1
|
Kleibert M, Zygmunciak P, Łakomska K, Mila K, Zgliczyński W, Mrozikiewicz-Rakowska B. Insight into the Molecular Mechanism of Diabetic Kidney Disease and the Role of Metformin in Its Pathogenesis. Int J Mol Sci 2023; 24:13038. [PMID: 37685845 PMCID: PMC10487922 DOI: 10.3390/ijms241713038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of death among patients diagnosed with diabetes mellitus. Despite the growing knowledge about the pathogenesis of DKD, we still do not have effective direct pharmacotherapy. Accurate blood sugar control is essential in slowing down DKD. It seems that metformin has a positive impact on kidneys and this effect is not only mediated by its hypoglycemic action, but also by direct molecular regulation of pathways involved in DKD. The molecular mechanism of DKD is complex and we can distinguish polyol, hexosamine, PKC, and AGE pathways which play key roles in the development and progression of this disease. Each of these pathways is overactivated in a hyperglycemic environment and it seems that most of them may be regulated by metformin. In this article, we summarize the knowledge about DKD pathogenesis and the potential mechanism of the nephroprotective effect of metformin. Additionally, we describe the impact of metformin on glomerular endothelial cells and podocytes, which are harmed in DKD.
Collapse
Affiliation(s)
- Marcin Kleibert
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Przemysław Zygmunciak
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Klaudia Łakomska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Klaudia Mila
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland; (P.Z.); (K.M.)
| | - Wojciech Zgliczyński
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| | - Beata Mrozikiewicz-Rakowska
- Department of Endocrinology, Centre of Postgraduate Medical Education, Bielanski Hospital, 01-809 Warsaw, Poland;
| |
Collapse
|
2
|
Ganapathy P, Devanatha Desikan Sheshadri V, Sarkar R, Jones S, Gunasekaran K, Feysia TO, Umapathy D, Basha S. Vascular Endothelial Growth Factor Single Nucleotide Polymorphism +405 G/C (rs2010963) is associated with Levels, Infection Severity, and Amputation among South Indian Diabetic Foot Ulcer Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2059426. [PMID: 37089713 PMCID: PMC10118891 DOI: 10.1155/2023/2059426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/23/2023] [Indexed: 04/25/2023]
Abstract
Background The regulation of vascular endothelial growth factor (VEGF) by genetic factors in T2DM and DFU still requires thorough investigation. Hence, the present study aimed to investigate the association of VEGF +405 G/C in DFU subjects and correlate it with its circulatory levels, infection severity, and amputation rate. Materials and Methods This study registered a total of 754 participants of which group I: healthy controls (n = 297), group II: T2DM subjects (n = 242), and group III: DFU subjects (n = 215). Genotyping and levels of rs2010963 were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and ELISA, respectively. Results Results of the current study showed a clear decline in circulatory VEGF-A levels in DFU subjects. VEGF-A was decreased in DFU subjects with the mutant "CC" genotype. The mutant "CC" of VEGF +405G/C was also found to be more susceptible to ulcer grade (III and IV) and major amputations. Conclusion VEGF +405G/C SNP is associated with levels, infection severity, and amputation amongst South Indian DFU patients.
Collapse
Affiliation(s)
- Priyanka Ganapathy
- Department of Physiology, Sree Balaji Medical College and Hospital, Chennai, Tamilnadu, India
| | - Vidya Devanatha Desikan Sheshadri
- Department of Pharmacology and Toxicology, College of Pharmacy (Women's Campus), Prince Sattam Bin Abdul Aziz University, Al-Kharj, Saudi Arabia
| | - Rajesh Sarkar
- Department of Medical Microbiology, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, Chennai, Tamilnadu, India
| | - Krishnamoorthy Gunasekaran
- Department of Medical Biochemistry, College of Medical and Health Sciences, Dambi Dollo University, Oromia Region, Ethiopia
| | - Teka Obsa Feysia
- Department of Medical Biochemistry, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| | - Dhamodharan Umapathy
- Department of Biotechnology, D.K.M. College for Women, Vellore, Tamil Nadu, India
- Department of Research, APRAISE, Adhiparasakthi Dental College and Hospital, Melmaruvathur, Tamilnadu, India
| | - Saleem Basha
- Department of Medical Biochemistry, College of Health and Medical Sciences, Haramaya University, Dire Dawa, Ethiopia
| |
Collapse
|
3
|
Laursen JC, Rasmussen IKB, Zobel EH, Hasbak P, Holmvang L, Hansen CS, von Scholten BJ, Frimodt-Møller M, Rossing P, Hansen TW, Kjaer A, Ripa RS. In vivo molecular imaging of cardiac angiogenesis in persons with and without type 2 diabetes: A cross-sectional 68 Ga-RGD-PET study. Diabet Med 2023; 40:e14960. [PMID: 36135822 DOI: 10.1111/dme.14960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
AIMS To assess cardiac angiogenesis in type 2 diabetes by positron emission tomography (PET) tracer [68 Ga]Ga-NODAGA-E[(cRGDyK)]2 (68 Ga-RGD) imaging. METHODS Cross-sectional study including 20 persons with type 2 diabetes and 10 non-diabetic controls (CONs). Primary prespecified outcome was difference in cardiac angiogenesis (cardiac 68 Ga-RGD mean target-to-background ratio [TBRmean ]) between type 2 diabetes and CONs. Secondary outcome was to investigate associations between cardiac angiogenesis and kidney function and other risk factors. RESULTS Participants with type 2 diabetes had a mean ± SD age of 61 ± 9 years, 30% were women, median (IQR) diabetes duration of 11 (6-19) years and 3 (15%) had a history of cardiovascular disease. The CONs had comparable age and sex distribution to the participants with type 2 diabetes, and none had a history of coronary artery disease. Myocardial flow reserve was lower in type 2 diabetes (2.7 ± 0.6) compared with CONs (3.4 ± 1.2) ( p = 0.03) and coronary artery calcium score was higher (562 [142-905] vs. 1 [0-150] p = 0.04). Cardiac 68 Ga-RGD TBRmean was similar in participants with type 2 diabetes (0.89 ± 0.09) and CONs (0.89 ± 0.10) ( p = 0.92). Cardiac 68 Ga-RGD TBRmean was not associated with estimated glomerular filtration rate, urine albumin creatinine ratio, cardiovascular disease, coronary artery calcium score or baroreflex sensitivity, neither in pooled analyses nor in type 2 diabetes. CONCLUSIONS Cardiac angiogenesis, evaluated with 68 Ga-RGD PET, was similar in type 2 diabetes and CONs. Cardiac angiogenesis was not associated with kidney function or other risk markers in pooled analyses or in analyses restricted to type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Emilie Hein Zobel
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Novo Nordisk, Bagsvaerd, Denmark
| | - Philip Hasbak
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | | | - Bernt Johan von Scholten
- Department of Clinical Physiology, Nuclear Medicine and PET & Cluster for Molecular Imaging, Copenhagen University Hospital - Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
4
|
Cholecalciferol supplementation and angiogenic markers in chronic kidney disease. PLoS One 2022; 17:e0268946. [PMID: 35657784 PMCID: PMC9165782 DOI: 10.1371/journal.pone.0268946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Vitamin D plays an important role in proliferation and differentiation of cells and deficiency of vitamin D disturbs angiogenic balance. Previous studies in animal models have reported an association between serum levels of vitamin D and balance between pro- and anti-angiogenic factors. There is insufficient evidence about the effect of vitamin D on mediators of angiogenesis in patients with CKD. We investigated the effect of cholecalciferol supplementation on serum levels of angiogenic markers in non-diabetic patients with CKD stage 3–4. In this secondary analysis on stored samples of our previously published randomized, double-blind, placebo-controlled trial, stable patients of either sex, aged 18–70 years, with non-diabetic CKD stage 3–4 and vitamin D deficiency (serum 25-hydroxyvitamin D ≤20 ng/ml) were randomized to receive either two directly observed oral doses of cholecalciferol (300,000 IU) or matching placebo at baseline and 8 weeks. The primary outcome was change in brachial artery flow-mediated dilatation at 16 weeks. Changes in levels of serum angiogenesis markers (angiopoietin-1, angiopoietin-2, VEGF-A, VEGEF-R, and Tie-2) between groups over 16 weeks were compared. A total 120 patients were enrolled. Supplementation with cholecalciferol led to significant improvement in FMD. Serum 25(OH)D levels were similar in both groups at baseline (13.21±4.78 ng/ml and 13.40±4.42 ng/ml; p = 0.888). At 16 weeks, the serum 25(OH)D levels increased in the cholecalciferol group but not in the placebo group (between-group difference in mean change:23.40 ng/ml; 95% CI, 19.76 to 27.06; p<0.001). Serum levels of angiogenic markers were similar at baseline. At 16 weeks, angiopoietin-2 level decreased in cholecalciferol group (mean difference:-0.73 ng/ml, 95%CI, -1.25 to -0.20, p = 0.002) but not in placebo group (mean difference -0.46 ng/ml, 95%CI, -1.09 to 0.17, p = 0.154), however there was no between-group difference at 16 weeks (between-group difference in mean change: -0.27 ng/ml, 95%CI, -1.09 to 0.55, p = 0.624). Serum angiopoietin-1 level increased [mean change: 5.63 (0.51 to 10.75), p = 0.018] and VEGF-R level decreased [mean change: -87.16 (-131.89 to -42.44), p<0.001] in placebo group but did not show any change in cholecalciferol group. Our data shows the changes in Ang-1, Ang-2 and Ang-1/Ang-2 ratio after high dose oral cholecalciferol supplementation in patients with non-diabetic G3-4 CKD. The data suggests changes in circulating levels of angiogenic markers which needs to be confirmed through an adequately powered study.
Collapse
|
5
|
Gil CL, Hooker E, Larrivée B. Diabetic Kidney Disease, Endothelial Damage, and Podocyte-Endothelial Crosstalk. Kidney Med 2021; 3:105-115. [PMID: 33604542 PMCID: PMC7873832 DOI: 10.1016/j.xkme.2020.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diabetes-related complications are a significant source of morbidity and mortality worldwide. Diabetic kidney disease is a frequent microvascular complication and a primary cause of kidney failure in patients with diabetes. The glomerular filtration barrier is composed of 3 layers: the endothelium, glomerular basement membrane, and podocytes. Podocytes and the endothelium communicate through molecular crosstalk to maintain filtration at the glomerular filtration barrier. Chronic hyperglycemia affects all 3 layers of the glomerular filtration barrier, as well as the molecular crosstalk that occurs between the 2 cellular layers. One of the earliest events following chronic hyperglycemia is endothelial cell dysfunction. Early endothelial damage is associated with progression of diabetic kidney disease. However, current therapies are based in controlling glycemia and arterial blood pressure without targeting endothelial dysfunction. Disruption of the endothelial cell layer also alters the molecular crosstalk that occurs between the endothelium and podocytes. This review discusses both the physiologic and pathologic communication that occurs at the glomerular filtration barrier. It examines how these signaling components contribute to podocyte foot effacement, podocyte detachment, and the progression of diabetic kidney disease.
Collapse
Affiliation(s)
- Cindy Lora Gil
- Department of Biomedical Sciences, University of Montreal, Montréal, QC, Canada
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Erika Hooker
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montréal, QC, Canada
| | - Bruno Larrivée
- Department of Ophtalmology, University of Montreal, Montréal, QC, Canada
| |
Collapse
|
6
|
Paul S, Ali A, Katare R. Molecular complexities underlying the vascular complications of diabetes mellitus - A comprehensive review. J Diabetes Complications 2020; 34:107613. [PMID: 32505477 DOI: 10.1016/j.jdiacomp.2020.107613] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/27/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022]
Abstract
Diabetes is a chronic disease, characterized by hyperglycemia, which refers to the elevated levels of glucose in the blood, due to the inability of the body to produce or use insulin effectively. Chronic hyperglycemia levels lead to macrovascular and microvascular complications. The macrovascular complications consist of peripheral artery disease (PAD), cardiovascular diseases (CVD) and cerebrovascular diseases, while the microvascular complications comprise of diabetic microangiopathy, diabetic nephropathy, diabetic retinopathy and diabetic neuropathy. Vascular endothelial dysfunction plays a crucial role in mediating both macrovascular and microvascular complications under hyperglycemic conditions. In diabetic microvasculature, the intracellular hyperglycemia causes damage to the vascular endothelium through - (i) activation of four biochemical pathways, namely the Polyol pathway, protein kinase C (PKC) pathway, advanced glycation end products (AGE) pathway and hexosamine pathway, all of which commutes glucose and its intermediates leading to overproduction of reactive oxygen species, (ii) dysregulation of growth factors and cytokines, (iii) epigenetic changes which concern the changes in DNA as a response to intracellular changes, and (iv) abnormalities in non-coding RNAs, specifically microRNAs. This review will focus on gaining an understanding of the molecular complexities underlying the vascular complications in diabetes mellitus, to increase our understanding towards the development of new mechanistic therapeutic strategies to prevent or treat diabetes-induced vascular complications.
Collapse
Affiliation(s)
- Shalini Paul
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand
| | - Azam Ali
- Centre for Bioengineering and Nanomedicine (Dunedin), University of Otago, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Desideri S, Onions KL, Baker SL, Gamez M, El Hegni E Hussien H, Russell A, Satchell SC, Foster RR. Endothelial glycocalyx restoration by growth factors in diabetic nephropathy. Biorheology 2020; 56:163-179. [PMID: 31156139 DOI: 10.3233/bir-180199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endothelial glycocalyx (eGlx) constitutes the first barrier to protein in all blood vessels. This is particularly noteworthy in the renal glomerulus, an ultrafiltration barrier. Leakage of protein, such as albumin, across glomerular capillaries results in albumin in the urine (albuminuria). This is a hall mark of kidney disease and can reflect loss of blood vessel integrity in microvascular beds elsewhere. We discuss evidence demonstrating that targeted damage to the glomerular eGlx results in increased glomerular albumin permeability. EGlx is lost in diabetes and experimental models demonstrate loss from glomerular endothelial cells. Vascular endothelial growth factor (VEGF)A is upregulated in early diabetes, which is associated with albuminuria. Treatment with paracrine growth factors such as VEGFC, VEGF165b and angiopoietin-1 can modify VEGFA signalling, rescue albumin permeability and restore glomerular eGlx in models of diabetes. Manipulation of VEGF receptor 2 signalling, or a common eGlx biosynthesis pathway by these growth factors, may protect and restore the eGlx layer. This would help to direct future therapeutics in diabetic nephropathy.
Collapse
Key Words
- Endothelial glycocalyx, diabetes, diabetic nephropathy, VEGF, VEGFC, VEGFA, VEGF165b, angiopoietin-1, vascular permeability, glomerulus, glomerular permeability
Collapse
Affiliation(s)
- Sara Desideri
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Karen L Onions
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Siân L Baker
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Monica Gamez
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Hesham El Hegni E Hussien
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Amy Russell
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Simon C Satchell
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| | - Rebecca R Foster
- Bristol Renal, Bristol Heart Institute, Translational Health Sciences, Bristol Medical School, University of Bristol, UK
| |
Collapse
|
8
|
Pérez-López L, Boronat M, Melián C, Brito-Casillas Y, Wägner AM. Animal Models and Renal Biomarkers of Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:521-551. [PMID: 32329028 DOI: 10.1007/5584_2020_527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetes mellitus (DM) is the first cause of end stage chronic kidney disease (CKD). Animal models of the disease can shed light on the pathogenesis of the diabetic nephropathy (DN) and novel and earlier biomarkers of the condition may help to improve diagnosis and prognosis. This review summarizes the most important features of animal models used in the study of DN and updates the most recent progress in biomarker research.
Collapse
Affiliation(s)
- Laura Pérez-López
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain
| | - Carlos Melián
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
- Department of Animal Pathology, Veterinary Faculty, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Yeray Brito-Casillas
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain
| | - Ana M Wägner
- Institute of Biomedical and Health Research (IUIBS), University of Las Palmas de Gran Canaria (ULPGC), Las Palmas de Gran Canaria, Spain.
- Department of Endocrinology and Nutrition, Complejo Hospitalario Universitario Insular Materno-Infantil, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
9
|
Neugarten J, Golestaneh L. Influence of Sex on the Progression of Chronic Kidney Disease. Mayo Clin Proc 2019; 94:1339-1356. [PMID: 31272577 DOI: 10.1016/j.mayocp.2018.12.024] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/21/2018] [Accepted: 12/17/2018] [Indexed: 12/14/2022]
Abstract
The role that sex plays in the development and progression of chronic kidney disease remains a subject of controversy. The lack of clarity in this important area reflects complex interactions between biological factors and cultural and socioeconomic influences that impact the relationship between sex and renal disease. Certainly, additional observational studies are indicated; however, innovative approaches are required to isolate biological processes from cultural influences. Despite these limitations, available data suggest that the progression of renal disease is slower in women than in men and that this sexual dimorphism is primarily due to direct actions of sex hormones on cellular metabolism. The extent to which differences in lifestyle factors between the sexes influence sexual dimorphism in the progression of chronic kidney disease remains to be elucidated.
Collapse
Affiliation(s)
- Joel Neugarten
- Albert Einstein College of Medicine, Renal Division, Montefiore Medical Center, Bronx, NY.
| | - Ladan Golestaneh
- Albert Einstein College of Medicine, Renal Division, Montefiore Medical Center, Bronx, NY
| |
Collapse
|
10
|
Kikuchi R, Stevens M, Harada K, Oltean S, Murohara T. Anti-angiogenic isoform of vascular endothelial growth factor-A in cardiovascular and renal disease. Adv Clin Chem 2019; 88:1-33. [PMID: 30612603 DOI: 10.1016/bs.acc.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Accumulating evidence suggests that pathologic interactions between the heart and the kidney can contribute to the progressive dysfunction of both organs. Recently, there has been an increase in the prevalence of cardiovascular disease (CVD) and chronic kidney disease (CKD) due to increasing obesity rates. It has been reported that obesity causes various heart and renal disorders and appears to accelerate their progression. Vascular endothelial growth factor-A (VEGF-A) is a major regulator of angiogenesis and vessel permeability, and is associated with CVD and CKD. It is now recognized that alternative VEGF-A gene splicing generates VEGF-A isoforms that differ in their biological actions. Proximal splicing that includes an exon 8a sequence results in pro-angiogenic VEGF-A165a, whereas distal splicing inclusive of exon 8b yields the anti-angiogenic isoform of VEGF-A (VEGF-A165b). This review highlights several recent preclinical and clinical studies on the role of VEGF-A165b in CVD and CKD as a novel function of VEGF-A. This review also discusses potential therapeutic approaches of the use of VEGF-A in clinical settings as a potential circulating biomarker for CVD and CKD.
Collapse
Affiliation(s)
- Ryosuke Kikuchi
- Department of Medical Technique, Nagoya University Hospital, Nagoya, Japan.
| | - Megan Stevens
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Kazuhiro Harada
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sebastian Oltean
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, United Kingdom
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Zhang J, Liu J, Qin X. Advances in early biomarkers of diabetic nephropathy. ACTA ACUST UNITED AC 2018; 64:85-92. [PMID: 29561946 DOI: 10.1590/1806-9282.64.01.85] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/09/2017] [Indexed: 01/06/2023]
Abstract
Diabetic nephropathy is the main cause of chronic kidney disease, and represents the most common and serious complication of diabetes. The exact pathogenesis is complex and not elucidated. Several factors and mechanisms contribute to the development and outcome of diabetic nephropathy. An early diagnosis and intervention may slow down disease progression. A variety of biological markers associated with diabetic nephropathy were found in recent years, which was important for predicting the occurrence and development of the disease. Therefore, this article provides an overview of early biomarkers that are associated with diabetic nephropathy.
Collapse
Affiliation(s)
- Jin Zhang
- Masters Student, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jianhua Liu
- MD, PhD. Associate Professor of Laboratory Medicine, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaosong Qin
- MD, PhD. Professor of Laboratory Medicine, Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Zhang Q, Fang W, Ma L, Wang ZD, Yang YM, Lu YQ. VEGF levels in plasma in relation to metabolic control, inflammation, and microvascular complications in type-2 diabetes: A cohort study. Medicine (Baltimore) 2018; 97:e0415. [PMID: 29642210 PMCID: PMC5908634 DOI: 10.1097/md.0000000000010415] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/14/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) level in human circulation may reflect the severity of endothelial dysfunction in patients with diabetes mellitus, which leads to diabetic microvascular complications.We determined plasma VEGF levels as well as metabolic control and inflammatory factors in 26 healthy subjects and 52 type-2 diabetes mellitus (T2DM) patients with or without diabetic microvascular complications. Pearson correlation coefficient was used to evaluate the associations among those indices.The results showed that VEGF levels in plasma were positively correlated with fasting blood glucose level, glycosylated hemoglobin (HbA1c) level, type 1 helper T cell (Th1) percentage, and Th1/Th2 ratio, while they were negatively correlated with regulatory T cell percentage. Multiple linear regression analysis showed that HbA1c and Th1/Th2 ratio were the independent predictors of VEGF levels in T2DM patients.Thus, in T2DM patients with poor glycemic control as well as an elevated Th1/Th2 cell ratio, more VEGF might be released.
Collapse
|
13
|
Antiangiogenic Therapy for Diabetic Nephropathy. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5724069. [PMID: 28835895 PMCID: PMC5556994 DOI: 10.1155/2017/5724069] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/16/2017] [Accepted: 06/13/2017] [Indexed: 12/28/2022]
Abstract
Angiogenesis has been shown to be a potential therapeutic target for early stages of diabetic nephropathy in a number of animal experiments. Vascular endothelial growth factor (VEGF) is the main mediator for abnormal angiogenesis in diabetic glomeruli. Although beneficial effects of anti-VEGF antibodies have previously been demonstrated in diabetic animal experiments, recent basic and clinical evidence has revealed that the blockade of VEGF signaling resulted in proteinuria and renal thrombotic microangiopathy, suggesting the importance of maintaining normal levels of VEGF in the kidneys. Therefore, antiangiogenic therapy for diabetic nephropathy should eliminate excessive glomerular angiogenic response without accelerating endothelial injury. Some endogenous antiangiogenic factors such as endostatin and tumstatin inhibit overactivation of endothelial cells but do not specifically block VEGF signaling. In addition, the novel endothelium-derived antiangiogenic factor vasohibin-1 enhances stress tolerance and survival of the endothelial cells, while inhibiting excess angiogenesis. These factors have been demonstrated to suppress albuminuria and glomerular alterations in a diabetic mouse model. Thus, antiangiogenic therapy with promising candidates will possibly improve renal prognosis in patients with early stages of diabetic nephropathy.
Collapse
|
14
|
Singh K, Sandler S, Espes D. The Increased Circulating Plasma Levels of Vascular Endothelial Growth Factor in Patients with Type 1 Diabetes Do Not Correlate to Metabolic Control. J Diabetes Res 2017; 2017:6192896. [PMID: 28421206 PMCID: PMC5379085 DOI: 10.1155/2017/6192896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/19/2017] [Accepted: 03/07/2017] [Indexed: 12/26/2022] Open
Abstract
Aim. To characterize the plasma levels of vascular endothelial growth factor (VEGF) in type 1 diabetes mellitus (T1D) and its relation to both present and historical metabolic control and microvascular complications. Methods. Plasma levels of VEGF and routine clinical parameters were analyzed in 115 patients with long-standing T1D and 45 healthy controls (HC). All patients were under clinical routine diabetes treatment at Uppsala University Hospital. Results. The plasma levels of VEGF were increased by 37% in patients with T1D when compared to HC (18.2 ± 0.8 versus 13.2 ± 1.0 pg/ml, p < 0.001). The levels of VEGF correlated to insulin needs and BMI but not to present or historical metabolic control. The levels of VEGF were similar in patients with T1D and microvascular complications (microalbuminuria and retinopathy) when compared with patients without microvascular complications. Historical HbA1c levels were found to be the best predictor for present metabolic control. Conclusion. Circulating plasma levels of VEGF do not correlate to present or historical metabolic control in long-standing T1D and the levels are not affected by the presence of microvascular complications.
Collapse
Affiliation(s)
- Kailash Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stellan Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Daniel Espes
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- *Daniel Espes:
| |
Collapse
|
15
|
Logue OC, McGowan JWD, George EM, Bidwell GL. Therapeutic angiogenesis by vascular endothelial growth factor supplementation for treatment of renal disease. Curr Opin Nephrol Hypertens 2016; 25:404-9. [PMID: 27367910 PMCID: PMC4974125 DOI: 10.1097/mnh.0000000000000256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW Vascular endothelial growth factors (VEGFs) influence renal function through angiogenesis, with VEGF-A being the most potent inducer of vascular formation. In the normal glomerulus, tight homeostatic balance is maintained between the levels of VEGF-A isoforms produced by podocyte cells, and the VEGF receptors (VEGFRs) expressed by glomerular endothelial, mesangial, and podocyte cells. Renal disease occurs when this homeostatic balance is lost, manifesting in the abnormal autocrine and paracrine VEGF-A/VEGFR signaling, ultrastructural glomerular and tubular damage, and impaired filtration. RECENT FINDINGS Preclinical disease models of ischemic renal injury, including acute ischemia/reperfusion, thrombotic microangiopathy, and chronic renovascular disease, treated with exogenous VEGF supplementation demonstrated therapeutic efficacy. These results suggest a therapeutic VEGF-A paracrine effect on endothelial cells in the context of acute or chronic obstructive ischemia. Conversely, renal dysfunction in diabetic nephropathy appears to occur through an upregulated VEGF autocrine effect on podocyte cells, which is exacerbated by hyperglycemia. Therefore, VEGF supplementation therapy may be contraindicated for treatment of diabetic nephropathy, but specific results will depend on dose and on the specific site of VEGF delivery. A drug delivery system that demonstrates cell specificity for glomerular or peritubular capillaries could be employed to restore balance to VEGF-A/VEGFR2 signaling, and by doing so, prevent the progression to end-stage renal disease. SUMMARY The review discusses the preclinical data available for VEGF supplementation therapy in models of renal disease.
Collapse
Affiliation(s)
- Omar C. Logue
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
| | | | - Eric M. George
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| | - Gene L. Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
16
|
Zhang M, Huang W, Bai J, Nie X, Wang W. Chymase inhibition protects diabetic rats from renal lesions. Mol Med Rep 2016; 14:121-8. [PMID: 27176496 PMCID: PMC4918600 DOI: 10.3892/mmr.2016.5234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 04/01/2016] [Indexed: 01/08/2023] Open
Abstract
The present study aimed to investigate the effects of a chymase inhibitor on renal injury in diabetic rats. A total of 24 Sprague-Dawley rats were randomly divided into the following groups: The control group (n=7), the diabetes group (DM group; n=7), and the DM + chymase inhibitor group (DM + Chy-I group; n=10). Diabetes was induced via an intraperitoneal injection of streptozotocin (65 mg/kg). Rats in the DM + Chy-I group were administered 1 mg/kg chymase inhibitor [Suc-Val-Pro-PheP-(OPh)2] daily for 12 weeks by intraperitoneal injection. Subsequently, kidney weight, various biochemical parameters and blood pressure were measured. In addition, the expression levels of fibronectin (FN), type IV collagen (ColIV), transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF) were determined by immunohistochemistry and reverse transcription polymerase chain reaction. Compared with in the DM group, the levels of serum cholesterol and urinary albumin/creatinine were decreased in the DM + Chy-I group (P<0.05). Furthermore, chymase inhibition reduced the overexpression of FN, ColIV, TGF-β1 and VEGF (P<0.05) in the renal tissue of diabetic rats. These results indicated that chymase inhibition may reduce the excretion of urinary albumin and the deposition of extracellular matrix components in the kidney of diabetic rats. These effects may be mediated by altered expression of the VEGF and TGF-β1 pathways. In conclusion, chymase inhibition may be considered a potential method for the treatment of renal damage.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Wen Huang
- Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jing Bai
- Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xiaodong Nie
- Department of Nephrology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
17
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
18
|
Abstract
OBJECTIVE We attempt to explore the pathogenesis and specific genes with aberrant expression in diabetic nephropathy (DN). METHODS The gene expression profile of GSE1009 was downloaded from Gene Expression Omnibus database, including 3 normal function glomeruli and DN glomeruli from cadaveric donor kidneys. The differentially expressed genes (DEGs) were analyzed and the aberrant gene-related functions were predicted by informatics methods. The protein-protein interaction (PPI) networks for DEGs were constructed and the functional sub-network was screened. RESULTS A total of 416 DEGs were found to be differentially expressed in DN samples comparing with normal controls, including 404 up-regulated genes and 12 down-regulated genes. DEGs were involved in the process of combination to saccharides and the decline of tissue repairing ability of the organisms. The genes of VEGFA, ACTG1, HSP90AA1 had high degree in the PPI network. The main biological process of genes in the sub-network was related with cell proliferation and signal transmitting of cell membrane receptor. CONCLUSION Significant nodes in PPI network provide new insights to understand the mechanism of DN. VEGFA, ACTG1 and HSP90AA1 may be the potential targets in the DN treatment.
Collapse
Affiliation(s)
- Fangming Fu
- a Department of Endocrinology , Jinan Central Hospital Affiliated to Shandong University , Jinan , Shandong Province , China
| | - Xueling Wei
- b Department of General Practice , Jinan Central Hospital Affiliated to Shandong University , Jinan , Shandong Province , China , and
| | - Jinbo Liu
- c Department of Endocrinology , Qilu Hospital of Shandong University , Jinan , Shandong Province , China
| | - Nianrong Mi
- a Department of Endocrinology , Jinan Central Hospital Affiliated to Shandong University , Jinan , Shandong Province , China
| |
Collapse
|
19
|
Aggarwal PK, Veron D, Thomas DB, Siegel D, Moeckel G, Kashgarian M, Tufro A. Semaphorin3a promotes advanced diabetic nephropathy. Diabetes 2015; 64:1743-59. [PMID: 25475434 PMCID: PMC4407856 DOI: 10.2337/db14-0719] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/26/2014] [Indexed: 01/06/2023]
Abstract
The onset of diabetic nephropathy (DN) is highlighted by glomerular filtration barrier abnormalities. Identifying pathogenic factors and targetable pathways driving DN is crucial to developing novel therapies and improving the disease outcome. Semaphorin3a (sema3a) is a guidance protein secreted by podocytes. Excess sema3a disrupts the glomerular filtration barrier. Here, using immunohistochemistry, we show increased podocyte SEMA3A in renal biopsies from patients with advanced DN. Using inducible, podocyte-specific Sema3a gain-of-function (Sema3a(+)) mice made diabetic with streptozotocin, we demonstrate that sema3a is pathogenic in DN. Diabetic Sema3a(+) mice develop massive proteinuria, renal insufficiency, and extensive nodular glomerulosclerosis, mimicking advanced DN in humans. In diabetic mice, Sema3a(+) exacerbates laminin and collagen IV accumulation in Kimmelstiel-Wilson-like glomerular nodules and causes diffuse podocyte foot process effacement and F-actin collapse via nephrin, αvβ3 integrin, and MICAL1 interactions with plexinA1. MICAL1 knockdown and sema3a inhibition render podocytes not susceptible to sema3a-induced shape changes, indicating that MICAL1 mediates sema3a-induced podocyte F-actin collapse. Moreover, sema3a binding inhibition or podocyte-specific plexinA1 deletion markedly ameliorates albuminuria and abrogates renal insufficiency and the diabetic nodular glomerulosclerosis phenotype of diabetic Sema3a(+) mice. Collectively, these findings indicate that excess sema3a promotes severe diabetic nephropathy and identifies novel potential therapeutic targets for DN.
Collapse
Affiliation(s)
- Pardeep K Aggarwal
- Department of Pediatrics/Nephrology, Yale University School of Medicine, New Haven, CT
| | - Delma Veron
- Department of Pediatrics/Nephrology, Yale University School of Medicine, New Haven, CT
| | - David B Thomas
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA
| | - Gilbert Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Alda Tufro
- Department of Pediatrics/Nephrology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
20
|
Chen S, Li H, Zhang C, Li Z, Wang Q, Guo J, Luo C, Wang Y. Urinary angiopoietin-2 is associated with albuminuria in patients with type 2 diabetes mellitus. Int J Endocrinol 2015; 2015:163120. [PMID: 25873946 PMCID: PMC4383519 DOI: 10.1155/2015/163120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/08/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022] Open
Abstract
Aims. To evaluate the levels of angiopoietin-1 (Ang-1), Ang-2, and vascular endothelial growth factor (VEGF) in serum and urine, and their association with albuminuria in patients with type 2 diabetes mellitus. Methods. In 113 type 2 diabetic patients with normoalbuminuria, microalbuminuria, and macroalbuminuria and 30 healthy controls, the levels of Ang-1, Ang-2, and VEGF in serum and urine were measured by enzyme-linked immunosorbent assay (ELISA). Results. Urinary and serum levels of Ang-2 were significantly higher in diabetic patients with normoalbuminuria than in healthy controls. Increased urinary Ang-2 level was positively associated with the degree of albuminuria. Urinary Ang-1 levels were significantly higher in normoalbuminuria patients and lower in macroalbuminuria patients than in controls. The levels of urinary VEGF increased in the albuminuria subgroup, though serum levels of Ang-1 and VEGF did not change. Urinary Ang-2 levels were correlated positively with albuminuria and negatively with glomerular filtration rate (GFR). Stepwise multiple regression analysis identified albuminuria (P < 0.001) and GFR (P = 0.001) as significant predictors of urinary Ang-2. Conclusions. Our data suggest that urinary Ang-2 is stepwise increased with renal damage in patients with type 2 diabetes mellitus and is associated with albuminuria.
Collapse
Affiliation(s)
- Shan Chen
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Huiqing Li
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Zhenqiong Li
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Qiuyuan Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Jinting Guo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Changqing Luo
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei 430022, China
- *Yumei Wang:
| |
Collapse
|
21
|
Currie G, McKay G, Delles C. Biomarkers in diabetic nephropathy: Present and future. World J Diabetes 2014; 5:763-776. [PMID: 25512779 PMCID: PMC4265863 DOI: 10.4239/wjd.v5.i6.763] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/03/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end stage renal disease in the Western world. Microalbuminuria (MA) is the earliest and most commonly used clinical index of DN and is independently associated with cardiovascular risk in diabetic patients. Although MA remains an essential tool for risk stratification and monitoring disease progression in DN, a number of factors have called into question its predictive power. Originally thought to be predictive of future overt DN in 80% of patients, we now know that only around 30% of microalbuminuric patients progress to overt nephropathy after 10 years of follow up. In addition, advanced structural alterations in the glomerular basement membrane may already have occurred by the time MA is clinically detectable.Evidence in recent years suggests that a significant proportion of patients with MA can revert to normoalbuminuria and the concept of nonalbuminuric DN is well-documented, reflecting the fact that patients with diabetes can demonstrate a reduction in glomerular filtration rate without progressing from normo-to MA. There is an unmet clinical need to identify biomarkers with potential for earlier diagnosis and risk stratification in DN and recent developments in this field will be the focus of this review article.
Collapse
|
22
|
BLÁHA V, ŠŤÁSEK J, BIS J, FORTUNATO J, ANDRÝS C, PAVLÍK V, POLANSKÝ P, BRTKO M, SOBOTKA L. The Role of VEGF in the Diabetic Patients Undergoing Endovascular Therapy of Symptomatic Aortic Valve Stenosis. Physiol Res 2014; 63:S351-9. [DOI: 10.33549/physiolres.932857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to explore changes in plasma vascular endothelial growth factor (VEGF) in aged patients who undergone transcatheter aortic valve implantation or balloon angioplasty for the treatment of aortic stenosis. Plasma VEGF was measured in subjects with diabetes mellitus type 2 (DM) (n=21, age 79.2±1.6 years) and in non-diabetic subjects (non-DM) (n=23, age 84.4±0.7 years), using an ELISA kit. Before the procedure plasma levels of VEGF were significantly lower in DM than in non-DM patients (P<0.05). Plasma VEGF significantly increased in both groups (DM and non-DM) 24 h (387±64 vs. 440±30 pg/ml, P<0.05) and 72 h (323±69 vs. 489±47 pg/ml, P<0.05) after the endovascular procedure. However, the VEGF in DM patients was significantly lower compared to non-DM subjects up to one month after the endovascular procedure (283±47 vs. 386±38 pg/ml, P<0.05). We conclude that increased plasma VEGF in aged patients associates with atherosclerotic aortic valve stenosis. In spite of that plasma VEGF in DM was constantly significantly lower than in non diabetic patients, both before and after the endovascular procedure, possibly reflecting a disturbance of angiogenic/anti-angiogenic balance in diabetes.
Collapse
Affiliation(s)
- V. BLÁHA
- Third Department of Internal Medicine, Metabolism and Gerontology, University Hospital Hradec Králové and Medical Faculty Charles University in Hradec Králové, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hinamoto N, Maeshima Y, Yamasaki H, Nasu T, Saito D, Watatani H, Ujike H, Tanabe K, Masuda K, Arata Y, Sugiyama H, Sato Y, Makino H. Exacerbation of diabetic renal alterations in mice lacking vasohibin-1. PLoS One 2014; 9:e107934. [PMID: 25255225 PMCID: PMC4178006 DOI: 10.1371/journal.pone.0107934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/17/2014] [Indexed: 01/06/2023] Open
Abstract
Vasohibin-1 (VASH1) is a unique endogenous inhibitor of angiogenesis that is induced in endothelial cells by pro-angiogenic factors. We previously reported renoprotective effect of adenoviral delivery of VASH1 in diabetic nephropathy model, and herein investigated the potential protective role of endogenous VASH1 by using VASH1-deficient mice. Streptozotocin-induced type 1 diabetic VASH1 heterozygous knockout mice (VASH1+/−) or wild-type diabetic mice were sacrificed 16 weeks after inducing diabetes. In the diabetic VASH1+/− mice, albuminuria were significantly exacerbated compared with the diabetic wild-type littermates, in association with the dysregulated distribution of glomerular slit diaphragm related proteins, nephrin and ZO-1, glomerular basement membrane thickning and reduction of slit diaphragm density. Glomerular monocyte/macrophage infiltration and glomerular nuclear translocation of phosphorylated NF-κB p65 were significantly exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates, accompanied by the augmentation of VEGF-A, M1 macrophage-derived MCP-1 and phosphorylation of IκBα, and the decrease of angiopoietin-1/2 ratio and M2 macrophage-derived Arginase-1. The glomerular CD31+ endothelial area was also increased in the diabetic VASH1+/− mice compared with the diabetic-wild type littermates. Furthermore, the renal and glomerular hypertrophy, glomerular accumulation of mesangial matrix and type IV collagen and activation of renal TGF-β1/Smad3 signaling, a key mediator of renal fibrosis, were exacerbated in the diabetic VASH1+/− mice compared with the diabetic wild-type littermates. In conditionally immortalized mouse podocytes cultured under high glucose condition, transfection of VASH1 small interfering RNA (siRNA) resulted in the reduction of nephrin, angiopoietin-1 and ZO-1, and the augmentation of VEGF-A compared with control siRNA. These results suggest that endogenous VASH1 may regulate the development of diabetic renal alterations, partly via direct effects on podocytes, and thus, a strategy to recover VASH1 might potentially lead to the development of a novel therapeutic approach for diabetic nephropathy.
Collapse
Affiliation(s)
- Norikazu Hinamoto
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yohei Maeshima
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Hiroko Yamasaki
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuyo Nasu
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Saito
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Watatani
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Haruyo Ujike
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Tanabe
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kana Masuda
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuka Arata
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hitoshi Sugiyama
- Department of Chronic Kidney Disease and Peritoneal Dialysis, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasufumi Sato
- Department of Vascular Biology, Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Hirofumi Makino
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
24
|
Proteomic analysis of glomeruli from streptozotocin-induced diabetic rats. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-014-0184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Zehetner C, Kirchmair R, Kralinger M, Kieselbach G. Correlation of vascular endothelial growth factor plasma levels and glycemic control in patients with diabetic retinopathy. Acta Ophthalmol 2013; 91:e470-3. [PMID: 23452413 DOI: 10.1111/aos.12081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To determine whether glycemic control of patients with diabetic retinopathy (DR) due to type 2 diabetes was related to VEGF plasma levels. METHODS The prospective study included 30 patients with DR due to type 2 diabetes. Retinopathy was classified according to the international clinical DR disease severity scale. The concentrations of VEGF in the blood plasma were measured by ELISA. Glycosylated hemoglobin (HbA1c) was assessed all patients. Results were reported as DCCT/NGSP-HbA1c (%) values. RESULTS The median plasma level of VEGF was 34.5 (range 15-217) pg/ml. Median HbA1c was 7.5 (range 5.3-10.6). The highest individual plasma VEGF measurements were found in patients with severe non-proliferative DR. HbA1c levels revealed a significant correlation with plasma VEGF concentrations (r = 0.573, p = 0.001). Age (r = 0.097, p = 0.611), gender (r = -0.315, p = 0.09) and severity of DR (r = 0.256, p = 0.172) were with no significant relationship to the VEGF measurements. CONCLUSION Poor glycemic control is positively correlated with increased levels of plasma VEGF in patients with type 2 diabetes. As normalization of HbA1c is one of the most effective ways to prevent progression of DR and VEGF has been to shown to be clearly implicated in the development of DR, it affirms the importance of glycemic control in patients with DR.
Collapse
Affiliation(s)
- Claus Zehetner
- Department of Ophthalmology, Medical University Innsbruck, Austria.
| | | | | | | |
Collapse
|
26
|
Schlingemann RO, Van Noorden CJF, Diekman MJM, Tiller A, Meijers JCM, Koolwijk P, Wiersinga WM. VEGF levels in plasma in relation to platelet activation, glycemic control, and microvascular complications in type 1 diabetes. Diabetes Care 2013; 36:1629-34. [PMID: 23321217 PMCID: PMC3661842 DOI: 10.2337/dc12-1951] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Increased levels of vascular endothelial growth factor (VEGF) in human plasma samples have suggested that circulating VEGF is a cause of endothelial dysfunction in diabetes mellitus. However, artificial release of VEGF from platelets as a source of VEGF in plasma samples, as also occurs in serum samples, has not been ruled out in these studies. RESEARCH DESIGN AND METHODS We determined VEGF levels in plasma collected in both citrate and PECT, a medium that inactivates platelets, in a cross-sectional cohort of 21 healthy subjects and 64 patients with type 1 diabetes. In addition, we evaluated whether VEGF levels in both types of plasma correlated with the presence of diabetes, glycemic control, markers of in vivo or ex vivo platelet activation, and degree of diabetic retinopathy and nephropathy. RESULTS VEGF levels were invariably low in PECT plasma of both nondiabetic and diabetic subjects and were unrelated to any other diabetes-related variable studied. In contrast, VEGF levels in citrate plasma were 150% higher in diabetic patients than in control subjects and correlated with diabetes-related variables. Multiple linear regression analysis showed that levels of platelet factor 4, a marker for ex vivo platelet activation, and HbA1c were the independent predictors of VEGF levels in citrate plasma. Platelet activation, in vivo and ex vivo, was similar in diabetic persons and control subjects. CONCLUSIONS Like serum, citrate plasma is not suitable for reliable measurements of circulating VEGF. The low levels of VEGF in vivo, as represented by measurements in PECT plasma in our study, do not support a role of circulating VEGF in endothelial dysfunction in type 1 diabetes. Higher levels of VEGF in citrate plasma samples of diabetic persons do not represent the in vivo situation, but mainly originate from higher artificial ex vivo release from platelets correlating with the degree of glycemic control.
Collapse
Affiliation(s)
- Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a protein secreted by podocytes that is necessary for survival of endothelial cells, podocytes, and mesangial cells. VEGF-A regulates slit-diaphragm signaling and podocyte shape via VEGF-receptor 2-nephrin-nck-actin interactions. Chronic hyperglycemia-induced excess podocyte VEGF-A and low endothelial nitric oxide drive the development and the progression of diabetic nephropathy. The abnormal cross-talk between VEGF-A and nitric oxide pathways is fueled by the diabetic milieu, resulting in increased oxidative stress. Recent findings on these pathogenic molecular mechanisms provide new potential targets for therapy for diabetic renal disease.
Collapse
Affiliation(s)
- Alda Tufro
- Department of Pediatrics, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520-8064, USA.
| | | |
Collapse
|
28
|
Konopka A, Janas J, Piotrowski W, Stępińska J. Concentration of vascular endothelial growth factor in patients with acute coronary syndrome. Cytokine 2013; 61:664-9. [DOI: 10.1016/j.cyto.2012.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/26/2012] [Accepted: 12/04/2012] [Indexed: 11/26/2022]
|
29
|
Dei Cas A, Gnudi L. VEGF and angiopoietins in diabetic glomerulopathy: how far for a new treatment? Metabolism 2012; 61:1666-73. [PMID: 22554833 DOI: 10.1016/j.metabol.2012.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy (DN) is the major cause of end-stage renal disease in Western countries and its prevalence continues to increase (United States Renal Data System 2010, http://www.usrds.org/). Treatments currently utilised for DN provide only partial renoprotection, hence the need to identify new targets for therapeutic intervention. Metabolic and haemodynamic abnormalities have been implicated in the pathogenesis of DN, triggering the activation of intracellular signaling molecules that lead to the dysregulation of vascular growth factors and cytokines, such as vascular endothelial growth factor (VEGF) and angiopoietins, important players in the functional and structural regulation of the glomerular filtration barrier. This review focuses on the importance of VEGF-A and angiopoietins in kidney physiology and in the diabetic kidney, exploring their potential therapeutic role in the prevention and delay of diabetic glomerulopathy.
Collapse
Affiliation(s)
- Alessandra Dei Cas
- Department of Internal Medicine and Biomedical Sciences, University of Parma, Italy.
| | | |
Collapse
|
30
|
Titan SM, Vieira JM, Dominguez WV, Moreira SRS, Pereira AB, Barros RT, Zatz R. Urinary MCP-1 and RBP: independent predictors of renal outcome in macroalbuminuric diabetic nephropathy. J Diabetes Complications 2012; 26:546-53. [PMID: 22981148 DOI: 10.1016/j.jdiacomp.2012.06.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 05/07/2012] [Accepted: 06/15/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Albuminuria has been considered a sine qua non condition for the diagnosis of diabetic nephropathy (DN) and has been widely used as a surrogate outcome of chronic kidney disease (CKD). However, recent data suggest that albuminuria may fail as a biomarker in a subset of patients, and the search for novel markers is intense. METHODS We analyzed the role of urinary RBP and of serum and urinary cytokines (TGF-beta, MCP-1 and VEGF) as predictors of the risk of dialysis, doubling of serum creatinine or death (primary outcome, PO) in 56 type 2 diabetic patients with macroalbuminuric DN. RESULTS Mean follow-up time was 30.7±10 months. Urinary RBP and MCP-1 were significantly higher in patients presenting the PO, whereas no difference was shown for TGF-β or VEGF. In the Cox regression, urinary RBP, MCP-1 and VEGF were positively associated and serum VEGF was inversely related to the risk of the PO. However, after adjustments for creatinine clearance, proteinuria, and blood pressure only urinary RBP (OR 11.6; 95% CI 2.7-49.2, p=0.001 for log RBP) and urinary MCP-1 (OR 11.0; 95% CI 1.6-76.4, p=0.02 for log MCP-1) remained as significant independent predictors of the PO. CONCLUSION Urinary RBP and MCP-1 are independently related to the risk of CKD progression in patients with macroalbuminuric DN. Whether these biomarkers have a role in the setting of normoalbuminuria and microalbuminuria in DN should be further investigated.
Collapse
Affiliation(s)
- S M Titan
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND Endothelial cell-selective adhesion molecule (ESAM) contributes to the integrity of tight junctions and modulates endothelial function. ESAM has been linked to experimental diabetic nephropathy; its soluble fraction is related to atherosclerosis in humans. In this cross-sectional observational study, we describe for the first time serum ESAM in type 2 diabetic patients with different stages of chronic kidney disease (CKD) and its relationship to vascular endothelial growth factor-A (VEGF-A). Materials and methods We included diabetic patients with different stages of CKD and controls. History, laboratory evaluation, serum ESAM and VEGF-A and urinary albumin/creatinine ratio were obtained. RESULTS Endothelial cell-selective adhesion molecule was higher in non-CKD diabetic patients 13.80 (6.15-18.70) ng/mL (n=45) than controls 7.30 (4.60-9.40) ng/mL (n=48), P=0.001. VEGF-A had a similar pattern: 71.3 (54.75-120.70) vs. 43.20 (30.1-65.90) pg/mL, P<0.0001. ESAM was 10.4 (5.6-17.4) ng/mL in predialysis CKD patients (n=59) and 22.35 (8.55-29.95) ng/mL in dialysis patients (n=36), P<0.001. Patients with glomerular filtration rate (GFR)<15 mL/min had the highest ESAM (P=0.003). ESAM was similar in normoalbuminuric, microalbuminuric and proteinuric patients. ESAM was directly correlated with the duration of diabetes (r(2)=0.048, P=0.009), C-reactive protein (r(2)=0.028, P=0.05), VEGF-A (r(2)=0.040, P=0.01) and inversely with HbA1C (r(2)=0.036, P=0.03), haemoglobin (r(2)=0.062, P=0.005) and albumin (r(2)=0.0·40, P=0.026). In multiple regression diabetes duration, HbA1C and VEGF-A were significant predictors of ESAM. In controls, ESAM was inversely related to VEGF (r(2)=037, P=0.01). CONCLUSION Endothelial cell-selective adhesion molecule and VEGF-A are higher in patients with diabetes than in controls. The highest ESAM is found in dialysis patients. ESAM correlates with diabetes duration and control, inflammation and VEGF-A in patients with diabetes, but not in controls.
Collapse
Affiliation(s)
- Ina M Kacso
- Departments of Nephrology Oncology, University of Medicine and Pharmacy 'Iuliu Hatieganu' Cluj, Cluj Napoca, Romania
| | | |
Collapse
|
32
|
Sivaskandarajah GA, Jeansson M, Maezawa Y, Eremina V, Baelde HJ, Quaggin SE. Vegfa protects the glomerular microvasculature in diabetes. Diabetes 2012; 61:2958-66. [PMID: 23093658 PMCID: PMC3478549 DOI: 10.2337/db11-1655] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vascular endothelial growth factor A (VEGFA) expression is increased in glomeruli in the context of diabetes. Here, we tested the hypothesis that this upregulation of VEGFA protects the glomerular microvasculature in diabetes and that therefore inhibition of VEGFA will accelerate nephropathy. To determine the role of glomerular Vegfa in the development and progression of diabetic nephropathy, we used an inducible Cre-loxP gene-targeting system that enabled genetic deletion of Vegfa selectively from glomerular podocytes of wild-type or diabetic mice. Type 1 diabetes was induced in mice using streptozotocin (STZ). We then assessed the extent of glomerular dysfunction by measuring proteinuria, glomerular pathology, and glomerular cell apoptosis. Vegfa expression increased in podocytes in the STZ model of diabetes. After 7 weeks of diabetes, diabetic mice lacking Vegfa in podocytes exhibited significantly greater proteinuria with profound glomerular scarring and increased apoptosis compared with control mice with diabetes or Vegfa deletion without diabetes. Reduced local production of glomerular Vegfa in a mouse model of type 1 diabetes promotes endothelial injury accelerating the progression of glomerular injury. These results suggest that upregulation of VEGFA in diabetic kidneys protects the microvasculature from injury and that reduction of VEGFA in diabetes may be harmful.
Collapse
Affiliation(s)
| | - Marie Jeansson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yoshiro Maezawa
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Vera Eremina
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Hans J. Baelde
- Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Susan E. Quaggin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Nephrology, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Corresponding author: Susan E. Quaggin,
| |
Collapse
|
33
|
Ceriotti F, Cappelletti P, Caputo M, Di Serio F, Messeri G, Ottomano C, Plebani M, Soffiati G. A risk-analysis approach to the evaluation of analytical quality. Clin Chem Lab Med 2011; 50:67-71. [PMID: 21958343 DOI: 10.1515/cclm.2011.740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 09/17/2011] [Indexed: 01/07/2023]
Abstract
BACKGROUND Setting specifications for analytical quality is always difficult. The risk-management approach might be a way to do so. In this approach, the definition of the required analytical quality is based on the evaluation of patient risk. Risk derives from the probability of error and from the damage that such an error might cause. METHODS Eight Italian laboratories took part in this experiment. Measurements of glucose and total calcium were taken as examples. Analytical quality was evaluated using a specific ring trial with a frozen serum pool and by means of internal quality-control data. The total allowable error was defined according to biological variation specifications. The probability of error was extracted from the imprecision and comparative bias data of each laboratory. The damage caused by a wrong result was evaluated using the absolute probability judgment approach. RESULTS According to the iso-risk plots (standardized hyperboles on a graph where the x-axis represents damage and the y-axis represents probability) for glucose, all the laboratories were working with an analytical quality that guaranteed low risk for patients. On the contrary, for total calcium none of the laboratories exhibited sufficient quality to guarantee low risk for patients, the presence of bias being the most relevant problem. CONCLUSIONS The results seem to demonstrate the applicability of the risk approach to the analytical phase, indicating a new possible way to define analytical quality targets.
Collapse
Affiliation(s)
- Ferruccio Ceriotti
- Diagnostica e Ricerca San Raffaele, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bertuccio C, Veron D, Aggarwal PK, Holzman L, Tufro A. Vascular endothelial growth factor receptor 2 direct interaction with nephrin links VEGF-A signals to actin in kidney podocytes. J Biol Chem 2011; 286:39933-44. [PMID: 21937443 DOI: 10.1074/jbc.m111.241620] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transmembrane protein nephrin is an essential component of slit diaphragms, the specialized cell junctions that link podocyte foot processes. Podocytes are epithelial cells that surround the glomerular capillaries in the kidney and are necessary for the organ-filtering function. Nephrin signaling complex transduces extracellular cues to the podocyte cytoskeleton and regulates podocyte shape and function. Vascular endothelial growth factor A (VEGF-A) is a required growth factor produced and secreted by podocytes. Accumulating evidence suggests a cross-talk between VEGF-A and nephrin signaling pathways. We previously showed that in vivo nephrin associates with VEGF receptor-2 (VEGFR2), the signaling receptor for VEGF-A. In the present work, we characterized the interaction between nephrin and VEGFR2 in cultured cells and in vitro. We demonstrate that nephrin-VEGFR2 interaction is direct using mass spectrometry, immunoprecipitation, GST-binding assays, and blot overlay experiments. This interaction occurs through VEGFR2 and nephrin cytoplasmic domains. Nephrin-VEGFR2 interaction is modulated by tyrosine phosphorylation of both cytoplasmic domains. Furthermore, the nephrin-VEGFR2 complex involves Nck and actin. VEGF-A signaling via this complex results in decreased cell size. We provide evidence that this multiprotein interaction occurs in cultured podocytes. We propose that the nephrin-VEGFR2 complex acts as a key mediator to transduce local VEGF-A signals to the podocyte actin cytoskeleton, regulating the foot process structure and glomerular filter integrity.
Collapse
Affiliation(s)
- Claudia Bertuccio
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
35
|
Veron D, Bertuccio CA, Marlier A, Reidy K, Garcia AM, Jimenez J, Velazquez H, Kashgarian M, Moeckel GW, Tufro A. Podocyte vascular endothelial growth factor (Vegf₁₆₄) overexpression causes severe nodular glomerulosclerosis in a mouse model of type 1 diabetes. Diabetologia 2011; 54:1227-41. [PMID: 21318407 PMCID: PMC3397150 DOI: 10.1007/s00125-010-2034-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/19/2010] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS The pathogenic role of excessive vascular endothelial growth factor (VEGF)-A in diabetic nephropathy has not been defined. We sought to test whether increased podocyte VEGF-A signalling determines the severity of diabetic glomerulopathy. METHODS Podocyte-specific, doxycycline-inducible Vegf₁₆₄ (the most abundant Vegfa isoform) overexpressing adult transgenic mice were made diabetic with low doses of streptozotocin and examined 12 weeks after onset of diabetes. We studied diabetic and non-diabetic transgenic mice fed a standard or doxycycline-containing diet. VEGF-A and albuminuria were measured by ELISA, creatinine was measured by HPLC, renal morphology was examined by light and electron microscopy, and gene expression was assessed by quantitative PCR, immunoblotting and immunohistochemistry. RESULTS Podocyte Vegf₁₆₄ overexpression in our mouse model of diabetes resulted in advanced diabetic glomerulopathy, characterised by Kimmelstiel-Wilson-like nodular glomerulosclerosis, microaneurysms, mesangiolysis, glomerular basement membrane thickening, podocyte effacement and massive proteinuria associated with hyperfiltration. It also led to increased VEGF receptor 2 and semaphorin3a levels, as well as nephrin and matrix metalloproteinase-2 downregulation, whereas circulating VEGF-A levels were similar to those in control diabetic mice. CONCLUSIONS/INTERPRETATION Collectively, these data demonstrate that increased podocyte Vegf₁₆₄ signalling dramatically worsens diabetic nephropathy in a streptozotocin-induced mouse model of diabetes, resulting in nodular glomerulosclerosis and massive proteinuria. This suggests that local rather than systemic VEGF-A levels determine the severity of diabetic nephropathy and that semaphorin3a signalling and matrix metalloproteinase-2 dysregulation are mechanistically involved in severe diabetic glomerulopathy.
Collapse
Affiliation(s)
- D. Veron
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar St, P.O. Box 208064, New Haven, CT 06520-8064, USA
| | - C. A. Bertuccio
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar St, P.O. Box 208064, New Haven, CT 06520-8064, USA
| | - A. Marlier
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - K. Reidy
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - A. M. Garcia
- Department of Internal Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J. Jimenez
- Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - H. Velazquez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - M. Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - G. W. Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - A. Tufro
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar St, P.O. Box 208064, New Haven, CT 06520-8064, USA
| |
Collapse
|
36
|
Tahara A, Tsukada J, Tomura Y, Yatsu T, Shibasaki M. Vasopressin induces human mesangial cell growth via induction of vascular endothelial growth factor secretion. Neuropeptides 2011; 45:105-11. [PMID: 21196048 DOI: 10.1016/j.npep.2010.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 12/01/2010] [Indexed: 11/26/2022]
Abstract
Vasoactive hormones, growth factors, and cytokines are important in promoting mesangial cell growth, a characteristic feature of many glomerular diseases. Vascular endothelial growth factor (VEGF) is an endothelial mitogen and promoter of vascular permeability that is constitutively expressed in human glomeruli, but its role in the kidney is still unclear. In the present study, we investigated the ability of vasopressin (AVP) to stimulate VEGF secretion by and correlation with AVP-induced cell growth in human mesangial cells. AVP caused time- and concentration-dependent increases in VEGF secretion from human mesangial cells, which was in turn potently inhibited by a V(1A) receptor-selective antagonist, confirming that this secretion is a V(1A) receptor-mediated event. VEGF also induced mesangial cell growth which was completely inhibited on administration of an anti-VEGF neutralizing antibody. Further, AVP-induced mesangial cell growth was completely abolished by the V(1A) receptor-selective antagonist and partially inhibited by an anti-VEGF neutralizing antibody. These results suggest that AVP stimulates VEGF secretion by human mesangial cells via V(1A) receptors. This secreted VEGF may function as an autocrine hormone to regulate mesangial cell growth, a mechanism by which AVP might contribute to progressive glomerular diseases such as diabetic nephropathy.
Collapse
Affiliation(s)
- Atsuo Tahara
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.
| | | | | | | | | |
Collapse
|
37
|
Maeshima Y, Makino H. Angiogenesis and chronic kidney disease. FIBROGENESIS & TISSUE REPAIR 2010; 3:13. [PMID: 20687922 PMCID: PMC2924264 DOI: 10.1186/1755-1536-3-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 08/05/2010] [Indexed: 01/13/2023]
Abstract
The number of patients requiring renal replacement therapy due to end-stage renal disease (ESRD) is increasing worldwide. The prevalence of chronic kidney disease (CKD), and the importance of CKD as a risk factor in development of ESRD and in complicating cardiovascular disease (CVD) have been confirmed. In recent years, the involvement of angiogenesis-related factors in the progression of CKD has been studied, and the potential therapeutic effects on CKD of modulating these factors have been identified. Vascular endothelial growth factor (VEGF)-A, a potent pro-angiogenic factor, is involved in the development of the kidney, in maintenance of the glomerular capillary structure and filtration barrier, and in the renal repair process after injury. VEGF-A is also involved in the development of early diabetic nephropathy, demonstrated by the therapeutic effects of anti-VEGF-A antibody. Angiopoietin (Ang)-1 induces the maturation of newly formed blood vessels, and the therapeutic effects of Ang-1 in diabetic nephropathy have been described. In experimental models of diabetic nephropathy, the therapeutic effects of angiogenesis inhibitors, including angiostatin, endostatin and tumstatin peptides, the isocoumarin NM-3, and vasohibin-1, have been reported. Further analysis of the involvement of angiogenesis-related factors in the development of CKD is required. Determining the disease stage at which therapy is most effective and developing an effective drug delivery system targeting the kidney will be essential for pro-or anti-angiogenic strategies for patients with CKD.
Collapse
Affiliation(s)
- Yohei Maeshima
- Department of Medicine and Clinical Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | | |
Collapse
|
38
|
Affiliation(s)
- Seon-Ho Ahn
- Department of Medicine and Nephrology, Albert Einstein College Medicine, Bronx, New York
- Department of Medicine and Nephrology, Wonkwang University College of Medicine, Iksan, South Korea
| | - Katalin Susztak
- Department of Medicine and Nephrology, Albert Einstein College Medicine, Bronx, New York
- Corresponding author: Katalin Susztak,
| |
Collapse
|
39
|
Kubisz P, Chudý P, Stasko J, Galajda P, Hollý P, Vysehradský R, Mokán M. Circulating vascular endothelial growth factor in the normo- and/or microalbuminuric patients with type 2 diabetes mellitus. Acta Diabetol 2010; 47:119-24. [PMID: 19436948 DOI: 10.1007/s00592-009-0127-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 04/21/2009] [Indexed: 12/14/2022]
Abstract
Relationship between serum vascular endothelial growth factor (VEGF) level and parameters of endothelial injury and/or dysfunction in patients with diabetes mellitus type 2 with or without microalbuminuria was investigated. Eighty-four diabetic patients were divided in two subgroups (42 each): normoalbuminuric (NAU) and microalbuminuric (MAU). Forty-two blood donors were in control group. Serum VEGF and plasma von Willebrand factor, soluble thrombomodulin, plasminogen activator inhibitor 1, thrombin-activatable fibrinolysis inhibitor (TAFI) and tissue plasminogen activator (t-PA) were measured using enzyme-linked immunosorbent assay in all subjects. VEGF was significantly higher in NAU compared to controls. The difference between MAU and controls was not statistically significant, but there was a trend toward significance. Only TAFI correlated with VEGF in MAU. An observed significant increase of serum VEGF level already in NAU suggests that serum VEGF could be a sensitive predictor of endothelial dysfunction in type 2 diabetes.
Collapse
Affiliation(s)
- Peter Kubisz
- National Center of Hemostasis and Thrombosis, Jessenius Faculty of Medicine, Comenius University, Kollárova 2, 036 59, Martin, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Vural P, Küskü-Kiraz Z, Doğru-Abbasoğlu S, Çil E, Karadağ B, Uysal M. Vascular endothelial growth factor +405 G/C,−460 T/C and −2578 A/C polymorphisms are not associated with insulin resistance in polycystic ovary syndrome. Int J Immunogenet 2010; 37:239-43. [DOI: 10.1111/j.1744-313x.2010.00915.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Shiota A, Yamamoto K, Ohishi M, Tatara Y, Ohnishi M, Maekawa Y, Iwamoto Y, Takeda M, Rakugi H. Loss of ACE2 accelerates time-dependent glomerular and tubulointerstitial damage in streptozotocin-induced diabetic mice. Hypertens Res 2010; 33:298-307. [PMID: 20186149 DOI: 10.1038/hr.2009.231] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As angiotensin-converting enzyme-2 (ACE2) was identified as a negative regulator of the renin-angiotensin system, there have been many reports concerning its role in several tissues, including the kidney. However, the role of ACE2 during the development of diabetic nephropathy remains undetermined, as previous reports did not necessarily support a protective role against renal injury. Thus, we performed detailed observations of kidneys in ACE2-knockout (ACE2-KO) mice at early (4 weeks) and advanced (18 weeks) stages of diabetes. ACE2-KO and wild-type C57BL/6 mice were rendered diabetic by intraperitoneal injection of streptozotocin. Diabetic ACE2-KO mice showed earlier onset and more severe progression of albuminuria than those did wild-type mice. The elevation of serum creatinine and urea nitrogen levels at 18 weeks of diabetes was more prominent in ACE2-KO mice. Periodic acid-Schiff-stained cross-section of diabetic ACE2-KO mice showed a more severe time-dependent increase in glomerular/tubulointerstitial damage than did that of wild-type mice, confirmed by the immunostaining of alpha-smooth muscle actin, collagen IV and F4-80 antigen. Glomeruli of diabetic ACE2-KO mice showed earlier and more severe decrease in the expression of nephrin, whose degradation is involved in the onset of albuminuria, and more potent increase of vascular endothelial growth factor expression. In addition, treatment with AT1 receptor blocker olmesartan significantly, but not totally, ameliorated the functional and morphological deterioration of diabetic nephropathy in ACE2-KO mice. These results suggest that ACE2 might continuously protect from both glomerular and tubulointerstitial injury during the development of diabetic nephropathy. The renal-protective effect of ACE2 might involve more than just suppressing angiotensin II-mediated AT1 receptor signaling.
Collapse
Affiliation(s)
- Atsushi Shiota
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita City, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hakroush S, Moeller MJ, Theilig F, Kaissling B, Sijmonsma TP, Jugold M, Akeson AL, Traykova-Brauch M, Hosser H, Hähnel B, Gröne HJ, Koesters R, Kriz W. Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1883-95. [PMID: 19834063 DOI: 10.2353/ajpath.2009.080792] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The role of vascular endothelial growth factor (VEGF) in renal fibrosis, tubular cyst formation, and glomerular diseases is incompletely understood. We studied a new conditional transgenic mouse system [Pax8-rtTA/(tetO)(7)VEGF], which allows increased tubular VEGF production in adult mice. The following pathology was observed. The interstitial changes consisted of a ubiquitous proliferation of peritubular capillaries and fibroblasts, followed by deposition of matrix leading to a unique kind of fibrosis, ie, healthy tubules amid a capillary-rich dense fibrotic tissue. In tubular segments with high expression of VEGF, cysts developed that were surrounded by a dense network of peritubular capillaries. The glomerular effects consisted of a proliferative enlargement of glomerular capillaries, followed by mesangial proliferation. This resulted in enlarged glomeruli with loss of the characteristic lobular structure. Capillaries became randomly embedded into mesangial nodules, losing their filtration surface. Serum VEGF levels were increased, whereas endogenous VEGF production by podocytes was down-regulated. Taken together, this study shows that systemic VEGF interferes with the intraglomerular cross-talk between podocytes and the endocapillary compartment. It suppresses VEGF secretion by podocytes but cannot compensate for the deficit. VEGF from podocytes induces a directional effect, attracting the capillaries to the lobular surface, a relevant mechanism to optimize filtration surface. Systemic VEGF lacks this effect, leading to severe deterioration in glomerular architecture, similar to that seen in diabetic nephropathy.
Collapse
Affiliation(s)
- Samy Hakroush
- Centrum für Biomedizin und Medizintechnik Mannheim, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The field of vascular endothelial growth factor (VEGF) has recently witnessed a surge of research into its role in diabetic kidney disease. Based on its credentials as a potent inducer of vasopermeability and angiogenesis, podocyte-derived VEGF is believed to participate in the glomerular capillary hyperpermeability of macromolecules that potentially underlies the pathogenesis of diabetic albuminuria. The evidence for VEGF's role is relatively straightforward in animal models of diabetes, establishing that VEGF is upregulated in the diabetic kidney, that VEGF alone reproduces some aspects of diabetic glomerulopathy, and that antagonism of VEGF attenuates diabetic albuminuria and other associated features of the podocytopathy. However, the promise shown in the animal studies has not carried over as convincingly into the realm of human studies, as some investigators find a negative or no relationship between VEGF and diabetic nephropathy, whereas others find a positive correlation between the two. If VEGF does play a role in diabetic renal disease, its observed effects and known mechanisms seem to point squarely at the podocyte as a central target of the maladaptive VEGF overactivity.
Collapse
Affiliation(s)
- Sheldon Chen
- Department of Internal Medicine, American University of Beirut, Beirut, Lebanon
| | | |
Collapse
|
44
|
Goh SY, Jasik M, Cooper ME. Agents in development for the treatment of diabetic nephropathy. Expert Opin Emerg Drugs 2008; 13:447-63. [PMID: 18764722 DOI: 10.1517/14728214.13.3.447] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Nephropathy is a major cause of morbidity and mortality in diabetic patients. Current treatments include optimization of glycemic and blood pressure control, but more innovative strategies are needed for the prevention and treatment of diabetic nephropathy. OBJECTIVES To review emerging therapies for diabetic nephropathy. METHODS This paper discusses the molecular mechanisms of diabetic nephropathy and the potential therapeutic interventions. RESULTS/CONCLUSION New therapies, including those targeting the accumulation of advanced glycation end products (AGEs) and reactive oxygen species (ROS) generation, are likely to feature in future treatment regimens. Other approaches that at this stage do not appear to be progressing include the glycosaminoglycan sulodexide and the protein kinase C-beta (PKC-beta) inhibitor, ruboxistaurin.
Collapse
Affiliation(s)
- Su-Yen Goh
- Albert Einstein Juvenile Diabetes Research Foundation Centre for Diabetes Complications, Diabetes and Metabolism Division, Baker Medical Research Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria, 8008, Australia
| | | | | |
Collapse
|
45
|
Serum vascular endothelial growth factor and diabetic nephropathy progression. Med Chem Res 2007. [DOI: 10.1007/s00044-007-9019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Eremina V, Baelde HJ, Quaggin SE. Role of the VEGF-A Signaling Pathway in the Glomerulus: Evidence for Crosstalk between Components of the Glomerular Filtration Barrier. ACTA ACUST UNITED AC 2007; 106:p32-7. [PMID: 17570946 DOI: 10.1159/000101798] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND/AIMS Vascular endothelial growth factor is a major regulator of angiogenesis and vascular permeability [Carmeliet et al.: Nature 1996;380:435-439]. The podocyte, the outermost layer of the glomerular filtration barrier, produces large amounts of VEGF-A. The observation that levels of VEGF-A are altered in glomerular diseases, the identification of a link between pre-eclampsia and elevated levels of a circulating soluble VEGF receptor, and the entry of anti-VEGF therapies into the clinical arena have generated intense interest in the functional role of VEGF-A in the glomerulus. METHODS A variety of studies have been performed to address the role of VEGF-A signaling in the glomerulus. These include descriptions of expression patterns in human renal biopsies, cell culture studies to dissect paracrine versus autocrine signaling roles, and manipulation of VEGF-A expression in animal models using pharmacologic, biologic or genetic approaches. RESULTS Exquisite dosage sensitivity to VEGF-A exists in the developing glomerulus as small reductions in the expression of VEGF-A lead to profound changes in glomerular structure and function in mice. The use of VEGF inhibitors is associated with damage to the glomerular endothelium in animal models and proteinuria in patients, suggesting that local VEGF-A production is also required for maintenance of this specialized vascular bed. CONCLUSIONS Tight regulation of VEGF-A signaling is required for development and maintenance of the glomerular filtration barrier (GFB) and emphasizes the role of podocyte-endothelial crosstalk in the glomerulus. The relative contributions of various VEGF-A isoforms, the role of autocrine signaling in vivo and identification of factors and mechanisms that regulate constitutive expression, storage and delivery of VEGF-A in the glomerulus are still under investigation.
Collapse
Affiliation(s)
- Vera Eremina
- The Samuel Lunenfeld Research Institute, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
47
|
Seckin D, Ilhan N, Ilhan N, Ertugrul S. Glycaemic control, markers of endothelial cell activation and oxidative stress in children with type 1 diabetes mellitus. Diabetes Res Clin Pract 2006; 73:191-7. [PMID: 16442660 DOI: 10.1016/j.diabres.2006.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 01/04/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND The aim of this study was to compare the effect of glycaemic control on oxidative stress and biochemical markers of endothelial activation in type 1 diabetic children. METHODS Serum total cholesterol, HDL cholesterol, VLDL cholesterol, apolipoprotein A1, apolipoprotein B, HbA(1c), MDA, VEGF, NO, ICAM levels were assessed in 100 children with type 1 DM aged 2-17 years. Study cases were evaluated in three groups in view of their mean HbA(1c) values, as metabolically well-controlled (HbA(1c)< or =8%) and poorly controlled (HbA(1c)>8%) patients with DM and 40 healthy children were included as normal controls. RESULTS Levels of MDA, NO, VEGF, ICAM, apolipoprotein A1 and apolipoprotein B in metabolically poorly controlled diabetic patients were significantly higher than control group (P<0.05). In correlation analysis of HbA(1c) to VEGF, no significant correlations were detected in metabolically well-controlled DM, but there were significant correlations between HbA(1c) and NO, MDA, ICAM levels. In correlation analysis of HbA(1c) to VEGF, NO, MDA and ICAM levels, significant correlations were detected in poorly controlled diabetics (P<0.05). CONCLUSIONS In the present study, increased levels of MDA, NO, ICAM-1 and VEGF levels showed that especially metabolically poorly controlled DM children are at high risk of atherosclerosis and vascular complications of DM and that there is a significant relationship between HbA(1c) and oxidative stress. It may be appropriate to evaluate levels of VEGF and sICAM-1 as well as markers of oxidative stress in addition to routine laboratory assessments in evaluation of type 1 DM pediatric patients.
Collapse
Affiliation(s)
- Dilara Seckin
- Firat University, Firat Medical Center, Department of Biochemistry, Elazig, Turkey.
| | | | | | | |
Collapse
|
48
|
Pala L, Cresci B, Manuelli C, Maggi E, Yamaguchi YF, Cappugi P, Rotella CM, Giannini S. Vascular endothelial growth factor receptor-2 and low affinity VEGF binding sites on human glomerular endothelial cells: Biological effects and advanced glycosilation end products modulation. Microvasc Res 2006; 70:179-88. [PMID: 16271941 DOI: 10.1016/j.mvr.2005.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 10/07/2005] [Accepted: 10/10/2005] [Indexed: 11/27/2022]
Abstract
Vascular Endothelial Growth Factor (VEGF), binding to its receptor in endothelial cells, seems to modulate the increased blood flow in the early phase of diabetic renal disease. The aim of the study was to evaluate, in a diabetic milieu, the expression, biological function and modulation of VEGF binding sites in human glomerular endothelial cells (GENC). We demonstrated the presence of VEGF binding sites with high (VEGFR-2) and low (heparan sulfate proteoglycans, HSPG) affinity. VEGF165 and VEGF121 working through VEGFR-2 stimulated nitric oxide (NO) production at low doses (0.1-1 nM), whereas only VEGF165 at high doses (10-100 nM) increased thymidine incorporation. 1 nM VEGF165 and VEGF121 induced in GENC a significant peak of inducible NO synthase (iNOS) production and, at a lower level, of endothelial NOS (eNOS). The copresence of VEGF165 with aminoguanidine (iNOS inhibitor) determined an increase of eNOS and a significant increase in thymidine incorporation. Advanced glycation end products (AGEs) working through specific receptors (RAGE) up-regulated the expression of VEGFR-2, decreased the expression of HSPG sites and reduced GENC growth. These results identify in GENC VEGFR-2 as a mediator of iNOS and eNOS release under control of VEGF, whereas HSPG binding sites seem to mediate the weak growth effect. The presence of AGEs, up-regulating the VEGFR-2 and decreasing HSPG sites might participate to the block of glomerular angiogenesis addressing the VEGF effects on glomerular permeability.
Collapse
Affiliation(s)
- Laura Pala
- Department of Clinical Pathophysiology, Endocrinology Unit, Diabetes and Metabolic Diseases Section, University of Florence, viale Pieraccini 6-501354 Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Flyvbjerg A. Inhibition and reversibility of renal changes: lessons from diabetic kidney disease. Acta Paediatr 2006; 95:83-92. [PMID: 16720472 DOI: 10.1111/j.1651-2227.2006.tb02396.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
UNLABELLED This review describes the clinical characteristics of kidney disease in patients with diabetes in terms of functional and morphological changes, and summarizes the risk factors for progression of disease and the knowledge available today on various treatment modalities. New insights into the pathogenesis of kidney disease in diabetic patients are also reviewed in the context of the nephropathy of Fabry disease. Newly recognized pathways that play a role in the development/progression of kidney disease in patients with diabetes include metabolic factors, (e.g. advanced glycation end products), intracellular signalling proteins (e.g. protein kinase C) and growth factors/cytokines (e.g. growth hormone, insulin-like growth factors, transforming growth factor beta and vascular endothelial growth factor). As classic examples of progress in our understanding of the pathogenesis of kidney disease in patients with diabetes, the relationship between two growth factor/cytokine-systems and the development of diabetic kidney disease is reviewed, including a description of well-known or potential therapeutic strategies targeting the two systems. CONCLUSION It is hoped that the new pathogenetic insights into diabetic kidney disease may facilitate the development of new drugs for the treatment of this and related kidney diseases.
Collapse
Affiliation(s)
- Allan Flyvbjerg
- Medical Department M (Diabetes and Endocrinology) and Clinical Institute, Aarhus University Hospital, Denmark.
| |
Collapse
|
50
|
Doi K, Noiri E, Nakao A, Fujita T, Kobayashi S, Tokunaga K. Functional polymorphisms in the vascular endothelial growth factor gene are associated with development of end-stage renal disease in males. J Am Soc Nephrol 2006; 17:823-30. [PMID: 16421229 DOI: 10.1681/asn.2005010094] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
This study elucidates the genetic role of vascular endothelial growth factor (VEGF) as a predisposing factor for progression of chronic kidney disease. Single-nucleotide polymorphisms were genotyped and haplotype structures were determined in the 3' untranslated region (UTR) of VEGF gene, and the distribution of each haplotype in male patients with ESRD (n=101) and healthy male control subjects (n=189) was examined. The 936C/T and 1451C/T polymorphisms in the 3' UTR were in nearly absolute linkage disequilibrium, and haplotype analysis demonstrated that they were the primary responsible single-nucleotide polymorphisms. The distribution of the 936CC-1451CC genotype was significantly more frequent among patients with ESRD than among the age-matched healthy control subjects. In addition to case-control association study, the 936CC-1451CC genotype was also associated with significantly higher plasma VEGF levels in healthy individuals, but a significant association was found only in males, not in females. We also examined the effect of the 936C-1451C haplotype on mRNA stability. Consistent with the results of plasma VEGF levels, mRNA carrying 936C-1451C haplotype showed higher stability. The 936CC-1451CC genotype in the 3' UTR showed not only susceptibility for ESRD but also higher plasma VEGF levels and mRNA stability, indicating the contribution of VEGF to chronic kidney disease progression, especially in males.
Collapse
Affiliation(s)
- Kent Doi
- Department of Nephrology & Endocrinology, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, and Department of Nephrology and Kidney and Dialysis Center, Shonan Kamakura General Hospital, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|