1
|
Essa MM, Bishir M, Bhat A, Chidambaram SB, Al-Balushi B, Hamdan H, Govindarajan N, Freidland RP, Qoronfleh MW. Functional foods and their impact on health. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:820-834. [PMID: 36908338 PMCID: PMC9998796 DOI: 10.1007/s13197-021-05193-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/30/2022]
Abstract
Functional foods play an important role in maintaining a healthy lifestyle and reducing the risk factors of various diseases. Most foods have a functional element which is responsible for improving the healthy state. All food substances such as fruits, vegetables, cereals, meat, fish, dairy contain functional ingredients. A wide range of naturally occurring substances from plant and animal sources having active components which play a role in physiological actions deserve attention for their optimal use in maintaining health. The market for functional food is keep on expanding, and the global market is projected to reach a value of at least 91 billion USD soon. Overwhelming evidence from preclinical (in vitro and in vivo) and clinical studies have shown that intake of functional foods could have an impact on the prevention of chronic diseases, especially cancer, cardiovascular diseases, gastrointestinal tract disorders and neurological diseases. Extensive research needs to be done to determine the potential health benefits for the proper application of these foods to improve health state and combat chronic disease progression. The aim of this review is to conduct a thorough literature survey, to understand the various classification of functional foods and their health benefits.
Collapse
Affiliation(s)
- Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O 34, Al-Khoud, Muscat, 123 Sultanate of Oman
| | - Muhammed Bishir
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Buthaina Al-Balushi
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Hamdan Hamdan
- Department of Physiology, Al Faisal University, Riyadh, Saudi Arabia
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Nagamaniammai Govindarajan
- Department of Food Process Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpettu, Tamil Nadu India
| | - Robert P. Freidland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY 40202 USA
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilanti, MI 48917 USA
| |
Collapse
|
2
|
Li R, Robinson M, Ding X, Geetha T, Al-Nakkash L, Broderick TL, Babu JR. Genistein: A focus on several neurodegenerative diseases. J Food Biochem 2022; 46:e14155. [PMID: 35460092 DOI: 10.1111/jfbc.14155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases are caused by the progressive loss of function or structure of nerve cells in the central nervous system. The most common neurodegenerative diseases include Alzheimer's disease, Huntington's disease, motor neuron disease, and Parkinson's disease. Although the physical or mental symptoms of neurodegenerative disease may be relieved by various treatment combinations, there are currently no strategies to directly slow or prevent neurodegeneration. Given the demographic evidence of a rapidly growing aging population and the associated prevalence of these common neurodegenerative diseases, it is paramount to develop safe and effective ways to protect against neurodegenerative diseases. Most neurodegenerative diseases share some common etiologies such as oxidative stress, neuroinflammation, and mitochondrial dysfunction. Genistein is an isoflavone found in soy products that have been shown to exhibit antioxidant, anti-inflammation, and estrogenic properties. Increasing evidence indicates the protective potential of genistein in neurodegenerative disorders. In this review, we aim to provide an overview of the role that genistein plays in delaying the development of neurodegenerative disease. PRACTICAL APPLICATIONS: Genistein is a naturally occurring isoflavone found mainly in soybean, but also green peas, legumes, and peanuts. Genistein is found to pass through the blood-brain barrier and possess a neuroprotective effect. In this review, we discuss studies in support of these actions and the underlying biological mechanisms. Together, these data indicate that genistein may hold neuroprotective effects in either delaying the onset or relieving the symptoms of neurodegenerative disease.
Collapse
Affiliation(s)
- Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Megan Robinson
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Xiaowen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | - Layla Al-Nakkash
- Department of Physiology, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Tom L Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, Alabama, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
3
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
4
|
Uddin MS, Kabir MT, Niaz K, Jeandet P, Clément C, Mathew B, Rauf A, Rengasamy KR, Sobarzo-Sánchez E, Ashraf GM, Aleya L. Molecular Insight into the Therapeutic Promise of Flavonoids against Alzheimer's Disease. Molecules 2020; 25:1267. [PMID: 32168835 PMCID: PMC7143946 DOI: 10.3390/molecules25061267] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is one of the utmost chronic neurodegenerative disorders, which is characterized from a neuropathological point of view by the aggregates of amyloid beta (Aβ) peptides that are deposited as senile plaques and tau proteins which form neurofibrillary tangles (NFTs). Even though advancement has been observed in order to understand AD pathogenesis, currently available therapeutic methods can only deliver modest symptomatic relief. Interestingly, naturally occurring dietary flavonoids have gained substantial attention due to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties as alternative candidates for AD therapy. Experimental proof provides support to the idea that some flavonoids might protect AD by interfering with the production and aggregation of Aβ peptides and/or decreasing the aggregation of tau. Flavonoids have the ability to promote clearance of Aβ peptides and inhibit tau phosphorylation by the mTOR/autophagy signaling pathway. Moreover, due to their cholinesterase inhibitory potential, flavonoids can represent promising symptomatic anti-Alzheimer agents. Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer's pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| | | | - Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan
| | - Philippe Jeandet
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Christophe Clément
- Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims CEDEX 2, France
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, Kerala 678557, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | | | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030 Besançon, France
| |
Collapse
|
5
|
Edlow AG, Guedj F, Sverdlov D, Pennings JLA, Bianchi DW. Significant Effects of Maternal Diet During Pregnancy on the Murine Fetal Brain Transcriptome and Offspring Behavior. Front Neurosci 2019; 13:1335. [PMID: 31920502 PMCID: PMC6928003 DOI: 10.3389/fnins.2019.01335] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Maternal over- and undernutrition in pregnancy plays a critical role in fetal brain development and function. The effects of different maternal diet compositions on intrauterine programing of the fetal brain is a lesser-explored area. The goal of this study was to investigate the impact of two chowmaternal diets on fetal brain gene expression signatures, fetal/neonatal growth, and neonatal and adult behavior in a mouse model. METHODS Throughout pregnancy and lactation, female C57Bl/6J mice were fed one of two standard, commercially available chow diets (pellet versus powder). The powdered chow diet was relatively deficient in micronutrients and enriched for carbohydrates and n-3 long-chain polyunsaturated fatty acids compared to the pelleted chow. RNA was extracted from embryonic day 15.5 forebrains and hybridized to whole genome expression microarrays (N = 5/maternal diet group). Functional analyses of significantly differentially expressed fetal brain genes were performed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Neonatal behavior was assessed using a validated scale (N = 62 pellet-exposed and 31 powder-exposed). Hippocampal learning, locomotor behavior, and motor coordination were assessed in a subset of adults using fear conditioning, open field testing, and Rotarod tests (N = 16 pellet-exposed, 14 powder-exposed). RESULTS Comparing powdered to pelleted chow diets, neither maternal weight trajectory in pregnancy nor embryo size differed. Maternal powdered chow diet was associated with 1647 differentially expressed fetal brain genes. Functional analyses identified significant upregulation of canonical pathways and upstream regulators involved in cell cycle regulation, synaptic plasticity, and sensory nervous system development in the fetal brain, and significant downregulation of pathways related to cell and embryo death. Pathways related to DNA damage response, brain immune response, amino acid and fatty acid transport, and dopaminergic signaling were significantly dysregulated. Powdered chow-exposed neonates were significantly longer but not heavier than pelleted chow-exposed counterparts. On neonatal behavioral testing, powdered chow-exposed neonates achieved coordination- and strength-related milestones significantly earlier, but sensory maturation reflexes significantly later. On adult behavioral testing, powdered chow-exposed offspring exhibited hyperactivity and hippocampal learning deficits. CONCLUSION In wild-type offspring, two diets that differed primarily with respect to micronutrient composition had significant effects on the fetal brain transcriptome, neonatal and adult behavior. These effects did not appear to be mediated by alterations in gross maternal nutritional status nor fetal/neonatal weight. Maternal dietary content is an important variable to consider for investigators evaluating fetal brain development and offspring behavior.
Collapse
Affiliation(s)
- Andrea G. Edlow
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Deanna Sverdlov
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, United States
| | | | - Diana W. Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|
6
|
Ayaz M, Sadiq A, Junaid M, Ullah F, Ovais M, Ullah I, Ahmed J, Shahid M. Flavonoids as Prospective Neuroprotectants and Their Therapeutic Propensity in Aging Associated Neurological Disorders. Front Aging Neurosci 2019; 11:155. [PMID: 31293414 PMCID: PMC6606780 DOI: 10.3389/fnagi.2019.00155] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/11/2019] [Indexed: 01/13/2023] Open
Abstract
Modern research has revealed that dietary consumption of flavonoids and flavonoids-rich foods significantly improve cognitive capabilities, inhibit or delay the senescence process and related neurodegenerative disorders including Alzheimer’s disease (AD). The flavonoids rich foods such as green tea, cocoa, blue berry and other foods improve the various states of cognitive dysfunction, AD and dementia-like pathological alterations in different animal models. The mechanisms of flavonoids have been shown to be mediated through the inhibition of cholinesterases including acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), β-secretase (BACE1), free radicals and modulation of signaling pathways, that are implicated in cognitive and neuroprotective functions. Flavonoids interact with various signaling protein pathways like ERK and PI3-kinase/Akt and modulate their actions, thereby leading to beneficial neuroprotective effects. Moreover, they enhance vascular blood flow and instigate neurogenesis particularly in the hippocampus. Flavonoids also hamper the progression of pathological symptoms of neurodegenerative diseases by inhibiting neuronal apoptosis induced by neurotoxic substances including free radicals and β-amyloid proteins (Aβ). All these protective mechanisms contribute to the maintenance of number, quality of neurons and their synaptic connectivity in the brain. Thus flavonoids can thwart the progression of age-related disorders and can be a potential source for the design and development of new drugs effective in cognitive disorders.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan.,Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Muhammad Ovais
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Ikram Ullah
- Suliman Bin Abdullah Aba-Alkhail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Jawad Ahmed
- Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology (SUIT), Peshawar, Pakistan
| |
Collapse
|
7
|
Long-term impact of intrauterine neuroinflammation and treatment with magnesium sulphate and betamethasone: Sex-specific differences in a preterm labor murine model. Sci Rep 2017; 7:17883. [PMID: 29263436 PMCID: PMC5738437 DOI: 10.1038/s41598-017-18197-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/06/2017] [Indexed: 11/17/2022] Open
Abstract
Preterm infants are at significantly increased risk for lifelong neurodevelopmental disability with male offspring disproportionately affected. Corticosteroids (such as betamethasone) and magnesium sulphate (MgSO4) are administered to women in preterm labor to reduce neurologic morbidity. Despite widespread use of MgSO4 in clinical practice, its effects on adult offspring are not well known nor have sex-specific differences in therapeutic response been explored. The objective of our study was to examine the long-term effects of perinatal neuroinflammation and the effectiveness of prenatal MgSO4/betamethasone treatments between males and females in a murine model via histologic and expression analyses. Our results demonstrate that male but not female offspring exposed to intrauterine inflammation demonstrated impaired performance in neurodevelopmental testing in early life assessed via negative geotaxis, while those exposed to injury plus treatment fared better. Histologic analysis of adult male brains identified a significant reduction in hippocampal neural density in the injured group compared to controls. Evaluation of key neural markers via qRT-PCR demonstrated more profound differences in gene expression in adult males exposed to injury and treatment compared to female offspring, which largely showed resistance to injury. Prenatal treatment with MgSO4/betamethasone confers long-term benefits beyond cerebral palsy prevention with sex-specific differences in response.
Collapse
|
8
|
Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 2017; 157:188-211. [PMID: 26891883 PMCID: PMC4985492 DOI: 10.1016/j.pneurobio.2015.12.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022]
Abstract
There is ample empirical evidence to support the notion that the biological impacts of estrogen extend beyond the gonads to other bodily systems, including the brain and behavior. Converging preclinical findings have indicated a neuroprotective role for estrogen in a variety of experimental models of cognitive function and brain insult. However, the surprising null or even detrimental findings of several large clinical trials evaluating the ability of estrogen-containing hormone treatments to protect against age-related brain changes and insults, including cognitive aging and brain injury, led to hesitation by both clinicians and patients in the use of exogenous estrogenic treatments for nervous system outcomes. That estrogen-containing therapies are used by tens of millions of women for a variety of health-related applications across the lifespan has made identifying conditions under which benefits with estrogen treatment will be realized an important public health issue. Here we provide a summary of the biological actions of estrogen and estrogen-containing formulations in the context of aging, cognition, stroke, and traumatic brain injury. We have devoted special attention to highlighting the notion that estrogen appears to be a conditional neuroprotectant whose efficacy is modulated by several interacting factors. By developing criteria standards for desired beneficial peripheral and neuroprotective outcomes among unique patient populations, we can optimize estrogen treatments for attenuating the consequences of, and perhaps even preventing, cognitive aging and brain injury.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| | - C M Brown
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, United States.
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Pediatrics, West Virginia University, Morgantown, WV 26506, United States.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
9
|
Molecular and Therapeutic Targets of Genistein in Alzheimer's Disease. Mol Neurobiol 2016; 54:7028-7041. [PMID: 27796744 DOI: 10.1007/s12035-016-0215-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a devastating brain disorder characterized by an increased level of amyloid-beta (Aβ) peptide deposition and neuronal cell death leading to an impairment of learning and thinking skills. The Aβ deposition is a key factor in senile plaques of the AD brain which cause the elevation of intracellular calcium ions and the production of formidable free radicals, both of which greatly contribute to the AD-associated cascade, leading to unstoppable neuronal loss in the hippocampal region of the brain. Natural products are currently considered as an alternative strategy for the discovery of novel multipotent drugs against AD. They include the naturally occurring dietary soy isoflavone genistein which has been recognized to possess several health-promoting effects. Genistein has been mainly focused because of its potential on amelioration of Aβ-induced impairment and its antioxidant capacity to scavenge the free radicals produced in AD. It can also directly interact with the targeted signaling proteins and stabilize their activity to prevent AD. An improved understanding of the direct interactions between genistein and target proteins would contribute to the further development of AD treatment. This review mainly focuses on molecular targets and the therapeutic effects regulated by genistein, which has the ability to directly target the Aβ peptide and to control its activity involved in intracellular signaling pathways, which otherwise would lead to neuronal death in the hippocampal region of the AD brain.
Collapse
|
10
|
Tujioka K, Thanapreedawat P, Yamada T, Yokogoshi H, Horie K, Kim M, Tsutsui K, Hayase K. Effect of dietary γ-aminobutyric acid on the nerve growth factor and the choline acetyltransferase in the cerebral cortex and hippocampus of ovariectomized female rats. J Nutr Sci Vitaminol (Tokyo) 2014; 60:60-5. [PMID: 24759261 DOI: 10.3177/jnsv.60.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The brain protein synthesis and the plasma concentration of growth hormone (GH) is sensitive to the dietary γ-aminobutyric acid (GABA) in ovariectomized female rats; however, the role of dietary GABA on biomarkers including nerve growth factor (NGF) and choline acetyltransferase for the function of cholinergic neurons remains unknown in ovariectomized female rats. The purpose of this study was to determine whether the dietary GABA affects the concentration and mRNA level of NGF, and the activity of choline acetyltransferase in the brains of ovariectomized female rats. Experiments were done on two groups of 24-wk-old ovariectomized female rats given 0 or 0.5% GABA added to a 20% casein diet. The concentrations of NGF and activities of choline acetyltransferase in the cerebral cortex and hippocampus, and mRNA level of NGF in the hippocampus increased significantly with the 20% casein+0.5% GABA compared with the 20% casein diet alone. In the hippocampus, the mRNA level of NGF significantly correlated with the NGF concentration (r=0.714, p<0.01). These results suggest that the administration of GABA to ovariectomized female rats is likely to control the mRNA level and concentration of NGF and cause an increase in the activity of choline acetyltransferase in the brains.
Collapse
Affiliation(s)
- Kazuyo Tujioka
- Faculty of Early Childhood Care and Education, Ohkagakuen University
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Q, Ge X, Tian X, Zhang Y, Zhang J, Zhang P. Soy isoflavone: The multipurpose phytochemical (Review). Biomed Rep 2013; 1:697-701. [PMID: 24649012 DOI: 10.3892/br.2013.129] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/21/2013] [Indexed: 01/17/2023] Open
Abstract
Soy isoflavones are compounds found in soybean and soybean products. They have been reported to possess numerous physiological properties, such as antitumor, anti-menopausal (female) osteoporosis and anti-aging. They have also been reported to improve learning and memory skills in menopausal women and aid in the prevention and treatment of heart disease, diabetes and Kawasaki disease (KD). In this review, the effects of soy isoflavones on various diseases were analyzed. Based on the analysis, it was hypothesized that the function of soybean isoflavones in the prevention and treatment of various diseases results from their phytoestrogen and antioxidant properties. However, due to their phytoestrogen properties, it is recommended that the risks of soy isoflavone intake as food and/or medical treatment be further evaluated.
Collapse
Affiliation(s)
- Qinglu Wang
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Xiaoyue Ge
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Xuewen Tian
- Shandong Research Center of Sports Science, Jinan, Shandong 250102, P.R. China
| | - Yujun Zhang
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Jie Zhang
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| | - Pingping Zhang
- Key Laboratory of Biomedical Engineering and Technology of Shandong High School, Shandong Wanjie Medical College, Zibo, Shandong 255213, P.R. China
| |
Collapse
|
12
|
Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 2013; 18:1818-92. [PMID: 22794138 PMCID: PMC3619154 DOI: 10.1089/ars.2012.4581] [Citation(s) in RCA: 1658] [Impact Index Per Article: 138.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human intervention trials have provided evidence for protective effects of various (poly)phenol-rich foods against chronic disease, including cardiovascular disease, neurodegeneration, and cancer. While there are considerable data suggesting benefits of (poly)phenol intake, conclusions regarding their preventive potential remain unresolved due to several limitations in existing studies. Bioactivity investigations using cell lines have made an extensive use of both (poly)phenolic aglycones and sugar conjugates, these being the typical forms that exist in planta, at concentrations in the low-μM-to-mM range. However, after ingestion, dietary (poly)phenolics appear in the circulatory system not as the parent compounds, but as phase II metabolites, and their presence in plasma after dietary intake rarely exceeds nM concentrations. Substantial quantities of both the parent compounds and their metabolites pass to the colon where they are degraded by the action of the local microbiota, giving rise principally to small phenolic acid and aromatic catabolites that are absorbed into the circulatory system. This comprehensive review describes the different groups of compounds that have been reported to be involved in human nutrition, their fate in the body as they pass through the gastrointestinal tract and are absorbed into the circulatory system, the evidence of their impact on human chronic diseases, and the possible mechanisms of action through which (poly)phenol metabolites and catabolites may exert these protective actions. It is concluded that better performed in vivo intervention and in vitro mechanistic studies are needed to fully understand how these molecules interact with human physiological and pathological processes.
Collapse
Affiliation(s)
- Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Human Nutrition Unit, Department of Food Science, University of Parma, Parma, Italy
| | | | | | | | | | | |
Collapse
|
13
|
Gao J, Inagaki Y, Liu Y. Research progress on flavonoids isolated from traditional Chinese medicine in treatment of Alzheimer's disease. Intractable Rare Dis Res 2013; 2:3-10. [PMID: 25343094 PMCID: PMC4204571 DOI: 10.5582/irdr.2013.v2.1.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/16/2013] [Accepted: 01/27/2013] [Indexed: 01/06/2023] Open
Abstract
Alzheimer's disease (AD) is a severe condition in aging countries. The currently used drugs including donepezil, rivastigmine, galantamine, and memantine are effective in managing the symptoms. However, they are hardly capable of preventing, halting, or reversing the disease. In the long history of development of traditional Chinese medicine, much experience has accumulated and is summarized in treatment of diseases that correspond to the concept of AD. In recent years, exploration of natural active ingredients from medicinal herbs for treatment of AD has attracted substantial attention. Some flavonoids have been revealed to have a variety of biological actions such as scavenging free radicals, inhibiting neuron apoptosis, and nurturing neuronal cells that constitute the basis for treatment of AD. In this article, we review recent research progress on flavonoids isolated from traditional Chinese medicine against AD and their underlying mechanisms.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Address correspondence to: Dr. Jianjun Gao, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. E-mail:
| | - Yoshinori Inagaki
- The Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yang Liu
- Department of Anesthesia, Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| |
Collapse
|
14
|
Hurtado O, Ballesteros I, Cuartero M, Moraga A, Pradillo J, Ramírez-Franco J, Bartolomé-Martín D, Pascual D, Torres M, Sánchez-Prieto J, Salom J, Lizasoain I, Moro M. Daidzein has neuroprotective effects through ligand-binding-independent PPARγ activation. Neurochem Int 2012; 61:119-27. [DOI: 10.1016/j.neuint.2012.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/27/2012] [Accepted: 04/06/2012] [Indexed: 12/20/2022]
|
15
|
Pan M, Han H, Zhong C, Geng Q. Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in H19-7 neural cell line. J Nutr Health Aging 2012; 16:389-94. [PMID: 22499464 DOI: 10.1007/s12603-011-0140-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Estrogen replacement therapy (ERT) reduces the risk of Alzheimer's disease and symptoms in postmenopausal and elderly women. However, ERT is associated with increased risk of uterine and breast cancer. Dietary phytoestrogens have been suggested as a potential alternative to ERT, while little information is available regarding the effects and the underlying mechanisms of such treatment on central neuron function. The present study aimed to determine the effects of phytoestrogens including genistein and daidzein on the proliferation and survival of the hippocampus neural cells, which are of importance in learning and memory function. MEASUREMENTS H19-7/IGF-IR neural cell line was cultured in DMEM absented of serum for 72 h, and treated with various concentrations of genistein, daidzein or 17β-estradiol. Neuronal cell viability and proliferation were determined by MTT and BrdU assay, respectively Cell cycle analysis was performed using flow cytometry. The effects of genistein and daidzein on brain-derived neurotrophic factor (BDNF) mRNA and protein expression were determined by RT-PCR and ELISA, respectively. The effect of Trk receptors inhibitor on genistein and daidzein - induced hippocampus neuronal cell proliferation was also examined. RESULTS 17β-estradiol, genistein and daidzein ranged from 20 nM to 2000 nM significantly promoted hippocampus neuronal cell viability and proliferation. Similar to the effect of 17β-estradiol, genistein and daidzein induced an increase in the percentage of cells in S phase. Genistein and daidzein significantly increased the expression of BDNF mRNA and protein levels. The effect of genistien and daidzein on hippocampus neuronal proliferation was blocked by K252a, a selective Trk receptors inhibitor. CONCLUSION This study concluded that genistein and daidzein improved hippocampus neuronal cell viability and proliferation in vitro. These neuroprotective effects might be mediated by BDNF-Trk pathway.
Collapse
Affiliation(s)
- M Pan
- Department of Nutrition, Guangdong Academy of Medical Sciences, Guangdong General Hospital, Guangzhou, P R China.
| | | | | | | |
Collapse
|
16
|
The neuroprotective potential of flavonoids: a multiplicity of effects. GENES AND NUTRITION 2011; 3:115-26. [PMID: 18937002 DOI: 10.1007/s12263-008-0091-4] [Citation(s) in RCA: 356] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Flavonoids exert a multiplicity of neuroprotective actions within the brain, including a potential to protect neurons against injury induced by neurotoxins, an ability to suppress neuroinflammation, and the potential to promote memory, learning and cognitive function. These effects appear to be underpinned by two common processes. Firstly, they interact with critical protein and lipid kinase signalling cascades in the brain leading to an inhibition of apoptosis triggered by neurotoxic species and to a promotion of neuronal survival and synaptic plasticity. Secondly, they induce beneficial effects on the vascular system leading to changes in cerebrovascular blood flow capable of causing angiogenesis, neurogenesis and changes in neuronal morphology. Through these mechanisms, the consumption of flavonoid-rich foods throughout life holds the potential to limit neurodegeneration and to prevent or reverse age-dependent loses in cognitive performance. The intense interest in the development of drugs capable of enhancing brain function means that flavonoids may represent important precursor molecules in the quest to develop of a new generation of brain enhancing drugs.
Collapse
|
17
|
Bansal N, Parle M. Effect of soybean supplementation on the memory of alprazolam-induced amnesic mice. J Pharm Bioallied Sci 2011; 2:144-7. [PMID: 21814450 PMCID: PMC3147100 DOI: 10.4103/0975-7406.67001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/31/2010] [Accepted: 05/15/2010] [Indexed: 02/03/2023] Open
Abstract
Soybean, Glycine max (L.) Merr. (Leguminoseae), is known as golden bean. It contains vegetable protein, oligosaccharide, dietary fiber, vitamins, isoflavones and minerals. Earlier studies have demonstrated a cholesterol lowering, skin protective, antitumour, antidiabetic and antioxidative potential of soybean. Soy isoflavones are also utilized as estrogen replacement therapy in postmenopausal women. The present study was undertaken to investigate the effect of soybean on memory of mice when consumed along with diet. Soybean was administered chronically for 60 consecutive days as three soybean diets viz. Soy2, Soy5, Soy10. These diet contains soybean in normal diet at concentration of 2%, 5%, 10% w/w respectively. Passive avoidance paradigm and elevated plus maze served as exteroceptive behavioral models for testing memory. Alprazolam (0.5 mg/kg; i.p.) induced amnesia served as interoceptive behavioral model. The administration of soybean significantly reversed alprazolam-induced amnesia in a dose-dependent manner as indicated by the increased step down latency of mice using passive avoidance paradigm and increased transfer latency using elevated plus maze. Theses results suggest that consumption of soybean in diet may not only improve memory but also reverse the memory deficits, owing to its multifarious activities. It would be worthwhile to explore the potential of this nutrient in the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Nitin Bansal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar, India
| | | |
Collapse
|
18
|
Alonso A, González-Pardo H, Garrido P, Conejo NM, Llaneza P, Díaz F, del Rey CG, González C. Acute effects of 17 β-estradiol and genistein on insulin sensitivity and spatial memory in aged ovariectomized female rats. AGE (DORDRECHT, NETHERLANDS) 2010; 32:421-434. [PMID: 20467821 PMCID: PMC2980599 DOI: 10.1007/s11357-010-9148-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 04/26/2010] [Indexed: 05/29/2023]
Abstract
Aging is characterized by decline in metabolic function and insulin resistance, and both seem to be in the basis of neurodegenerative diseases and cognitive dysfunction. Estrogens prevent age-related changes, and phytoestrogens influence learning and memory. Our hypothesis was that estradiol and genistein, using rapid-action mechanisms, are able to modify insulin sensitivity, process of learning, and spatial memory. Young and aged ovariectomized rats received acute treatment with estradiol or genistein. Aged animals were more insulin-resistant than young. In each age, estradiol and genistein-treated animals were less insulin-resistant than the others, except in the case of young animals treated with high doses of genistein. In aged rats, no differences between groups were found in spatial memory test, showing a poor performance in the water maze task. However, young females treated with estradiol or high doses of genistein performed well in spatial memory task like the control group. Only rats treated with high doses of genistein showed an optimal spatial memory similar to the control group. Conversely, acute treatment with high doses of phytoestrogens improved spatial memory consolidation only in young rats, supporting the critical period hypothesis for the beneficial effects of estrogens on memory. Therefore, genistein treatment seems to be suitable treatment in aged rats in order to prevent insulin resistance but not memory decline associated with aging. Acute genistein treatment is not effective to restore insulin resistance associated to the early loss of ovarian function, although it can be useful to improve memory deficits in this condition.
Collapse
Affiliation(s)
- Ana Alonso
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | - Héctor González-Pardo
- Psychology Department, Laboratory of Psychobiology, University of Oviedo, Oviedo, Spain
| | - Pablo Garrido
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M. Conejo
- Psychology Department, Laboratory of Psychobiology, University of Oviedo, Oviedo, Spain
| | - Plácido Llaneza
- Gynaecology Department, Central University Hospital of Asturias, Oviedo, Spain
| | - Fernando Díaz
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| | | | - Celestino González
- Department of Functional Biology. Physiology Area, University of Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
| |
Collapse
|
19
|
Bimonte-Nelson HA, Acosta JI, Talboom JS. Neuroscientists as cartographers: mapping the crossroads of gonadal hormones, memory and age using animal models. Molecules 2010; 15:6050-105. [PMID: 20877209 PMCID: PMC3126862 DOI: 10.3390/molecules15096050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/24/2010] [Accepted: 08/30/2010] [Indexed: 11/17/2022] Open
Abstract
Cognitive function is multidimensional and complex, and research in multiple species indicates it is considerably impacted by age and gonadal hormone milieu. One domain of cognitive function particularly susceptible to age-related decrements is spatial memory. Gonadal hormones can alter spatial memory, and they are potent modulators of brain microstructure and function in many of the same brain areas affected by aging. In this paper, we review decades of animal and human literature to support a tertiary model representing interactions between gonadal hormones, spatial cognition and age given that: 1) gonadal hormones change with age, 2) age impacts spatial learning and memory, and 3) gonadal hormones impact spatial learning and memory. While much has been discovered regarding these individual tenets, the compass for future aging research points toward clarifying the interactions that exist between these three points, and understanding mediating variables. Indeed, identifying and aligning the various components of the complex interactions between these tenets, including evaluations using basic science, systems, and clinical perspectives, is the optimal approach to attempt to converge the many findings that may currently appear contradictory. In fact, as discoveries are being made it is becoming clear that the findings across studies that appear contradictory are not contradictory at all. Rather, there are mediating variables that are influencing outcome and affecting the extent, and even the direction, of the effects that gonadal hormones have on cognition during aging. These mediating variables are just starting to be understood. By aligning basic scientific discoveries with clinical interpretations, we can maximize the opportunities for discoveries and subsequent interventions to allow individuals to "optimize their aging" and find their own map to cognitive health as aging ensues.
Collapse
Affiliation(s)
- Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| | - Jazmin I. Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| | - Joshua S. Talboom
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006, USA; E-Mails: (J.I.A.); (J.S.T.)
| |
Collapse
|
20
|
Sarkaki A, Badavi M, Aligholi H, Moghaddam AZ. Preventive effects of soy meal (+/- isoflavone) on spatial cognitive deficiency and body weight in an ovariectomized animal model of Parkinson's disease. Pak J Biol Sci 2010; 12:1338-45. [PMID: 20128500 DOI: 10.3923/pjbs.2009.1338.1345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of the present study was to investigate the preventive effect of 4 weeks soy meal (+/- isoflavone) on post-menopausal cognitive deficiency and body weight alteration in ovariectomized (OVX)-6-hydroxy dopamine (6-OHDA)-induced animal model of Parkinson's Disease (PD) which mimics status in menopause women. Female Wistar rats (250-300 g, 5-6 months old) were divided into 2 main groups. (1) Control; (2) OVX; included 5 subgroups that were pre-treated with 10 or 20 g soy with isoflavone in 30 g daily diet (10 and 20 groups, respectively), 10 or 20 g soy without isoflavone in 30 g daily diet (-10 and -20 groups, respectively) and 0 g soy (sham treated group) during 4 weeks after OVX. To induce animal model ofPD in main second group (OVX rats) the substantia nigra pars compacta (SNpc) was lesioned by 6-hydroxydopamine (6-OHDA) (8 microg kg(-1) 4 microL(-1) normal saline contains 0.1% ascorbate). All animals were trained in Morris water maze for evaluating the spatial learning and memory. The results indicated that pre-treatment of Parkinsonian rats with different doses of dietary soy meal (+/- isoflavone) improved the spatial learning and memory and prevents increasing the body weight after menopause significantly. Our data show that, long-duration dietary soy meal may have the potential neuroprotective effect against post-menopausal cognitive deficiency induced by degeneration of nigrostriatal dopaminergic system and constant body weight during post-menopausal life cycle.
Collapse
Affiliation(s)
- A Sarkaki
- Physiology Research Center, Department of Physiology, Faculty of Medicine, Ahvaz Jondishpour University of Medical Sciences, Ahvaz, Iran
| | | | | | | |
Collapse
|
21
|
Neese SL, Wang VC, Doerge DR, Woodling KA, Andrade JE, Helferich WG, Korol DL, Schantz SL. Impact of dietary genistein and aging on executive function in rats. Neurotoxicol Teratol 2010; 32:200-11. [PMID: 19945528 PMCID: PMC2860723 DOI: 10.1016/j.ntt.2009.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 11/10/2009] [Accepted: 11/19/2009] [Indexed: 12/29/2022]
Abstract
Genistein is an estrogenic soy isoflavone widely promoted for healthy aging, but its effects on cognitive function are not well-understood. We examined the cognitive effects of once daily oral genistein treatment at two doses (approximately 162 microg/kg/day low dose and a 323 microg/kg/day high dose) in ovariectomized young (7 month), middle-aged (16 month), and old (22 month) Long-Evans rats. Operant tasks including delayed spatial alternation (DSA), differential reinforcement of low rates of responding (DRL), and reversal learning that tap prefrontal cortical function were used to assess working memory, inhibitory control/timing, and strategy shifting, respectively. At the conclusion of cognitive testing, brains were collected and relative densities of D1 and D2 dopamine receptors and dopamine transporter (DAT) were measured in the prefrontal cortex. On the DSA task, the high dose old group performed worse than both the high dose young and middle-aged groups. On the DRL task, the high dose of genistein resulted in a marginally significant impairment in the ratio of reinforced to non-reinforced lever presses. This effect was present across age groups. Age effects were also found as old rats performed more poorly than the young and middle-aged rats on the DSA overall. In contrast, middle-aged and old rats made fewer lever presses on the DRL than did the young rats, a pattern of behavior associated with better performance on this task. Moreover, while DAT levels overall decreased with age, genistein treatment produced an increase in DAT expression in old rats relative to similarly aged control rats. D1 and D2 densities did not differ between genistein dose groups or by age. These results highlight the fact that aspects of executive function are differentially sensitive to both genistein exposure and aging and suggest that altered prefrontal dopamine function could potentially play a role in mediating these effects.
Collapse
Affiliation(s)
- Steven L. Neese
- Department of Veterinary Sciences, University of Illinois at Urbana-Champaign. 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign. 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Victor C. Wang
- Department of Veterinary Sciences, University of Illinois at Urbana-Champaign. 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign. 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Daniel R. Doerge
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration. 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | - Kellie A. Woodling
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration. 3900 NCTR Road, Jefferson, AR 72079-9502, USA
| | - Juan E. Andrade
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign. 905 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - William G. Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign. 905 S. Goodwin Avenue, Urbana, IL 61801, USA
| | - Donna L. Korol
- Neuroscience Program, University of Illinois at Urbana-Champaign. 505 South Goodwin Avenue, Urbana, IL 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign. 603 East Daniel Street, Champaign, IL 61820, USA
- Institute for Genomic Biology Department of Veterinary Sciences, University of Illinois at Urbana-Champaign. 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Susan L. Schantz
- Department of Veterinary Sciences, University of Illinois at Urbana-Champaign. 2001 S. Lincoln Avenue, Urbana, IL 61802, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign. 505 South Goodwin Avenue, Urbana, IL 61801, USA
| |
Collapse
|
22
|
Engler-Chiurazzi E, Tsang C, Nonnenmacher S, Liang WS, Corneveaux JJ, Prokai L, Huentelman MJ, Bimonte-Nelson HA. Tonic Premarin dose-dependently enhances memory, affects neurotrophin protein levels and alters gene expression in middle-aged rats. Neurobiol Aging 2009; 32:680-97. [PMID: 19883953 DOI: 10.1016/j.neurobiolaging.2009.09.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 08/26/2009] [Accepted: 09/27/2009] [Indexed: 01/19/2023]
Abstract
Premarin™ is the most commonly prescribed estrogenic component of hormone therapy, given since 1942. The current study is the first examining cognitive effects of tonic Premarin treatment in an animal model. Middle-aged ovariectomized (Ovx) rats received vehicle or one of three doses of Premarin (12, 24 or 36μg daily). Rats were tested on a spatial working and reference memory maze battery. Both medium- and high-dose Premarin enhanced memory retention, while low-dose Premarin impaired learning and memory retention. Correlations with serum hormone levels showed that as the ratio of estrone:17β-estradiol increased, animals tended to show better working memory performance. Taken together with the dissociation of dose-specific estrogenic profiles, results suggest that higher levels of estrone, in the presence of 17β-estradiol concentrations higher than that of Ovx levels, may be beneficial for memory. Moreover, Premarin exerted dose and brain-region specific effects on BDNF and NGF protein levels, with most marked changes in cingulate and perirhinal cortices. Hippocampal gene expression profiling demonstrated significant Premarin-induced transcriptional changes in genes linked to plasticity and cognition. These findings indicate that Premarin can impact memory and the brain, and that dosing should be recognized as a clinically relevant factor possibly affecting the direction and efficacy of cognitive outcome.
Collapse
|
23
|
Maki PM, Rubin LH, Fornelli D, Drogos L, Banuvar S, Shulman LP, Geller SE. Effects of botanicals and combined hormone therapy on cognition in postmenopausal women. Menopause 2009; 16:1167-77. [PMID: 19590458 PMCID: PMC2783198 DOI: 10.1097/gme.0b013e3181ace484] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to characterize the effects of red clover, black cohosh, and combined hormone therapy on cognitive function in comparison to placebo in women with moderate to severe vasomotor symptoms. METHODS In a phase II randomized, double-blind, placebo-controlled study, 66 midlife women (of 89 from a parent study; mean age, 53 y) with 35 or more weekly hot flashes were randomized to receive red clover (120 mg), black cohosh (128 mg), 0.625 mg conjugated equine estrogens plus 2.5 mg medroxyprogesterone acetate (CEE/MPA), or placebo. Participants completed measures of verbal memory (primary outcome) and other cognitive measures (secondary outcomes) before and during the 12th treatment month. A subset of 19 women completed objective, physiological measures of hot flashes using ambulatory skin conductance monitors. RESULTS Neither of the botanical treatments had an impact on any cognitive measure. Compared with placebo, CEE/MPA led to a greater decline in verbal learning (one of five verbal memory measures). This effect just missed statistical significance (P = 0.057) in unadjusted analyses but reached significance (P = 0.02) after adjusting for vasomotor symptoms. Neither of the botanical treatment groups showed a change in verbal memory that differed from the placebo group (Ps > 0.28), even after controlling for improvements in hot flashes. In secondary outcomes, CEE/MPA led to a decrease in immediate digit recall and an improvement in letter fluency. Only CEE/MPA significantly reduced objective hot flashes. CONCLUSIONS Results indicate that a red clover (phytoestrogen) supplement or black cohosh has no effects on cognitive function. CEE/MPA reduces objective hot flashes but worsens some aspects of verbal memory.
Collapse
Affiliation(s)
- Pauline M Maki
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Cytoskeletal changes underlie estrogen's acute effects on synaptic transmission and plasticity. J Neurosci 2009; 29:12982-93. [PMID: 19828812 DOI: 10.1523/jneurosci.3059-09.2009] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Estrogen, in addition to its genomic effects in brain, causes rapid and reversible changes to synaptic operations. We report here that these acute actions are due to selective activation of an actin-signaling cascade normally used in the production of long-term potentiation (LTP). Estrogen, or a selective agonist of the steroid's beta-receptor, caused a modest increase in fast glutamatergic transmission and a pronounced facilitation of LTP in adult hippocampal slices; both effects were completely eliminated by latrunculin, a toxin that prevents actin filament assembly. Estrogen also increased spine concentrations of filamentous actin and strongly enhanced its polymerization in association with LTP. A search for the origins of these effects showed that estrogen activates the small GTPase RhoA and phosphorylates (inactivates) the actin severing protein cofilin, a downstream target of RhoA. Moreover, an antagonist of RhoA kinase (ROCK) blocked estrogen's synaptic effects. Estrogen thus emerges as a positive modulator of a RhoA>ROCK>LIM kinase>cofilin pathway that regulates the subsynaptic cytoskeleton. It does not, however, strongly affect a second LTP-related pathway, involving the GTPases Rac and Cdc42 and their effector p21-activated kinase, which may explain why its acute effects are reversible. Finally, ovariectomy depressed RhoA activity, spine cytoskeletal plasticity, and LTP, whereas brief infusions of estrogen rescued plasticity, suggesting that the deficits in plasticity arise from acute, as well as genomic, consequences of hormone loss.
Collapse
|
25
|
Abstract
BACKGROUND Clinical trials yield discrepant information about the impact of hormone therapy on verbal memory and executive function. This issue is clinically relevant because declines in verbal memory are the earliest predictor of Alzheimer's disease and declines in executive function are central to some theories of normal, age-related changes in cognition. METHODS We conducted a systematic review of randomized clinical trials of hormone therapy (i.e. oral, transdermal, i.m.) and verbal memory, distinguishing studies in younger (i.e. <or=65 years of age; n = 9) versus older (i.e. >65 years; n = 7) women and studies involving estrogen alone versus estrogen plus progestogen. Out of 32 placebo-controlled trials, 17 were included (13 had no verbal memory measures and 2 involved cholinergic manipulations). We also provide a narrative review of 25 studies of executive function (two trials), since there are insufficient clinical trial data for systematic review. RESULTS There is some evidence for a beneficial effect of estrogen alone on verbal memory in younger naturally post-menopausal women and more consistent evidence from small-n studies of surgically post-menopausal women. There is stronger evidence of a detrimental effect of conjugated equine estrogen plus medroxyprogesterone acetate on verbal memory in younger and older post-menopausal women. Observational studies and pharmacological models of menopause provide initial evidence of improvements in executive function with hormone therapy. CONCLUSIONS Future studies should include measures of executive function and should address pressing clinical questions; including what formulation of combination hormone therapy is cognitively neutral/beneficial, yet effective in treating hot flashes in the early post-menopause.
Collapse
Affiliation(s)
- Pauline M Maki
- Neuropsychiatric Institute, MC 913, University of Illinois at Chicago, 912 South Wood Street, Chicago, IL 60612, USA.
| | | |
Collapse
|
26
|
Abstract
Although the incidence of HIV in the United States is higher among men compared to women, the global proportion of women versus men who are infected has been approximately 50% since the late 1990s. Women have been under-represented in neuropsychological studies of HIV. A small number of studies have reported a significantly higher prevalence of neurocognitive impairment among HIV+ women compared to HIV- controls regardless of symptom status and with or without an AIDS diagnosis. Impairment was most evident on psychomotor tasks. The risk of neuropsychological impairment was increased among HIV+ women not on antiretroviral therapy. Age and depressive symptoms also increase neurocognitive risk. New neurocognitive studies of ovarian steroid hormones, PTSD and other psychiatric conditions are critical for addressing potential female-specific aspects of HIV-Associated Neurocognitive Disorder. Such studies will also address questions regarding involvement of the hippocampus and verbal memory, which may be of particular significance among HIV+ women.
Collapse
|
27
|
Lee YB, Lee KH, Sohn HS, Lee SJ, Cho KH, Kang IJ, Kim DW, Shin YK, Pai T, Hwang IK, Won MH. Effects of soy phytoestrogens on reference memory and neuronal cholinergic enzymes in ovariectomized rats. J Med Food 2009; 12:64-70. [PMID: 19298197 DOI: 10.1089/jmf.2007.0633] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of soy phytoestrogens on Morris water maze (MWM) performance and neuronal cholinergic enzyme activities and immunoreactivity were studied in ovariectomized (OVX) rats. The rats were assigned to four groups fed control diet (CD), 3.9 mg/kg 17beta-estradiol diet (E2), 263.4 mg/kg soy phytoestrogens diet (SP1), and 526.9 mg/kg soy phytoestrogens diet (SP2). In the MWM task, escape latency and path length were significantly less in the E2 and SP2 groups than in the CD group on the second day. Choline acetyltransferase (ChAT) activity in the cerebral cortex and ChAT immunoreactivity in the diagonal band of Broca were significantly greater in the E2, SP1, and SP2 groups than in the CD group. Acetylcholinesterase activity in the hippocampus in the E2, SP1, and SP2 groups was significantly lower than in the CD group. This study suggests that soy phytoestrogens affect the reference memory and neuronal cholinergic system in OVX rats.
Collapse
Affiliation(s)
- Yoon-Bok Lee
- Central Research Institute, Dr. Chung's Food Co. Ltd., Cheongju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
TUJIOKA K, OHSUMI M, HORIE K, KIM M, HAYASE K, YOKOGOSHI H. Dietary γ-Aminobutyric Acid Affects the Brain Protein Synthesis Rate in Ovariectomized Female Rats. J Nutr Sci Vitaminol (Tokyo) 2009; 55:75-80. [DOI: 10.3177/jnsv.55.75] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
|
30
|
Monteiro SC, de Mattos CB, Ben J, Netto CA, Wyse ATS. Ovariectomy impairs spatial memory: prevention and reversal by a soy isoflavone diet. Metab Brain Dis 2008; 23:243-53. [PMID: 18648916 DOI: 10.1007/s11011-008-9093-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/01/2008] [Indexed: 02/05/2023]
Abstract
Since a previous study has shown that ovariectomy impairs spatial memory, we, herein, investigate the influence of pre- and post-treatment with a soy diet on the effects elicited by ovariectomy on spatial memory. In the pre-treatment, 20-day-old female Wistar rats were first fed for 60 days on a standard diet with casein (control) or a soy diet. At 80 days of age, the animals were assigned to one of the following groups: sham (submitted to surgery without removal of ovaries) and ovariectomized. One week after surgery, the rats were submitted to behavioral testing. In the post-treatment, 80-day-old female rats were assigned to one of the following groups: sham and ovariectomized. One week after surgery, animals were fed for 30 days with the same diet described above. Then, rats were submitted to water maze testing. Pre-treatment for two months before ovariectomy with the soy diet effectively prevented the increase in latency in finding the platform on the fifth day of training in the ovariectomized group. Ovariectomized rats subjected to soy diet post-treatment reversed the increase in latency to find the platform in the ovariectomized group on the fifth day of training and, the decrease in the time spent in target quadrant, the increase in the time spent in opposite quadrant and the latency to cross the platform location. Results show that both pre- and post-treatment protected against the impairment of memory, caused by ovariectomy. Post-treatment reversed various parameters of memory reference, indicating that post-treatment was more efficient than pre-treatment. Based on these findings, we suggest that soy diet (rich in isoflavones) may represent a novel therapeutic strategy to prevent or to treat cognitive symptoms found in some menopausal women.
Collapse
Affiliation(s)
- Siomara C Monteiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcellos, 2600-Anexo, CEP 90035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | |
Collapse
|
31
|
LaCroix-Fralish ML. Sex-specific pain modulation: The growth factor, neuregulin-1, as a pro-nociceptive cytokine. Neurosci Lett 2008; 437:184-7. [DOI: 10.1016/j.neulet.2008.02.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
|
32
|
Li H, Li SL, Gong L, Wang JL, Li YZ, Wu ZH. The effects of an herbal medicine Bu-Wang-San on learning and memory of ovariectomized female rat. JOURNAL OF ETHNOPHARMACOLOGY 2008; 117:427-432. [PMID: 18407445 DOI: 10.1016/j.jep.2008.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 02/02/2008] [Accepted: 02/14/2008] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL SIGNIFICANCE Bu-Wang-San (BWS) is a traditional Chinese herbal medicine for the treatment of learning and memory impairment. The effect of BWS on neuroprotection and how BWS increases CA1 dendritic spine synapse density in menopaused women was investigated in the model of ovariectomized (OVX) rats. MATERIALS AND METHODS Sixteen OVX rats were divided into two groups, the OVX group and OVX+BWS group. After 3 months, Morris water maze was used to assess spatial acquisition and spatial retention. Swim time, swim distance, swim speed, quadrant time and platform crossing were recorded. The ultrastructure of the pyramidal cell and spine synapse density were examined by transmission electron microscopy (TEM). RESULTS In the spatial acquisition and spatial retention phase of testing, BWS group functioned significantly better than control group. Ultrastructural observation of the hippocampal CA1 region of OVX group showed swelling of mitochondria, the broken and reduced cristas and even crista dissolution; however, the mitochondria were protected well in BWS group. In addition, BWS significantly increased spine synapse density. CONCLUSIONS These results suggested that BWS could improve cognitive ability of menopause-induced learning and memory impairment. The positive effect of BWS on rat learning and memory was associated with increase of spinal synapse density and protection of mitochondrial function of the pyramidal cell in hippocampal CA1 region from menopause-induced injury.
Collapse
Affiliation(s)
- Hui Li
- Department of Integrated Traditional Chinese and Western Medicine, Qilu Hospital of Shandong University, Jinan 250012, Shandong, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Sarkaki A, Amani R, Badavi M, Moghaddam AZ, Aligholi H, Safahani M, Haghighizadeh MH. Pre-treatment effect of different doses of soy isoflavones on spatial learning and memory in an ovariectomized animal model of Alzheimer's disease. Pak J Biol Sci 2008; 11:1114-9. [PMID: 18819549 DOI: 10.3923/pjbs.2008.1114.1119] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the effects of different doses of dietary soy meals (with or without isoflavone) on dementia in ovariectomized (OVX) animal model of Alzheimer's disease. Female Wistar's rats with the exception of intact group were ovariectomized at the first line of study. Animals were divided into 2 main groups: control (c) and pre-treatment groups. Animals in pre-treatment groups received one of five types of diet during four weeks prior Nucleus Basalis Magnocellularis (NBM) electrical lesion normal diet (0), 10 g soy with isoflavone (10), 20 g soy with isoflavone (20), 10 g soy without isoflavone (-10) and 20 g soy without isoflavone (-20) in 30 g daily diet. The spatial learning and memory were tested using Morris water maze after electrical lesion. Rats were trained in water maze to find a hidden escape Platform. Rats received 6 blocks that each block consisted of 3 trials. Following acquisition trials, one probe trial was conducted in which the platform was removed. Soy meal diet (with or without isoflavone) in ovariectomized rats with Alzheimer's disease caused improvement of performance across 18 trials of Acquisition. Our results suggest that soy meal is a potential alternative to estrogen in the prevention and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, Medical Faculty, Research Center of Physiology, Ahwaz Jondishapur University of Medical Sciences, Iran
| | | | | | | | | | | | | |
Collapse
|
34
|
Lovekamp-Swan T, Glendenning ML, Schreihofer DA. A high soy diet enhances neurotropin receptor and Bcl-XL gene expression in the brains of ovariectomized female rats. Brain Res 2007; 1159:54-66. [PMID: 17582385 PMCID: PMC1995131 DOI: 10.1016/j.brainres.2007.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 04/25/2007] [Accepted: 05/20/2007] [Indexed: 10/23/2022]
Abstract
Estrogen is a powerful neuroprotective agent with the ability to induce trophic and antiapoptotic genes. However, concerns about negative overall health consequences of estrogen replacement after menopause have led to the adoption of other strategies to obtain estrogen's benefits in the brain, including the use of selective estrogen receptor modulators, high soy diets, or isoflavone supplements. This study sought to determine the ability of a high soy diet to induce neuroprotective gene expression in the female rat brain and compare the actions of soy with estrogen. Adult ovariectomized female rats were treated with 3 days of high dose estrogen or 2 weeks of a soy-free diet, a high soy diet, or chronic low dose estrogen. Different brain regions were microdissected and subjected to real time RT-PCR for neuroprotective genes previously shown to be estrogen-regulated. The principle findings are that a high soy diet led to the widespread increase in the mRNA for neurotropin receptors TrkA and p75-NTR, and the antiapoptotic Bcl-2 family member Bcl-X(L). Immunohistochemistry confirmed increases in both TrkA and Bcl-X(L). Chronic low dose estrogen mimicked some of these effects, but acute high dose estrogen did not. The effects of a high soy diet were particularly evident in the parietal cortex and hippocampus, two regions protected by estrogen in animal models of neurological disease and injury. These results suggest that a high soy diet may provide beneficial effects to the brain similar to low dose chronic estrogen treatment such as that used for postmenopausal hormone replacement.
Collapse
Affiliation(s)
- Tara Lovekamp-Swan
- Department of Physiology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3000
| | - Michele L. Glendenning
- Department of Physiology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3000
| | - Derek A. Schreihofer
- Department of Physiology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-3000
| |
Collapse
|
35
|
Monteiro SC, Mattos CB, Scherer EBS, Wyse ATS. Supplementation with vitamins E plus C or soy isoflavones in ovariectomized rats: effect on the activities of Na(+), K (+)-ATPase and cholinesterases. Metab Brain Dis 2007; 22:156-71. [PMID: 17514415 DOI: 10.1007/s11011-007-9051-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 12/12/2006] [Indexed: 01/22/2023]
Abstract
Since a previous study demonstrated that ovariectomized rats present an activation of Na(+), K(+)-ATPase and acetylcholinesterase (AChE) activities, in the present study we investigated the influence of vitamins E plus C or soy isoflavones on the effects elicited by ovariectomy on the activities of these enzyme in hippocampus of ovariectomized rats. We also determined the effect of the same compounds on the reduction of serum butyrylcholinesterase (BuChE) activity caused by ovariectomy. Female adult Wistar rats were assigned to one of the following groups: sham (submitted to surgery without removal of the ovaries) and ovariectomized. Seven days after surgery, animals were treated for 30 days with a single daily intraperitoneous injection of vitamins E (40 mg/kg) plus C (100 mg/kg) or saline (control). In another set of experiments, the rats were fed for 30 days on a special diet with soy protein or a standard diet with casein (control). Rats were sacrificed after treatments and the hippocampus was dissected and serum was separated. Data demonstrate that vitamins E plus C reversed the activation of Na(+), K(+)-ATPase and AChE in hippocampus of ovariectomized rats. Conversely, soy protein supplementation reversed the increase of AChE activity, but not of Na(+), K(+)-ATPase activity, caused by ovariectomized group. Neither treatment was able to reverse the reduction of serum BuChE activity. Furthermore, treatments with vitamins E plus C or soy were unable to reverse the decrease in estradiol levels caused by ovariectomy. Our findings show that the treatment with vitamins E plus C significantly reversed the effect of ovariectomy on hippocampal Na(+), K(+)-ATPase and AChE activities. However, a soy diet that was rich in isoflavones was able to reverse just the increase of AChE. Neither treatment altered the reduction in serum BuChE activity. Taken together, these vitamins and soy may have a protective role against the possible brain dysfunction observed in some menopause women. Vitamins E plus C and soy isoflavones may be a good alternative as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Siomara C Monteiro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcellos, 2600-Anexo, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | |
Collapse
|
36
|
Xu J, Zhu J, Shi C, Guo K, Yew DT. Effects of genistein on hippocampal neurodegeneration of ovariectomized rats. J Mol Neurosci 2007. [DOI: 10.1385/jmn/31:02:101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Hwang IK, Lee YB, Yoo KY, Kang TC, Lim SS, Kim SM, Sohn HS, Kim WJ, Shin HK, Won MH. Soybean isoflavones alter parvalbumin in hippocampus of mid-aged normal female, ovariectomized female, and normal male rats. Acta Pharmacol Sin 2006; 27:59-65. [PMID: 16364211 DOI: 10.1111/j.1745-7254.2006.00258.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To investigate the long-term effect of soybean isoflavones on changes in parvalbumin (PV) immunoreactivity in the hippocampus in normal female, ovariectomized (OVX) female and normal male rats. METHODS Ten-month-old rats were assigned to one of 9 groups (n = 7 in each group) based on body weight using a randomized complete-block design. The groups were: control diet-treated females, OVX females, and males; 0.3 g/kg isoflavone-treated females, OVX females, and males; and 1.2 g/kg isoflavone-treated females, OVX females, and males. The PV immunostaining was conducted by using the standard avidin-biotin complex method. RESULTS PV immunoreactivity and the number of PV-immunoreactive neurons in all the groups after isoflavone treatment were significantly changed in the hippocampal CA1 region and in the dentate gyrus, but not in the hippocampal CA2/3 region. PV immunoreactivity and the number of PV-immunoreactive neurons in the control diet OVX females were similar to those in the control diet, and were greater than those in the control diet normal females. PV immunoreactivity and the number of PV-immunoreactive neurons in all the isoflavone-treated groups decreased dose-dependently after isoflavone treatment. CONCLUSION Long-term administration of isoflavones may induce a reduction of PV in interneurons in the hippocampal CA1 region and in the dentate gyrus. The reduction of PV in these regions suggests that the long-term administration of isoflavones may cause a change in calcium homeostasis in the hippocampal CA1 region and in the dentate gyrus.
Collapse
Affiliation(s)
- In-koo Hwang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nockher WA, Renz H. Neurotrophins in clinical diagnostics: pathophysiology and laboratory investigation. Clin Chim Acta 2005; 352:49-74. [PMID: 15653100 DOI: 10.1016/j.cccn.2004.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/24/2004] [Accepted: 10/05/2004] [Indexed: 01/14/2023]
Abstract
There is now growing evidence that a number of multifunctional signaling molecules, originally discovered as signal molecules in specific cells, exert their effects in various other tissue compartments. Neurotrophins, a class of homologues growth factors initially discovered to promote neuronal growth and survival, display such a dual activity and contribute to the development of a variety of non-neuronal tissues. Nowadays, several examples of essential non-neuronal functions played by neurotrophins and of variations of neurotrophin expression that accompany these processes can be presented. As will be shown, neurotrophins are found in many body tissues produced by a variety of non-neuronal cell types such as immune cells, adipocytes, endothelia, epithelia, fibroblasts, keratinocytes and endocrine cells. Assuming a general role as growth and survival factors, changes in neurotrophin expression may reflect physiological or pathological processes, such as activation, proliferation or repair followed by injury in the tissues. Neurotrophins were also present in the systemic blood circulation and variations in blood concentrations indicate vascular as well as peripheral production. In this review, we will discuss changes in local and systemic neurotrophin concentrations as well as their known pathophysiological relationship in various inflammatory and non-inflammatory disorders. Beside the nervous system, these will include diseases of the airways, skin and joints as well as systemic autoimmune diseases. Furthermore, new aspects of neurotrophin actions in maintenance of body energy balance and in reproductive endocrinology will be presented.
Collapse
Affiliation(s)
- Wolfgang Andreas Nockher
- Department of Clinical Chemistry and Molecular Diagnostics, University Hospital, Philipps Universität, 35033 Marburg, Baldingerstrasse, Germany.
| | | |
Collapse
|
39
|
Schreihofer DA. Transcriptional regulation by phytoestrogens in neuronal cell lines. Mol Cell Endocrinol 2005; 231:13-22. [PMID: 15713532 DOI: 10.1016/j.mce.2004.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/14/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Widespread epidemiological data support the notion that high isoflavone intake is safe and may provide health benefits similar to estrogen. Evidence from rodents shows that certain phytoestrogens can act as estrogen receptor (ER) ligands in the brain. This study sought to determine the estrogenic profile of food-borne phytoestrogens in neuronal cell lines using physiologically attainable concentrations. At sub-micromolar concentrations genistein, daidzein, and zearalenone stimulated ERalpha and ERbeta-dependent transcription in Neuro2A cells co-transfected with ERs and simple and complex estrogen-response-element (ERE) containing promoters, although compounds were more active in the presence of ERbeta. In SN56, neuronblastoma cells expressing endogenous ERs, only genistein mimicked estrogen regulation of progesterone receptor steady state mRNA levels. Unlike pharmaceutical SERMs, phytoestrogens did not stimulate an AP-1-dependent promoter. Micromolar concentrations of phytoestrogens did not antagonize physiological estrogen concentrations or antagonist activation of an AP-1-dependent promoter. These results demonstrate that food-borne phytoestrogens, particularly those found in soy, act as ERE-, but not AP-1-dependent transcriptional activators in neurons in the absence of estrogen, and dietary levels of these compounds do not act as antagonists to physiological estrogen concentrations.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Physiology, Medical College of Georgia, 1120 15th Street, CL2130, Augusta, GA 30912-3000, USA.
| |
Collapse
|
40
|
Marin F, Perez-Alvarez J, Soler-Rivas C. Isoflavones as functional food components. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1572-5995(05)80075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
41
|
Abstract
Because of their protective effects in age-related diseases and hormone-dependent cancers, the use of phytoestrogens (isoflavones) as 'natural' remedies has gained prominence. Isoflavones are estrogen mimics that bind estrogen receptors and act like natural selective estrogen receptors modulators. However, limited data exists regarding the influence of soy-derived dietary isoflavones in brain. This brief review will address these topics and examine the influence of dietary isoflavones on sexually dimorphic hypothalamic nuclei. We have observed that altering the isoflavone content within diet significantly affects both the sexually dimorphic nucleus of the preoptic area (a structure that is larger in males than in females) and the anteroventral periventricular nucleus (a structure that is larger in females than in males). Specifically, when animals were switched from phytoestrogen-rich to a phytoestrogen-free diet the volume of the sexually dimorphic nucleus of the preoptic area was decreased in males (no alterations were detected in females). Conversely, when the anteroventral periventricular nucleus was examined, volume changes were recorded in males and females opposite to the patterns observed for the sexually dimorphic nucleus of the preoptic area. Given the practical limitations of examining the effects of dietary phytoestrogens in the human brain, it is important to establish comparative data sets to elucidate phytoestrogen's hormone action and potentially its beneficial brain health effects.
Collapse
Affiliation(s)
- Edwin D Lephart
- The Neuroscience Center, Brigham Young University, 633 WIDB, Provo, UT 84602, USA
| | | | | |
Collapse
|
42
|
Forsling ML, Kalló I, Hartley DE, Heinze L, Ladek R, Coen CW, File SE. Oestrogen receptor-beta and neurohypophysial hormones: functional interaction and neuroanatomical localisation. Pharmacol Biochem Behav 2003; 76:535-42. [PMID: 14643853 DOI: 10.1016/j.pbb.2003.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Oestrogens affect fluid balance, influencing both ingestive behaviour and renal excretion. The renal effects are partly due to altered release of vasopressin and oxytocin. This study was designed to explore the role of oestrogen receptor-beta (ERbeta) in neurohypophysial hormonal function. Following dietary administration, soya isoflavones reach the brain in sufficient concentration to activate ERbeta, but not oestrogen receptor-alpha (ERalpha). ERbeta function was therefore manipulated by feeding rat diets differing in soya isoflavone content. Fluid balance and neurohypophysial hormone release were measured in male rats maintained for 14 days on a soya isoflavone-free diet or one containing 150 microg/g genistein+daidzein. Food and water intake, body weight, urine flow, osmolality and sodium concentrations were determined daily. After 14 days, plasma and urine osmolality and sodium, vasopressin and oxytocin concentrations were determined. There was no significant difference in weight gain between the two groups or in their excretion of sodium and water or plasma sodium and plasma oxytocin. However, plasma vasopressin was significantly lower in the iso-free group. Double-label immunocytochemistry was used to assess colocalisation of ERbeta with the neurohypophysial hormones in male rats. Cell nuclei showing ERbeta immunoreactivity were abundant in the posterior magnocellular paraventricular nucleus (PVNpm) and in the supraoptic nucleus (SON). Vasopressin-immunoreactive neurones were similarly distributed, forming the core of the PVNpm and the ventral portion of the SON; majority were positive for ERbeta. Cells with oxytocin immunoreactivity were located mainly at the periphery of the PVNpm and in the dorsal SON; only approximately a quarter of these cells showed ERbeta immunoreactivity. Thus, the difference in the effects of the soya diet on vasopressin and oxytocin release may be related to the ERbeta-activating properties of this diet and to the preponderance of this receptor in vasopressin as opposed to oxytocin cells.
Collapse
Affiliation(s)
- M L Forsling
- Neuroendocrine and Psychopharmacology Research Laboratories, Centre for Neuroscience, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
43
|
Duffy R, Wiseman H, File SE. Improved cognitive function in postmenopausal women after 12 weeks of consumption of a soya extract containing isoflavones. Pharmacol Biochem Behav 2003; 75:721-9. [PMID: 12895690 DOI: 10.1016/s0091-3057(03)00116-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We previously reported that a high soya diet improved memory and frontal lobe function in young volunteers, and since soya isoflavones are agonists at oestrogen receptors, they may improve these functions in postmenopausal women. Thirty-three postmenopausal women (50-65 years) not receiving conventional hormone replacement therapy (HRT) were randomly allocated in a double-blind parallel study to receive a soya supplement (60 mg total isoflavone equivalents/day) or placebo for 12 weeks. They received a battery of cognitive tests and completed analogue rating scales of mood and sleepiness, and a menopausal symptoms questionnaire before the start of treatment and then after 12 weeks of treatment. Those receiving the isoflavone supplement showed significantly greater improvements in recall of pictures and in a sustained attention task. The groups did not differ in their ability to learn rules, but the isoflavone supplement group showed significantly greater improvements in learning rule reversals. They also showed significantly greater improvement in a planning task. There was no effect of treatment on menopausal symptoms, self-ratings of mood, bodily symptoms or sleepiness. Thus, significant cognitive improvements in postmenopausal women can be gained from 12 weeks of consumption of a supplement containing soya isoflavones that are independent of any changes in menopausal symptoms, mood or sleepiness.
Collapse
Affiliation(s)
- Rosanna Duffy
- Department of Nutrition and Dietetics, Nutrition, Food and Health Research Centre, Franklin-Wilkins Building, King's College London, London SE1 9NN, UK
| | | | | |
Collapse
|
44
|
Lephart ED, Rhees RW, Setchell KDR, Bu LH, Lund TD. Estrogens and phytoestrogens: brain plasticity of sexually dimorphic brain volumes. J Steroid Biochem Mol Biol 2003; 85:299-309. [PMID: 12943716 DOI: 10.1016/s0960-0760(03)00210-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sexually dimorphic brain volumes (sexually dimorphic nucleus of the preoptic area (SDN-POA) and anteroventral periventricular (AVPV) nucleus) are influenced by estrogens. Phytoestrogens, derived from plants (especially soy products), are molecules structurally and functionally similar to estradiol. The purpose of this study was to examine: the consumption of phytoestrogen (using a phytoestrogen-rich (Phyto-600) versus a phytoestrogen-free (Phyto-free)) diets from conception to adulthood (or changing the diets during adulthood) and characterizing (a) circulating plasma phytoestrogen levels, (b) testosterone levels in males, (c) sexually dimorphic brain volumes (i.e. the SDN-POA and AVPV) and (d) the presence of apoptotic cells in these brain structures in Long-Evans rats. Phyto-600 fed animals displayed total serum phytoestrogens levels 37-fold higher compared to Phyto-free values. Circulating testosterone levels were not significantly altered by the diets. Female SDN-POA volumes were not altered by the diets. Whereas, males fed a Phyto-free diet displayed decreased SDN-POA volumes compared to male Phyto-600 values. Females fed the Phyto-600 diet displayed larger AVPV volumes compared to males on the same diet or females on the Phyto-free diet. Males fed the Phyto-free diet had the largest AVPV values compared to Phyto-600 fed males. When the SDN-POA region was examined in lifelong Phyto-free fed males, apoptotic cells were present versus males fed the Phyto-600 diet and in the AVPV region the opposite results were obtained. In summary, consumption of dietary phytoestrogens (estrogen mimics) can alter hormone-sensitive hypothalamic brain volumes in rodents during adulthood.
Collapse
Affiliation(s)
- E D Lephart
- The Neuroscience Center, 633 WIDB, Brigham Young University, Provo, UT 84602, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Approximately 50% of Americans use dietary supplements on a regular basis spending an estimated $20 billion on supplements in the year 2000. Soy contains genistein and daidzein, two phytoestrogens, which work through the estrogen receptor and cause alterations in serum lipids, bone metabolism, and possibly cognition. In this article, we review the issues regarding the interpretation with studies using soy-based isoflavones, discuss their mechanism of action, and review the literature on the effect of these bio-active compounds on lipid metabolism, osteoblasts and osteoclasts, bone markers, bone mineral density, and cognition.
Collapse
Affiliation(s)
- Lorraine A Fitzpatrick
- Department of Internal Medicine and Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
| |
Collapse
|
46
|
File SE, Hartley DE, Alom N, Rattray M. Soya phytoestrogens change cortical and hippocampal expression of BDNF mRNA in male rats. Neurosci Lett 2003; 338:135-8. [PMID: 12566171 DOI: 10.1016/s0304-3940(02)01391-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adult male hooded Lister rats were either fed a diet containing 150 microg/g soya phytoestrogens or a soya-free diet for 18 days. This concentration of phytoestrogens should have been sufficient to occupy the oestrogen-beta, but not the oestrogen-alpha, receptors. Using in situ hybridisation, significant reductions were found in brain-derived neurotrophic factor (BDNF) mRNA expression in the CA3 and CA4 region of the hippocampus and in the cerebral cortex in the rats fed the diet containing phytoestrogens, compared with those on the soya-free diet. No changes in glutamic acid decarboxylase-67 or glial fibrillary acidic protein mRNA were found. This suggests a role for oestrogen-beta receptors in regulating BDNF mRNA expression.
Collapse
Affiliation(s)
- Sandra E File
- Psychopharmacology Research Unit and Biochemical Neuropharmacology Group, Centre for Neuroscience Research, King's College London, Hodgkin Building, Guy's Campus, SE1 1UL, London, UK
| | | | | | | |
Collapse
|
47
|
Martocchia A, Sigala S, Proietti A, D'Urso R, Spano PF, Missale C, Falaschi P. Sex-related variations in serum nerve growth factor concentration in humans. Neuropeptides 2002; 36:391-5. [PMID: 12507432 DOI: 10.1016/s0143-4179(02)00134-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A role of nerve growth factor (NGF) in the neuro-endocrine-immune interactions has been recently suggested by the presence of NGF and its receptors in cells of the immune and endocrine systems. The improvement in the comprehension of the role played by NGF in humans is linked to the availability of a sensitive and reliable method to quantify NGF concentrations in body fluids and tissues. As a consequence of different methods used, normal levels of human serum NGF reported in the literature show wide differences. The present results indicate that ELISA appears very sensitive (detection limit 1.4pg/ml) and allows the discrimination of subtle variations of serum NGF concentrations. ELISA performed in serum obtained from men indicated that NGF concentration was 40.8+/-10.8pg/ml, whereas women showed significantly lower levels that were influenced by the menstrual cycle. In particular, the mean value of this neurotrophin during the follicular phase was 8.2+/-1.4pg/ml; the luteal phase, in turn, showed levels up to 14.4+/-2.9pg/ml. The difference of serum NGF concentrations between the follicular and luteal phase in each woman was statistically significant. Differences in NGF concentrations between men and women (in both phases of the menstrual cycles) were also statistically significant. In conclusion, a possible role of sex steroids as modulators of NGF secretion in humans is strongly supported by the present paper. However, mechanisms underlying this phenomenon are still unknown. The evidence indicating physiological sex hormone-related variations in NGF levels would be of interest in view of the possible use of circulating NGF modifications as a laboratory biomarker in different diseases.
Collapse
Affiliation(s)
- A Martocchia
- Chair of Internal Medicine, II Faculty of Medicine, University of Roma La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
48
|
McMillan PJ, LeMaster AM, Dorsa DM. Tamoxifen enhances choline acetyltransferase mRNA expression in rat basal forebrain cholinergic neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 103:140-5. [PMID: 12106699 DOI: 10.1016/s0169-328x(02)00195-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Novel estrogen-like molecules known as SERMs (selective estrogen receptor modulators) produce many of the beneficial estrogen-like actions without the detrimental side-effects. The SERM, tamoxifen, an estrogen-like molecule with both agonist and antagonist properties, is widely prescribed for the treatment of breast cancer. While the effects of tamoxifen are being evaluated in many peripheral tissues, its effects in the central nervous system (CNS) have been largely ignored. In the present study, we begin to evaluate the effects of tamoxifen in the rat basal forebrain, a region known to be highly responsive to estrogen. We compared the effects of short-term (24 h) tamoxifen treatment to that of estrogen on ChAT mRNA expression in cholinergic neurons. In addition, we examined the effect of tamoxifen in the presence and absence of estrogen. Our results indicate that tamoxifen enhances ChAT expression in a manner similar to that of estrogen in several basal forebrain regions. In contrast, tamoxifen exhibits antagonist properties with respect to estrogen-induction of progesterone receptor mRNA in the medial preoptic nucleus. These results indicate tamoxifen has estrogenic properties with respect to cholinergic neurons, suggesting a previously unidentified effect of this agent in the CNS.
Collapse
Affiliation(s)
- Pamela J McMillan
- Departments of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
49
|
Lephart ED, West TW, Weber KS, Rhees RW, Setchell KDR, Adlercreutz H, Lund TD. Neurobehavioral effects of dietary soy phytoestrogens. Neurotoxicol Teratol 2002; 24:5-16. [PMID: 11836067 DOI: 10.1016/s0892-0362(01)00197-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phytoestrogens, plant-derived nonsteroidal estrogens found in high abundance in most soy food products, have been studied for their potential beneficial effects against hormone-dependent cancers and age-related diseases. However, little is known about the influence of phytoestrogens on the brain or behavior. This brief review describes mainly our own studies in rodents that have examined the influence of dietary soy isoflavones on certain aspects of brain structure, learning, memory and anxiety along with the brain androgen-metabolizing enzyme, aromatase. These studies used a commercially available diet rich in phytoestrogens (Phyto-rich) vs. a custom diet relatively free of phytoestrogens (Phyto-free). The phytoestrogen content of each diet was determined by high-performance liquid chromatography analysis, circulating plasma phytoestrogen levels were quantified by gas chromatography mass spectroscopy and concentrations of phytoestrogens in specific brain regions were measured by time-resolved fluoroimmunoassay (TR-FIA). Our studies showed that brain aromatase levels were not significantly altered by phytoestrogen diet treatments in perinatal, maternal or adult rats. However, volumes of the sexually dimorphic nucleus of the preoptic area (SDN-POA) were significantly affected by the Phyto-free diet treatment in male rats during adulthood, where SDN-POA volumes were smaller compared to Phyto-rich male values. Additionally, the Phyto-rich diet fed to adult male and female rats produced anxiolytic effects as assessed in the elevated plus maze vs. Phyto-free fed animals. Finally, when learning and memory parameters were examined in a radial arm maze testing visual-spatial memory (VSM), the diet treatments significantly changed the typical sexually dimorphic pattern of VSM. Specifically, adult Phyto-rich fed females outperformed Phyto-free fed females, while in males on the same diets, the opposite pattern of maze performance was observed. When female vs. male performance was compared, Phyto-rich females executed the VSM task in a manner similar to that of Phyto-free fed males, while Phyto-free fed female's VSM was comparable to Phyto-rich males. These results indicate that consumption of dietary phytoestrogens resulting in very high plasma isoflavone levels (in many cases over a relatively short interval of consumption in adulthood) can significantly alter sexually dimorphic brain regions, anxiety, learning and memory. The findings of these studies identify the biological actions of phytoestrogens, specifically isoflavones and their metabolites, found in animal soy-containing diets on brain and behavior and implicate the importance of phytoestrogens given the recognized significance of estrogens in brain and neural disorders, such as Alzheimer's disease, especially in women.
Collapse
Affiliation(s)
- Edwin D Lephart
- Neuroscience Center, 633 WIDB, Brigham Young University, Provo, UT 86402, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Lund TD, West TW, Tian LY, Bu LH, Simmons DL, Setchell KDR, Adlercreutz H, Lephart ED. Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens. BMC Neurosci 2001; 2:20. [PMID: 11801187 PMCID: PMC64558 DOI: 10.1186/1471-2202-2-20] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2001] [Accepted: 12/18/2001] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In learning and memory tasks, requiring visual spatial memory (VSM), males exhibit superior performance to females (a difference attributed to the hormonal influence of estrogen). This study examined the influence of phytoestrogens (estrogen-like plant compounds) on VSM, utilizing radial arm-maze methods to examine varying aspects of memory. Additionally, brain phytoestrogen, calbindin (CALB), and cyclooxygenase-2 (COX-2) levels were determined. RESULTS Female rats receiving lifelong exposure to a high-phytoestrogen containing diet (Phyto-600) acquired the maze faster than females fed a phytoestrogen-free diet (Phyto-free); in males the opposite diet effect was identified. In a separate experiment, at 80 days-of-age, animals fed the Phyto-600 diet lifelong either remained on the Phyto-600 or were changed to the Phyto-free diet until 120 days-of-age. Following the diet change Phyto-600 females outperformed females switched to the Phyto-free diet, while in males the opposite diet effect was identified.Furthermore, males fed the Phyto-600 diet had significantly higher phytoestrogen concentrations in a number of brain regions (frontal cortex, amygdala & cerebellum); in frontal cortex, expression of CALB (a neuroprotective calcium-binding protein) decreased while COX-2 (an inducible inflammatory factor prevalent in Alzheimer's disease) increased. CONCLUSIONS Results suggest that dietary phytoestrogens significantly sex-reversed the normal sexually dimorphic expression of VSM. Specifically, in tasks requiring the use of reference, but not working, memory, VSM was enhanced in females fed the Phyto-600 diet, whereas, in males VSM was inhibited by the same diet. These findings suggest that dietary soy derived phytoestrogens can influence learning and memory and alter the expression of proteins involved in neural protection and inflammation in rats.
Collapse
Affiliation(s)
- Trent D Lund
- The Neuroscience Center Brigham Young University, Provo, Utah 84602, USA
- Department of Psychology Brigham Young University, Provo, Utah 84602, USA
| | - Timothy W West
- The Neuroscience Center Brigham Young University, Provo, Utah 84602, USA
| | - Lilyan Y Tian
- The Neuroscience Center Brigham Young University, Provo, Utah 84602, USA
| | - Lihong H Bu
- The Neuroscience Center Brigham Young University, Provo, Utah 84602, USA
| | - Daniel L Simmons
- The Neuroscience Center Brigham Young University, Provo, Utah 84602, USA
- Department of Chemistry and Biochemistry Brigham Young University, Provo, Utah 84602, USA
| | - Kenneth DR Setchell
- Clinical Mass Spectrometry Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Herman Adlercreutz
- Institute for Preventive Medicine, Nutrition, and Cancer Folkhälsan Research Center, and Division of Clinical Chemistry, Biomedicum, P.O.B. 63, University of Helsinki, Finland
| | - Edwin D Lephart
- The Neuroscience Center Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|