JR. Macrophage migration inhibitory factor contributes to anti-neutrophil cytoplasmic antibody-induced neutrophils activation. Hum Immunol 2016; 77:1209-1214. [DOI: 10.1016/j.humimm.2016.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 01/03/2023]
|
37
|
Kim KW, Kim HR. Macrophage migration inhibitory factor: a potential therapeutic target for rheumatoid arthritis. Korean J Intern Med 2016; 31:634-42. [PMID: 27169879 PMCID: PMC4939511 DOI: 10.3904/kjim.2016.098] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is originally identified in the culture medium of activated T lymphocytes as a soluble factor that inhibits the random migration of macrophages. MIF is now recognized as a multipotent cytokine involved in the regulation of immune and inf lammatory responses. In rheumatoid arthritis (RA), MIF promotes inf lammatory responses by inducing proinflammatory cytokines and tissue-degrading molecules, promoting the proliferation and survival of synovial fibroblasts, stimulating neutrophil chemotaxis, and regulating angiogenesis and osteoclast differentiation. Expression of MIF in synovial tissue and synovial fluid levels of MIF are elevated in RA patients. Specifically, MIF levels correlate with RA disease activity and high levels are associated with bone erosion. In animal models of RA, the genetic and therapeutic inhibition of MIF has been shown to control inflammation and bone destruction. Based on the role of MIF in RA pathogenesis, small molecular inhibitors targeting it or its receptor pathways could provide a new therapeutic option for RA patients.
Collapse
Affiliation(s)
- Kyoung-Woon Kim
- Convergent Research Consortium for Immunologic Disease, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Hae-Rim Kim
- Division of Rheumatology, Department of Internal Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
- Correspondence to Hae-Rim Kim, M.D. Division of Rheumatology, Department of Internal Medicine, Konkuk University School of Medicine, 120-1 Neungdong-ro, Gwangjin-gu, Seoul 05030, Korea Tel: +82-2-2030-7542 Fax: +82-2-2030-7748 E-mail:
| |
Collapse
|
38
|
Xie J, Yang L, Tian L, Li W, Yang L, Li L. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury. Sci Rep 2016; 6:27665. [PMID: 27273604 PMCID: PMC4897699 DOI: 10.1038/srep27665] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/24/2016] [Indexed: 02/07/2023] Open
Abstract
Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation.
Collapse
Affiliation(s)
- Jieshi Xie
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lei Tian
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| |
Collapse
|
39
|
Inhibition of Macrophage Migration Inhibitory Factor Protects against Inflammation and Matrix Deposition in Kidney Tissues after Injury. Mediators Inflamm 2016; 2016:2174682. [PMID: 27313397 PMCID: PMC4893598 DOI: 10.1155/2016/2174682] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/14/2016] [Accepted: 04/26/2016] [Indexed: 12/14/2022] Open
Abstract
Background. Macrophage migration inhibitory factor (MIF) is an important immunoregulatory cytokine involved in inflammation, which may be one important reason resulting in matrix deposition in renal tissues after injury. However, the underlying mechanisms have not yet been elucidated. Methods and Results. We uncovered a crucial role of MIF in inflammation and collagen deposition in vivo and in vitro. In rats, ureteral obstruction induced tubular injury, matrix accumulation, and inflammatory cell infiltration. Additionally, enhanced MIF levels in the obstructed kidneys were closely related to the increasing numbers of CD68-positive macrophages. These obstruction-induced injuries can be relieved by recanalization, consequently resulting in downregulated expression of MIF and its receptor CD74. Similarly, ischemia reperfusion induced renal injury, and it was accompanied by elevated MIF levels and macrophages infiltration. In cultured tubular epithelial cells (TECs), aristolochic acid (AA) promoted matrix production and increased MIF expression, as well as the release of macrophage-related factors. Inhibition of MIF with an antagonist ISO-1 resulted in the abolishment of these genotypes in AA-treated TECs. Conclusion. MIF plays an important role in macrophage-related inflammation and matrix deposition in kidney tissues following injury. MIF as a specific inhibitor may have therapeutic potential for patients with inflammatory and fibrotic kidney diseases.
Collapse
|
40
|
Mreich E, Chen XM, Zaky A, Pollock CA, Saad S. The role of Krüppel-like factor 4 in transforming growth factor-β-induced inflammatory and fibrotic responses in human proximal tubule cells. Clin Exp Pharmacol Physiol 2016; 42:680-6. [PMID: 25882815 DOI: 10.1111/1440-1681.12405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/30/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
Abstract
Krüppel-like factor 4 (KLF4) is known to mitigate inflammation in several cell types. Using human proximal tubule cells, the present study aimed to investigate the role of KLF4 in regulating transforming growth factor (TGF)-β₁ induced inflammatory and fibrotic responses. Human kidney proximal tubular cells were exposed to high glucose, or TGF-β₁ and KLF4 expressions were determined. Cells were then transfected with empty vector or KLF4 and exposed to 2-ng/mL TGF-β₁ for up to 72 h. Inflammatory proteins (macrophage migration inhibitory factor and monocyte chemoattractant protein-1) and pro-fibrotic proteins (fibronectin and collagen IV) were measured after 72 h by enzyme-linked immunosorbent assay and western blot, respectively. To determine the relevance to in vivo models of chronic kidney disease, KLF4 protein expression in streptozotocin-induced diabetic mice was determined. Krüppel-like factor 4 messenger RNA (mRNA) levels were significantly reduced in high glucose-treated human kidney proximal tubular cells. High glucose increased TGF-β₁ mRNA expression, which significantly increased migration inhibitory factor and monocyte chemoattractant protein-1 protein secretion. Transforming growth factor-β₁ significantly increased fibronectin and collagen IV protein expression. The overexpression of KLF4 significantly reduced TGF-β-mediated increases in migration inhibitory factor and monocyte chemoattractant protein-1 but had no effect on TGF-β-mediated fibronectin and collagen IV mRNA and protein expression. The levels of KLF4 mRNA were significantly reduced in the diabetic kidney, and diabetic animals had a significant reduction in renal tubular expression of KLF4 proteins. This data suggest that KLF4 reduces inflammation induced by TGF-β₁, suggesting a therapeutic role for KLF4 in diabetic nephropathy.
Collapse
Affiliation(s)
- Ellein Mreich
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Xin-Ming Chen
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Amgad Zaky
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Carol A Pollock
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, NSW, Australia
| |
Collapse
|
41
|
Bruchfeld A, Wendt M, Miller EJ. Macrophage Migration Inhibitory Factor in Clinical Kidney Disease. Front Immunol 2016; 7:8. [PMID: 26858715 PMCID: PMC4726817 DOI: 10.3389/fimmu.2016.00008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine implicated in acute and chronic inflammatory conditions, including sepsis, autoimmune disease, atherogenesis, plaque instability, and pulmonary arterial hypertension. MIF in plasma and urine is significantly elevated in patients with acute kidney injury (AKI) and elevated MIF in serum is associated with markers of oxidative stress, endothelial dysfunction, arterial stiffness, and markers of myocardial damage in chronic kidney disease (CKD). Furthermore, MIF seems to be involved in vascular processes and cardiovascular disease associated with CKD, glomerulonephritis, autosomal dominant polycystic kidney disease, and possibly also in progression to renal failure. Moreover, in active anti-neutrophil cytoplasmatic antibody-associated vasculitis, plasma MIF levels have been shown to be significantly elevated as compared with samples from patients in remission. A significant difference in the genotype frequency of high production MIF -173 G/C genotype has been found in end-stage renal disease, compared to controls. Inhibition of MIF in a diabetic nephropathy model ameliorated blood glucose and albuminuria and in a model of adult polycystic kidney disease cyst growth was delayed. Preclinical studies support a potential therapeutic role for MIF in AKI and in a number of CKDs, whereas these data in human disease are still observational. Future interventional studies are needed to delineate the role of MIF as a treatment target in clinical kidney disease.
Collapse
Affiliation(s)
- Annette Bruchfeld
- Department of Renal Medicine, Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Mårten Wendt
- Department of Renal Medicine, Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Edmund J Miller
- Feinstein Institute for Medical Research, Manhasset, NY, USA; Hofstra University School of Medicine, Hempstead, NY, USA
| |
Collapse
|
42
|
O'Reilly C, Doroudian M, Mawhinney L, Donnelly SC. Targeting MIF in Cancer: Therapeutic Strategies, Current Developments, and Future Opportunities. Med Res Rev 2016; 36:440-60. [PMID: 26777977 DOI: 10.1002/med.21385] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/28/2015] [Accepted: 10/26/2015] [Indexed: 12/16/2022]
Abstract
Strong evidence has been presented linking chronic inflammation to the onset and pathogenesis of cancer. The multifunctional pro-inflammatory protein macrophage migration inhibitory factor (MIF) occupies a central role in the inflammatory pathway and has been implicated in the tumorigenesis, angiogenesis, and metastasis of many cancer phenotypes. This review highlights the current state of the art, which presents MIF, and the second member of the MIF structural superfamily, D-DT (MIF2), as significant mediators in the inflammatory-cancer axis. Although the mechanism by which MIF asserts its biological activity has yet to be fully understood, it has become clear in recent years that for certain phenotypes of cancer, MIF represents a valid therapeutic target. Current research efforts have focused on small molecule approaches that target MIF's unique tautomerase active site and neutralization of MIF with anti-MIF antibodies. These approaches have yielded promising results in a number of preclinical murine cancer models and have helped to increase our understanding of MIF biological activity. More recently, MIF's involvement in a number of key protein-protein interactions, such as with CD74 and HSP90, has been highlighted and provides a novel platform for the development of anti-MIF chemotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Ciaran O'Reilly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Mohammad Doroudian
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Leona Mawhinney
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Seamas C Donnelly
- Department of Clinical Medicine, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.,Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
43
|
Lang T, Foote A, Lee JPW, Morand EF, Harris J. MIF: Implications in the Pathoetiology of Systemic Lupus Erythematosus. Front Immunol 2015; 6:577. [PMID: 26617609 PMCID: PMC4641160 DOI: 10.3389/fimmu.2015.00577] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022] Open
Abstract
Macrophage migration Inhibitory factor (MIF) was one of the earliest pro-inflammatory cytokines to be identified. Increasing interest in this cytokine in recent decades has followed the cloning of human MIF and the generation of Mif−/− mice. Deepening understanding of signaling pathways utilized by MIF and putative receptor mechanisms have followed. MIF is distinct from all other cytokines by virtue of its unique induction by and counter regulation of glucocorticoids (GCs). MIF is further differentiated from other cytokines by its structural homology to specific tautomerase and isomerase enzymes and correlative in vitro enzymatic functions. The role of MIF in immune and inflammatory states, including a range of human autoimmune diseases, is now well established, as are the relationships between MIF polymorphisms and a number of inflammatory diseases. Here, we review the known pleiotropic activities of MIF, in addition to novel functions of MIF in processes including autophagy and autophagic cell death. In addition, recent developments in the understanding of the role of MIF in systemic lupus erythematosus (SLE) are reviewed. Finally, we discuss the potential application of anti-MIF strategies to treat human diseases such as SLE, which will require a comprehensive understanding of the unique and complex activities of this ubiquitously expressed cytokine.
Collapse
Affiliation(s)
- Tali Lang
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| | - Andrew Foote
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| | - Jacinta P W Lee
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| | - Eric F Morand
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| | - James Harris
- Lupus Research Group, Monash Centre for Inflammatory Diseases, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre , Clayton, VIC , Australia
| |
Collapse
|
44
|
Cuzzoni E, De Iudicibus S, Franca R, Stocco G, Lucafò M, Pelin M, Favretto D, Pasini A, Montini G, Decorti G. Glucocorticoid pharmacogenetics in pediatric idiopathic nephrotic syndrome. Pharmacogenomics 2015; 16:1631-48. [PMID: 26419298 DOI: 10.2217/pgs.15.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic nephrotic syndrome represents the most common type of primary glomerular disease in children: glucocorticoids (GCs) are the first-line therapy, even if considerable interindividual differences in their efficacy and side effects have been reported. Immunosuppressive and anti-inflammatory effects of these drugs are mainly due to the GC-mediated transcription regulation of pro- and anti-inflammatory genes. This mechanism of action is the result of a complex multistep pathway that involves the glucocorticoid receptor and several other proteins, encoded by polymorphic genes. Aim of this review is to highlight the current knowledge on genetic variants that could affect GC response, particularly focusing on children with idiopathic nephrotic syndrome.
Collapse
Affiliation(s)
- Eva Cuzzoni
- Graduate School in Reproduction & Developmental Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Sara De Iudicibus
- Institute for Maternal & Child Health IRCCS Burlo Garofolo, I-34137 Trieste, Italy
| | - Raffaella Franca
- Institute for Maternal & Child Health IRCCS Burlo Garofolo, I-34137 Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Marianna Lucafò
- Department of Medical, Surgical and Health Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| | - Diego Favretto
- Institute for Maternal & Child Health IRCCS Burlo Garofolo, I-34137 Trieste, Italy
| | - Andrea Pasini
- Nephrology and Dialysis Unit, Department of Pediatrics, Azienda Ospedaliera Universitaria Sant'Orsola-Malpighi, I-40138 Bologna, Italy
| | - Giovanni Montini
- Pediatric Nephrology and Dialysis Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, I-20122 Milano, Italy
| | - Giuliana Decorti
- Department of Life Sciences, University of Trieste, I-34127 Trieste, Italy
| |
Collapse
|
45
|
Zwiech R. Macrophage migration inhibitory factor urinary excretion revisited – MIF a potent predictor of the immunosuppressive treatment outcomes in patients with proliferative primary glomerulonephritis. BMC Immunol 2015; 16:47. [PMID: 26272322 PMCID: PMC4536780 DOI: 10.1186/s12865-015-0112-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is a cytokine that shares many activities with other pro-inflammatory cytokines in primary glomerulonephritis (GN). This study assesses the influence of immunosuppressive treatment on serum and urine MIF in patients with proliferative (PGN) and non-proliferative (NPGN) glomerulonephritis, and evaluates the potential of MIF in predicting outcomes. Methods Eighty-four patients (45 males and 39 females) with primary GN were included. Urinary excretion of MIF (ng/mg of urinary creatinine) was measured both pre- and post-treatment with combined steroids and cyclophosphamide. After a 12-month follow-up, the patients were retrospectively divided into four subgroups: responders of proliferative GN (R-PGN), non-responders of proliferative GN (NR-PGN), responders of non-proliferative GN (R-NPGN) and non-responders of non-proliferative GN (NR-NPGN). Results The median pre-treatment urinary MIF values were higher in PGN than in NPGN (3.6 versus 2.2; ANOVA P = 0.039). The highest pre-treatment urinary excretion of MIF was observed in NR-PGN (median 6.1), which was significantly higher than other subgroups (ANOVA P < 0.05). The treatment significantly reduced MIF urinary excretion only in R-PGN (P < 0.01). In NR-PGN, pre- (5.9 ± 2.9 pg/mgCr) and post-treatment mean MIF excretion (4.9 ± 2.3 pg/mgCr) exceeded the calculated cut off value (3.3 pg/mgCr). Conclusion MIF urinary excretion appears to be a prognostic marker of therapy outcomes only in proliferative glomerulonephritis, in which lower urinary MIF may be linked with good prognosis, whereas a higher MIF urinary excretion value was a marker of unfavorable therapy outcomes. In Non-Responders, urinary MIF measurements may help to reconsider the choice of the immunosuppressive regimen at early stages of the treatment and act as an impulse to search for new therapeutic strategies.
Collapse
Affiliation(s)
- Rafał Zwiech
- Dialysis Department, Barlicki Memorial Teaching Hospital No1, Medical University of Łódź, Kopcińskiego 22, 90-153, Łódź, Poland.
| |
Collapse
|
46
|
Tong X, He J, Liu S, Peng S, Yan Z, Zhang Y, Fan H. Macrophage migration inhibitory factor -173G/C gene polymorphism increases the risk of renal disease: A meta-analysis. Nephrology (Carlton) 2015; 20:68-76. [PMID: 25329590 DOI: 10.1111/nep.12353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Tong
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| | - Jie He
- First Affiliated Hospital of Chengdu Medical College; Chengdu China
| | - Sitong Liu
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| | - Shifeng Peng
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| | - Zhipeng Yan
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| | - Yonggang Zhang
- The Periodical Press of West China Hospital; Sichuan University; Chengdu China
| | - Hong Fan
- West China School of Medicine/West China Hospital; Sichuan University; Chengdu China
| |
Collapse
|
47
|
Konenkov VI, Klimontov VV, Myakina NE, Tyan NV, Fazullina ON, Romanov VV. Increased serum concentrations of inflammatory cytokines in type 2 diabetic patients with chronic kidney disease. TERAPEVT ARKH 2015; 87:45-49. [DOI: 10.17116/terarkh201587645-49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Lerch JK, Puga DA, Bloom O, Popovich PG. Glucocorticoids and macrophage migration inhibitory factor (MIF) are neuroendocrine modulators of inflammation and neuropathic pain after spinal cord injury. Semin Immunol 2014; 26:409-14. [DOI: 10.1016/j.smim.2014.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
|
49
|
Mrowicki J, Przybylowska-Sygut K, Dziki L, Sygut A, Chojnacki J, Dziki A, Majsterek I. The role of polymorphisms of genes CXCL12/CXCR4 and MIF in the risk development IBD the Polish population. Mol Biol Rep 2014; 41:4639-52. [PMID: 24687413 DOI: 10.1007/s11033-014-3335-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 09/14/2013] [Indexed: 01/06/2023]
Abstract
Inflammatory bowel disease (IBD) are characterized recurrent inflammation of gastrointestinal tract. The etiology and pathogenesis this disease is currently unclear, but it has become evident that immune and genetic factors are involved in this process. The aim of this study was to determine whether gene polymorphisms: MIF-173 G/C; CXCL12-801 G/A and CXCR4 C/T exon 2 position of rs2228014 is associated with susceptibility to IBD. A total of 286 patients were examined with IBD, including 152 patients with ulcerative colitis and 134 with Crohn's disease (CD) and 220 healthy subjects were recruited from the Polish population. Genotyping for polymorphisms in CXCL12/CXCR4 and MIF was performed by RFLP-PCR. Statistical significance was found for polymorphisms CXCR4, a receptor gene for CXCL12 genotypes and alleles in CD and for genotype C/T and T allele in ulcerative colitis with respect to control. This confirms the effect of CXCL12 gene. The interplay between CXCL12 and its receptor CXCR4 affects homeostasis and inflammation in the intestinal mucosa. Three-gene analysis in CD confirmed the association of genotype GGGGCT. Statistical analysis of clinical data of patients with ulcerative colitis showed significant differences in the distribution of genotype C/T and T allele for CXCR4 in the left-side colitis. Having CXCR4/CXCL12 chemokine axis polymorphisms may predispose to the development of IBD. Activation can also be their defensive reaction to the long-lasting inflammation.
Collapse
Affiliation(s)
- Jerzy Mrowicki
- Department of Chemistry and Clinical Biochemistry, Medical University of Lodz, Hallera 1, 90-647, Lodz, Poland,
| | | | | | | | | | | | | |
Collapse
|
50
|
Dual effect of a polymorphism in the macrophage migration inhibitory factor gene is associated with new-onset Graves disease in a Taiwanese Chinese population. PLoS One 2014; 9:e92849. [PMID: 24667663 PMCID: PMC3965479 DOI: 10.1371/journal.pone.0092849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/26/2014] [Indexed: 12/02/2022] Open
Abstract
Graves disease (GD) is an autoimmune disease. Macrophage migration inhibitory factor (MIF) is a potent cytokine that plays an important role in the regulation of immune responses. Two polymorphisms in the promoter region of MIF, rs5844572 and rs755622, are known to affect MIF expression. The purpose of this study was to investigate the relationship between polymorphisms in the MIF gene promoter and the severity of GD. A total of 677 individuals, including 481 GD patients and 196 ethnically matched healthy controls, were genotyped to identify differences in the distribution of the MIF polymorphisms rs5844572 and rs755622. Although there were no significant differences in the allele or genotype distributions among patients with different grades of goiter in GD and healthy controls, the distribution of the C allele, especially C/C genotype, of the rs755622 single nucleotide polymorphism (SNP) in MIF, may be as a risk factor for goiter initiation whereas a protector against development of severe goiter in patients with untreated GD (p<0.05). A goiter-developmental model incorporating genetic (MIF SNP rs755622) and environmental risk factors (gender, radioiodine treatment, thyroid gland surgery and vitiligo) significantly increased the prediction accuracy. Further studies are required to address the role of MIF polymorphisms, as well as their association with other candidate genes, in GD.
Collapse
|